JP3921826B2 - Battery cell capacity adjustment method - Google Patents

Battery cell capacity adjustment method Download PDF

Info

Publication number
JP3921826B2
JP3921826B2 JP20645898A JP20645898A JP3921826B2 JP 3921826 B2 JP3921826 B2 JP 3921826B2 JP 20645898 A JP20645898 A JP 20645898A JP 20645898 A JP20645898 A JP 20645898A JP 3921826 B2 JP3921826 B2 JP 3921826B2
Authority
JP
Japan
Prior art keywords
capacity
cell
adjustment
circuit voltage
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20645898A
Other languages
Japanese (ja)
Other versions
JP2000040530A (en
Inventor
和男 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20645898A priority Critical patent/JP3921826B2/en
Publication of JP2000040530A publication Critical patent/JP2000040530A/en
Application granted granted Critical
Publication of JP3921826B2 publication Critical patent/JP3921826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車等に用いられる組電池において、組電池を構成する各セルの容量のバラツキを補正し、常に組電池全体として電池の容量を十分に使用することが出来るように制御する組電池セル容量調整方法に関する。なお、この場合における電気自動車とは、二次電池のみで走行するものに限らず、電池の電力を車両駆動用に用いるものであれば、いわゆるハイブリッド形式の自動車等でもよい。
【0002】
【従来の技術】
電気自動車用の電池は、一般にセルと呼ばれる単電池を複数個(例えば6〜8個)直列接続して1ブロックにしたモジュールを、必要な電圧になる個数だけ直列に接続した組電池が用いられる。このような組電池においては、充放電を繰り返すと、各セルの特性に応じて各セルごとの容量(その時点で使用できる残存容量)に差が生じる。これを放置しておくと組電池全体として使用できる容量が減少するので、適当な時期(例えば車両起動時など)毎に容量の大きなセルの電力を放電させ、全体の均衡を保つように制御する必要がある。
【0003】
従来の電気自動車においては、図6(A)に示す容量と開放電圧(電流零時の端子電圧)との関係がリニアな領域(容量の大きな範囲)について、各セルごとの調整容量(調整のために放電させる容量)を平均セル開放電圧からの偏差に対応させた一つのテーブル〔図6(B)〕として記憶しておき、それに応じて調整容量分の放電を行なわせていた。例えば、車両起動時や充電開始時等のようにセルコントローラが起動した際に、各セルの開放電圧を検出し、それらの値から平均セル開放電圧を算出し、平均セル開放電圧のからの偏差が規定値以上に大きなセルに対しては、上記の調整容量テーブルを参照して、偏差に応じた調整容量を求め、その値分の容量を放電させることによって全体の均衡を図るように制御している。上記の方法によれば、容量と開放電圧との関係が直線的な領域でのみ使用するため、調整容量テーブルが簡単に作成でき、かつテーブルを参照するという簡便な形で調整容量を演算することができる。
【0004】
【発明が解決しようとする課題】
しかし、上記のごとき従来の方法では、容量と開放電圧との直線関係の傾きが変化する領域(容量の少ない領域)では調整容量を演算できないため、仮に放電末期付近で繰り返し充放電するような使用状態においては、各セルの容量のバラツキを抑制できないことになる。そのため、組電池全体として電池の容量を十分に使用することが出来ないばかりか、電圧バラツキの拡大によって各セルの劣化状態のバラツキをも助長する可能性がある、という問題があった。
【0005】
本発明は、上記のごとき従来技術の問題を解決するためになされたものであり、検出されたセルの開放電圧がどのような領域にある場合でも、それに適合した容量調整を実施することが可能な組電池セル容量調整方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明においては、特許請求の範囲に記載するように構成している。すなわち、請求項1に記載の発明においては、組電池に入出力がなされていないときに組電池の各セルの開放電圧を検出し、全セルの平均開放電圧を算出し、次いで各セルの開放電圧から上記平均開放電圧を引いた偏差が予め定めた所定値を越えていて放電させることで容量調整が必要なセルを特定し、その特定したセルのセル容量に対する開放電圧の傾きが近似的に一定となる容量範囲毎に、予め設定した近似式からなり上記開放電圧から平均開放電圧を引いた偏差を当てはめる調整容量演算式によって必要な調整容量を求め、上記特定したセル毎に上記調整容量に相当する電力を放電させることにより、各セルの容量のばらつきを調整するように構成している。
【0007】
例えば、リチウムイオン二次電池においては、その容量対開放電圧の特性が、使用範囲において3つの直線で近似することが出来る。したがってそれぞれの直線の領域に対応する調整容量演算式を設定し、対応する調整容量演算式を用いて、各セルの開放電圧と上記平均開放電圧との偏差に応じて調整容量を演算することにより、検出されたセルの開放電圧がどんな領域にあっても正確な容量調整を実施することが出来る。なお、他の2次電池の場合にも、それに対応した特性を用いて調整容量テーブルを設定することにより同様に制御可能である。
【0008】
また、請求項2に記載の発明においては、請求項1に記載の組電池セル容量調整方法において、セル容量に対する開放電圧の傾きが近似的に一定となる容量範囲毎に予め設定した近似式からなる調整容量演算式のうち、上記平均開放電圧と上記特定したセルの開放電圧が属する容量範囲の調整容量演算式を選択し、その調整容量演算式に上記開放電圧から平均開放電圧を引いた偏差を当てはめるよって必要な調整容量を求めるように構成している。
また、請求項に記載の発明においては、上記複数の調整容量演算式を用いて演算する場合に、調整を実行しようとするセルの開放電圧が特性の変化する領域近傍にあり、二つの領域に股がって放電しなければならない場合に、その二つの領域に対応する調整容量演算式のそれぞれから調整容量を算出し、二つの演算値の和を調整容量とするように構成している。すなわち、単純に特性の異なる複数の演算式を用いて演算した場合には、特性の変化する境界では傾きの急峻な方の特性によって調整容量が決まり、調整容量の値が実際に必要な値よりも小さくなる可能性がある。そのため平均開放電圧のみから参照する演算式を選定するのではなく、セルの開放電圧に応じて同時に二つの演算式を参照して調整容量を演算することにより、演算精度を上げ、調整の頻度を減らし、可能な限り充放電をさせずに劣化を抑制する方向へ制御することが出来る。
【0009】
【発明の効果】
本発明によれば、電池特性の変化に応じた複数の調整容量演算式を設定することで、これまで作動不可であった放電末期領域においてもそれに適合した容量調整が実施することが出来る。そのため、容量バラツキが速やかに解消され、常に組電池全体として電池の容量を十分に使用することが出来る、という効果が得られる。
【0010】
また、請求項に記載の発明においては、電池特性の変化する領域にまたがって容量調整をしなければならないようなセル開放電圧の場合であっても、それぞれ調整容量演算式から調整容量を演算してその和を調整容量とすることにより、精度よく容量調整を行なうことが出来る。そのため、一つの特性で演算して調整容量を小さく見積もってしまうことがなくなるので、容量調整を行なう頻度が減少し、電池の充放電回数に対応した劣化の進行を遅らせることが出来るという効果がある。
また、従来のように、放電末期領域で繰り返し充放電されるような状態では容量調整ができず、セルの電圧バラツキが拡大してその電圧バラツキによって劣化の不均一な進行が助長される、という状況を防止することが出来る、という効果がある。
【0011】
また、通常の組電池に付属している容量放電回路を用いて上記各セル毎の放電を行なわせ、かつ電池制御装置として設けられているセルコントローラおよびバッテリコントローラを用いて上記各数値の計測および演算を行なわせることにより、新規なハードウエアを追加することなく、ソフトウエアの変更のみで本発明を実現することができるので、安価に実施することが出来る。
【0012】
なお、本発明は、組電池に限らず、モジュール単位の電池システムにおいても同様に適用可能であり、同様の効果が得られる。
【0013】
【発明の実施の形態】
図1は、本発明の容量調整方法に用いるコントローラの構成の一例を示す模式図である。図1の構成は電気自動車の組電池の充放電等を制御するコントローラであり、この実施の形態では電気自動車の組電池制御用として既設のコントローラを用いて、各セルの容量調整を行なうものである。
【0014】
図1において、1はセル(単電池)、2は抵抗、3はトランジスタ、4はモジュール毎に一つ設置された電池温度センサ、5は入力された各種信号に応じた演算を行なって制御信号を出力する制御部、破線で囲まれた部分6はモジュール内の各セルを制御するセルコントローラ、7は組電池全体を制御するバッテリコントローラ、8はモジュール内の各セルへ接続される電圧計測線、9はモジュール内の各トランジスタヘの信号線、10はバッテリコントローラと各セルコントローラとの通信線、破線で囲まれた部分11は容量放電回路、12は容量放電回路11を流れる電流を検出するための信号線である。なお、バッテリコントローラ7内には、後述する調整容量テーブルが記憶されている。
