JP3922310B2 - Method for producing glycidyl ester of acrylic acid or methacrylic acid - Google Patents

Method for producing glycidyl ester of acrylic acid or methacrylic acid Download PDF

Info

Publication number
JP3922310B2
JP3922310B2 JP21755995A JP21755995A JP3922310B2 JP 3922310 B2 JP3922310 B2 JP 3922310B2 JP 21755995 A JP21755995 A JP 21755995A JP 21755995 A JP21755995 A JP 21755995A JP 3922310 B2 JP3922310 B2 JP 3922310B2
Authority
JP
Japan
Prior art keywords
epichlorohydrin
acid
methacrylic acid
reaction
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21755995A
Other languages
Japanese (ja)
Other versions
JPH0959268A (en
Inventor
剛 磯崎
正弘 黒川
昭弘 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP21755995A priority Critical patent/JP3922310B2/en
Priority to US08/687,053 priority patent/US5750739A/en
Priority to EP96112907A priority patent/EP0761660B1/en
Priority to DE69630425T priority patent/DE69630425T2/en
Publication of JPH0959268A publication Critical patent/JPH0959268A/en
Application granted granted Critical
Publication of JP3922310B2 publication Critical patent/JP3922310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
アクリル酸またはメタクリル酸のグリシジルエステル(以下、「グリシジルメタクリレート等」と言うことがある)は樹脂改質剤、熱硬化性塗料、接着剤、繊維処理剤、帯電防止剤、およびイオン交換樹脂等種々の工業用原料として広く使用されている。
近年、塗料材料、電子材料および繊維分野において塩素含有量の少ないグリシジルメタクリレート等が求められている。
【0002】
【従来の技術】
グリシジルメタクリレート等は一般的に次の3方法で製造されている。
(1)アクリル酸またはメタクリル酸(以下、「メタクリル酸等」と言うことがある)とエピクロルヒドリンを第4級アンモニウム塩の存在下に反応させ、メタクリル酸等の3−クロロ−2−ヒドロキシプロピルエステルを得、これをアルカリにより脱塩化水素させる(特公昭46ー34010、特開昭48−5713)。
(2)メタクリル酸等とエピクロルヒドリンを第4級アンモニウム塩の存在下に反応させ、メタクリル酸等の3−クロロ−2−ヒドロキシプロピルエステルを得、エポキシ化合物とエステル交換反応させる(特公昭41−9005、特公昭53−10575、特開昭50−95216)。
(3)メタクリル酸等とアルカリを反応させ、メタクリル酸等のアルカリ金属塩を得、ついで第4級アンモニウム塩の存在下にエピクロルヒドリンと反応させ、脱塩酸させる(特公昭45−28762、特公昭48−4006、特開昭48−39423)。
(1)または(2)の方法では、1,3−ジクロロプロパノール、2,3−ジクロロプロパノールおよびメタクリル酸等の3−クロロ−2−ヒドロキシプロピルエステル等の塩素不純物の少ないグリシジルメタクリレート等を高収率で得るために反応液を水酸化アルカリ処理する等の煩雑な工程が必要となる。
また、(3)の方法はメタクリル酸等のアルカリ金属塩は乾燥時に重合等を起こすおそれがあり高収率で得るためには高価なスプレードライヤー等の装置が必要であり、メタクリル酸等のアルカリ金属塩水溶液を別装置で調合する必要があるなど経済性が悪いという欠点がある。
【0003】
上記の問題点を解決すべく、特公平1−13470および特公平1−20152において、過剰量のエピクロルヒドリン中に懸濁させたアルカリ金属の炭酸塩および/または重炭酸塩とメタクリル酸等とを空気を吹き込みながら中和反応させ、中和により生成する水をエピクロルヒドリンと共沸させて反応系外へ除去してメタクリル酸等のアルカリ金属塩を生成せしめ、次いでこの反応系に触媒である第4級アンモニウム塩を添加し、該アルカリ金属塩とエピクロルヒドリンとを反応させて、反応終了後反応生成液に水を添加して洗浄後水層と有機層とを分離し、有機層を蒸留するアクリル酸またはメタクリル酸のグリシジルエステルの製造法が開示されている。この方法を用いると、容易にグリシジルメタクリレート等を高収率で合成することが出来る。
しかし、反応で生成したハロゲン化アルカリとグリシドールを水洗で除去すると、1,3−ジクロロプロパノールが多く生成してしまう。1,3−ジクロロプロパノールはグリシジルメタクリレート等と沸点が近似しているため蒸留による分離ができない。また、蒸留中にエピクロルヒドリンを生成する副反応を起こすため、製品として得られるグリシジルメタクリレート等のエピクロルヒドリンおよび加水分解性塩素濃度が高くなる。さらには、グリシジルメタクリレート等の水層への溶け込みおよび加水分解が生じグリシジルメタクリレート等の収量が低下する欠点もある。
反応により生成したアルカリ塩を濾別した場合も、1,3−ジクロロプロパノールの生成は起こらないがグリシドール等の不純物の除去が出来ず、得られた粗グリシジルメタクリレート等および蒸留後の精製グリシジルメタクリレート等はグリシドールを多量に含んだものとなる欠点がある。グリシドールを多く含むグリシジルメタクリレート等はラジカル重合させると重合度が上がらない、もしくは保存安定性が悪い等の問題があり、塗料や樹脂にした場合の性能低下を引き起こす原因となる。そのため、特開平4−235980に開示されている様にグリシドールを取り除くための水洗工程を増加しなければならず操作が煩雑になり工業的に不利である。
【0004】
上記(1)、(2)および(3)の方法で製造された粗グリシジルメタクリレート等は、一般に蒸留により精製されるが、蒸留中に濾過または水洗で取り除ききれない触媒の影響により、例えば化1、化2、化3の様な副反応がおこりエピクロルヒドリン、メタクリル酸のグリセリンエステルおよびグリシドール等が生成して製品の純度および収量を低下させる。
この問題を解決するために、粗グリシジルメタクリレート等にヘテロポリ酸またはそのアルカリ塩を添加してから蒸留分離する方法(特開昭63−255273)、粉末状水酸化アルカリを加えてから蒸留する方法(特開昭52−102217)、第4級アンモニウム塩の存在下に酸素含有ガスでストリッピングした後蒸留を行う方法(特開平4−187682)等が開示されている。
【0005】
【化1】

