JPH01186876A - Production of epoxidized (meth)acrylate - Google Patents

Production of epoxidized (meth)acrylate

Info

Publication number
JPH01186876A
JPH01186876A JP1008388A JP1008388A JPH01186876A JP H01186876 A JPH01186876 A JP H01186876A JP 1008388 A JP1008388 A JP 1008388A JP 1008388 A JP1008388 A JP 1008388A JP H01186876 A JPH01186876 A JP H01186876A
Authority
JP
Japan
Prior art keywords
meth
acrylate
oxidizing agent
reaction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1008388A
Other languages
Japanese (ja)
Inventor
Kimiaki Honda
本田 公映
Kenji Oka
憲治 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP1008388A priority Critical patent/JPH01186876A/en
Publication of JPH01186876A publication Critical patent/JPH01186876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)

Abstract

PURPOSE:To readily obtain the title low-viscosity compound, having low odor and solubility in a wide range of resins and useful as ink, coating, etc., in good yield, by epoxidizing an acrylate or methacrylate compound with an oxidizing agent using piperidine as a polymerization inhibitor. CONSTITUTION:A cyclohexenyl (meth)acrylate compound which is a colorless and transparent liquid obtained by esterifying tetrahydrobenzaldehyde with (meth)acrylic acid, etc., used as an intermediate raw material for epoxy resins and expressed by formula I (R is H or CH3) is reacted and epoxidized in the presence of an oxidizing agent, such as peracetic acid or tert-butyl hydroperoxide, and a piperidine polymerization inhibitor, preferably in a solvent, such as ethyl acetate, at <=70 deg.C in the case of the peracetic acid and <=150 deg.C in the case of the tert-butyl hydroperoxide under ordinary pressure to afford the aimed compound, expressed by formula II and useful as a raw material for adhesives, coating agents, molding resins, etc., or modifying agents, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエポキシ化された(メタ)アクリレート化合物
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing an epoxidized (meth)acrylate compound.

(メタ)アクリレート化合物は熱、紫外線、イオン化放
射線、ラジカル重合開始剤の存在下で容易に単独重合ま
たは他の不飽和基含有化合物と共重合することが可能で
、また塗料用樹脂の中間原料としても有用である。
(Meth)acrylate compounds can be easily homopolymerized or copolymerized with other unsaturated group-containing compounds in the presence of heat, ultraviolet rays, ionizing radiation, and radical polymerization initiators, and can also be used as intermediate raw materials for paint resins. is also useful.

(従来の技術) 従来より各種のアクリル酸エステル類モノマーが知られ
ている。
(Prior Art) Various acrylic acid ester monomers have been known.

例えばアクリル酸メチル、アクリル酸エチル、アクリル
酸2−エチルヘキシル等の単官能モノマーおよびトリメ
チロールプロパントリアクリレート、ペンタエリスリト
ールトリアクリレート等の多官能モノマーが一般的に知
られている。
For example, monofunctional monomers such as methyl acrylate, ethyl acrylate, and 2-ethylhexyl acrylate, and polyfunctional monomers such as trimethylolpropane triacrylate and pentaerythritol triacrylate are generally known.

しかしながら、単官能モノマーは印刷インキおよび塗料
に用いた場合には硬化後の未反応モノマ−の臭気がはな
はだしく問題となる。
However, when monofunctional monomers are used in printing inks and paints, the odor of unreacted monomers after curing becomes a serious problem.

また多官能モノマーは塗料および印刷インキの希釈剤と
して用いる場合には、樹脂に対して多量に使用する必要
があり、したがって樹脂が有する特性が失われるという
欠点を有している。
Furthermore, when polyfunctional monomers are used as diluents for paints and printing inks, they have to be used in large amounts relative to resins, which has the disadvantage that the properties of the resins are lost.

その点 (式中Rは水素原子またはメチル基を表わす)で表わさ
れる(メタ)アクリレート化合物を酸化剤でエポキシ化
して得られる (式中Rは水素原子またはメチル基を表わす)は低粘度
で、かつ、低臭気で広範囲に亘る樹脂への溶解性を有し
ており、このものはインキ、塗料、接着剤、被覆剤、成
型用樹脂の原料あるいは改質剤として有用である。
In this respect, the (meth)acrylate compound represented by (in the formula, R represents a hydrogen atom or a methyl group) obtained by epoxidizing with an oxidizing agent (in the formula, R represents a hydrogen atom or a methyl group) has a low viscosity, Moreover, it has low odor and solubility in a wide range of resins, and is useful as a raw material or modifier for inks, paints, adhesives, coatings, and molding resins.