【0015】
セル1の両端の矢印A、Bは、この部分で前後のセル(図示せず)に直列に接続され、複数のセルで一つのモジュールを形成し、一つのモジュールごとに一つのセルコントローラ6が設けられている。そして全てのモジュールのセルコントローラ6がバッテリコントローラ7と通信線10を介して接続され、各セルの充放電が制御される。また、容量放電回路11は抵抗2とトランジスタ3との直列回路で構成される。そして、各セルの電圧計測線8を介して検出した各セルの端子電圧などに基づいて、例えば電池充電時に当該セルが過充電になった場合や他のセルに対して過電圧である場合などを制御部5が判断し、信号線9を介して当該セルのトランジスタ3をオンにすることにより、抵抗2を介して当該セルから電流を流し、電荷を放電する。本実施の形態においては、この容量放電回路11を用いて調整容量を放電させることにより、各セルの容量を均衡させるように制御するものである。また、開放電圧や放電電流等の各値は前記電圧計測線8や信号線12を介してセルコントローラ6で計測し、それに応じた調整容量をバッテリコントローラ7で演算する。
【0016】
なお、本実施の形態で示した電池特性は、リチウムイオン二次電池のものを用いているが、他の2次電池の場合にはそれに対応した特性を用いて調整容量テーブルを設定することにより同様に制御可能である。
【0017】
まず、本実施の形態における調整容量の演算について説明する。
図4はリチウムイオン二次電池における電池の容量と開放電圧の特性を示す特性図である。図4に示すように、容量と開放電圧の特性は3つの直線からなる折線グラフで近似される。この特性が変化する点の開放電圧をV1、V2とする。
【0018】
図5は、図4に示した各電池特性の領域とそれに応じたそれぞれの調整容量演算式を示す図である。すなわち、セル開放電圧の高いほうから
Cc=a1・△V …▲1▼式
Cc=a2・△V …▲2▼式
Cc=a3・△V …▲3▼式
と表される。ただしCcは調整容量(Ah)、△Vは各セル開放電圧と平均開放電圧(各セルの開放電圧の平均値)との偏差(V)である。また、a1、a2、a3はそれぞれ定数であり、電池特性から定まる値であって容量に対する電圧の傾きを表す。
【0019】
次に、上記の各調整容量演算式の適用について説明する。
セルコントローラ(C/C)起動時(例えば電気自動車のイグニッションスイッチがオンにされた時)に各セルの開放電圧Vc(n)(ただしnはセルNo)が検出されると、まず全セルの平均開放電圧Vc aveが算出される。そして各セルのVc(n)と平均開放電圧Vc aveとの偏差△Vc(n)を下式で算出する。
△Vc(n)=Vc(n)−Vc ave
検出されたVc(n)の値が予め設定された偏差の許容値△Vcmax以下の場合、すなわち
△Vc(n)≦△Vcmax
であった場合には、そのセルのバラツキは許容値以下であると判断して容量調整は行わない。一方、
△Vc(n)>△Vcmax
となるセルが存在する場合には、そのセルに対して、さらに以下の条件に応じて調整容量Ccが演算され、容量調整が行われる。
【0020】
(1) Vc ave≧V1の場合
これは平均開放電圧Vc aveが図5のV1よりも大きい範囲にある場合であり、この場合には、調整容量演算式は▲1▼式を用い、その△Vに△Vc(n)を代入して調整容量を算出し、算出された調整容量Ccを容量放電回路11を用いて放電する。
【0021】
(2) V1>Vc ave≧V2であり、かつV1≧Vc(n)の場合
これは平均開放電圧Vc aveが図5のV1とV2の間にある場合であって、かつセルの開放電圧Vc(n)がV1以下の場合である。この場合には、調整容量演算式は▲2▼式を用い、その△Vに△Vc(n)を代入して調整容量を算出し、算出された調整容量Ccを容量放電回路11を用いて放電する。
【0022】
(3) V2>Vc aveであり、かつV2≧Vc(n)の場合
これは平均開放電圧Vc aveが図5のV2より小さい場合であって、かつかつセルの開放電圧Vc(n)がV2以下の場合である。この場合には、調整容量演算式は▲3▼式を用い、その△Vに△Vc(n)を代入して調整容量を算出し、算出された調整容量Ccを容量放電回路11を用いて放電する。
【0023】
(4) V1>Vc ave≧V2であり、かつVc(n)>V1の場合
これは平均開放電圧Vc aveの範囲は前記(2)と同じであるが、セルの開放電圧Vc(n)がV1よりも大きい場合、すなわち、V1の屈曲点付近が動作点の場合である。この場合には、まず、
△Vc(n)1=Vc(n)−V1
に応じた調整容量Cc1を前記▲1▼式から算出し、さらに
△Vc(n)2=V1−Vc ave
に応じた調整容量Cc2を前記▲2▼式から算出し、
Cc=Cc1+Cc2
を調整容量とし、それを容量放電回路11を用いて放電させる。
【0024】
(5) V2>Vc aveであり、かつVc(n)>V2の場合
これは平均開放電圧Vc aveは前記(3)と同じであるが、開放電圧Vc(n)がV2よりも大きい場合、すなわち、V2の屈曲点付近が動作点の場合である。この場合には、まず、
△Vc(n)3=Vc(n)−V2
に応じた調整容量Cc3を前記▲2▼式から算出し、さらに、
△Vc(n)4=V2−Vc ave
に応じた調整容量Cc4を前記▲3▼式から算出し、
Cc=Cc3+Cc4
を調整容量とし、それを容量放電回路11を用いて放電させる。
【0025】
なお、△Vc(n)の絶対値が予め定めた所定値△Vc failよりも大きかつた場合、すなわち、或るセルの開放電圧と平均開放電圧との偏差が異常に大きかった場合には、当該セルが異常と判断し、そのセルに対しては容量調整を禁止するとともに交換を促す警告を出力する。
【0026】
また、上記の各演算式と偏差との関係を調整容量テーブルとして予めバッテリコントローラ7に記憶しておくことにより、偏差に対応した調整容量値を直ちに読み出せるようにすることが出来る。
また、上記の開放電圧や平均開放電圧等は、電池温度に応じて補正した値を用いるように構成してもよい。
図2および図3は、上記の演算経過を示すフローチャートであり、両図は(A)および(B)の個所で接続される。
【図面の簡単な説明】
【図1】本発明の容量調整方法に用いるコントローラの構成の一例を示す模式図。
【図2】調整容量の演算過程を示すフローチャートの一部。
【図3】調整容量の演算過程を示すフローチャートの他の一部。
【図4】リチウムイオン二次電池における電池の容量と開放電圧の特性を示す特性図。
【図5】図4に示した各電池特性の領域とそれに応じたそれぞれの調整容量演算式を示す図。
【図6】従来の調整方法を説明するための図であり、(A)は容量と開放電圧との関係を示す特性図、(B)は各セルごとの調整容量を平均セル開放電圧からの偏差に対応させたテーブルを示す図。
【符号の説明】
1…セル(単電池) 2…抵抗
3…トランジスタ 4…電池温度センサ
5…は制御部 6…セルコントローラ
7…バッテリコントローラ 8…電圧計測線
9…信号線 10…通信線
11…容量放電回路 12…電流を検出するための信号線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an assembled battery used in an electric vehicle or the like, which corrects variation in capacity of each cell constituting the assembled battery, and always controls the battery so that the battery capacity can be fully used as a whole assembled battery. The present invention relates to a battery cell capacity adjustment method. The electric vehicle in this case is not limited to a vehicle that runs only with a secondary battery, but may be a so-called hybrid vehicle as long as the battery power is used for driving the vehicle.
[0002]
[Prior art]
As a battery for an electric vehicle, an assembled battery is used in which a plurality of single cells called cells (for example, 6 to 8) are connected in series to form one block, and a module having a required voltage is connected in series. . In such an assembled battery, when charging and discharging are repeated, a difference occurs in the capacity of each cell (the remaining capacity that can be used at that time) according to the characteristics of each cell. If this is left as it is, the capacity that can be used as the whole assembled battery is reduced, so that the power of the large capacity cell is discharged at an appropriate time (for example, when the vehicle is started, etc.), and the overall balance is controlled. There is a need.
[0003]