Figure 0003922310
【0006】
【化2】
Figure 0003922310
【0007】
【化3】
Figure 0003922310
【0008】
しかし、このように製造されたグリシジルメタクリレート等には通常エピクロルヒドリンが300〜10,000ppm、グリシドールが3000〜20,000ppm、加水分解性塩素が3,000〜10,000ppm程度残存しており、このグリシドールおよび残存塩素が塗料材料、電子材料および繊維分野において塗料特性、電気特性の低下、皮膚のかぶれ、そして近年は特にエピクロルヒドリンの発ガン性および作業環境の悪化等の問題を引き起こしている。
したがって、グリシジルメタクリレート等から不純物であるグリシドール、エピクロルヒドリンを含む塩素化合物等は極力除去されることが望ましい。
【0009】
含有エピクロルヒドリン100ppm以下のグリシジルメタクリレートの製造法として、メタクリル酸のアルカリ塩とエピクロルヒドリンとの反応時の水分管理を行い、得られた反応液を希水酸化ナトリウム水溶液で洗浄し、水蒸気処理を含んだ蒸留を行う方法(特開平7−2818)が開示されているが、狭い範囲の水分調節が必要であること、複数の洗浄工程が必要であること、初留成分の水分による変質等の問題があり工程が煩雑になり、経済的に優れた工業的製造法とはいいがたい。
【0010】
また、塩素分を全く含まないグリシジルメタクリレート等の製造法として、メタクリル酸等のエステルとグリシドールとをエステル交換させる方法(特開昭47−18801、特開昭55−11542、特開昭55−102575、特開平6−1780等)が開示されているが、グリシドールの貯蔵安定性の悪さおよび重合し易さ等の問題がある。
さらに、アリルメタクリレート等をエポキシ化する方法(特公昭47−6289、特開昭61−183275、特開平5−92962、特開平6−116254等)があるが、原料価格が高く工程数も多くなり経済性が悪いという問題がある。
【0011】
【発明が解決しようとする課題】
本発明の目的は上記従来技術のもつ欠点を克服した、極めて純度の高いアクリル酸またはメタクリル酸のグリシジルエステルの製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者等は鋭意検討の結果、過剰量のエピクロルヒドリン中に懸濁させたアルカリ金属の炭酸塩および/または重炭酸塩とメタクリル酸等とを酸素含有ガスを吹き込みながら中和反応させ、中和により生成する水をエピクロルヒドリンと共沸させて反応系外へ除去してメタクリル酸等のアルカリ金属塩を生成せしめ、次いでこの反応系に触媒を添加し、該アルカリ金属塩とエピクロルヒドリンとを反応させて得た粗グリシジルメタクリレート等を減圧下に過剰のエピクロルヒドリンの一部を回収しながら冷却し、アルカリ水溶液を添加して洗浄後水層と有機層とを分離し、分液した有機層に触媒不活性化剤を加え酸素含有ガスを吹き込みながら蒸留を行うことにより、有害なエピクロルヒドリン300ppm以下、好ましくは200ppm以下、さらに好ましくは100ppm以下、グリシドール濃度3000ppm以下,好ましくは2000ppm以下、さらに好ましくは1000ppm以下、加水分解性塩素3000ppm以下,好ましくは2000ppm以下、さらに好ましくは1000ppm以下のグリシジルメタクリレート等が経済的に有利に高収率および高純度で得られることを見いだした。
【0013】
【発明の実施の形態】
本発明において使用するエピクロルヒドリン量は、中和反応時およびエステル化反応時にメタクリル酸等に対して1〜10倍モル以上、好ましくは3〜7倍モル以上が系内に存在しているような量で選ばれるのが好ましい。エピクロルヒドリンが少なすぎるとメタクリル酸等のアルカリ金属塩スラリーの撹拌性が悪く収率低下を招き、エピクロルヒドリンが多すぎると塩素不純物の増加および経済性の低下を起こす。
【0014】
本発明において使用するアルカリ金属塩および重炭酸塩には炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム等があり、メタクリル酸等に対して当量以上の量が用いられるが、通常1.0〜1.7の範囲で選ばれるのが好適である。
【0015】
本発明に使用する第4級アンモニウム塩としては、テトラメチルアンモニウムクロリド、トリメチルエチルアンモニウムクロリド、ジメチルジエチルアンモニウムクロリド、メチルトリエチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、トリメチルベンジルアンモニウムクロリド、トリエチルベンジルアンモニウムクロリド等が挙げられる。第4級アンモニウム塩は上記の1種でも良く、任意の2種以上のものを組み合わせて使用しても良いが、上記の中でもテトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、トリエチルベンジルアンモニウムクロリド、およびトリメチルベンジルアンモニウムクロリドが好適に使用される。触媒の使用量は、メタクリル酸等に対して通常0.01〜1.5モル%である。
【0016】
本発明の方法を実施するに当たって、中和反応、エステル化反応および蒸留のいずれにおいても反応系中に重合禁止剤が存在していることが好ましく、アミン系、フェノール系、リン系、イオウ系あるいは遷移金属系の通常用いられている重合禁止剤の中から選んで用いればよい。
【0017】
本発明のエステル化反応終了後に回収するエピクロルヒドリンの回収量は、過剰エピクロルヒドリンの5〜80重量%、好ましくは10〜60重量%、さらに好ましくは20〜40重量%である。エピクロルヒドリンの回収量が5重量%より少ないと水層と有機層の分離性が向上せず、80重量%より多いと反応液のスラリー性状が悪くなる等の問題が生じる。
【0018】
本発明で使用する水酸化アルカリ水溶液の濃度は、1〜15wt%であり、好ましくは3〜10wt%である。水酸化アルカリ水溶液の使用量は、メタクリル酸等1モルに対して50〜500gであり、好ましくは100〜400g、さらに好ましくは150〜300gである。水酸化アルカリ水溶液を粗グリシジルメタクリレート等に添加する温度は0〜80℃であり、好ましくは10〜60℃、さらに好ましくは20〜40℃である。
【0019】
本発明で使用する触媒不活性化剤はアルキルスルホン酸、アルキルベンゼンスルホン酸、リンタングステン酸、リンモリブデン酸のナトリウム塩またはカルシウム塩から選ばれた1種以上であり且つ、該アルカリ金属塩の使用量は、使用する触媒に対して1〜70モル%であり、好ましくは5〜50モル%、さらに好ましくは10〜30モル%である。
【0020】
本発明の反応中および蒸留中に用いる酸素含有ガスには、例えば酸素と窒素との混合ガスや空気等があり、その酸素含有量は1〜30容量%である。酸素含有ガスの使用量はグリシジルメタクリレート等1Kgに対して20℃、常圧下の流量として0.1〜500ml/min、好ましくは1〜300ml/min、さらに好ましくは5〜100ml/minである。
【0021】
【発明の効果】
本発明の製造法の採用により、エピクロルヒドリン含有量、グリシドール含有量および加水分解性塩素含有量が極めて少ない、高純度アクリル酸およびメタクリル酸のグリシジルエステルを容易に高収率で得ることができる。
【0022】
【実施例】
以下、実施例により本発明を詳しく説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例および比較例での原料及び製品の純度測定はGC法により、製品の加水分解性塩素測定は以下に示した(参考例1)。
本実施例等において、原料、製品等の純度(%)は、全て重量%、ppmは重量ベースで示してある。
【0023】
参考例1 加水分解性塩素測定方法
100mlエルレンマイヤーフラスコに製品グリシジルメタクリレート等約1mlを精秤する。フラスコに精メタノール10mlと純水10mlを加えて、製品を溶解させる。次に、フラスコに5N水酸化カリウム10mlを加えた後、還流冷却器に連結して湯浴(90〜100℃)上で撹拌しながら30min加熱分解する。湯浴より取り外し室温まで放冷する。放冷後、フラスコを還流冷却器より外し、フェノールフタレイン(0.1%溶液)指示薬を2〜3滴加えて4N硝酸で中和した後、1ml過剰に加える。自動滴定装置にセットして、N/1000硝酸銀で滴定する。ブランク測定も同時に行い、次式により加水分解性塩素量を算出する。
Figure 0003922310
A:試料のN/1000硝酸銀溶液滴定量(ml)
B:ブランクのN/1000硝酸銀溶液滴定量(ml)
N:規定度(0.001)
f:N/1000硝酸銀溶液のファクター
S:試料採取量(g)
【0024】
実施例1
100Lのステンレス製の反応槽にエピクロルヒドリン72.0Kgと無水炭酸ナトリウム5.86Kgとフェノチアジン0.06Kgを仕込んだ。反応液中に1.0L/minの空気を吹き込みながら昇温し、反応液温度が110℃になったところでメタクリル酸8.0Kgを40分かけて添加した。添加開始後まもなく共沸留出してくるエピクロルヒドリンと水は系外に留去した。添加終了後約30分たつと、反応液温度は115℃まで上昇し、共沸留出はほとんど無くなった。この時得られた共沸留出液はエピクロルヒドリン層20.43Kgと水層1.2Kgであった。次いで、引き続き反応液中に1.0L/minの空気を吹き込みながら、触媒のテトラメチルアンモニウムクロリド0.03Kgを添加し、同温度で1時間反応させた。
反応終了後、減圧下で過剰のエピクロルヒドリンの一部を回収しながら反応液を30℃に冷却してから3%NaOH水溶液20Kgを添加して5分間撹拌した。空気吹き込みを停止して静置後、油層と水層を分離し油層にパラトルエンスルホン酸ナトリウム0.005Kgを添加した後、反応液中に0.2L/minの空気を吹き込みながら、減圧でエピクロルヒドリンを留去後、減圧蒸留してグリシジルメタクリレートを12.3Kgを得た。得られたグリシジルメタクリレートは、収率93%、純度98.5%、エピクロルヒドリン76ppm、グリシドール900ppm、加水分解性塩素550ppmであった。
【0025】
実施例2
実施例1と同様の条件で合成を行い、触媒不活性化剤としてリンタングステン酸ナトリウム40gを添加し、蒸留時の吹き込み空気量を0.2L/minから1L/minに変えて実験を行った結果、得られたグリシジルメタクリレートは収率90.5%、純度99.1%、エピクロルヒドリン55ppm、グリシドール960ppm、加水分解性塩素755ppmであった。
【0026】
実施例3
100Lのステンレス製の反応槽にエピクロルヒドリン72.0Kgと無水炭酸ナトリウム5.86Kgとフェノチアジン0.06Kgを仕込んだ。反応液中に2.0L/minの空気を吹き込みながら昇温し、反応液温度が110℃になったところでメタクリル酸8.0Kgを30分かけて添加した。添加開始後まもなく共沸留出してくるエピクロルヒドリンと水は系外に留去した。添加終了後約30分たつと、反応液温度は115℃まで上昇し、共沸留出はほとんど無くなった。この時得られた共沸留出液はエピクロルヒドリン層21.64Kgと水層1.16Kgであった。次いで、引き続き反応液中に2.0L/minの空気を吹き込みながら、触媒のテトラエチルアンモニウムクロリド0.045Kgを添加し、同温度で1時間反応させた。
反応終了後、減圧下で過剰のエピクロルヒドリンの一部を回収しながら反応液を30℃に冷却してから5%NaOH水溶液22Kgを添加して5分間撹拌した。空気吹き込みを停止して静置後、油層と水層を分離し油層にパラトルエンスルホン酸ナトリウム0.005Kgを添加した後、反応液中に0.4L/minの空気を吹き込みながら、減圧でエピクロルヒドリンを留去後、減圧蒸留してグリシジルメタクリレートを12.1Kgを得た。得られたグリシジルメタクリレートは、収率91.3%、純度98.7%、エピクロルヒドリン68ppm、グリシドール950ppm、加水分解性塩素515ppmであった。
【0027】
比較例1
100Lのステンレス製の反応槽にエピクロルヒドリン72.0Kgと無水炭酸ナトリウム5.86Kgとフェノチアジン0.06Kgを仕込んだ。反応液中に1.0L/minの空気を吹き込みながら昇温し、反応液温度が110℃になったところでメタクリル酸8.0Kgを30分かけて添加した。添加開始後まもなく共沸留出してくるエピクロルヒドリンと水は系外に留去した。添加終了後約30分たつと、反応液温度は115℃まで上昇し、共沸留出はほとんど無くなった。この時得られた共沸留出液はエピクロルヒドリン層19.32Kgと水層1.12Kgであった。次いで、引き続き反応液中に1.0L/minの空気を吹き込みながら、触媒のテトラメチルアンモニウムクロリド0.03Kgを添加し、同温度で1時間反応させた。
反応終了後、減圧下で過剰のエピクロルヒドリンの一部を回収しながら反応液を30℃に冷却してから水22Kgを添加して5分間撹拌した。空気吹き込みを停止して静置後、油層と水層を分離し油層にパラトルエンスルホン酸ナトリウム0.005Kgを添加した後、反応液中に0.2L/minの空気を吹き込みながら、減圧でエピクロルヒドリンを留去後、減圧蒸留してグリシジルメタクリレートを12.0Kgを得た。得られたグリシジルメタクリレートは、収率91%、純度98.1%、エピクロルヒドリン592ppm、グリシドール650ppm、加水分解性塩素7200ppmであった。
【0028】
比較例2
実施例1と同様な条件で合成を行い、触媒不活性化剤としてリンタングステン酸ナトリウム40gを添加し、蒸留時に空気に変えて窒素を0.2L/min吹き込みながら実験を行った結果、蒸留中に重合を起こしてグリシジルメタクリレートは得られなかった。
【0029】
比較例3
実施例1と同様な条件で、反応時に空気を吹き込まずに実験を行った結果、反応中に重合を起こしたため、洗浄後に水層と有機層の分離ができずグリシジルメタクリレートは得られなかった。
【0030】
比較例4
実施例3と同様な条件で、蒸留前に触媒不活性化剤を添加しないで実験を行った結果、残存触媒が悪影響を及ぼし得られたグリシジルメタクリレートは収率89.3%、純度98.2%、エピクロルヒドリン1220ppm、グリシドール840ppm、加水分解性塩素420ppmであった。
【0031】
