JPH02262574A - Production of epoxidized (meth)acrylate - Google Patents

Production of epoxidized (meth)acrylate

Info

Publication number
JPH02262574A
JPH02262574A JP1320956A JP32095689A JPH02262574A JP H02262574 A JPH02262574 A JP H02262574A JP 1320956 A JP1320956 A JP 1320956A JP 32095689 A JP32095689 A JP 32095689A JP H02262574 A JPH02262574 A JP H02262574A
Authority
JP
Japan
Prior art keywords
group
potassium
sodium
meth
ethylhexyl ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1320956A
Other languages
Japanese (ja)
Other versions
JP2852673B2 (en
Inventor
Kazuaki Fukuya
福家 一昭
Akihiro Kuwana
章博 桑名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP1320956A priority Critical patent/JP2852673B2/en
Publication of JPH02262574A publication Critical patent/JPH02262574A/en
Application granted granted Critical
Publication of JP2852673B2 publication Critical patent/JP2852673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To industrially and advantageously obtain the subject compound to be used as an intermediate raw material for coating resins by epoxidizing a cyclohexenyl (meth)acrylate compound with an oxidizing agent (molecular oxygen-contg. gas) in the presence of a specific polymerization inhibitor. CONSTITUTION:The objective compound of formula II can be obtained by epoxidizing a cyclohexenyl (meth)acrylate compounds of formula I (R is H or methyl) with an oxidizing agent (molecular oxygen-contg. gas) under normal pressure in the presence of polymerization inhibitors consisting of at least each one compound selected from A-group (hydroquinone, p-benzoquinone, cresols, etc.) and B-group (phosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, etc.). The amount to be used as said inhibitor is as follows: for the A-group compound, 0.005 to 5wt.% and, for the B-group compound, 0.001 to 1wt.%, each based on the amount of raw material, cyclohexenyl (meth)acrylate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエポキシ化された(メタ)アクリレート化合物
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing an epoxidized (meth)acrylate compound.

(メタ)アクリレート化合物は熱、紫外線、イオン化放
射線、ラジカル重合開始剤の存在下で容易に単独重合ま
たは他の不飽和基含有化合物と共重合することが可能で
、また塗料用樹脂の中間原料としても有用である。
(Meth)acrylate compounds can be easily homopolymerized or copolymerized with other unsaturated group-containing compounds in the presence of heat, ultraviolet rays, ionizing radiation, and radical polymerization initiators, and can also be used as intermediate raw materials for paint resins. is also useful.

(従来の技術) 従来より各種のアクリル酸エステル類モノマーが知られ
ている。
(Prior Art) Various acrylic acid ester monomers have been known.

例えばアクリル酸メチル、アクリル酸エチル、アクリル
酸2−エチルヘキシル等の単官能モノマーおよびトリメ
チロールプロパントリアクリI/−ト、ペンタエリスリ
トー、ルトリアクリレート等の多官能モノマーが一般的
に知られている。
For example, monofunctional monomers such as methyl acrylate, ethyl acrylate, and 2-ethylhexyl acrylate, and polyfunctional monomers such as trimethylolpropane triacrylate, pentaerythritone, and lutriacrylate are generally known.

しかしながら、単官能モノマーは印刷インキおよび塗料
に用いた場合には硬化後の未反応モノマーの臭気がはな
はだしく問題となる。
However, when monofunctional monomers are used in printing inks and paints, the odor of unreacted monomers after curing becomes a serious problem.

また多官能モノマーは塗料および印刷インキの希釈剤と
して用いる場合には、樹脂に対して多量に使用する必要
があり、したがって樹脂が有する特性が失われるという
欠点を有している。
Furthermore, when polyfunctional monomers are used as diluents for paints and printing inks, they have to be used in large amounts relative to resins, which has the disadvantage that the properties of the resins are lost.

その点 (式中Rは水素原子またはメチル基を表わす)で表わさ
れるシクロへキセニルメチル(メタ)アクリレート化合
物を酸化剤でエポキシ化して得られる (式中Rは水素原子またはメチル基を表わす)は低粘度
で、かつ、低臭気で広範囲に亘る樹脂への溶解性を有し
ており、このものはインキ、塗料、接着剤、被覆剤、成
型用樹脂の原料あるいは改質剤として有用である。
In this respect, the compound obtained by epoxidizing the cyclohexenylmethyl (meth)acrylate compound represented by the formula (R represents a hydrogen atom or a methyl group) with an oxidizing agent (in the formula, R represents a hydrogen atom or a methyl group) has a low It has high viscosity, low odor, and solubility in a wide range of resins, and is useful as a raw material or modifier for inks, paints, adhesives, coatings, and molding resins.

しかし、この−数式(II)で示されるエポキシ化され
た(メタ)アクリル酸エステル(以下Rが水素原子の時
はAETHB、Rがメチル基の時はMETHBと略・す
)は極めて重合し易く製造工程、貯蔵及び輸送中に熱、
光およびその他の要因によっでしばしば重合することが
知られている。
However, this epoxidized (meth)acrylic ester represented by formula (II) (hereinafter abbreviated as AETHB when R is a hydrogen atom, and METHB when R is a methyl group) is extremely easy to polymerize. Heat during the manufacturing process, storage and transportation,
It is known that it often polymerizes due to light and other factors.

これを防ぐために特願昭62−10083号出願におい
ては、アクリルモノマーの一般的な禁止剤では当該(メ
タ)アクリル酸エステル、すなわちAETHB (ME
THB)に対しては重合禁止能は十分ではないとした上
で、アミン類とりわけピペリジンが好ましいということ
が開示されている。また特願昭62−252217号出
願においても重合禁止剤についての記載はあるが、し々
1しその効果については全く触れられてないため、前記
特願昭63−10083号出願がAETHB(METH
B)の重合防止方法に関する実質的に唯一の従来技術で
あった。
In order to prevent this, in Japanese Patent Application No. 10083/1983, it was proposed that the (meth)acrylic acid ester, that is, AETHB (ME
It is disclosed that amines, especially piperidine, are preferred, although the ability to inhibit polymerization against THB) is not sufficient. Furthermore, although there is a description of a polymerization inhibitor in Japanese Patent Application No. 62-252217, there is no mention of its effect at all.
This is essentially the only prior art related to the polymerization prevention method B).

(発明が解決しようとする課題) これに対して、本発明者らは、前記特願昭63−100
83号出願において述べられているピペリジン単独ある
いはピペリジンとハイドロキノン等のいわゆる通常の禁
止剤との併用ではAETHB (METHB)の重合防
止効果は、まだ十分とは言えないことを確かめた。
(Problems to be Solved by the Invention) In response to this, the present inventors have
It was confirmed that the effect of inhibiting the polymerization of AETHB (METHB) using piperidine alone or in combination with piperidine and a so-called conventional inhibitor such as hydroquinone as described in the No. 83 application was not yet sufficient.

この理由の一つは特願昭63−10083号が出願され
た当時においては、AETHB (METHB)が未だ
工業的規模で生産されていなかったため製品として具備
すべき品質が十分予見できなかったことにある。
One of the reasons for this is that at the time when Japanese Patent Application No. 10083/1983 was filed, AETHB (METHB) had not yet been produced on an industrial scale, so the quality that the product should have could not be fully predicted. be.