In a conventional electric vehicle, the adjustment capacity (adjustment capacity) for each cell in an area where the relationship between the capacity and the open circuit voltage (terminal voltage at zero current) shown in FIG. (Capacity to be discharged) is stored as one table (FIG. 6B) corresponding to the deviation from the average cell open voltage, and the discharge for the adjusted capacity is performed accordingly. For example, when the cell controller is activated, such as when the vehicle is started or when charging is started, the open voltage of each cell is detected, the average cell open voltage is calculated from those values, and the deviation from the average cell open voltage For cells that are larger than the specified value, refer to the adjustment capacity table above, find the adjustment capacity according to the deviation, and control the overall balance by discharging the capacity for that value. ing. According to the above method, since the relationship between the capacity and the open circuit voltage is used only in a linear region, the adjustment capacity table can be easily created and the adjustment capacity can be calculated in a simple manner by referring to the table. Can do.
[0004]
[Problems to be solved by the invention]
However, in the conventional method as described above, the adjustment capacity cannot be calculated in the area where the slope of the linear relationship between the capacity and the open-circuit voltage changes (area where the capacity is small). In the state, variation in capacity of each cell cannot be suppressed. Therefore, there is a problem that not only the capacity of the battery as a whole can not be fully used, but also the variation in the deterioration state of each cell may be promoted by the expansion of the voltage variation.
[0005]
The present invention has been made to solve the problems of the prior art as described above, and it is possible to carry out capacity adjustment suitable for the detected open circuit voltage in any region. An object of the present invention is to provide a method for adjusting the capacity of assembled battery cells.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as described in the claims. That is, in the invention described in claim 1, when no input / output is made to the assembled battery, the open voltage of each cell of the assembled battery is detected, the average open voltage of all the cells is calculated, and then the open voltage of each cell is calculated. The deviation of the average open circuit voltage from the voltage exceeds a predetermined value, and a cell that requires capacity adjustment is identified by discharging, and the slope of the open circuit voltage relative to the cell capacity of the identified cell is approximately each capacity range becomes constant, determine the adjustment space required by the preset approximate adjustment capacity calculation equation fitting the deviation obtained by subtracting the average open circuit voltage from the open voltage consists formula, in the adjustment capacity for each cell specified above By discharging the corresponding electric power, the variation in the capacity of each cell is adjusted.
[0007]
For example, in a lithium ion secondary battery, the capacity-open-circuit voltage characteristic can be approximated by three straight lines in the usage range. Therefore, by setting the adjustment capacity calculation formula corresponding to each linear area, and calculating the adjustment capacity according to the deviation between the open voltage of each cell and the average open voltage using the corresponding adjustment capacity calculation formula Therefore, accurate capacity adjustment can be performed regardless of the region where the open-circuit voltage of the detected cell is. Note that other secondary batteries can be similarly controlled by setting an adjustment capacity table using characteristics corresponding to the secondary batteries.
[0008]
Further, in the invention according to claim 2, in the assembled battery cell capacity adjustment method according to claim 1, from the approximate expression set in advance for each capacity range in which the slope of the open circuit voltage with respect to the cell capacity becomes approximately constant. A deviation obtained by subtracting the average open-circuit voltage from the open-circuit voltage is selected from the above-mentioned open-circuit voltage, and the adjustment capacity calculation formula of the capacity range to which the open-circuit voltage of the specified cell belongs is selected. It is configured to so that determine the necessary adjustments capacity I'm fitting a.