しかし、この−紋穴(It)で示されるエポキシ化され
た(メタ)アクリル酸エステルは極めて重合し易く製造
工程、貯蔵及び輸送中に熱、光およびその他の要因によ
ってしばしば重合することが知られている。
However, it is known that this epoxidized (meth)acrylic ester represented by the symbol (It) is extremely susceptible to polymerization and is often caused by heat, light, and other factors during the manufacturing process, storage, and transportation. ing.

従来からアクリルモノマー用の一般的な重合禁止剤とし
てアントラキノン、p−キノンなとのキノン類、及びそ
の誘導体、ニトロソ類、パラフェニレンジアミンなどの
アミン類、フェノチアジン。
Conventionally, general polymerization inhibitors for acrylic monomers include quinones such as anthraquinone and p-quinone, their derivatives, nitrosos, amines such as paraphenylenediamine, and phenothiazine.

金属銅塩などが知られている。Metallic copper salts are known.

しかしながら−紋穴(II)で示されるエポキシ化され
た(メタ)アクリル酸エステルに対しては重合禁止能が
十分でなく製造工程において・重合による収率の低下が
起きるという問題があった。
However, the epoxidized (meth)acrylic acid ester represented by Monka (II) does not have sufficient ability to inhibit polymerization, and there is a problem in that a decrease in yield due to polymerization occurs in the manufacturing process.

また、−紋穴(II)で示されるエポキシ化された(メ
タ)アクリル酸エステルは未だ、工業的規模で生産され
ていないこととも相代って、今迄該モノマーの重合禁止
剤に関する従来技術は全くないといっても過言ではない
In addition, the epoxidized (meth)acrylic acid ester represented by Monana (II) has not yet been produced on an industrial scale, and until now there has been no prior art regarding polymerization inhibitors for this monomer. It is no exaggeration to say that there is no such thing at all.

(発明が解決しようとする問題点) 以上のような従来技術の状況に鑑み、本発明者らは前記
の課題を克服すべく、−紋穴(11)で示されるエポキ
シ化された(メタ)アクリル酸エステルの高温における
有効な重合禁止剤について鋭党検討した結果、アミン類
、特にピペリジンが上記目的に極めて合致することを見
い出し、本発明を完成するに至った。
(Problems to be Solved by the Invention) In view of the above-mentioned state of the prior art, the present inventors have attempted to overcome the above-mentioned problems by using an epoxidized (meta) As a result of extensive research into effective polymerization inhibitors for acrylic acid esters at high temperatures, the inventors discovered that amines, particularly piperidine, are highly compatible with the above-mentioned purpose, leading to the completion of the present invention.

(発明の構成) 本発明は 「−紋穴(I) (式中Rは水素原子またはメチル基を表わす)で表わさ
れる(メタ)アクリレート化合物を酸化剤でエポキシ化
して 一ノ[イヒ式 (II) (式中Rは水素原子またはメチル基を表わす)で表わさ
れる化合物を製造する際に重合禁止剤としてピペリジン
を存在させることを特徴とするエポキシ化された(メタ
)アクリレート化合物の製造方法」 である。
(Structure of the Invention) The present invention is based on the method of epoxidizing a (meth)acrylate compound represented by -Monken (I) (in the formula, R represents a hydrogen atom or a methyl group) with an oxidizing agent. ) (In the formula, R represents a hydrogen atom or a methyl group) A method for producing an epoxidized (meth)acrylate compound characterized by the presence of piperidine as a polymerization inhibitor when producing the compound. be.

以下に本発明のエポキシされた(メタ)アクリレート化
合物の製造方法について詳述する。
The method for producing the epoxidized (meth)acrylate compound of the present invention will be described in detail below.