比較例5
比較例1と同様な条件で、蒸留前に触媒不活性化剤を添加しないで実験を行った結果、残存触媒が悪影響を及ぼし得られたグリシジルメタクリレートは収率86.8%、純度97.3%、エピクロルヒドリン9400ppm、グリシドール480ppm、加水分解性塩素3810ppmであった。
【0032】
比較例6
100Lのステンレス製の反応槽にエピクロルヒドリン72.0Kgと無水炭酸ナトリウム5.86Kgとフェノチアジン0.06Kgを仕込んだ。反応液中に1.0L/minの空気を吹き込みながら昇温し、反応液温度が110℃になったところでメタクリル酸8.0Kgを30分かけて添加した。添加開始後まもなく共沸留出してくるエピクロルヒドリンと水は系外に留去した。添加終了後約30分たつと、反応液温度は115℃まで上昇し、共沸留出はほとんど無くなった。この時得られた共沸留出液はエピクロルヒドリン層18.82Kgと水層1.22Kgであった。次いで、引き続き反応液中に1.0L/minの空気を吹き込みながら、触媒のテトラメチルアンモニウムクロリド0.03Kgを添加し、同温度で1時間反応させた。
反応終了後、空気の吹き込みを停止し、30℃に冷却してから反応液をろ過してハロゲン化アルカリを除去した後、反応液を反応槽に戻し、反応液中に0.2L/minの空気を吹き込みながら、減圧でエピクロルヒドリンを留去後、減圧蒸留してグリシジルメタクリレートを11.5Kgを得た。得られたグリシジルメタクリレートは、収率87.2%、純度97.9%、エピクロルヒドリン3940ppm、グリシドール16520ppm、加水分解性塩素6800ppmであった。
【0033】
比較例7
比較例6と同様な操作でろ過まで行い、反応液を反応槽に戻した後、パラトルエンスルホン酸ナトリウム0.005Kgを添加した後、反応液中に0.2L/minの空気を吹き込みながら、減圧でエピクロルヒドリンを留去後、減圧蒸留してグリシジルメタクリレートを得た。得られたグリシジルメタクリレートは、収率89.6%、純度97.2%、エピクロルヒドリン680ppm、グリシドール19970ppm、加水分解性塩素3300ppmであった。[0001]
BACKGROUND OF THE INVENTION
Glycidyl esters of acrylic acid or methacrylic acid (hereinafter sometimes referred to as “glycidyl methacrylate”) are various such as resin modifiers, thermosetting paints, adhesives, fiber treatment agents, antistatic agents, and ion exchange resins. It is widely used as an industrial raw material.
In recent years, there has been a demand for glycidyl methacrylate having a low chlorine content in the field of coating materials, electronic materials and textiles.
[0002]
[Prior art]
Glycidyl methacrylate and the like are generally produced by the following three methods.
(1) A reaction of acrylic acid or methacrylic acid (hereinafter sometimes referred to as “methacrylic acid”) and epichlorohydrin in the presence of a quaternary ammonium salt to produce 3-chloro-2-hydroxypropyl ester such as methacrylic acid This is dehydrochlorinated with alkali (Japanese Patent Publication No. 46-34010, Japanese Patent Laid-Open No. 48-5713).
(2) Reaction of methacrylic acid and the like with epichlorohydrin in the presence of a quaternary ammonium salt to obtain 3-chloro-2-hydroxypropyl ester such as methacrylic acid, and transesterification with an epoxy compound (Japanese Patent Publication No. 41-9005) JP-B 53-10575, JP-A 50-95216).
(3) An alkali metal salt such as methacrylic acid is obtained by reacting methacrylic acid or the like with an alkali, and then reacted with epichlorohydrin in the presence of a quaternary ammonium salt to remove hydrochloric acid (Japanese Examined Patent Publication No. 45-28762, Japanese Examined Publication No. 48). -4006, JP-A-48-39423).
In the method of (1) or (2), high yields of glycidyl methacrylate with low chlorine impurities such as 1,3-dichloropropanol, 2,3-dichloropropanol and 3-chloro-2-hydroxypropyl ester such as methacrylic acid are obtained. In order to obtain at a high rate, a complicated process such as alkali hydroxide treatment of the reaction solution is required.
Further, in the method (3), an alkali metal salt such as methacrylic acid may cause polymerization during drying, and an apparatus such as an expensive spray dryer is required to obtain a high yield. There is a disadvantage that the economical efficiency is poor, for example, it is necessary to prepare an aqueous metal salt solution with a separate device.
[0003]
In order to solve the above-mentioned problems, in Japanese Patent Publication Nos. 1-13470 and 1-20152, alkali metal carbonates and / or bicarbonates suspended in an excessive amount of epichlorohydrin and methacrylic acid or the like are mixed with air. The water produced by the neutralization is azeotroped with epichlorohydrin and removed from the reaction system to form an alkali metal salt such as methacrylic acid, and then the reaction system is a quaternary catalyst. Ammonium salt is added, the alkali metal salt and epichlorohydrin are reacted, water is added to the reaction product after completion of the reaction, and after washing, the aqueous layer and the organic layer are separated, and acrylic acid or distillate the organic layer A process for the production of glycidyl ester of methacrylic acid is disclosed. By using this method, glycidyl methacrylate and the like can be easily synthesized in a high yield.
However, when the alkali halide and glycidol produced by the reaction are removed by washing with water, a large amount of 1,3-dichloropropanol is produced. Since 1,3-dichloropropanol has a boiling point close to that of glycidyl methacrylate and the like, it cannot be separated by distillation. Moreover, since the side reaction which produces | generates epichlorohydrin during distillation occurs, epichlorohydrin and hydrolyzable chlorine concentrations, such as glycidyl methacrylate obtained as a product, become high. Furthermore, there is a drawback that the yield of glycidyl methacrylate and the like is reduced due to dissolution and hydrolysis of glycidyl methacrylate and the like in the aqueous layer.
Even when the alkali salt produced by the reaction is filtered off, 1,3-dichloropropanol is not produced, but impurities such as glycidol cannot be removed, and the resulting crude glycidyl methacrylate, etc., and purified glycidyl methacrylate after distillation, etc. Has the disadvantage of containing a large amount of glycidol. Glycidyl methacrylate containing a large amount of glycidol has such problems that the degree of polymerization does not increase or the storage stability is poor when it is radically polymerized, which causes a decrease in performance when used as a paint or resin. For this reason, as disclosed in JP-A-4-235980, the water washing step for removing glycidol must be increased, which makes the operation complicated and disadvantageous industrially.
[0004]
The crude glycidyl methacrylate and the like produced by the above methods (1), (2) and (3) are generally purified by distillation. However, due to the influence of a catalyst that cannot be removed by filtration or washing during distillation, for example, Side reactions such as Chemical Formula 2 and Chemical Formula 3 occur, and epichlorohydrin, glycerin ester of methacrylic acid, glycidol, and the like are produced to reduce the purity and yield of the product.