Further, in the invention according to claim 3 , when the calculation is performed using the plurality of adjustment capacity calculation expressions, the open circuit voltage of the cell to be adjusted is in the vicinity of the region where the characteristic changes, and the two regions When it is necessary to discharge by crotch, the adjustment capacity is calculated from each of the adjustment capacity calculation formulas corresponding to the two areas, and the sum of the two calculated values is used as the adjustment capacity. . In other words, when the calculation is simply performed using a plurality of arithmetic expressions having different characteristics, the adjustment capacity is determined by the characteristic with the steeper slope at the boundary where the characteristics change, and the value of the adjustment capacity is more than the actually required value. May also be smaller. Therefore, instead of selecting an arithmetic expression to be referenced only from the average open-circuit voltage, by calculating the adjustment capacity by referring to two arithmetic expressions simultaneously according to the open-circuit voltage of the cell, the calculation accuracy is increased and the frequency of adjustment is increased. It is possible to control in a direction to suppress deterioration without charging and discharging as much as possible.
[0009]
【The invention's effect】
According to the present invention, by setting a plurality of adjustment capacity calculation formulas according to changes in battery characteristics, capacity adjustment suitable for it can be performed even in the end-of-discharge region where operation has been impossible until now. Therefore, the capacity variation is quickly eliminated, and the effect that the battery capacity can always be sufficiently used as the whole assembled battery is obtained.
[0010]
Further, in the invention described in claim 3 , even if the cell open-circuit voltage has to be adjusted over the region where the battery characteristics change, the adjustment capacity is calculated from the adjustment capacity calculation formula. By using the sum as the adjustment capacity, the capacity can be adjusted with high accuracy. For this reason, the adjustment capacity is not estimated to be small by calculating with one characteristic, so the frequency of capacity adjustment is reduced, and the progress of deterioration corresponding to the number of times of charge / discharge of the battery can be delayed. .
In addition, the capacity cannot be adjusted in a state where the battery is repeatedly charged and discharged in the end-of-discharge region as in the conventional case, and the voltage variation of the cell is expanded, and the nonuniform deterioration is promoted by the voltage variation. There is an effect that the situation can be prevented.
[0011]
Further, by using the capacitive discharge circuit that comes with the battery pack normal to perform the discharging of each of the one cell, and the measurement of the numerical using a cell controller and the battery controller are provided as a battery control device Since the present invention can be realized only by changing the software without adding new hardware by performing the calculation, it can be implemented at low cost.
[0012]
The present invention is not limited to the assembled battery, but can be similarly applied to a module-unit battery system, and the same effect can be obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic diagram showing an example of the configuration of a controller used in the capacity adjustment method of the present invention. The configuration of FIG. 1 is a controller that controls charging / discharging of an assembled battery of an electric vehicle. In this embodiment, the capacity of each cell is adjusted using an existing controller for controlling the assembled battery of an electric vehicle. is there.
[0014]
In FIG. 1, 1 is a cell (single cell), 2 is a resistor, 3 is a transistor, 4 is a battery temperature sensor installed for each module, and 5 is a control signal that performs calculations in accordance with various input signals. , A portion 6 surrounded by a broken line is a cell controller for controlling each cell in the module, 7 is a battery controller for controlling the entire assembled battery, and 8 is a voltage measurement line connected to each cell in the module. , 9 is a signal line to each transistor in the module, 10 is a communication line between the battery controller and each cell controller, a portion 11 surrounded by a broken line is a capacity discharge circuit, and 12 is a current flowing through the capacity discharge circuit 11 Signal line. Note that an adjustment capacity table, which will be described later, is stored in the battery controller 7.