反応出発原料である一般式(I) (式中Rは水素原子またはメチル基を表わす)で表わさ
れる(メタ)アクリレート化合物[以下シクロへキセニ
ル(メタ)アクリレートと称する]は無色透明の液体で
あり、エポキシ樹脂の中間原料などに用いられている。
The starting material for the reaction, a (meth)acrylate compound represented by the general formula (I) (in which R represents a hydrogen atom or a methyl group) [hereinafter referred to as cyclohexenyl (meth)acrylate], is a colorless and transparent liquid. It is used as an intermediate raw material for epoxy resin.

工業的にはテトラヒドロベンズアルデヒドと(メタ)ア
クリル酸とのエステル化あるいはテトラヒドロベンズア
ルデヒドと(メタ)アクリル酸エステルとのエステ交換
反応により製造されている。この製造方法は特願昭62
−108565号に開示されているようにテトラヒドロ
ベンジルアルコール/(メタ)アクリル酸または(メタ
)アクリル酸エステルのモル比1/10〜10/1で、
p−トルエンスルホン酸、三フッ化ホウ素などを触媒と
して75〜125℃の反応温度で行うものである。
Industrially, it is produced by esterification of tetrahydrobenzaldehyde and (meth)acrylic acid or transesterification reaction of tetrahydrobenzaldehyde and (meth)acrylic acid ester. This manufacturing method was patented in 1986.
-108565 at a molar ratio of tetrahydrobenzyl alcohol/(meth)acrylic acid or (meth)acrylic acid ester from 1/10 to 10/1,
The reaction is carried out at a reaction temperature of 75 to 125° C. using p-toluenesulfonic acid, boron trifluoride, etc. as a catalyst.

また、シクロヘキセニル(メタ)アクリレートをエポキ
シ化して前記化合物(II)にする際に用いる酸化剤は
不飽和結合をエポキシ化できるものなら何でもよく過ギ
酸、過酢酸、過プロピオン酸、m−クロロ過安息香酸、
トリフルオロ過酢酸、過安息香酸、ターシャリブチルハ
イドロパーオキサイド、クミルハイドロパーオキサイド
、テトラリルハイドロバーオキサイド、ジイソプロピル
ベンゼンハイドロパーオキサイドなどの各種ハイドロパ
ーオキサイド類、過酸化水素などを例として挙げること
ができる。
In addition, the oxidizing agent used when epoxidizing cyclohexenyl (meth)acrylate to form the compound (II) may be any oxidizing agent as long as it can epoxidize unsaturated bonds, such as performic acid, peracetic acid, perpropionic acid, m-chloroperoxylic acid, etc. benzoic acid,
Examples include various hydroperoxides such as trifluoroperacetic acid, perbenzoic acid, tert-butyl hydroperoxide, cumyl hydroperoxide, tetralyl hydroperoxide, diisopropylbenzene hydroperoxide, and hydrogen peroxide. Can be done.

酸化剤は触媒と併用してもよく、例えば、有機過酸を用
いる場合なら炭酸ソーダなどのアルカリや硫酸などの酸
を触媒として併用しうる。
The oxidizing agent may be used in combination with a catalyst. For example, when an organic peracid is used, an alkali such as soda carbonate or an acid such as sulfuric acid may be used in combination as a catalyst.

同じく上記各種のハイドロパーオキサイド類を用いる場
合ならモリブデンヘキサカルボニルなど公知の触媒能を
有するものを、また、過酸化水素を用いる場合ならタン
グステン酸と苛性ソーダの混合物を併用することができ
る。
Similarly, when using the above-mentioned various hydroperoxides, those having a known catalytic ability such as molybdenum hexacarbonyl can be used, and when using hydrogen peroxide, a mixture of tungstic acid and caustic soda can be used in combination.

反応をバッチで行なう場合は先ず9反応容器内にシレロ
へキセニル(メタ)アクリレートを所定量仕込み、この
中に必要に応じて触媒、安定剤を溶解させ、この中に前
記酸化剤を滴下して行なう。
When carrying out the reaction in batches, first charge a predetermined amount of sillerohexenyl (meth)acrylate into a 9 reaction vessel, dissolve the catalyst and stabilizer as necessary in this, and dropwise drop the oxidizing agent into this. Let's do it.