すなわち、重合防止効果をある程度有しているとしても
工業的規模で生産するためには、得られた製品が目的と
する品質に合致するかどうかが重要になるのである。
In other words, even if the product has a certain degree of polymerization prevention effect, in order to produce it on an industrial scale, it is important whether the obtained product meets the desired quality.

この点に関してその後開発が進み、製品中に微量の重合
物が含まれると問題があることが明らかになっている。
Developments in this regard have progressed since then, and it has become clear that there is a problem if trace amounts of polymers are included in the product.

例えば塗料用樹脂の中間原料を合成する際に、重合物を
含むAETHB (METHB)を使うと重合物が粘着
性の不溶解物として析出し、プロセス工種々の問題を生
じるとともに塗料の商品価値を著しく低下せしめてしま
う。
For example, when synthesizing intermediate raw materials for paint resins, if AETHB (METHB) containing a polymer is used, the polymer will precipitate as a sticky insoluble substance, causing various problems in the process and reducing the commercial value of the paint. This will cause it to drop significantly.

製品AETHB (METHB)中に含まれる微量の重
合物はAETHB (METHB)自体の低分子量重合
物が主成分と考えられるが、これらの重合物の含有量は
n−へキサンあるいはn−へブタンに製品を少量溶解し
た時に白濁するかどうかで明瞭に確認することができる
(n−へブタンを使ったこのような溶解性試験を以下H
Tと呼ぶ)。
The trace amounts of polymers contained in the product AETHB (METHB) are thought to be mainly composed of low molecular weight polymers of AETHB (METHB) itself, but the content of these polymers is higher than that of n-hexane or n-hebutane. This can be clearly confirmed by whether the product becomes cloudy when dissolved in a small amount (such a solubility test using n-hebutane is referred to below as H).
).

製品として使えるAETHB (METHB)はHTが
透明あるいはわずかに白濁する程度でなければならない
ことがわかっている。
It is known that for AETHB (METHB) to be usable as a product, HT must be transparent or slightly cloudy.

翻って、特願昭63−10083号出願の方法を追試し
て得られたAETHB (METHB)のHTを調べる
と白濁もしくは沈殿物が析出する程の強い白濁であるた
め、品質的には十分ではないと判断される。
On the other hand, when we examine the HT of AETHB (METHB) obtained by applying the method of Japanese Patent Application No. 10083/1983, we find that it is cloudy or cloudy enough to cause precipitation, so the quality is not sufficient. It is determined that there is no.

すなわち、AETHB (METHB)を工業的に生産
するためには、さらに効果的な重合抑制方法を確立する
必要があり、本発明者らが出願した当時は依然として、
それを可能にする技術は存在しなかったのである。
In other words, in order to industrially produce AETHB (METHB), it is necessary to establish a more effective method for inhibiting polymerization, and at the time the present inventors filed the application,
The technology that made this possible did not exist.

本発明者らは、このような課題に対して鋭意研究を行い
、分子状酸素含有ガスとともに特定の重合防止剤を組み
合わせて用いれば上記目的に極めて合致することを見い
出し、ついに品質的に満足し得るAETHB (MET
HB)を工業的規模で製造し、かつ、実情に即した品質
の維持法を確立し、本発明を完成するに至った。
The inventors of the present invention conducted extensive research to address these issues, and found that the use of a specific polymerization inhibitor in combination with a molecular oxygen-containing gas perfectly meets the above objectives, and has finally achieved satisfaction in terms of quality. Obtain AETHB (MET
The present invention has been completed by manufacturing HB) on an industrial scale and establishing a method for maintaining quality in accordance with actual circumstances.

(発明の構成) すなわち、本発明は 「−数式(I) (式中Rは水素原子またはメチル基を表わす)で表わさ
れるシクロへキセニルメチル(メタ)アクリレート化合
物を酸化剤でエポキシ化して一般式(II) (式中Rは水素原子またはメチル基を表わす)で表わさ
れる化合物を製造するプロセスにおける反応工程および
脱低沸および/または製品化工程において、重合禁止剤
として、分子状酸素含有ガスとともに、下記のA群およ
びB群がら選ばれる各々少くとも1種の化合物を共存せ
しめることを特徴とするエポキシ化された(メタ)アク
リレート化合物の製造方法: 〔A群〕 ハイドロキノン、ハイドロキノンモノメチルエーテル、
P−ベンゾキノン、クレゾール、t−ブチルカテコール
、2.4−ジメチル−6−t−ブチルフェノール、2−
t−ブチル−4−メトキシフェノール、3−t−ブチル
−4−メトキシフェノール、2,6−ジーt−ブチル−
P−クレゾール、2.5−ジヒドロキシ−P−キノン、
ピペリジン、エタノールアミン、α−ニトロソ−β−ナ
フトール、ジフェニルアミン、フェノチアジン、N−ニ
トロソフェニルヒドロキシルアミン、N、N−ジエチル
ヒドロキシルアミン、 [B群] リン酸水素アンモニウム、ピロリン酸カリウム、ピロリ
ン酸−2−エチルヘキシルエステル、ピロリン酸カリウ
ム−2−エチルヘキシルエステル、ビロリン酸ナトリウ
ム−2−エチルヘキシルエステルトリポリリン酸、トリ
ポリリン酸カリウム、トリポリリン酸ナトリウム、トリ
ポリリン酸−2−エチルヘキシルエステル、トリポリリ
ン酸カリウム−2−エチルヘキシルエステル、テトラポ
リリン酸、テトラポリリン酸カリウム、テトラポリリン
酸ナトリウム、テトラポリリン酸−2−エチルヘキシル
エステル、テトラポリリン酸カリ?ムー2−エチルヘキ
シルエステル、テトラポリリン酸ナトリウム−2−エチ
ルヘキシルエステル、ヘキサメタリン酸カリウム、ヘキ
サメタリン酸ナトリウム」 である。
(Structure of the Invention) That is, the present invention provides a compound of the general formula (I) in which a cyclohexenyl methyl (meth)acrylate compound represented by the formula (I) (in which R represents a hydrogen atom or a methyl group) is epoxidized with an oxidizing agent. II) In the reaction step and low boiling point removal and/or product production step in the process of manufacturing the compound represented by (R represents a hydrogen atom or a methyl group), as a polymerization inhibitor together with a molecular oxygen-containing gas, A method for producing an epoxidized (meth)acrylate compound characterized by coexisting at least one compound selected from the following Groups A and B: [Group A] Hydroquinone, hydroquinone monomethyl ether,
P-benzoquinone, cresol, t-butylcatechol, 2,4-dimethyl-6-t-butylphenol, 2-
t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-
P-cresol, 2,5-dihydroxy-P-quinone,
Piperidine, ethanolamine, α-nitroso-β-naphthol, diphenylamine, phenothiazine, N-nitrosophenylhydroxylamine, N,N-diethylhydroxylamine, [Group B] Ammonium hydrogen phosphate, potassium pyrophosphate, 2-pyrophosphate Ethylhexyl ester, potassium pyrophosphate-2-ethylhexyl ester, sodium birophosphate-2-ethylhexyl ester tripolyphosphate, potassium tripolyphosphate, sodium tripolyphosphate, tripolyphosphate-2-ethylhexyl ester, potassium tripolyphosphate-2-ethylhexyl ester, tetrapolyline Acid, potassium tetrapolyphosphate, sodium tetrapolyphosphate, 2-ethylhexyl tetrapolyphosphate, potassium tetrapolyphosphate? 2-ethylhexyl ester, sodium tetrapolyphosphate-2-ethylhexyl ester, potassium hexametaphosphate, and sodium hexametaphosphate.