[0015]
The arrows A and B at both ends of the cell 1 are connected in series to the front and rear cells (not shown) at this portion, and a plurality of cells form one module, and one cell controller 6 is provided for each module. Is provided. And the cell controller 6 of all the modules is connected with the battery controller 7 via the communication line 10, and charging / discharging of each cell is controlled. The capacitive discharge circuit 11 is configured by a series circuit of a resistor 2 and a transistor 3. Then, based on the terminal voltage of each cell detected via the voltage measurement line 8 of each cell, for example, when the cell is overcharged during battery charging, or when the cell is overvoltage with respect to another cell, etc. When the control unit 5 determines and turns on the transistor 3 of the cell via the signal line 9, a current flows from the cell via the resistor 2 to discharge the charge. In the present embodiment, control is performed so that the capacity of each cell is balanced by discharging the adjustment capacity using the capacity discharge circuit 11. Each value such as the open circuit voltage and the discharge current is measured by the cell controller 6 through the voltage measurement line 8 and the signal line 12, and the adjustment capacity corresponding thereto is calculated by the battery controller 7.
[0016]
In addition, although the battery characteristic shown in this Embodiment uses the thing of a lithium ion secondary battery, in the case of another secondary battery, by setting an adjustment capacity table using the characteristic corresponding to it, Similarly, control is possible.
[0017]
First, calculation of the adjustment capacity in the present embodiment will be described.
FIG. 4 is a characteristic diagram showing characteristics of battery capacity and open-circuit voltage in a lithium ion secondary battery. As shown in FIG. 4, the characteristics of capacity and open circuit voltage are approximated by a line graph composed of three straight lines. The open circuit voltages at which this characteristic changes are V1 and V2.
[0018]
FIG. 5 is a diagram showing regions of the battery characteristics shown in FIG. 4 and respective adjustment capacity calculation formulas corresponding thereto. That is, from the higher cell open circuit voltage, Cc = a1 · ΔV (1) equation Cc = a2 · ΔV (2) equation Cc = a3 · ΔV (3) equation. However, Cc is an adjustment capacity (Ah), and ΔV is a deviation (V) between each cell open voltage and an average open voltage (average value of open voltages of each cell). Further, a1, a2, and a3 are constants, which are values determined from the battery characteristics and represent the slope of the voltage with respect to the capacity.
[0019]
Next, application of each of the adjustment capacity calculation formulas will be described.
When the open voltage Vc (n) (where n is a cell number) of each cell is detected when the cell controller (C / C) is activated (for example, when an ignition switch of an electric vehicle is turned on), Average open circuit voltage Vc ave is calculated. And Vc (n) of each cell and average open circuit voltage Vc Deviation ΔVc (n) from ave is calculated by the following equation.
ΔVc (n) = Vc (n) −Vc ave
When the detected value of Vc (n) is equal to or smaller than a preset deviation allowable value ΔVcmax, that is, ΔVc (n) ≦ ΔVcmax
If it is, the cell variation is determined to be less than the allowable value, and the capacity adjustment is not performed. on the other hand,
ΔVc (n)> ΔVcmax
If there is a cell to be adjusted, the adjustment capacity Cc is further calculated for the cell according to the following conditions, and the capacity adjustment is performed.
[0020]
(1) Vc If ave ≧ V1, this is the average open circuit voltage Vc This is the case where ave is in a range larger than V1 in FIG. 5. In this case, the adjustment capacity calculation formula is the formula (1), and ΔVc (n) is substituted for ΔV to calculate the adjustment capacity. Then, the calculated adjustment capacity Cc is discharged using the capacity discharge circuit 11.