酸化剤とシクロヘキセニル(メタ)アクリレートとの反
応モル比は理論的には1/1であるが、本発明の方法で
は0.1〜10の範囲、好ましくは、0.5〜10の範
囲、さらに好ましくは0゜8〜1.2の範囲が良い。
The reaction molar ratio between the oxidizing agent and cyclohexenyl (meth)acrylate is theoretically 1/1, but in the method of the present invention, it is in the range of 0.1 to 10, preferably in the range of 0.5 to 10. More preferably, the range is 0°8 to 1.2°.

酸化剤とシクロへキセニル(メタ)アクリレートとのモ
ル比が10を越える場合はシクロへキセニル(メタ)ア
クリレートの転化率および反応時間短縮、(メタ)アク
リレートの重合によるロスの減少という点で好ましいが
、過剰の酸化剤による副反応や酸化剤の選択率および未
反応の酸化剤を回収回収する場合に多大の費用を要する
。などの欠点がある。
When the molar ratio of the oxidizing agent and cyclohexenyl (meth)acrylate exceeds 10, it is preferable in terms of the conversion rate of cyclohexenyl (meth)acrylate, shortening the reaction time, and reducing loss due to polymerization of (meth)acrylate. However, a large amount of cost is required due to side reactions caused by excess oxidizing agent, selectivity of oxidizing agent, and recovery of unreacted oxidizing agent. There are drawbacks such as.

逆に酸化剤とシクロへキセニル(メタ)アクリレートと
の反応のモル比が0.1以下の場合は酸化剤の選択率、
転化率、酸化剤による副反応を抑制するという点で好ま
しいが、(メタ)アクリレートの重合によるロス、未反
応のシクロヘキセニル(メタ)アクリレートを回収する
場合に多大の費用を要する。などの欠点がある。
Conversely, if the molar ratio of the reaction between the oxidizing agent and cyclohexenyl (meth)acrylate is 0.1 or less, the selectivity of the oxidizing agent,
Although it is preferable in terms of conversion rate and suppressing side reactions caused by oxidizing agents, it requires loss due to polymerization of (meth)acrylate and a large amount of cost when recovering unreacted cyclohexenyl (meth)acrylate. There are drawbacks such as.

反応温度はエポキシ化反応が酸化剤の分解反応に優先す
るような上限値以下で行ない、たとえば、過酢酸を用い
る場合なら70℃以下で、ターシャリブチルハイドロパ
ーオキサイドを用いる場合なら150℃以下が好ましい
The reaction temperature is carried out below the upper limit so that the epoxidation reaction has priority over the decomposition reaction of the oxidizing agent. For example, when using peracetic acid, it is 70°C or less, and when using tert-butyl hydroperoxide, it is 150°C or less. preferable.

反応温度が低いと反応の完結までに長時間を要するので
、過酢酸を用いる場合なら0℃、ターシャリブチルハイ
ドロパーオキサイ、ドな用いる場合なら20℃という下
限値以上で行うことが好ましい。
If the reaction temperature is low, it will take a long time to complete the reaction, so it is preferable to carry out the reaction at a temperature higher than the lower limit of 0° C. if peracetic acid is used, and 20° C. if tert-butyl hydroperoxide is used.

また、エポキシ化反応の際、酸化剤からの副生などによ
る有機酸、アルコール、水でエポキシ基が開環してしま
う副反応が生じるので、副反応量が少なくなるような温
度を前記したような温度領域から選定して実施する。
In addition, during the epoxidation reaction, a side reaction occurs in which the epoxy group is ring-opened with organic acids, alcohols, and water due to by-products from the oxidizing agent, so the temperature that reduces the amount of side reactions is set as described above. Select and implement from a temperature range.

本発明による方法は種々の圧力下で実施することができ
る。
The method according to the invention can be carried out under various pressures.

本発明は一般的には常圧下で操作されるが、加圧または
低圧下でも実施できる。
Although the invention generally operates under normal pressure, it can also be practiced under elevated or reduced pressure.

また、本発明の反応は溶媒存在下でも実施できる。溶媒
存在下での反応は反応粗液の粘度低下、酸化剤を希しや
くすることによる安定化などの効果がある。
Moreover, the reaction of the present invention can also be carried out in the presence of a solvent. Reaction in the presence of a solvent has effects such as lowering the viscosity of the reaction crude liquid and stabilizing it by making the oxidizing agent more diluted.