AETHB (METHB)の製造方法について以下に
詳しく説明する。
The method for producing AETHB (METHB) will be described in detail below.

先ずエポキシ化反応工程について説明する。First, the epoxidation reaction step will be explained.

すなわち、−数式CI)で表わされる(メタ)アクリレ
ート化合物を酸化剤でエポキシ化する。
That is, a (meth)acrylate compound represented by formula CI) is epoxidized with an oxidizing agent.

この除用いる酸化剤は不飽和結合をエポキシ化できるも
のなら何でもよく過ギ酸、過酢酸、過プロピオン酸、m
−クロロ過安息香酸、トリフルオロ過酢酸、過安息香酸
、ターシャリブチルハイドロパーオキサイド、クミルハ
イドロパーオキサイド、テトラリルハイドロバーオキサ
イド、ジイソプロピルベンゼンハイドロパーオキサイド
などの各種ハイドロパーオキサイド類、過酸化水素など
を例として挙げることができる。
The oxidizing agent used for this removal may be any oxidizing agent that can epoxidize unsaturated bonds, such as performic acid, peracetic acid, perpropionic acid, m
- Various hydroperoxides such as chloroperbenzoic acid, trifluoroperacetic acid, perbenzoic acid, tert-butyl hydroperoxide, cumyl hydroperoxide, tetralyl hydroperoxide, diisopropylbenzene hydroperoxide, hydrogen peroxide For example,

酸化剤は触媒と併用してもよく、例えば、有機過酸を用
いる場合なら炭酸ソーダなどのアルカリや硫酸などの酸
を触媒として併用しうる。
The oxidizing agent may be used in combination with a catalyst. For example, when an organic peracid is used, an alkali such as soda carbonate or an acid such as sulfuric acid may be used in combination as a catalyst.

同じく上記各種のハイドロパーオキサイド類を用いる場
合ならモリブデンヘキサカルボニルなど公知の触媒能を
有するものを、また、過酸化水素を用いる場合ならタン
グステン酸と苛性ソーダの混合物を併用することができ
る。
Similarly, when using the above-mentioned various hydroperoxides, those having a known catalytic ability such as molybdenum hexacarbonyl can be used, and when using hydrogen peroxide, a mixture of tungstic acid and caustic soda can be used in combination.

反応をバッチで行なう場合は先ず、反応器内にシクロへ
キセニルメチル(メタ)アクリレートを所定量仕込み、
この中に必要に応じて触媒、安定剤を溶解させ、この中
に前記酸化剤を滴下して行なう。 酸化剤とシクロへキ
セニルメチル(メタ)アクリレートとの反応モル比は理
論的には1/1であるが、本発明の方法では0.1〜1
0の範囲、好ましくは、0.5〜10の範囲、さらに好
ましくは0.8〜1.5の範囲が良い。
When carrying out the reaction in batches, first, a predetermined amount of cyclohexenyl methyl (meth)acrylate is charged into the reactor.
A catalyst and a stabilizer are dissolved in this as required, and the oxidizing agent is added dropwise into the solution. The reaction molar ratio between the oxidizing agent and cyclohexenyl methyl (meth)acrylate is theoretically 1/1, but in the method of the present invention, it is 0.1 to 1.
It is preferably in the range of 0, preferably in the range of 0.5 to 10, more preferably in the range of 0.8 to 1.5.

酸化剤とシクロへキセニルメチル(メタ)アクリレート
とのモル比が10を越える場合はシクロへキセニルメチ
ル(メタ)アクリレートの転化率および反応時間短縮、
(メタ)アクリレートの重合によるロスの減少という点
で好ましいが、過剰の酸化剤による副反応や酸化剤の選
択率および未反応の酸化剤を回収する場合に多大の費用
を要する、などの欠点がある。
If the molar ratio between the oxidizing agent and cyclohexenylmethyl (meth)acrylate exceeds 10, the conversion rate and reaction time of cyclohexenylmethyl (meth)acrylate will be reduced;
Although it is advantageous in terms of reducing loss due to polymerization of (meth)acrylate, it has disadvantages such as side reactions caused by excess oxidizing agent, oxidizing agent selectivity, and high cost when recovering unreacted oxidizing agent. be.

逆に酸化剤とシクロへキセニルメチル(メタ)アクリレ
ートとの反応のモル比が0.1以下の場合は酸化剤の選
択率、転化率、酸化剤による副反応を抑制するという点
で好ましいが、(メタ)アクリレートの重合によるロス
、未反応のシクロヘキセニルメチル(メタ)アクリレー
トを回収する場合に多大の費用を要する、などの欠点が
声る。
On the other hand, when the molar ratio of the reaction between the oxidizing agent and cyclohexenyl methyl (meth)acrylate is 0.1 or less, it is preferable in terms of the selectivity of the oxidizing agent, the conversion rate, and suppressing side reactions caused by the oxidizing agent. Disadvantages include loss due to polymerization of meth)acrylate, and large costs required to recover unreacted cyclohexenylmethyl (meth)acrylate.

反応温度はエポキシ化反応が酸化剤の分解反応に優先す
るような上限値以下で行ない、たとえば、過酢酸を用い
る場合なら70℃以下で、ターシャリブチルハイドロパ
ーオキサイドを用いる場合なら150℃以下が好ましい
The reaction temperature is carried out below the upper limit so that the epoxidation reaction has priority over the decomposition reaction of the oxidizing agent. For example, when using peracetic acid, it is 70°C or less, and when using tert-butyl hydroperoxide, it is 150°C or less. preferable.

反応温度が低いと反応の完結までに長時間を要するので
、過酢酸を用いる場合なら0℃、ターシャリブチルハイ
ドロパーオキサイドを用いる場合なら20℃という下限
値以上で行うことが好摩しい。
If the reaction temperature is low, it will take a long time to complete the reaction, so it is preferable to carry out the reaction at a temperature higher than the lower limit of 0° C. when using peracetic acid and 20° C. when using tert-butyl hydroperoxide.

また、エポキシ化反応の際、酸化剤からの副生などによ
る有機酸、アルコール、水でエポキシ基が開環してしま
う副反応が生じるので、副反応量が少なくなるような温
度を前記したような温度領域から選定して実施する。
In addition, during the epoxidation reaction, a side reaction occurs in which the epoxy group is ring-opened with organic acids, alcohols, and water due to by-products from the oxidizing agent, so the temperature that reduces the amount of side reactions is set as described above. Select and implement from a temperature range.

反応圧力は一般的には常圧下で操作されるが、加圧また
は低圧下でも実施できる。
The reaction pressure is generally operated at normal pressure, but it can also be carried out under elevated or low pressure.

また、反応は溶媒存在下でも実施できる。Moreover, the reaction can also be carried out in the presence of a solvent.

溶媒存在下での反応は反応粗液の粘度低下、酸化剤を希
1やくする。ことによる安定化などの効果があるため好
ましい。
Reaction in the presence of a solvent reduces the viscosity of the crude reaction solution and dilutes the oxidizing agent. This is preferable because it has effects such as stabilization.