[0021]
(2) V1> Vc If ave ≧ V2 and V1 ≧ Vc (n), this is the average open circuit voltage Vc This is the case where ave is between V1 and V2 in FIG. 5, and the open circuit voltage Vc (n) of the cell is V1 or less. In this case, formula (2) is used as the adjustment capacity calculation formula, ΔVc (n) is substituted for ΔV to calculate the adjustment capacity, and the calculated adjustment capacity Cc is calculated using the capacity discharge circuit 11. Discharge.
[0022]
(3) V2> Vc If ave and V2 ≧ Vc (n), this is the average open circuit voltage Vc This is the case where ave is smaller than V2 in FIG. 5, and the open circuit voltage Vc (n) of the cell is V2 or less. In this case, the adjustment capacity calculation formula is the formula (3), and ΔVc (n) is substituted for ΔV to calculate the adjustment capacity, and the calculated adjustment capacity Cc is calculated using the capacity discharge circuit 11. Discharge.
[0023]
(4) V1> Vc If ave ≧ V2 and Vc (n)> V1, this is the average open circuit voltage Vc The range of ave is the same as (2) above, but the case where the open circuit voltage Vc (n) of the cell is larger than V1, that is, the vicinity of the bending point of V1 is the operating point. In this case, first,
ΔVc (n) 1 = Vc (n) −V1
The adjustment capacity Cc1 according to the above is calculated from the equation (1), and ΔVc (n) 2 = V1−Vc. ave
The adjustment capacity Cc2 corresponding to the above is calculated from the formula (2),
Cc = Cc1 + Cc2
Is the adjusted capacity, and is discharged using the capacity discharge circuit 11.
[0024]
(5) V2> Vc If ave and Vc (n)> V2, this is the average open circuit voltage Vc Although ave is the same as (3) above, the open voltage Vc (n) is larger than V2, that is, the operating point is near the bending point of V2. In this case, first,
ΔVc (n) 3 = Vc (n) −V2
The adjustment capacity Cc3 according to the above is calculated from the equation (2),
ΔVc (n) 4 = V2−Vc ave
The adjustment capacity Cc4 according to the above is calculated from the equation (3),
Cc = Cc3 + Cc4
Is the adjusted capacity, and is discharged using the capacity discharge circuit 11.
[0025]
It should be noted that the absolute value of ΔVc (n) is a predetermined value ΔVc determined in advance. If it is greater than fail, that is, if the deviation between the open circuit voltage and the average open circuit voltage of a certain cell is abnormally large, it is determined that the cell is abnormal and capacity adjustment is prohibited for that cell. At the same time, a warning prompting replacement is output.
[0026]
Further, by previously storing the relationship between each arithmetic expression and the deviation as an adjustment capacity table in the battery controller 7, the adjustment capacity value corresponding to the deviation can be immediately read out.
Moreover, you may comprise so that the value correct | amended according to battery temperature may be used for said open circuit voltage, average open circuit voltage, etc.
FIG. 2 and FIG. 3 are flowcharts showing the above-described calculation process, and both figures are connected at the points (A) and (B).
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a configuration of a controller used in a capacity adjustment method of the present invention.
FIG. 2 is a part of a flowchart showing an adjustment capacity calculation process;
FIG. 3 is another part of the flowchart showing the calculation process of the adjustment capacity.
FIG. 4 is a characteristic diagram showing characteristics of battery capacity and open-circuit voltage in a lithium ion secondary battery.
FIG. 5 is a diagram showing regions of battery characteristics shown in FIG. 4 and respective adjustment capacity calculation formulas corresponding thereto.
6A and 6B are diagrams for explaining a conventional adjustment method, in which FIG. 6A is a characteristic diagram showing a relationship between a capacity and an open circuit voltage, and FIG. 6B is a diagram illustrating an adjustment capacity for each cell from an average cell open circuit voltage; The figure which shows the table matched with the deviation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cell (single cell) 2 ... Resistor 3 ... Transistor 4 ... Battery temperature sensor 5 ... Control part 6 ... Cell controller 7 ... Battery controller 8 ... Voltage measurement line 9 ... Signal line 10 ... Communication line 11 ... Capacity discharge circuit 12 ... Signal lines for detecting current