In order to solve this problem, a method in which a heteropolyacid or an alkali salt thereof is added to crude glycidyl methacrylate and the like, followed by distillation separation (Japanese Patent Laid-Open No. Sho 63-255273), a method in which powdered alkali hydroxide is added and then distilled ( JP-A-52-102217) discloses a method of performing distillation after stripping with an oxygen-containing gas in the presence of a quaternary ammonium salt (JP-A-4-187682).
[0005]
[Chemical 1]
Figure 0003922310
[0006]
[Chemical 2]
Figure 0003922310
[0007]
[Chemical 3]
Figure 0003922310
[0008]
However, the glycidyl methacrylate and the like thus produced usually contain about 300 to 10,000 ppm of epichlorohydrin, 3000 to 20,000 ppm of glycidol, and about 3,000 to 10,000 ppm of hydrolyzable chlorine. Residual chlorine causes problems such as deterioration of paint properties, electrical properties, skin irritation, and particularly carcinogenicity of epichlorohydrin and deterioration of working environment in the field of paint materials, electronic materials and textiles.
Therefore, it is desirable to remove as much impurities as possible from glycidyl methacrylate and the like, chlorine compounds including glycidol and epichlorohydrin.
[0009]
As a method of producing glycidyl methacrylate containing 100 ppm or less of epichlorohydrin, water control is carried out during the reaction between the alkali salt of methacrylic acid and epichlorohydrin, and the resulting reaction solution is washed with a dilute aqueous sodium hydroxide solution and distilled with steam treatment Has been disclosed (Japanese Patent Laid-Open No. 7-2818), but there are problems such as the need for moisture adjustment in a narrow range, the need for a plurality of washing steps, and alteration of the first-run components due to moisture. The process becomes complicated, and it is difficult to say that this is an economically excellent industrial production method.
[0010]
Further, as a method for producing glycidyl methacrylate and the like containing no chlorine content, a method of transesterifying an ester such as methacrylic acid with glycidol (JP 47-18801, JP 55-11542, JP 55-102575). However, there are problems such as poor storage stability and ease of polymerization of glycidol.
Furthermore, there are methods for epoxidizing allyl methacrylate and the like (JP-B 47-6289, JP-A 61-183275, JP-A 5-929296, JP-A 6-116254, etc.), but the raw material cost is high and the number of processes is increased. There is a problem that economy is bad.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing glycidyl ester of acrylic acid or methacrylic acid having a very high purity, which overcomes the disadvantages of the prior art.
[0012]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors made neutralization reaction of alkali metal carbonate and / or bicarbonate suspended in an excessive amount of epichlorohydrin and methacrylic acid while blowing oxygen-containing gas, and neutralized. The water produced by the above is removed from the reaction system by azeotroping with epichlorohydrin to form an alkali metal salt such as methacrylic acid, and then a catalyst is added to the reaction system to react the alkali metal salt with epichlorohydrin. The resulting crude glycidyl methacrylate is cooled while recovering a part of the excess epichlorohydrin under reduced pressure, and after washing with an aqueous alkali solution, the aqueous layer and the organic layer are separated, and the separated organic layer is catalytically inactive. By adding an agent and distilling while blowing oxygen-containing gas, harmful epichlorohydrin is 300 ppm or less, preferably 200 ppm. More preferably, glycidyl methacrylate having 100 ppm or less, glycidol concentration of 3000 ppm or less, preferably 2000 ppm or less, more preferably 1000 ppm or less, hydrolyzable chlorine of 3000 ppm or less, preferably 2000 ppm or less, more preferably 1000 ppm or less is economically advantageous. It was found that a high yield and a high purity were obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The amount of epichlorohydrin used in the present invention is such that 1 to 10 times mol, preferably 3 to 7 times mol or more of methacrylic acid is present in the system at the time of neutralization reaction and esterification reaction. Is preferably selected. If the amount of epichlorohydrin is too small, the stirrability of the alkali metal salt slurry such as methacrylic acid is poor, resulting in a decrease in yield. If the amount of epichlorohydrin is too large, the chlorine impurity increases and the economy decreases.
[0014]
Examples of the alkali metal salt and bicarbonate used in the present invention include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, and the like. It is suitable to be selected in the range of ˜1.7.
[0015]
Examples of the quaternary ammonium salt used in the present invention include tetramethylammonium chloride, trimethylethylammonium chloride, dimethyldiethylammonium chloride, methyltriethylammonium chloride, tetraethylammonium chloride, trimethylbenzylammonium chloride, triethylbenzylammonium chloride and the like. . The quaternary ammonium salt may be one of the above, or any two or more of them may be used in combination. Among them, tetramethylammonium chloride, tetraethylammonium chloride, triethylbenzylammonium chloride, and trimethylbenzyl are used. Ammonium chloride is preferably used. The usage-amount of a catalyst is 0.01-1.5 mol% normally with respect to methacrylic acid etc.
[0016]
In carrying out the method of the present invention, it is preferable that a polymerization inhibitor is present in the reaction system in any of the neutralization reaction, esterification reaction and distillation, and amine-based, phenol-based, phosphorus-based, sulfur-based or What is necessary is just to select from the polymerization inhibitor normally used of a transition metal type.
[0017]
The recovered amount of epichlorohydrin recovered after completion of the esterification reaction of the present invention is 5 to 80% by weight, preferably 10 to 60% by weight, more preferably 20 to 40% by weight of the excess epichlorohydrin. If the amount of epichlorohydrin recovered is less than 5% by weight, the separability of the aqueous layer and the organic layer is not improved, and if it is more than 80% by weight, the slurry properties of the reaction solution deteriorate.