使用される溶媒としてはベンゼン、トルエン、キシレン
など芳香族化合物、クロロフォルム・ジメチルクロライ
ド、四塩化炭素、クロルベンゼンなどのハロゲン化物、
酢酸エチル、酢酸ブチル、などのエステル化物、アセト
ン、メチルエチルケトンなどのケトン化合物、1.2−
ジメトキシエタンなどのエーテル化合物などを用いるこ
とができる。
Solvents used include aromatic compounds such as benzene, toluene, and xylene; halides such as chloroform/dimethyl chloride, carbon tetrachloride, and chlorobenzene;
Esterified products such as ethyl acetate and butyl acetate, ketone compounds such as acetone and methyl ethyl ketone, 1.2-
Ether compounds such as dimethoxyethane can be used.

溶媒の使用量はシクロへキセニルメチル(メタ)アクリ
レートに対して0.5〜5倍量が好ましい。
The amount of solvent used is preferably 0.5 to 5 times the amount of cyclohexenylmethyl (meth)acrylate.

0.5倍量より少ない場合は酸化剤を希しゃくすること
による安定化などの効果が少なく、逆に5倍量より多く
しても安定化効果はそれ程アップせず溶媒の回収に多大
の費用を要するので無駄となる。
If the amount is less than 0.5 times, there will be little stabilization effect by diluting the oxidizing agent, and conversely, if the amount is more than 5 times, the stabilizing effect will not improve much and it will cost a lot to recover the solvent. It is a waste because it requires .

本発明のポイントは上記のようなエポキシ化反応を行う
際、分子状酸素含有ガスとともに特定の重合防止剤を併
用することにある。
The key point of the present invention is to use a specific polymerization inhibitor together with a molecular oxygen-containing gas when carrying out the epoxidation reaction as described above.

ところでエポキシ化反応時に特願昭63−10083号
出願に記載された禁止剤を添加しただけではHTで白濁
する。
However, if only the inhibitor described in Japanese Patent Application No. 10083/1983 is added during the epoxidation reaction, HT will result in cloudiness.

これはわずかではあるが反応中に重合が起きるためと思
われる。
This is thought to be due to polymerization occurring during the reaction, albeit slightly.

しかしながら、このような現象は軽微であるため、例え
ば液体クロマトグラフィーのような分析機器でも明瞭に
検知できないため見逃してしまう。
However, since such a phenomenon is so slight that it cannot be clearly detected even with analytical equipment such as liquid chromatography, it is overlooked.

HTで白濁した反応粗液は後の精製工程を経て製品化さ
れる間にさらに重合が進み、製品のITは沈殿物を伴う
程の濁りとなる。
While the crude reaction solution, which becomes cloudy due to HT, undergoes a subsequent purification process and is turned into a product, polymerization proceeds further, and the IT of the product becomes cloudy to the extent that it is accompanied by a precipitate.

このような現象に対して本発明者らは反応粗液中に分子
状酸素を吹込むとともにA、B群から選ばれた少くとも
1種以上の化合物を共存せしめることで、HT透明の反
応粗液を得ることを見出した。
In response to this phenomenon, the present inventors injected molecular oxygen into the reaction crude liquid and made it coexist with at least one compound selected from Groups A and B. It was found that liquid can be obtained.

特に本発明の規定する3種以上の化合物の組合わせで使
用した場合は各群の化合物の単独使用あるいは各群から
の2種のみによる併用にかかる効果よりはるかに優れ、
その相乗効果も極めて大きいことは特筆すべきものであ
る。
In particular, when three or more compounds defined by the present invention are used in combination, the effects are far superior to those obtained when each group of compounds is used alone or when only two compounds from each group are used in combination.
It is noteworthy that the synergistic effect is extremely large.

次に本発明の方法を具体的に説明する。Next, the method of the present invention will be specifically explained.

本発明において、分子状酸素としては通常空気が用いら
れ反応器に吹込まれる。
In the present invention, air is usually used as molecular oxygen and is blown into the reactor.

吹込み位置は液中に直接吹込んでも良いしまた気相中に
吹込んでも所定の効果は得られる。
The desired effect can be obtained by blowing directly into the liquid or into the gas phase.

吹込量は任意に選べるが、多過ぎると、溶媒ロスとなる
ので好ましくない。
The amount of blowing can be selected arbitrarily, but if it is too large, it is not preferable because it will result in solvent loss.

また、系内での爆発混合気形成を回避するため空気とと
もに系内に窒素を吹込むのが通常でルるが、その場合吹
込みガス中の酸素濃度が0.01%(容量)以上好まし
くは3%(容量)以上である。酸素濃度は高い程効果が
あるが上限値は系での爆発下限界酸素濃度となり、その
値は使用溶媒により異なるものである。
Additionally, in order to avoid the formation of an explosive mixture within the system, nitrogen is usually blown into the system along with air, but in that case it is preferable that the oxygen concentration in the blown gas is 0.01% (by volume) or more. is 3% (capacity) or more. The higher the oxygen concentration, the more effective it is, but the upper limit is the lower explosive limit oxygen concentration in the system, and that value varies depending on the solvent used.

窒素の吹込みは必ずしも空気と同位置にする必要はない
が、系内で局所的に爆発混合気を形成しないよう設備上
の工夫をすることが安全上重要ある。
Although it is not necessarily necessary to blow nitrogen into the same position as the air, it is important for safety to take measures to prevent the formation of locally explosive mixtures within the system.

本発明の方法に用いる[A群]の化合物の一部、例えば
ハイドロキノン、ハイドロキノンモノメチルエーテルと
分子状酸素の組合わせが、いわゆるアクリル酸やアクリ
ル酸エステルの重合防止に効果があることは公知であり
、特願昭63−10083号出願の実施例でも空気雰囲
気下で禁止効果を比較している。
It is known that some of the [group A] compounds used in the method of the present invention, such as hydroquinone, a combination of hydroquinone monomethyl ether and molecular oxygen, are effective in preventing the polymerization of so-called acrylic acid and acrylic esters. , the example of Japanese Patent Application No. 10083/1983 also compares the inhibition effect in an air atmosphere.

本発明の方法が[B群]の少くとも1種の化合物を必須
の成分として添加する理由は用いる酸化剤が微量とはい
え分解しラジカル源を発生する・のを抑制することに効
果があると考えられるためである。
The reason why the method of the present invention adds at least one compound of [Group B] as an essential component is that the oxidizing agent used is effective in suppressing the decomposition and generation of radical sources, even if the amount is small. This is because it is thought that.

次に重合防止剤の使用量は対象とする化合物の種類、製
造工程上の条件によって任意に変えられるが、[A群]
の化合物としてば反応原料であるシクロへキセニルメチ
ル(メタ)アクリレートに対して0.005〜5重量%
、より好ましくは0゜001〜0.1重量%、[B群]
の化合物として0.001〜1重量%、より好ましくは
0.01〜0.2重量%の範囲で添加するのがよい。
Next, the amount of polymerization inhibitor used can be arbitrarily changed depending on the type of target compound and manufacturing process conditions, but [Group A]
As a compound, it is 0.005 to 5% by weight based on cyclohexenylmethyl (meth)acrylate, which is a reaction raw material.
, more preferably 0°001 to 0.1% by weight, [Group B]
The compound is preferably added in an amount of 0.001 to 1% by weight, more preferably 0.01 to 0.2% by weight.

添加方法は粉末のままでも良いし、溶媒に溶解して添加
してもよい。
The addition method may be as a powder, or it may be added after being dissolved in a solvent.

反応は連続もしくはバッチで行うが、連続の場合はピス
トンフロー型式が好ましい。
The reaction is carried out continuously or batchwise, and in the case of continuous reaction, a piston flow type is preferred.