Claims (4)

複数個のセルからなるモジュールを複数個接続した組電池における上記セルの容量調整方法であって、
組電池に入出力がなされていないときに組電池の各セルの開放電圧を検出し、
次にその検出値から全セルの平均開放電圧を算出し、
次いで各セルの開放電圧から上記平均開放電圧を引いた偏差が予め定めた所定値を越えていて放電させることで容量調整が必要なセルを特定し
その特定したセルのセル容量に対する開放電圧の傾きが近似的に一定となる容量範囲毎に、予め設定した近似式からなり上記開放電圧から平均開放電圧を引いた偏差を当てはめる調整容量演算式によって必要な調整容量を求め
上記特定したセル毎に上記調整容量に相当する電力を放電させることにより、各セルの容量のばらつきを調整することを特徴とする組電池セル容量調整方法。
A method for adjusting the capacity of the cell in an assembled battery in which a plurality of modules each composed of a plurality of cells are connected,
Detects the open circuit voltage of each cell of the assembled battery when no input / output is made to the assembled battery,
Next , calculate the average open circuit voltage of all cells from the detected value ,
Next, the deviation obtained by subtracting the average open circuit voltage from the open circuit voltage of each cell exceeds a predetermined value to specify a cell that needs capacity adjustment ,
Necessary by the adjustment capacity calculation formula that applies a deviation obtained by subtracting the average open-circuit voltage from the open-circuit voltage for each capacity range in which the slope of the open-circuit voltage with respect to the cell capacity of the specified cell is approximately constant. Seeking the correct adjustment capacity ,
An assembled battery cell capacity adjustment method, wherein a variation in capacity of each cell is adjusted by discharging power corresponding to the adjustment capacity for each specified cell.
請求項1に記載の組電池セル容量調整方法において、In the assembled battery cell capacity adjustment method according to claim 1,
セル容量に対する開放電圧の傾きが近似的に一定となる容量範囲毎に予め設定した近似式からなる調整容量演算式のうち、上記平均開放電圧と上記特定したセルの開放電圧が属する容量範囲の調整容量演算式を選択し、その調整容量演算式に上記開放電圧から平均開放電圧を引いた偏差を当てはめるよって必要な調整容量を求め、  Of the adjustment capacity calculation formula consisting of an approximate expression set in advance for each capacity range in which the slope of the open circuit voltage with respect to the cell capacity is approximately constant, the adjustment of the capacity range to which the average open circuit voltage and the open circuit voltage of the specified cell belong Select the capacity calculation formula, and apply the deviation obtained by subtracting the average open-circuit voltage from the open-circuit voltage to the adjustment capacity calculation formula.
上記特定したセル毎に上記調整容量に相当する電力を放電させることにより、各セルの容量のばらつきを調整することを特徴とする組電池セル容量調整方法。  An assembled battery cell capacity adjustment method, wherein a variation in capacity of each cell is adjusted by discharging power corresponding to the adjustment capacity for each of the specified cells.
請求項1または請求項2に記載の組電池セル容量調整方法において、
上記特定したセルの開放電圧が属するセル容量に対する開放電圧の傾きが近似的に一定となる容量範囲と、平均開放電圧をその特定したセルの電圧とみなしたときに属する容量範囲とが異なっていて、その間に近似的に一定な開放電圧の傾きが変化する電圧値があり、かつ特定したセルの電圧が平均開放電圧よりも大きい場合には
特定したセルの電圧から傾きが変化する電圧を引いた偏差を、特定したセルの開放電圧が属する容量範囲の調整容量演算式にあてはめて第1の調整容量を算出し、かつ平均開放電圧を特定したセルの電圧とみなしたときに平均開放電圧の属する容量範囲の調整容量演算式に、傾きが変化する電圧から平均開放電圧を引いた偏差をあてはめて第2の調整容量を算出し、上記第1と第2の調整容量の和を特定したセルにとって必要な調整容量とし
上記特定したセル毎に上記調整容量に相当する電力を放電させることにより、各セルの容量のばらつきを調整することを特徴とする組電池セル容量調整方法。
In the assembled battery cell capacity adjustment method according to claim 1 or 2,
The capacity range in which the slope of the open-circuit voltage with respect to the cell capacity to which the open-circuit voltage of the specified cell belongs is approximately constant is different from the capacity range to which the average open-circuit voltage belongs when considered as the voltage of the specified cell. In the meantime, when there is a voltage value in which the slope of the approximately constant open-circuit voltage changes and the voltage of the specified cell is larger than the average open-circuit voltage ,
Apply the deviation obtained by subtracting the voltage whose slope changes from the voltage of the specified cell to the adjustment capacity calculation formula of the capacity range to which the open voltage of the specified cell belongs to calculate the first adjustment capacity and specify the average open voltage The second adjustment capacity is calculated by applying a deviation obtained by subtracting the average open-circuit voltage from the voltage whose slope changes to the adjustment capacity calculation formula of the capacity range to which the average open-circuit voltage belongs when the voltage is regarded as the cell voltage. The sum of 1 and the second adjustment capacity is the adjustment capacity necessary for the specified cell ,
An assembled battery cell capacity adjustment method, wherein a variation in capacity of each cell is adjusted by discharging power corresponding to the adjustment capacity for each specified cell .
請求項1乃至請求項3の何れかに記載の組電池セル容量調整方法において
各セルの開放電圧から上記平均開放電圧を引いた偏差の絶対値が予め定めた所定値を越えているセルが検出された場合、そのセルの容量調整を禁止し、交換を促す警告を出力することを特徴とする組電池セル容量調整方法。
In the assembled battery cell capacity adjustment method according to any one of claims 1 to 3 ,
When a cell is detected in which the absolute value of the deviation obtained by subtracting the average open circuit voltage from the open circuit voltage of each cell exceeds a predetermined value, the capacity adjustment of that cell is prohibited and a warning prompting replacement is output. battery pack cell capacity adjusting how to characterized in that.
JP20645898A 1998-07-22 1998-07-22 Battery cell capacity adjustment method Expired - Lifetime JP3921826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20645898A JP3921826B2 (en) 1998-07-22 1998-07-22 Battery cell capacity adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20645898A JP3921826B2 (en) 1998-07-22 1998-07-22 Battery cell capacity adjustment method