使用される溶媒としてはベンゼン、トルエン、キシレン
など芳香族化合物、クロロフォルム、ジメチルクロライ
ド、四塩化炭素、クロルベンゼンなどのハロゲン化物、
酢酸エチル、酢酸ブチル、などのエステル化物、アセト
ン、メチルエチルケトンなどのケトン化合物、1.2−
ジメトキシエタンなどのエーテル化合物などを用いるこ
とができる。
Solvents used include aromatic compounds such as benzene, toluene, and xylene; halides such as chloroform, dimethyl chloride, carbon tetrachloride, and chlorobenzene;
Esterified products such as ethyl acetate and butyl acetate, ketone compounds such as acetone and methyl ethyl ketone, 1.2-
Ether compounds such as dimethoxyethane can be used.

溶媒の使用量はシクロへキセニル(メタ)アクリレート
に対して0.5心5倍量が好ましい。
The amount of solvent to be used is preferably 0.5 times the amount of cyclohexenyl (meth)acrylate.

0.5倍量より少ない場合は酸化剤を希しゃくすること
による安定化などの効果が少なく、逆に5倍量より多く
しても安定化効果はそれ程アップせず溶媒の回収に多大
の費用を要するので無駄となる。
If the amount is less than 0.5 times, there will be little stabilization effect by diluting the oxidizing agent, and conversely, if the amount is more than 5 times, the stabilizing effect will not improve much and it will cost a lot to recover the solvent. It is a waste because it requires .

本発明のポイントは上記のようなエポキシ化反応を行う
際に出発原料であるシクロヘキセニル(メタ)アクリレ
ートが重合するのを防止するためにピペリジンを添加す
ることにある。
The key point of the present invention is to add piperidine to prevent the starting material cyclohexenyl (meth)acrylate from polymerizing during the epoxidation reaction as described above.

なお、ピペリジンは出発原料であるシクロヘキセニル(
メタ)アクリレートおよび反応生成物であるエポキシ化
物の両方に対して重合禁止効果を有している。
Note that piperidine is the starting material cyclohexenyl (
It has a polymerization inhibiting effect on both meth)acrylate and the epoxide product which is the reaction product.

なお、ピペリジンは従来から使用されていた重合禁止剤
と併用してもよい。
Note that piperidine may be used in combination with a conventionally used polymerization inhibitor.

併用される重合禁止剤としてはハイドロキノン、P−メ
トキシフェノール、2.4−ジメチル−6−t−ブチル
フェノール、3−ヒドロキシチオフェノール、α−ニト
ロソ−β−ナフ)−/1/、P−ベンゾキノン、フェネ
、チアジン、2.5−ジヒドロキシ−P−キノン、銅塩
等を使用することができるが、安定性などの点でハイド
ロキノン、P−メトキシフェノールが好ましい。
Polymerization inhibitors used in combination include hydroquinone, P-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, 3-hydroxythiophenol, α-nitroso-β-naph)-/1/, P-benzoquinone, Phene, thiazine, 2,5-dihydroxy-P-quinone, copper salt, etc. can be used, but hydroquinone and P-methoxyphenol are preferred from the viewpoint of stability.

ピペリジンを主とする重合禁止剤の使用量は出発原料で
あるシクロヘキセニル(メタ)アクリレートに対して0
.001〜5.0重量%、好ましくは0.01〜1.0
重量%である。
The amount of polymerization inhibitor, mainly piperidine, used is 0 relative to the starting material cyclohexenyl (meth)acrylate.
.. 001-5.0% by weight, preferably 0.01-1.0
Weight%.

添加量が0.001重量%未満の場合は重合禁止効果が
小さく、逆に5.0重量%以上添加しても効果は向上し
ないので無駄となる。
If the amount added is less than 0.001% by weight, the effect of inhibiting polymerization will be small, and conversely, if the amount added is 5.0% by weight or more, the effect will not improve and it will be wasted.

ピペリジンを主とする重合禁止剤の添加はエポキシ化反
応を行なう直前にシクロへキセニル(メタ)アクリレー
トに溶解させて行う。
A polymerization inhibitor mainly consisting of piperidine is added by dissolving it in cyclohexenyl (meth)acrylate immediately before carrying out the epoxidation reaction.