この時本発明の方法に用いる重合防止剤は各々単独で仕
込んでも良いが粉末状のものの場合は溶媒に溶解してか
ら仕込むのが良い。
At this time, the polymerization inhibitors used in the method of the present invention may be added alone, but if they are in powder form, it is preferable to dissolve them in a solvent before adding them.

また、原料エステルに溶解して仕込んでも良い。Alternatively, it may be dissolved in the raw material ester and charged.

また、バッチ方式の場合も同様であるが、酸化剤は逐次
的に仕込むセミバッチ方式が望ましい。
Further, although the same applies to the case of a batch method, a semi-batch method in which the oxidizing agent is added sequentially is preferable.

本発明のポイントは、重合を最小限に抑えか製品を得る
ためには反応工程での重合を防止する点にあるが、本発
明はそのまま精製工程にも有効に活用できるのである。
The point of the present invention is to minimize polymerization or prevent polymerization in the reaction process in order to obtain a product, but the present invention can also be effectively applied to purification processes as is.

反応終了後のエポキシ化反応粗液は溶媒、低沸点物質、
未反応原料、触媒などの除去、中和、吸着剤やイオン交
換樹脂処理などによって精製することができる。
After the reaction is completed, the epoxidation reaction crude liquid contains a solvent, a low boiling point substance,
It can be purified by removing unreacted raw materials, catalysts, etc., neutralizing it, and treating it with an adsorbent or ion exchange resin.

特に酸化剤として有機過酸を用いる場合は反応粗液の中
和水洗を行うのが好ましい。これは、中和せずに溶媒等
の低沸点成分を除去しようとすると極めて重合し易いた
めである。
Particularly when an organic peracid is used as the oxidizing agent, it is preferable to neutralize and wash the reaction crude solution with water. This is because if low-boiling components such as solvents are removed without neutralization, they are extremely likely to polymerize.

中和に用いるアルカリ水溶液としては例えば、N a 
OHSK OHSK  COSN a 2 COa、N
 a HCOSK HCOSN Hsなどのようなアル
カリ性物質の水溶液を使用することができる。
Examples of alkaline aqueous solutions used for neutralization include Na
OHSK OHSK COSN a 2 COa, N
a Aqueous solutions of alkaline substances such as HCOSK HCOSN Hs etc. can be used.

使用する際の濃度はひろい範囲で自由に選択することが
できる。
The concentration used can be freely selected from a wide range.

分液性の点からNaOH1Na2CO3水溶液、N a
 HCOa水溶液を用いるのが好ましい。
From the viewpoint of liquid separation, NaOH1Na2CO3 aqueous solution, Na
Preferably, an aqueous HCOa solution is used.

中和および水洗は10〜90℃、好ましく410〜50
℃の温度範囲で行うのが良い。
Neutralization and water washing at 10-90°C, preferably 410-50°C
It is best to perform this in the temperature range of ℃.

中和あるいは水洗を行った反応粗液から低沸点成分を除
去するには重合禁止剤を添加した後薄膜式蒸発器などを
用いるのが良い。
In order to remove low-boiling components from the reaction crude liquid that has been neutralized or washed with water, it is preferable to use a thin film evaporator or the like after adding a polymerization inhibitor.

特に反応粗液中に含まれる[ASB群]から選ばれた化
合物が下層水中に抽出され中和上層液中の含量が減少す
る場合もあるが、その際は、中和終了後各群の化合物を
適当量補充するのが好ましい。また、中和水洗時にも分
子状酸素を系内に吹込むことが望ましい。
In particular, there are cases where compounds selected from the [ASB group] contained in the crude reaction solution are extracted into the lower layer water and the content in the neutralized upper layer decreases. It is preferable to replenish an appropriate amount of. It is also desirable to blow molecular oxygen into the system during neutralization washing.

中和水洗工程では、有機酸の中和除去とともに残存有機
過酸を除去することが重要である。次の低沸点成分除去
工程を安定に操作するためには、中和上層液中の残存有
機過酸含量を0.1%以下1、好ましくは0.01%以
下になるまで繰り返し中和水洗する必要がある。
In the neutralization water washing step, it is important to neutralize and remove the organic acid as well as remove the residual organic peracid. In order to operate the next low-boiling point component removal step stably, neutralization should be repeatedly washed with water until the residual organic peracid content in the neutralized upper layer becomes 0.1% or less1, preferably 0.01% or less. There is a need.

従つて連続式に中和水洗する1合は多段式になるが、通
常3〜5段にすれば有機過酸濃度を規定値以下に下げる
ことができる。
Therefore, the continuous neutralization washing process requires a multi-stage process, but usually 3 to 5 stages can reduce the organic peracid concentration to below the specified value.

多段式の場合は最終段階は完全な水洗もしくはせいぜい
1%程度のアルカリ水溶液を使うのが好ましい。
In the case of a multi-stage method, it is preferable to completely wash with water or use an alkaline aqueous solution of about 1% at most in the final stage.

これは低沸点成分を除去したのちの塔底液をそのまま製
品にするような場合にはアルカリ金属が製品に混入し品
質に影響を及ぼすためである。
This is because if the bottom liquid after removing low-boiling components is used as a product as it is, alkali metals will be mixed into the product and affect its quality.

これはバッチで繰返し中和する場合も同様である。なお
、連続式で中和水洗した場合、下層水を向流式に前中和
に使うことは何ら問題なく、またその方が経済的である
This also applies to repeated batch neutralizations. In addition, when the neutralization water washing is carried out in a continuous manner, there is no problem in using the lower layer water in a countercurrent manner for pre-neutralization, and it is more economical.

中和水洗に使用するアルカリ量は反応粗液中の有機過酸
と有機酸の合計量に対して当量比で0゜5〜3倍量、好
ましくは1.1〜1.5倍量使用するのがよく必要以上
に量を増やすのは経済的ではない。また当量比を必要以
上に下げた場合有機過酸あるいは有機酸を除去するのに
多量の水を要するため、得策ではないし、また、溶媒等
の下層水中への溶解ロスも増加する。
The amount of alkali used for neutralization washing with water is 0.5 to 3 times, preferably 1.1 to 1.5 times, in equivalent ratio to the total amount of organic peracid and organic acid in the crude reaction solution. However, it is not economical to increase the amount more than necessary. Further, if the equivalent ratio is lowered more than necessary, it is not a good idea because a large amount of water is required to remove the organic peracid or organic acid, and furthermore, the loss of dissolution of the solvent and the like into the lower water increases.

中和水洗工程の次に溶媒を除去する。Following the neutralization water wash step, the solvent is removed.

(脱低沸工程) 脱低沸には通常薄膜式蒸発器を用いるが、加熱温度は重
合防止の点から50〜180℃、好ましくは、60〜1
00℃で行うのがよい。
(Low-boiling removal process) A thin film evaporator is usually used for low-boiling removal, and the heating temperature is 50 to 180°C, preferably 60 to 180°C in order to prevent polymerization.
It is best to carry out the test at 00°C.

圧力は低沸点成分の物性によって任意に選べるが加熱温
度との関係で減圧で操作するのが一般的である。
Although the pressure can be arbitrarily selected depending on the physical properties of the low boiling point component, it is common to operate under reduced pressure in relation to the heating temperature.