[0018]
The concentration of the alkali hydroxide aqueous solution used in the present invention is 1 to 15 wt%, preferably 3 to 10 wt%. The usage-amount of alkaline hydroxide aqueous solution is 50-500g with respect to 1 mol of methacrylic acid etc., Preferably it is 100-400g, More preferably, it is 150-300g. The temperature at which the aqueous alkali hydroxide solution is added to the crude glycidyl methacrylate or the like is 0 to 80 ° C, preferably 10 to 60 ° C, and more preferably 20 to 40 ° C.
[0019]
The catalyst deactivator used in the present invention is at least one selected from alkylsulfonic acid, alkylbenzenesulfonic acid, phosphotungstic acid, sodium salt or calcium salt of phosphomolybdic acid, and the amount of the alkali metal salt used. Is 1 to 70 mol%, preferably 5 to 50 mol%, more preferably 10 to 30 mol%, based on the catalyst used.
[0020]
Examples of the oxygen-containing gas used in the reaction and distillation of the present invention include a mixed gas of oxygen and nitrogen, air, and the like, and the oxygen content is 1 to 30% by volume. The amount of the oxygen-containing gas used is 0.1 to 500 ml / min, preferably 1 to 300 ml / min, more preferably 5 to 100 ml / min as a flow rate at 20 ° C. and normal pressure with respect to 1 kg of glycidyl methacrylate and the like.
[0021]
【The invention's effect】
By adopting the production method of the present invention, glycidyl esters of high-purity acrylic acid and methacrylic acid with extremely low epichlorohydrin content, glycidol content and hydrolyzable chlorine content can be easily obtained in high yield.
[0022]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples.
The purity of raw materials and products in Examples and Comparative Examples was measured by the GC method, and the measurement of hydrolyzable chlorine in the products was shown below (Reference Example 1).
In this example and the like, the purity (%) of raw materials, products, etc. are all shown in weight percent, and ppm is shown on a weight basis.
[0023]
Reference Example 1 Method for Measuring Hydrolyzable Chlorine About 1 ml of product glycidyl methacrylate, etc. is precisely weighed into a 100 ml Erlenmeyer flask. Add 10 ml of pure methanol and 10 ml of pure water to the flask to dissolve the product. Next, after adding 10 ml of 5N potassium hydroxide to the flask, it is connected to a reflux condenser and thermally decomposed for 30 minutes while stirring on a hot water bath (90-100 ° C.). Remove from the water bath and let cool to room temperature. After standing to cool, the flask is removed from the reflux condenser, 2-3 drops of phenolphthalein (0.1% solution) indicator is added and neutralized with 4N nitric acid, and 1 ml is added in excess. Set in automatic titrator and titrate with N / 1000 silver nitrate. Blank measurement is also performed at the same time, and the amount of hydrolyzable chlorine is calculated by the following formula.
Figure 0003922310
A: N / 1000 silver nitrate solution titration of sample (ml)
B: Blank N / 1000 silver nitrate solution titration (ml)
N: Normality (0.001)
f: Factor of N / 1000 silver nitrate solution S: Sample collection amount (g)
[0024]
Example 1
A 100 L stainless steel reaction vessel was charged with 72.0 kg epichlorohydrin, 5.86 kg anhydrous sodium carbonate, and 0.06 kg phenothiazine. The temperature was raised while blowing 1.0 L / min of air into the reaction solution, and when the reaction solution temperature reached 110 ° C., 8.0 kg of methacrylic acid was added over 40 minutes. Soon after the start of addition, epichlorohydrin and water that distill off azeotropically were distilled out of the system. About 30 minutes after the end of the addition, the temperature of the reaction solution rose to 115 ° C., and azeotropic distillation almost disappeared. The azeotropic distillate obtained at this time was 20.43 kg of an epichlorohydrin layer and 1.2 kg of an aqueous layer. Next, 0.03 kg of tetramethylammonium chloride as a catalyst was added while blowing 1.0 L / min of air into the reaction solution, and the mixture was reacted at the same temperature for 1 hour.
After completion of the reaction, the reaction solution was cooled to 30 ° C. while recovering a part of excess epichlorohydrin under reduced pressure, and then 20 kg of 3% NaOH aqueous solution was added and stirred for 5 minutes. After the air blowing was stopped and allowed to stand, the oil layer and the aqueous layer were separated, 0.005 kg of sodium paratoluenesulfonate was added to the oil layer, and then epichlorohydrin was blown under reduced pressure while blowing 0.2 L / min of air into the reaction solution. Was distilled off, followed by distillation under reduced pressure to obtain 12.3 kg of glycidyl methacrylate. The obtained glycidyl methacrylate had a yield of 93%, a purity of 98.5%, epichlorohydrin of 76 ppm, glycidol of 900 ppm, and hydrolyzable chlorine of 550 ppm.
[0025]
Example 2
Synthesis was performed under the same conditions as in Example 1, 40 g of sodium phosphotungstate was added as a catalyst deactivator, and the amount of air blown during distillation was changed from 0.2 L / min to 1 L / min. As a result, the obtained glycidyl methacrylate had a yield of 90.5%, a purity of 99.1%, epichlorohydrin 55 ppm, glycidol 960 ppm, and hydrolyzable chlorine 755 ppm.
[0026]
Example 3
A 100 L stainless steel reaction vessel was charged with 72.0 kg epichlorohydrin, 5.86 kg anhydrous sodium carbonate, and 0.06 kg phenothiazine. The temperature was raised while blowing 2.0 L / min of air into the reaction solution, and when the reaction solution temperature reached 110 ° C., 8.0 kg of methacrylic acid was added over 30 minutes. Soon after the start of addition, epichlorohydrin and water that distill off azeotropically were distilled out of the system. About 30 minutes after the end of the addition, the temperature of the reaction solution rose to 115 ° C., and azeotropic distillation almost disappeared. The azeotropic distillate obtained at this time was 21.64 kg of an epichlorohydrin layer and 1.16 kg of an aqueous layer. Then, while continuously blowing 2.0 L / min of air into the reaction solution, 0.045 kg of catalyst tetraethylammonium chloride was added and reacted at the same temperature for 1 hour.