Publications (2)

Publication Number Publication Date
JP2000040530A JP2000040530A (en) 2000-02-08
JP3921826B2 true JP3921826B2 (en) 2007-05-30

Family

ID=16523721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20645898A Expired - Lifetime JP3921826B2 (en) 1998-07-22 1998-07-22 Battery cell capacity adjustment method

Country Status (1)

Country Link
JP (1) JP3921826B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542675B2 (en) * 2000-06-27 2010-09-15 株式会社デンソー Voltage correction device for battery pack for electric vehicle
JP5463810B2 (en) * 2009-09-09 2014-04-09 日産自動車株式会社 Battery pack capacity adjustment device
JP5532136B2 (en) 2010-07-30 2014-06-25 日産自動車株式会社 Stacked battery
CN103081203B (en) * 2010-09-01 2015-08-26 日产自动车株式会社 Bipolar cell
FR2975501B1 (en) * 2011-05-20 2013-05-31 Renault Sas METHOD FOR ESTIMATING THE CHARGE STATE OF AN ELECTRIC BATTERY
CN102381264B (en) * 2011-09-20 2013-11-20 奇瑞汽车股份有限公司 High-voltage system management module and management method thereof
JP6122594B2 (en) * 2012-09-20 2017-04-26 積水化学工業株式会社 Storage battery management device, storage battery management method and program
CN103326077B (en) * 2013-06-26 2015-05-27 双登集团股份有限公司 Gel battery matching method
CN109747438B (en) * 2019-01-11 2021-07-16 北京汽车股份有限公司 Model selection method and model selection system for storage battery of electric vehicle

Also Published As

Publication number Publication date
JP2000040530A (en) 2000-02-08

Similar Documents

Publication Publication Date Title
EP2418751B1 (en) Battery charger and battery charging method
JP3279071B2 (en) Battery pack charging device
JP3615507B2 (en) Battery charge rate adjustment circuit
JP3870577B2 (en) Variation determination method for battery pack and battery device
US7180267B2 (en) Capacity adjustment apparatus for battery pack and capacity adjustment method for battery pack
US8004249B2 (en) Battery management system and method
EP3822109B1 (en) Ground fault detection device
WO2009113530A1 (en) Charge state equalizing device and assembled battery system provided with same
US20120161709A1 (en) Secondary-battery control apparatus
JP2006166615A (en) Voltage equalization control system of storage device
JP3797254B2 (en) Secondary battery capacity adjustment method
JP7094918B2 (en) Ground fault detector
JP2001157369A (en) Method of controlling charging and discharging of battery
JP3921826B2 (en) Battery cell capacity adjustment method
KR20190105847A (en) Method and battery management sytem for cell balancing
JPH0787673A (en) Charging controlling system
JPH11332116A (en) Charging/discharging control circuit and charging-type power supply device
JP5219653B2 (en) Power supply
JP2001157366A (en) Method of controlling charging and discharging of battery pack
EP3872506A1 (en) Battery control device
JP2000166103A (en) Charging discharging control method
JP2004031123A (en) Capacity calculation method and device for battery pack connected in parallel
JP2002354698A (en) Control circuit
JP2003070178A (en) Charging state adjusting device and charging state detection device
JP3997707B2 (en) Monitoring device, control device and battery module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

EXPY Cancellation because of completion of term