また、反応粗液を精製する際にさらに重合禁止剤を添加
することは重合禁止に有効である。
Furthermore, adding a polymerization inhibitor when purifying the reaction crude liquid is effective for inhibiting polymerization.

反応の終点の確認は残存する酸化剤濃度の測定およびガ
スクロマトグラフィーによるのが良い。
The end point of the reaction is preferably confirmed by measuring the concentration of the remaining oxidizing agent and by gas chromatography.

反応終了後のエポキシ化反応粗液は溶媒、低沸点物質、
未反応原料、触媒などの除去、中和、吸着剤やイオン交
換樹脂処理などによって精製することができる。
After the reaction is completed, the epoxidation reaction crude liquid contains a solvent, a low boiling point substance,
It can be purified by removing unreacted raw materials, catalysts, etc., neutralizing it, and treating it with an adsorbent or ion exchange resin.

必要があれば、さらにフラッシュ蒸溜、精密蒸溜などに
よって精製しても良い。
If necessary, it may be further purified by flash distillation, precision distillation, etc.

精製処理は最終製品の品質要求に応じて選択することが
できる。
Purification treatments can be selected depending on the quality requirements of the final product.

精製処理しなくても使用に耐える品質の最終製品が得ら
れる場合は省略することもできる。
If a final product of usable quality can be obtained without purification, it may be omitted.

特に酸化剤として有機酸を用いる場合、反応粗液を中和
せずに低沸点成分を除去すると(メタ)アクリレートの
重合によるロスが大であるので、低沸点成分を除去する
前に中和する方が好ましい。
Particularly when using an organic acid as an oxidizing agent, removing low-boiling components without neutralizing the crude reaction solution will result in large losses due to polymerization of (meth)acrylate, so neutralize the low-boiling components before removing them. is preferable.

中和に用いるアルカリ水溶液としては例えば、NaOH
%KOH,K   Co   、Na2  C0、Na
HCO、KHCO、NH3 などのようなアルカリ性物質の水溶液を使用することが
できる。
Examples of alkaline aqueous solutions used for neutralization include NaOH
%KOH, K Co , Na2 C0, Na
Aqueous solutions of alkaline substances such as HCO, KHCO, NH3, etc. can be used.

使用する際の濃度はひろい範囲で自由に選択することが
できる。
The concentration used can be freely selected from a wide range.

分液性の点からN a   CO3水溶液、NaHCO
3水溶液を用いるのが好ましい。
From the viewpoint of liquid separation, NaCO3 aqueous solution, NaHCO
3. Preferably, an aqueous solution is used.

中和後、水洗せずに低沸点成分を除去し、塔底液を製品
にすると製品中に中和塩が残存することになるので中和
後水洗することが好ましい。
After neutralization, if low-boiling components are removed without washing with water and the bottom liquid is made into a product, neutralized salts will remain in the product, so it is preferable to wash with water after neutralization.

中和および水洗は10〜90℃、好ましくは10〜50
℃の温度範囲で行うのが良い。
Neutralization and water washing at 10-90°C, preferably 10-50°C
It is best to perform this in the temperature range of ℃.

中和あるいは水洗を行った反応粗液から低沸点成分を除
去するには重合禁止剤を添加した後薄膜式蒸発器などを
用いるのが良い。
In order to remove low-boiling components from the reaction crude liquid that has been neutralized or washed with water, it is preferable to use a thin film evaporator or the like after adding a polymerization inhibitor.

本発明の方法を適用することができる装置の材質はステ
ンレス、グラスライニング鋼などが望ましいが、普通の
鉄材などでも構わない。
The material of the apparatus to which the method of the present invention can be applied is preferably stainless steel, glass-lined steel, etc., but ordinary iron materials may also be used.

以下に実施例を示し本発明の効果を具体的に説明するが
、本発明はこれらの実施例によって限定されるものでは
ない。
EXAMPLES The effects of the present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples.

〔実施例1〕および〔比較例1〜6〕 シクロヘキセニルメタクリレート40%、これをエポキ
シ化した3、4工ポキシシクロヘキシルメチルメタクリ
レート60%の混合溶液に対する重合禁止能を比較した
結果を第−表に示す。
[Example 1] and [Comparative Examples 1 to 6] Table 1 shows the results of comparing the polymerization inhibition ability of a mixed solution of 40% cyclohexenyl methacrylate and 60% tertiary and quaternary polycyclohexyl methyl methacrylate obtained by epoxidizing this. show.