After completion of the reaction, the reaction solution was cooled to 30 ° C. while collecting a part of excess epichlorohydrin under reduced pressure, and then 22 kg of 5% NaOH aqueous solution was added and stirred for 5 minutes. After the air blowing was stopped and allowed to stand, the oil layer and the aqueous layer were separated, 0.005 Kg of sodium paratoluenesulfonate was added to the oil layer, and then epichlorohydrin was blown under reduced pressure while blowing 0.4 L / min of air into the reaction solution. After distilling off, vacuum distillation was performed to obtain 12.1 kg of glycidyl methacrylate. The obtained glycidyl methacrylate had a yield of 91.3%, a purity of 98.7%, epichlorohydrin of 68 ppm, glycidol of 950 ppm, and hydrolyzable chlorine of 515 ppm.
[0027]
Comparative Example 1
A 100 L stainless steel reaction vessel was charged with 72.0 kg epichlorohydrin, 5.86 kg anhydrous sodium carbonate, and 0.06 kg phenothiazine. The temperature was raised while blowing 1.0 L / min air into the reaction solution, and when the reaction solution temperature reached 110 ° C., 8.0 kg of methacrylic acid was added over 30 minutes. Soon after the start of addition, epichlorohydrin and water that distill off azeotropically were distilled out of the system. About 30 minutes after the end of the addition, the temperature of the reaction solution rose to 115 ° C., and azeotropic distillation almost disappeared. The azeotropic distillate obtained at this time was 19.32 kg of an epichlorohydrin layer and 1.12 kg of an aqueous layer. Next, 0.03 kg of tetramethylammonium chloride as a catalyst was added while blowing 1.0 L / min of air into the reaction solution, and the mixture was reacted at the same temperature for 1 hour.
After completion of the reaction, the reaction solution was cooled to 30 ° C. while recovering a part of excess epichlorohydrin under reduced pressure, and then 22 kg of water was added and stirred for 5 minutes. After the air blowing was stopped and allowed to stand, the oil layer and the aqueous layer were separated, 0.005 kg of sodium paratoluenesulfonate was added to the oil layer, and then epichlorohydrin was blown under reduced pressure while blowing 0.2 L / min of air into the reaction solution. After distilling off, 12.0 kg of glycidyl methacrylate was obtained by distillation under reduced pressure. The obtained glycidyl methacrylate had a yield of 91%, a purity of 98.1%, epichlorohydrin of 592 ppm, glycidol of 650 ppm, and hydrolyzable chlorine of 7200 ppm.
[0028]
Comparative Example 2
The synthesis was performed under the same conditions as in Example 1, 40 g of sodium phosphotungstate was added as a catalyst deactivator, and the experiment was conducted while nitrogen was blown at 0.2 L / min instead of air during distillation. Polymerization occurred and no glycidyl methacrylate was obtained.
[0029]
Comparative Example 3
As a result of conducting an experiment under the same conditions as in Example 1 without blowing air during the reaction, polymerization occurred during the reaction, so that the water layer and the organic layer could not be separated after washing, and glycidyl methacrylate was not obtained.
[0030]
Comparative Example 4
As a result of conducting an experiment under the same conditions as in Example 3 without adding a catalyst deactivator before distillation, the glycidyl methacrylate obtained by the residual catalyst having an adverse effect had a yield of 89.3% and a purity of 98.2. %, Epichlorohydrin 1220 ppm, glycidol 840 ppm, hydrolyzable chlorine 420 ppm.
[0031]
Comparative Example 5
As a result of conducting an experiment under the same conditions as in Comparative Example 1 without adding a catalyst deactivator before distillation, the glycidyl methacrylate obtained by the residual catalyst having an adverse effect was a yield of 86.8% and a purity of 97.3. %, Epichlorohydrin 9400 ppm, glycidol 480 ppm, hydrolyzable chlorine 3810 ppm.
[0032]
Comparative Example 6
A 100 L stainless steel reaction vessel was charged with 72.0 kg epichlorohydrin, 5.86 kg anhydrous sodium carbonate, and 0.06 kg phenothiazine. The temperature was raised while blowing 1.0 L / min air into the reaction solution, and when the reaction solution temperature reached 110 ° C., 8.0 kg of methacrylic acid was added over 30 minutes. Soon after the start of addition, epichlorohydrin and water that distill off azeotropically were distilled out of the system. About 30 minutes after the end of the addition, the temperature of the reaction solution rose to 115 ° C., and azeotropic distillation almost disappeared. The azeotropic distillate obtained at this time was an epichlorohydrin layer of 18.82 kg and an aqueous layer of 1.22 kg. Next, 0.03 kg of tetramethylammonium chloride as a catalyst was added while blowing 1.0 L / min of air into the reaction solution, and the mixture was reacted at the same temperature for 1 hour.
After completion of the reaction, air blowing was stopped, and after cooling to 30 ° C., the reaction solution was filtered to remove the alkali halide, and then the reaction solution was returned to the reaction vessel and 0.2 L / min in the reaction solution. While blowing air, epichlorohydrin was distilled off under reduced pressure, followed by distillation under reduced pressure to obtain 11.5 kg of glycidyl methacrylate. The obtained glycidyl methacrylate had a yield of 87.2%, a purity of 97.9%, epichlorohydrin 3940 ppm, glycidol 16520 ppm, and hydrolyzable chlorine 6800 ppm.
[0033]
Comparative Example 7
After performing filtration in the same manner as in Comparative Example 6 and returning the reaction solution to the reaction vessel, after adding 0.005 kg of sodium paratoluenesulfonate, blowing 0.2 L / min of air into the reaction solution, Epichlorohydrin was distilled off under reduced pressure and then distilled under reduced pressure to obtain glycidyl methacrylate. The obtained glycidyl methacrylate had a yield of 89.6%, a purity of 97.2%, epichlorohydrin of 680 ppm, glycidol of 19970 ppm, and hydrolyzable chlorine of 3300 ppm.