分子状酸素を蒸発器に導入する場所は任意に選べるが塔
底液が留出するラインから吹込むのが普通である。
The location where molecular oxygen is introduced into the evaporator can be selected arbitrarily, but it is usually blown into the evaporator from the line where the bottom liquid is distilled.

吹込み量は任意に選べるが上限量は真空系の能力、ある
いは塔底液が安定に流下するかどうか、あるいは留出し
た低沸点成分をコンデンサーで補集する際の回収ロスを
いう観点から自ずと制限される。脱低沸工程で得られる
塔底液は純度的には94〜96%までしか達していない
が、本発明の成果として、HTが透明もしくはわずかに
白濁する程度の品質である。
The amount of injection can be selected arbitrarily, but the upper limit is determined by the capacity of the vacuum system, whether the bottom liquid flows down stably, and the recovery loss when collecting the distilled low-boiling components with a condenser. limited. Although the bottom liquid obtained in the low-boiling removal step has a purity of only 94 to 96%, as a result of the present invention, the quality is such that the HT is transparent or slightly cloudy.

したがって、通常の用途ではこのまま製品として十分通
用するものである。
Therefore, it can be used as a product for normal purposes.

さらに高純度の製品を得るためには次に製品化工程を行
う。製品化工程は、残存低沸点成分を完全に除去するも
ので脱低沸工程と同様に行うが、更に減圧度を増して高
真空下で行うのが一般的である。
In order to obtain a product with even higher purity, a commercialization step is next performed. The product production step completely removes residual low-boiling components and is carried out in the same manner as the low-boiling removal step, but it is generally carried out under high vacuum with an increased degree of reduced pressure.

以下実施例をさらに詳しく説明する。Examples will be described in more detail below.

実施例−1 攪拌機および冷却用ジャケットが付いた内容量5gのガ
ラス反応器にシクロへキセニルメチルメタクリレート7
20g、酢酸エチル2640g。
Example-1 Cyclohexenyl methyl methacrylate 7 was placed in a 5 g glass reactor equipped with a stirrer and a cooling jacket.
20g, ethyl acetate 2640g.

ハイドロキノンモノメチルエーテル0.3gr。Hydroquinone monomethyl ether 0.3gr.

ピロリン酸0.3gを加え、かつ反応器に挿入管から酸
素/チッ素(I0/90容量%)の混合ガスをlNff
/Hrで吹込んだ。
Add 0.3g of pyrophosphoric acid, and add 1Nff of oxygen/nitrogen (I0/90% by volume) mixed gas to the reactor from the insertion tube.
/Hr.

次いで反応温度を40℃に保ち、30%過酢酸溶液12
40を定量ポンプで3時間かけて仕込んだ。仕込み終了
後、更に5時間熟成後反応を終了させた。反応粗液1g
を採取してn−へブタン10gに溶解したところ全く透
明であった[以上が合成工程]。
Next, the reaction temperature was maintained at 40°C, and a 30% peracetic acid solution
40 was charged over 3 hours using a metering pump. After the preparation was completed, the reaction was further aged for 5 hours and then terminated. 1g of crude reaction liquid
When the sample was collected and dissolved in 10 g of n-hebutane, it was completely transparent [the above is the synthesis process].

反応粗液を室温まで冷却後、10%N a 2 C03
2,5kgを加え30分攪拌後、30分間静置して分液
させる。
After cooling the reaction crude liquid to room temperature, 10% Na 2 C03
Add 2.5 kg and stir for 30 minutes, then leave to stand for 30 minutes to separate the liquids.

下層水を除去後更に10%N a 2 C032−5k
gを加え同様な操作を行う。
After removing the lower layer water, further 10% Na 2 C032-5k
Add g and perform the same operation.

この時上層液中の残存過酢酸濃度は0.02%で酢酸は
完全に消失していた。
At this time, the residual peracetic acid concentration in the upper layer liquid was 0.02%, and acetic acid had completely disappeared.

次いで、1%N a  C032,5k gを加え同様
な操作を行ったところ過酢酸濃度は0.01%以下であ
った[以上が中和工程]。
Next, when 5 kg of 1% Na CO was added and the same operation was performed, the peracetic acid concentration was 0.01% or less [the above is the neutralization step].

次に、中和上層液3.52kgにハイドロキノン0.6
g、2−エチルヘキシルトリポリリン酸ナトリウム0.
6gを加え、ガラス製スミス式薄膜蒸発器で脱低沸処理
した。
Next, add 0.6 kg of hydroquinone to 3.52 kg of the neutralized upper layer liquid.
g, 2-ethylhexyl sodium tripolyphosphate 0.
6 g was added, and low boiling temperature removal treatment was performed using a glass Smith type thin film evaporator.

操作条件は加熱温度80℃、圧力150mmHgで塔底
液留出ラインから、酸素/窒素(Io/90容量%)の
混合ガスを5NI/Hrで吹込んだ。塔底液の取得量は
735gであった。
The operating conditions were a heating temperature of 80° C., a pressure of 150 mmHg, and a mixed gas of oxygen/nitrogen (Io/90% by volume) was blown in at 5 NI/Hr from the bottom liquid distillation line. The amount of bottom liquid obtained was 735 g.

またガスクロマトグラフィー分析で組成を調べたところ
METH894,7%、酢酸エチル1゜8%、シクロへ
キセニルメチルメタクリレート1゜0%、その他2.5
%であった[以上が脱低沸工程]。
In addition, the composition was investigated by gas chromatography analysis and found that METH was 894.7%, ethyl acetate was 1.8%, cyclohexenyl methyl methacrylate was 1.0%, and others were 2.5%.
% [The above is the low-boiling removal process].

塔底液1grをn−ヘプタン10gに溶かしたところ沈
殿物は認められなかった。
When 1g of the bottom liquid was dissolved in 10g of n-heptane, no precipitate was observed.

実施例−2 実施例−1におけるピロリン酸の代わりにビロリン酸カ
リウム0.3gを加えた以外はまった〈実施例−1と同
じ条件で行ない、n−へブタンテストにおいても沈殿物
は認められなかった。
Example 2 The same conditions as Example 1 were used, except that 0.3 g of potassium pyrophosphate was added instead of pyrophosphoric acid in Example 1. No precipitate was observed in the n-hebutane test. Ta.

実施例−3 実施例−1におけるピロリン酸の代わりに2−エチルへ
キシルピロリン酸カリウムを加えた以外はまった〈実施
例−1と同じ条件で行ない、n −へブタンテストにお
いても沈殿物は認められなかった。
Example 3 The procedure was carried out under the same conditions as in Example 1, except that potassium 2-ethylhexyl pyrophosphate was added instead of pyrophosphoric acid in Example 1, and no precipitate was observed in the n-hebutane test. I couldn't.

実施例−4 実施例−1におけるピロリン酸の代わりにピロリン酸カ
リウム0.15gと2−エチルヘキシルトリポリリン酸
カリウム0.15gとを加えた以外はまった〈実施例−
1と同じ条件で行ない、n−へブタンテストにおいても
沈殿物は認めら作なかった。
Example-4 Except for adding 0.15 g of potassium pyrophosphate and 0.15 g of potassium 2-ethylhexyltripolyphosphate in place of pyrophosphoric acid in Example-1 (Example-1)
No precipitate was observed in the n-hebutane test under the same conditions as in 1.