なお、温度はいずれも130℃、雰囲気は比較例1が窒
素である以外はいずれも空気である。
The temperature was 130° C. in all cases, and the atmosphere was air in all cases except for Comparative Example 1, in which nitrogen was used.

また、この組成は薄膜蒸発器で反応粗液を漏出させる際
の液組成に近い。
Moreover, this composition is close to the liquid composition when the reaction crude liquid is leaked from a thin film evaporator.

第−表 第一表から明らかなようにピペリジンは顕著な重合禁止
効果を有している。
As is clear from Table 1, piperidine has a remarkable polymerization inhibiting effect.

なお、第−表の値は温度130℃で11000ppの重
合禁止剤を添加した時のものである。
The values in Table 1 are those obtained when 11,000 pp of polymerization inhibitor was added at a temperature of 130°C.

〔実施例2〕および〔比較例7〕 温度160℃における3、4エポキシシクロヘキシルメ
チルメタクリレートに対する重合禁止能を重合禁止剤を
添加した時と添加しない時について比較した結果を第二
表に示す。
[Example 2] and [Comparative Example 7] Table 2 shows the results of comparing the polymerization inhibition ability for 3,4 epoxycyclohexylmethyl methacrylate at a temperature of 160° C. with and without the addition of a polymerization inhibitor.

第二表 (以下余白) 〔実施例3〕 冷却用のジャケット付きの内容量2.5jの反応器にシ
クロへキセニルメタクリレート300g。
Table 2 (blank below) [Example 3] 300 g of cyclohexenyl methacrylate was placed in a reactor with an internal capacity of 2.5 j and equipped with a cooling jacket.

酢酸エチル600g、ピペリジン2.8gを加えた後過
酢酸の30%酢酸エチル溶液478gを2時間かけて滴
下した。
After adding 600 g of ethyl acetate and 2.8 g of piperidine, 478 g of a 30% solution of peracetic acid in ethyl acetate was added dropwise over 2 hours.

滴下中は反応温度が40℃になるようにジャケットに流
す温水の温度を40℃よりやや高めに調節した。
During the dropping, the temperature of the hot water flowing through the jacket was adjusted to be slightly higher than 40°C so that the reaction temperature was 40°C.

滴下終了後も反応温度を40℃に5時間保ち、反応を終
了させた。
After the dropwise addition was completed, the reaction temperature was maintained at 40° C. for 5 hours to complete the reaction.

この時の反応粗液中の過酢酸の濃度は1%以下であった
At this time, the concentration of peracetic acid in the reaction crude liquid was 1% or less.

反応粗液1378gを6%N a 1(CO3水溶液3
583gで洗浄した。
1378 g of the reaction crude liquid was mixed with 6% Na 1 (CO3 aqueous solution 3
Washed with 583g.

分液後、上層を水1378gで洗浄し、分液した後上層
液の低沸点成分の除去を行った。
After liquid separation, the upper layer was washed with 1378 g of water, and after separation, low-boiling components of the upper layer liquid were removed.

低沸点成分の除去は薄膜蒸発器を用い、ピペリジンの添
加量は500ppm、圧力20Torr。
A thin film evaporator was used to remove low boiling point components, the amount of piperidine added was 500 ppm, and the pressure was 20 Torr.

温度90〜95℃の条件で行った。The test was carried out at a temperature of 90 to 95°C.

製品化は薄膜蒸発器を用い、圧力5Torr。Commercialization uses a thin film evaporator at a pressure of 5 Torr.

温度90〜95℃の条件で行ない、未反応原料であるシ
クロへキセニルメタクリレートを除去した。
The reaction was carried out at a temperature of 90 to 95°C to remove cyclohexenyl methacrylate, which is an unreacted raw material.

収率はシクロヘキセニルメタクリレート基準で93%で
あった。
The yield was 93% based on cyclohexenyl methacrylate.