Claims (6)

過剰量のエピクロルヒドリン中でアクリル酸またはメタクリル酸とアルカリ金属の炭酸塩および/または重炭酸塩とを反応液中に酸素含有ガスを吹き込みながら中和させて、中和により生成する水をエピクロルヒドリンと共沸させて反応系外へ除去してアクリル酸またはメタクリル酸のアルカリ金属塩を生成せしめ、次いでこの反応系に触媒である第4級アンモニウム塩を添加し、前記酸のアルカリ金属塩とエピクロルヒドリンとを反応させてアクリル酸またはメタクリル酸のグリシジルエステルを合成し、反応終了後減圧下に過剰のエピクロルヒドリンの一部を回収しながら反応生成液を冷却した後、反応生成液に水酸化アルカリ水溶液を添加して水層と有機層とを分離し、得られた有機層に触媒不活性化剤を加え、次いで酸素含有ガスを吹き込みながら蒸留分離することによりアクリル酸またはメタクリル酸のグリシジルエステルを得ることを特徴とするアクリル酸またはメタクリル酸のグリシジルエステルの製造方法。In an excess of epichlorohydrin, acrylic acid or methacrylic acid and alkali metal carbonate and / or bicarbonate are neutralized while blowing an oxygen-containing gas into the reaction solution, and the water produced by the neutralization is combined with epichlorohydrin. The reaction solution is boiled and removed to form an alkali metal salt of acrylic acid or methacrylic acid, and then a quaternary ammonium salt as a catalyst is added to the reaction system, and the alkali metal salt of the acid and epichlorohydrin are added. After reaction, glycidyl ester of acrylic acid or methacrylic acid was synthesized. The aqueous layer and the organic layer are separated, and a catalyst deactivator is added to the obtained organic layer, and then an oxygen-containing gas is added. Method for producing a glycidyl ester of acrylic acid or methacrylic acid, characterized in that to obtain a glycidyl ester of acrylic acid or methacrylic acid by distillation while write attempts. エステル化反応終了後に回収するエピクロルヒドリン量が、過剰エピクロルヒドリンの5〜80重量%である請求項1の製造方法。The process according to claim 1, wherein the amount of epichlorohydrin recovered after the esterification reaction is 5 to 80% by weight of the excess epichlorohydrin. 使用する水酸化アルカリ水溶液が水酸化ナトリウム、水酸化カリウム、水酸化カルシウムから選ばれた1種以上の水溶液であり、使用する水酸化アルカリ水溶液の濃度が1〜15重量%であり、水酸化アルカリ水溶液の使用量がアクリル酸またはメタクリル酸1モルに対して50〜500gであり、水酸化アルカリ水溶液を粗グリシジルメタクリレート等に添加する際の粗グリシジルアクリレートまたは粗グリシジルメタクリレートの液温度が0〜80℃である請求項1の製造方法。The alkali hydroxide aqueous solution to be used is one or more aqueous solutions selected from sodium hydroxide, potassium hydroxide and calcium hydroxide, and the concentration of the alkali hydroxide aqueous solution to be used is 1 to 15% by weight. The amount of the aqueous solution used is 50 to 500 g with respect to 1 mol of acrylic acid or methacrylic acid, and the liquid temperature of the crude glycidyl acrylate or the crude glycidyl methacrylate when adding the aqueous alkali hydroxide solution to the crude glycidyl methacrylate or the like is 0 to 80 ° C. The manufacturing method according to claim 1. 使用する触媒不活性化剤がアルキルスルホン酸、アルキルベンゼンスルホン酸、リンタングステン酸、リンモリブデン酸のナトリウム塩またはカルシウム塩から選ばれた1種以上であり、該アルカリ金属塩の使用量が使用する触媒に対して1〜70モル%である請求項1の製造方法。The catalyst deactivator used is one or more selected from alkylsulfonic acid, alkylbenzenesulfonic acid, phosphotungstic acid, sodium salt or calcium salt of phosphomolybdic acid, and the amount of the alkali metal salt used is the catalyst used The production method according to claim 1, wherein the content is 1 to 70 mol%. 反応中および蒸留中の酸素含有ガスの酸素含有量が1〜30容量%であり、該酸素含有ガス使用量がグリシジルアクリレートまたはグリシジルメタクリレート1Kgに対して20℃、常圧下の流量として0.1〜500ml/minである請求項1の製造方法。The oxygen content of the oxygen-containing gas during reaction and distillation is 1 to 30% by volume, and the amount of oxygen-containing gas used is 0.1 to 0.1 kg as a flow rate at 20 ° C. and normal pressure with respect to 1 kg of glycidyl acrylate or glycidyl methacrylate. The manufacturing method of Claim 1 which is 500 ml / min. 純度98%以上、エピクロルヒドリン300ppm以下、グリシドール3000ppm以下、加水分解性塩素3000ppm以下のアクリル酸またはメタクリル酸のグリシジルエステルを得ることを特徴とする請求項1の製造方法。2. The process according to claim 1, wherein a glycidyl ester of acrylic acid or methacrylic acid having a purity of 98% or more, epichlorohydrin of 300 ppm or less, glycidol of 3000 ppm or less, and hydrolyzable chlorine of 3000 ppm or less is obtained.
JP21755995A 1995-08-25 1995-08-25 Method for producing glycidyl ester of acrylic acid or methacrylic acid Expired - Lifetime JP3922310B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21755995A JP3922310B2 (en) 1995-08-25 1995-08-25 Method for producing glycidyl ester of acrylic acid or methacrylic acid
US08/687,053 US5750739A (en) 1995-08-25 1996-08-07 Process for producing glycidyl ester of acrylic acid or methacrylic acid
EP96112907A EP0761660B1 (en) 1995-08-25 1996-08-10 Process for producing glycidyl ester of acrylic acid or methacrylic acid
DE69630425T DE69630425T2 (en) 1995-08-25 1996-08-10 Process for the preparation of glycidyl acrylate or methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21755995A JP3922310B2 (en) 1995-08-25 1995-08-25 Method for producing glycidyl ester of acrylic acid or methacrylic acid