実施例−5 実施例−1の方法で得られた反応粗液40oOgを10
%Na2CO3を加えて中和し、中和上層液をガラス製
薄膜蒸発器にかけて酢酸エチルを追い出した。
Example-5 400g of the reaction crude solution obtained by the method of Example-1 was
% Na2CO3 was added for neutralization, and the neutralized supernatant liquid was passed through a glass thin film evaporator to drive off ethyl acetate.

この溶媒追い出し工程は加熱温度80℃、圧力150m
mHgで、蒸発器には微量の酸素/窒素(I0/90容
量%)の混合ガスを吹込んだ。
This solvent expulsion step is carried out at a heating temperature of 80°C and a pressure of 150m.
At mHg, the evaporator was blown with a trace mixture of oxygen/nitrogen (I0/90% by volume).

得られた濃縮液中のMETHB純度はガスクロマトグラ
フィー分析の結果95.5%であった。
The purity of METHB in the obtained concentrate was 95.5% as a result of gas chromatography analysis.

この濃縮液1gをn−へブタン10gに溶解したところ
透明であり、製品として合格するものであった。
When 1 g of this concentrated solution was dissolved in 10 g of n-hebutane, it was transparent and passed as a product.

比較例−1 (a)実施例−1の合成工程における酸素/窒素(I0
/90容量%)の混合ガスの代わりに窒素ガスのみを吹
き込んだ以外はまった〈実施例−1と同じ条件で合成工
程を実施してn−へブタンテストを行なった結果、白濁
が生じた。
Comparative Example-1 (a) Oxygen/nitrogen (I0
The synthesis process was carried out under the same conditions as in Example 1, except that only nitrogen gas was blown in instead of the mixed gas (/90% by volume), and as a result of the n-hebutane test, white turbidity occurred.

(b)実施例−1におけるビロリン酸を加えずにその他
はまった〈実施例−1と同じ条件で合成工程を実施して
n−へブタンテストを行なった結果、この場合も白濁が
生じた。
(b) Example 1, except that birophosphoric acid was not added. The synthesis process was carried out under the same conditions as in Example 1, and an n-hebutane test was conducted. As a result, white turbidity also occurred in this case.

(C)実施例−1におけるハイドロキノンモノメチルエ
ーテルピロリン酸を加えずにその他はまった〈実施例−
1と同じ条件で合成工程を実施してn−へブタンテスト
を行なった結果、この場合も白濁が生じた。
(C) Hydroquinone monomethyl ether pyrophosphoric acid in Example-1 was not added, but the rest was fixed <Example-
When the synthesis process was carried out under the same conditions as in 1 and an n-hebutane test was conducted, white turbidity also occurred in this case.

比較例−2 (a>比較例−1(a)の方法で得られた反応粗液を実
施例−5と同様に処理して得られた濃縮液1gをn−へ
ブタン10gに溶解したところ、白濁して沈澱物が生じ
た。
Comparative Example-2 (a> 1 g of the concentrated solution obtained by treating the crude reaction liquid obtained by the method of Comparative Example-1 (a) in the same manner as in Example-5 was dissolved in 10 g of n-hebutane. The mixture became cloudy and a precipitate was formed.

(b)比較例−1(b)の方法で得られた反応粗液を実
施例−5と同様に処理したところ、途中から濃縮液の粘
度が上昇したため操作を停止して蒸発器を解体したとこ
ろ樹脂状の重合物が付着していた。
(b) Comparative Example-1 When the crude reaction liquid obtained by the method of (b) was treated in the same manner as in Example-5, the viscosity of the concentrated liquid increased halfway, so the operation was stopped and the evaporator was dismantled. However, a resinous polymer was found attached to it.

また、得られた濃縮液1gをn−へブタン10gに溶解
したところ、白濁して沈澱物が生じた。
Further, when 1 g of the obtained concentrate was dissolved in 10 g of n-hebutane, it became cloudy and a precipitate was formed.

(C)比較例−1(C)の方法で得られた反応粗液を実
施例−5と同様に処理したところ、途中から濃縮液の粘
度が上昇したため操作を停止して蒸発器を解体したとこ
ろ樹脂状の重合物が付着していた。
(C) Comparative Example-1 When the crude reaction liquid obtained by the method of (C) was treated in the same manner as in Example-5, the viscosity of the concentrated liquid increased halfway, so the operation was stopped and the evaporator was dismantled. However, a resinous polymer was found attached to it.

また、得られた濃縮液1gをn−へブタン10gに溶解
したところ、白濁して沈澱物が生じた。
Further, when 1 g of the obtained concentrate was dissolved in 10 g of n-hebutane, it became cloudy and a precipitate was formed.

(d)比較例−1(C)の方法で得られた反応粗液にハ
イドロキノンモノメチルエーテル0.3gを添加後、実
施例−5と同様に処理したところ、途中から濃縮液の粘
度が上昇したため操作を停止して蒸発器を解体したとこ
ろ樹脂状の重合物が付着していた。
(d) When 0.3 g of hydroquinone monomethyl ether was added to the reaction crude liquid obtained by the method of Comparative Example 1 (C) and treated in the same manner as in Example 5, the viscosity of the concentrated liquid increased midway through. When operation was stopped and the evaporator was disassembled, resin-like polymers were found attached to it.

また、得られた濃縮液1gをn−へブタン10gに溶解
したところ、白濁して沈澱物が生じた。
Further, when 1 g of the obtained concentrate was dissolved in 10 g of n-hebutane, it became cloudy and a precipitate was formed.

以上の実施例および比較例の結果から、分子状酸素含有
ガスと前記A群およびB群から選ばれる各々少くとも1
種の化合物を共存させないと効果が出ないことが明らか
である。
From the results of the above Examples and Comparative Examples, it is clear that the molecular oxygen-containing gas and at least one of each of Group A and Group B are
It is clear that no effect can be obtained unless the species compounds coexist.

Claims (1)