Claims (1)

【特許請求の範囲】 一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中Rは水素原子またはメチル基を表 わす)で表わされる(メタ)アクリレート化合物を酸化
剤でエポキシ化して 一般式(II) ▲数式、化学式、表等があります▼(II) (式中Rは水素原子またはメチル基を表 わす)で表わされる化合物を製造する際に重合禁止剤と
してピペリジンを存在させることを特徴とするエポキシ
化された(メタ)アクリレート化合物の製造方法。
[Claims] General formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R represents a hydrogen atom or a methyl group) A (meth)acrylate compound is epoxied with an oxidizing agent. The general formula (II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (In the formula, R represents a hydrogen atom or a methyl group) When producing a compound represented by the following, piperidine is present as a polymerization inhibitor. A method for producing an epoxidized (meth)acrylate compound, characterized by:
JP1008388A 1988-01-20 1988-01-20 Production of epoxidized (meth)acrylate Pending JPH01186876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1008388A JPH01186876A (en) 1988-01-20 1988-01-20 Production of epoxidized (meth)acrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1008388A JPH01186876A (en) 1988-01-20 1988-01-20 Production of epoxidized (meth)acrylate

Publications (1)

Publication Number Publication Date
JPH01186876A true JPH01186876A (en) 1989-07-26

Family

ID=11740454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1008388A Pending JPH01186876A (en) 1988-01-20 1988-01-20 Production of epoxidized (meth)acrylate

Country Status (1)

Country Link
JP (1) JPH01186876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002311A1 (en) * 1995-06-30 1997-01-23 Origin Electric Company, Limited Surface-coated molded plastic articles having good durability
WO2011112643A2 (en) 2010-03-09 2011-09-15 Henkel Corporation Cationic uv-crosslinkable acrylic polymers for pressure sensitive adhesives

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002311A1 (en) * 1995-06-30 1997-01-23 Origin Electric Company, Limited Surface-coated molded plastic articles having good durability
US6048617A (en) * 1995-06-30 2000-04-11 Origin Electric Company, Limited Surface-coated molded plastic articles having good durability
WO2011112643A2 (en) 2010-03-09 2011-09-15 Henkel Corporation Cationic uv-crosslinkable acrylic polymers for pressure sensitive adhesives
US8796350B2 (en) 2010-03-09 2014-08-05 Henkel US IP LLC Cationic UV-crosslinkable acrylic polymers for pressure sensitive adhesives

Similar Documents

Publication Publication Date Title
JP4663893B2 (en) Method for producing epoxy compound
AU6333899A (en) Process for the preparation of glycidylesters of branched carboxylic acids
JPH0469360A (en) Composition composed of new alicyclic compound and its production
JP2546124B2 (en) Method for producing polyfunctional (meth) acrylate
JPH01186876A (en) Production of epoxidized (meth)acrylate
JPH0196177A (en) (meth)acrylate and production thereof
JP2704284B2 (en) Composition containing epoxidized (meth) acrylate compound
JP2852673B2 (en) Method for producing epoxidized (meth) acrylate
JPH03240780A (en) Production of epoxide of dicyclopentadiene derivative
JP2941036B2 (en) Method for preventing coloration of epoxidized (meth) acrylate
JP3018109B2 (en) Epoxidized (meth) acrylate and its production method
JP3029147B2 (en) Method for producing epoxidized (meth) acrylate compound
JP2962805B2 (en) Curable resin composition
JP2906276B2 (en) Method for producing epoxidized (meth) acrylate
JP2941044B2 (en) Novel (Nata) acrylate compound and method for producing the same
JP3336067B2 (en) Method for producing epoxidized (meth) acrylate compound
JPH09151237A (en) Actinic energy radiation-curable resin composition and use thereof
JPH0672955A (en) Reactive diluent for active energy ray-curing resin and its production
JP2869753B2 (en) Polymerizable vinyl compound
JP2819061B2 (en) Method for purifying epoxidized (meth) acrylate
JP2990680B2 (en) Method for producing epoxidized tetrahydrobenzyl alcohol composition
JPH0881452A (en) Alicyclic epoxy-containing (meth)acrylate composition and its production
JP2005343868A (en) Method for producing dieopoxidized oxalic ester compound
JP3051192B2 (en) Epoxidized 1-methyltetrahydrobenzyl alcohol and method for producing the same
JP3879779B2 (en) Purification method of glycidols