Publications (2)

Publication Number Publication Date
JPH0959268A JPH0959268A (en) 1997-03-04
JP3922310B2 true JP3922310B2 (en) 2007-05-30

Family

ID=16706162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21755995A Expired - Lifetime JP3922310B2 (en) 1995-08-25 1995-08-25 Method for producing glycidyl ester of acrylic acid or methacrylic acid

Country Status (4)

Country Link
US (1) US5750739A (en)
EP (1) EP0761660B1 (en)
JP (1) JP3922310B2 (en)
DE (1) DE69630425T2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236279A1 (en) * 2002-08-08 2004-02-19 Basf Ag Removing esterification catalyst from crude plasticizer ester, e.g. di-isononyl phthalate, involves hydrolysis with aqueous alkali, addition of multi-valent metal salt, e.g. aluminum sulfate, and phase separation under gravity
TWI345564B (en) * 2003-12-02 2011-07-21 Mitsubishi Gas Chemical Co Method for producing glycidyl 2-hydroxyisobutyrate
JP5264157B2 (en) * 2007-12-06 2013-08-14 三菱レイヨン株式会社 Method for producing glycidyl (meth) acrylate
JP5417087B2 (en) * 2009-08-25 2014-02-12 株式会社日本触媒 Method for producing glycidyl acrylate
JP6044264B2 (en) * 2012-10-26 2016-12-14 三菱瓦斯化学株式会社 Method for producing glycidyl methacrylate
JP6260530B2 (en) * 2013-03-22 2018-01-17 三菱ケミカル株式会社 Method for producing glycidyl (meth) acrylate
CN104086509A (en) * 2014-07-10 2014-10-08 中昊(大连)化工研究设计院有限公司 Synthetic method of glycidyl methacrylate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721380A (en) * 1980-07-11 1982-02-04 Mitsubishi Gas Chem Co Inc Preparation of glycidyl acrylate or methacrylate
DE3126943A1 (en) * 1980-07-11 1982-03-25 Mitsubishi Gas Chemical Co., Inc., Tokyo Process for preparing glycidyl acrylate or glycidyl methacrylate
US4862510A (en) * 1987-03-24 1989-08-29 Emhart Industries, Inc. Lead sense system for component insertion machine
JPH0832693B2 (en) * 1987-04-13 1996-03-29 大阪有機化学工業株式会社 Method for purifying glycidyl acrylate or glycidyl methacrylate
FR2656305B1 (en) * 1989-12-22 1992-04-10 Norsolor Sa PROCESS FOR THE PURIFICATION OF GLYCIDYL (METH) ACRYLATE.
JP3018483B2 (en) * 1990-11-21 2000-03-13 三菱瓦斯化学株式会社 Purification method of glycidyl acrylate or glycidyl methacrylate
JP2967252B2 (en) * 1993-06-17 1999-10-25 大阪有機化学工業株式会社 Production method of glycidyl methacrylate
JP3654306B2 (en) * 1994-05-20 2005-06-02 三菱瓦斯化学株式会社 Method for producing glycidyl acrylate or glycidyl methacrylate

Also Published As

Publication number Publication date
JPH0959268A (en) 1997-03-04
EP0761660B1 (en) 2003-10-22
DE69630425T2 (en) 2004-05-06
DE69630425D1 (en) 2003-11-27
EP0761660A1 (en) 1997-03-12
US5750739A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
CA2344450C (en) Process for the preparation of glycidylesters of branched carboxylic acids
JP3922310B2 (en) Method for producing glycidyl ester of acrylic acid or methacrylic acid
JPH0899968A (en) Production of (meth)acrylate having epoxy group
JP2967252B2 (en) Production method of glycidyl methacrylate
JPH11228523A (en) Production of isocyanatoalkyl (meth)acrylate
US6245935B1 (en) Method for producing isocyanatoalkyl (meth)acrylate
JP3654306B2 (en) Method for producing glycidyl acrylate or glycidyl methacrylate
EP0487305B1 (en) Method of purifying crude glycidyl (meth)acrylate
JP3885249B2 (en) Purification method of glycidyl (meth) acrylate
JP3775438B2 (en) Method for producing glycidyl methacrylate or glycidyl acrylate
JP3654305B2 (en) Method for purifying glycidyl acrylate or glycidyl methacrylate
US9303003B2 (en) Process for producing glycidyl (meth)acrylate
JP4247582B2 (en) Purification method and production method of glycidyl (meth) acrylate
JP3801227B2 (en) Method for producing glycidyl methacrylate or glycidyl acrylate
JP2906276B2 (en) Method for producing epoxidized (meth) acrylate
EP1022275A1 (en) Process for purifying glycidyl (Meth) acrylate
JPH0120152B2 (en)
JP2941044B2 (en) Novel (Nata) acrylate compound and method for producing the same
JP3336067B2 (en) Method for producing epoxidized (meth) acrylate compound
JP2023024128A (en) Method for producing 2-methylene-1,3-propanediol diacetate, and method for producing modified ethylene-vinyl ester copolymer
JPH02262574A (en) Production of epoxidized (meth)acrylate
JP3336072B2 (en) Method for producing epoxidized tetrahydrobenzyl alcohol
JP4672145B6 (en) Process for producing glycidyl ester of branched chain carboxylic acid
JP2009091314A (en) Method for producing epoxy group-terminated (meth)acrylate
CN112552216A (en) Method for preparing pentaerythritol tetra (3-mercaptopropionate)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

EXPY Cancellation because of completion of term