【特許請求の範囲】 一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中Rは水素原子またはメチル基を表わす)で表わさ
れるシクロヘキセニルメチル(メタ)アクリレート化合
物を酸化剤でエポキシ化して一般式(II) ▲数式、化学式、表等があります▼(II) (式中Rは水素原子またはメチル基を表わす)で表わさ
れる化合物を製造するプロセスにおける反応工程および
脱低沸および/または製品化工程において、重合禁止剤
として、分子状酸素含有ガスとともに、下記のA群およ
びB群から選ばれる各々少くとも1種の化合物を共存せ
しめることを特徴とするエポキシ化された(メタ)アク
リレート化合物の製造方法: [A群] ハイドロキノン、ハイドロキノンモノメチルエーテル、
P−ベンゾキノン、クレゾール、t−ブチルカテコール
、2,4−ジメチル−6−t−ブチルフェノール、2−
t−ブチル−4−メトキシフェノール、3−t−ブチル
−4−メトキシフェノール、2,6−ジ−t−ブチル−
P−クレゾール、2,5−ジヒドロキシ−P−キノン、
ピペリジン、エタノールアミン、α−ニトロソ−β−ナ
フトール、ジフェニルアミンフェノチアジン、N−ニト
ロソフェニルヒドロキシルアミン、N,N−ジエチルヒ
ドロキシルアミン、 [B群] リン酸、リン酸カリウム、リン酸ナトリウム、リン酸水
素アンモニウムナトリウム、ピロリン酸、ピロリン酸カ
リウム、ピロリン酸ナトリウム、ピロリン酸−2−エチ
ルヘキシルエステル、−2−エチルヘキシルエステル、
ピロリン酸ナトリウム−2−エチルヘキシルエステル、
トリポリリン酸、トリポリリン酸カリウム、トリポリリ
ン酸ナトリウム、トリポリリン酸−2−エチルヘキシル
エステル、トリポリリン酸カリウム−2−エチルヘキシ
ルエステル、テトラポリリン酸、テトラポリリン酸カリ
ウム、テトラポリリン酸ナトリウム、テトラポリリン酸
−2−エチルヘキシルエステル、テトラポリリン酸カリ
ウム−2−エチルヘキシルエステル、テトラポリリン酸
ナトリウム−2−エチルヘキシルエステル、ヘキサメタ
リン酸カリウム、ヘキサメタリン酸ナトリウム。
[Claims] General formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) Oxidation of a cyclohexenylmethyl (meth)acrylate compound represented by (in the formula, R represents a hydrogen atom or a methyl group) Reaction steps and reduction steps in the process of producing a compound represented by the general formula (II) ▲Mathematical formula, chemical formula, table, etc.▼(II) (wherein R represents a hydrogen atom or a methyl group) by epoxidizing with a An epoxidized product characterized in that at least one compound selected from Group A and Group B below is allowed to coexist with a molecular oxygen-containing gas as a polymerization inhibitor in the boiling and/or product manufacturing process. Manufacturing method of (meth)acrylate compound: [Group A] Hydroquinone, hydroquinone monomethyl ether,
P-benzoquinone, cresol, t-butylcatechol, 2,4-dimethyl-6-t-butylphenol, 2-
t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-
P-cresol, 2,5-dihydroxy-P-quinone,
Piperidine, ethanolamine, α-nitroso-β-naphthol, diphenylaminephenothiazine, N-nitrosophenylhydroxylamine, N,N-diethylhydroxylamine, [Group B] Phosphoric acid, potassium phosphate, sodium phosphate, ammonium hydrogen phosphate Sodium, pyrophosphoric acid, potassium pyrophosphate, sodium pyrophosphate, 2-ethylhexyl pyrophosphate, -2-ethylhexyl ester,
Sodium pyrophosphate-2-ethylhexyl ester,
Tripolyphosphoric acid, potassium tripolyphosphate, sodium tripolyphosphate, tripolyphosphate-2-ethylhexyl ester, tripolyphosphate potassium-2-ethylhexyl ester, tetrapolyphosphoric acid, potassium tetrapolyphosphate, sodium tetrapolyphosphate, tetrapolyphosphate-2-ethylhexyl ester , potassium tetrapolyphosphate-2-ethylhexyl ester, sodium tetrapolyphosphate-2-ethylhexyl ester, potassium hexametaphosphate, sodium hexametaphosphate.
JP1320956A 1988-12-13 1989-12-11 Method for producing epoxidized (meth) acrylate Expired - Fee Related JP2852673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320956A JP2852673B2 (en) 1988-12-13 1989-12-11 Method for producing epoxidized (meth) acrylate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31470388 1988-12-13
JP63-314703 1988-12-13
JP1320956A JP2852673B2 (en) 1988-12-13 1989-12-11 Method for producing epoxidized (meth) acrylate

Publications (2)

Publication Number Publication Date
JPH02262574A true JPH02262574A (en) 1990-10-25
JP2852673B2 JP2852673B2 (en) 1999-02-03

Family

ID=18056536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320956A Expired - Fee Related JP2852673B2 (en) 1988-12-13 1989-12-11 Method for producing epoxidized (meth) acrylate

Country Status (1)

Country Link
JP (1) JP2852673B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382676A (en) * 1991-08-28 1995-01-17 Daicel Chemical Industries, Ltd. Purified 3,4-epoxycyclohexyl methyl(meth)acrylate, a process for the preparation thereof and a 3,4-epoxycyclohexyl methyl(meth)acrylate composition
EP0741135A3 (en) * 1991-08-28 1996-11-27 Daicel Chem
FR2738247A1 (en) * 1995-09-01 1997-03-07 Daicel Chem PROCESS FOR THE PREPARATION OF PURIFIED 3,4-EPOXYCYCLOHEXYLMETHYL (METH) ACRYLATE AND STABILIZED 3,4-EPOXYCYCLOHEXYLMETHYLE (METH) ACRYLATE OBTAINED THEREFROM
US11932723B2 (en) 2018-12-28 2024-03-19 Daicel Corporation High-purity 3,4-epoxycyclohexylmethyl methacrylate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382676A (en) * 1991-08-28 1995-01-17 Daicel Chemical Industries, Ltd. Purified 3,4-epoxycyclohexyl methyl(meth)acrylate, a process for the preparation thereof and a 3,4-epoxycyclohexyl methyl(meth)acrylate composition
EP0741135A3 (en) * 1991-08-28 1996-11-27 Daicel Chem
FR2738247A1 (en) * 1995-09-01 1997-03-07 Daicel Chem PROCESS FOR THE PREPARATION OF PURIFIED 3,4-EPOXYCYCLOHEXYLMETHYL (METH) ACRYLATE AND STABILIZED 3,4-EPOXYCYCLOHEXYLMETHYLE (METH) ACRYLATE OBTAINED THEREFROM
US11932723B2 (en) 2018-12-28 2024-03-19 Daicel Corporation High-purity 3,4-epoxycyclohexylmethyl methacrylate

Also Published As

Publication number Publication date
JP2852673B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
JPH06219991A (en) Production of polyfunctional @(3754/24)meth)acrylate
JPS58172387A (en) Manufacture of 2,2-dicyclohexenylpropane diepoxide
US4851556A (en) Process for the preparation of epoxidized polybutadienes
JPH02262574A (en) Production of epoxidized (meth)acrylate
JP2704284B2 (en) Composition containing epoxidized (meth) acrylate compound
JP2906276B2 (en) Method for producing epoxidized (meth) acrylate
JP3018109B2 (en) Epoxidized (meth) acrylate and its production method
JP3029147B2 (en) Method for producing epoxidized (meth) acrylate compound
JP2941036B2 (en) Method for preventing coloration of epoxidized (meth) acrylate
JP2562620B2 (en) Method for producing epoxidized (meth) acrylate compound
JPH03240780A (en) Production of epoxide of dicyclopentadiene derivative
JP2819061B2 (en) Method for purifying epoxidized (meth) acrylate
EP0741135B1 (en) 6H-Dibenz(c,e)(1,2)oxaphosphorin-6-oxide derivatives for the stabilisation of 3,4-epoxycyclohexylmethyl (meth)acrylate
JP3602620B2 (en) Purification method of 3,4-epoxycyclohexylmethyl (meth) acrylate
JP3441189B2 (en) Stabilized alicyclic epoxy-containing (meth) acrylate compound and method for producing the same
JPH0451542B2 (en)
JPH04189810A (en) Novel (meth)acrylate composition and preparation thereof
JP3336067B2 (en) Method for producing epoxidized (meth) acrylate compound
JP3760391B2 (en) Purification method of crude epoxidation reaction liquid
JPH01186876A (en) Production of epoxidized (meth)acrylate
JPH08245511A (en) Purification of (meth)acrylate compound
JPH07126214A (en) Production of 4-hydroxybutyl acrylate
JP2000154182A (en) Production of epoxy compound having (meth)acryloyl group
JP2869753B2 (en) Polymerizable vinyl compound
JPH03128341A (en) Production of 2,2-dimethoxy-2-phenylacetophenone

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees