JP3916740B2 - Aqueous dispersion of spherical silicone rubber - Google Patents
Aqueous dispersion of spherical silicone rubber Download PDFInfo
- Publication number
- JP3916740B2 JP3916740B2 JP30566697A JP30566697A JP3916740B2 JP 3916740 B2 JP3916740 B2 JP 3916740B2 JP 30566697 A JP30566697 A JP 30566697A JP 30566697 A JP30566697 A JP 30566697A JP 3916740 B2 JP3916740 B2 JP 3916740B2
- Authority
- JP
- Japan
- Prior art keywords
- dispersion
- weight
- nonionic surfactant
- added
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は広範囲の分野で有用な球状シリコーンゴムの水性分散液に関する。
【0002】
【従来の技術】
従来から球状シリコーンゴム粉末については広範囲の産業分野での用途が提案されている。すなわち、化粧料(特開平8-12546 号公報、特開平8-12545 号公報、特公平4-17162 号公報、特公平4-66446 号公報参照)、合成樹脂材料(特公昭63-12489号公報、特公平6-55805 号公報参照)、合成ゴム材料(特開平2-102263号公報参照)などへの添加配合が示されている。
【0003】
【発明が解決しようとする課題】
しかし水性材料にこれらの球状シリコーンゴム粉末を添加する際には、分散性が低いため均一に混合することが困難であった。
これに対しシリコーンゴム粒状物の水分散液が提案されている。例えば、特開昭63-309565 号公報には、非イオン性界面活性を用いたシリコーンゴム粒状物の水分散液が提案されているが、シリコーンゴム粒状物の濃度が低く不経済なものであり、また安定性も不充分であった。特公平4-55611 にも非イオン性界面活性を用いたシリコーンゴム粒状物の水分散液が提案されているが、経時でシリコーンゴム粒状物が分離するという欠点があった。
【0004】
【課題を解決するための手段】
本発明は前記問題点を解決するもので、下記(A)〜(D)を含有してなり、かつ(B)/(C)の重量比が 100/100〜100/0.1 である球状シリコーンゴムの水性分散液である。
(A)分子中に下記一般式[化2]で表わされる単位を70モル%以上含有する平均粒径 0.1〜 100μmの球状シリコーンゴム硬化物 30〜80重量%、
【化2】
(ここでRは炭素数1〜20の置換または非置換の1価炭化水素基)
(B)非イオン性界面活性剤 0.1 〜30重量%、
(C)イオン性界面活性剤 0.01〜10重量%、
(D)水 10 〜 69.89 重量%。
【0005】
【発明の実施の形態】
(A)の球状シリコーンゴムの分子中に含有される -(R2SiO)-単位のRは置換または非置換の炭素数1〜20の1価の炭化水素基であり、具体的にはメチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基等のアルキル基;フェニル基、トリル基などのアリール基;β−フェニルエチル基、β−フェニルプロピル基のようなアラルキル基;またはこれらの基の炭素原子に結合する水素原子の一部または全部がハロゲン原子、シアノ基で置換された炭化水素基、すなわちクロロメチル基、3,3,3−トリフルオロプロピル基などが示されるが、良好な平滑性、離型性を与えるという点からメチル基が好ましく、分子中に -(R2SiO)-の単位が70モル%以上含有されることが必要である。これが70%未満であると平滑性、離型性に乏しくなる。好ましくは80モル%以上である。
【0006】
本発明の球状シリコーンゴム水性分散液は、硬化性の -(R2SiO)-単位を含むオルガノポリシロキサンを(B)の非イオン性界面活性剤および(C)のイオン性界面活性剤を用いて水中に分散させ、硬化させるか、あるいは硬化性の -(R2SiO)-単位を含むオルガノポリシロキサンを(B)の非イオン性界面活性剤を用いて水中に分散させ、硬化させた後、(C)のイオン性界面活性剤を添加配合することにより得られる。(C)による硬化反応の遅延化のおそれがあるときは、後者の方が好ましい。この硬化は付加反応、縮合反応による硬化、紫外線照射、放射線照射による硬化などいずれの硬化方法でもよいが、特に白金触媒を用いた付加反応による硬化が好ましい。
【0007】
白金触媒を用いた付加反応による例としては硬化性の -(R2SiO)-単位を含むオルガノポリシロキサン30〜80重量%に対し(B)の非イオン性界面活性剤 0.1〜30重量%を用いて、残量%の水(D)中に分散させた後白金触媒を添加配合し、硬化させることにより平均粒径 0.1〜 100μmのシリコーンゴム球状硬化物を得、さらに(C)のイオン性界面活性剤0.01〜10重量%を添加配合し全体として100 重量%とする。
こオルガノポリシロキサンとしては、1分子中にけい素原子に結合しているアルケニル基を少なくとも2個有するアルケニル基含有オルガノポリシロキサンと1分子中にけい素原子に結合している水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサンを用いれば良い。
上記アルケニル基含有オルガノポリシロキサンは、アルケニル基が分子中のどの部分に存在しているものでよいが、特に分子の末端に存在するものが好ましい。また分子構造は直鎖状であっても分枝状であっても、さらにはこれらの混合物であってもよい。
【0008】
本発明におけるアルケニル基含有オルガノポリシロキサンの分子量は特に限定されるものではない。また粘度については25℃における粘度が1cSt 未満では硬化しにくくなるし、 10,000cStを超えると表面平滑性が低下するので、1〜10,000cSt の範囲、好ましくは5〜1,000cStである。このアルケニル基含有オルガノポリシロキサンとして下記式[化3]〜[化5]のものを例示するが、これに限定されない。
【化3】
(ここでa、bは0、1、2または3でa+b=3、cは正数、dは0または正数で2a+d≧2である。)
【化4】
(ここでeは2以上の整数、fは0または正の整数でe+f=4〜8。)
【化5】
(ここでgは1、2または3、hは0、1または2でg+h=3、i、j、kは正数。)
【0009】
上記オルガノハイドロジェンポリシロキサンの分子構造は特に限定されるものではなく、直鎖状、分枝状または環状のいずれでも、これらの混合物であってもよく分子量も限定されないが、上記アルケニル基含有オルガノポリシロキサンとの相溶性が良好である点から、25℃における粘度が1〜10,000cSt のものが好ましい。このオルガノハイドロジェンポリシロキサンの使用量は、上記アルケニル基含有オルガノポリシロキサンのアルケニル基1個に対し、けい素原子に結合した水素原子が 0.5個未満となるような量では、良好な硬化性を得ることが困難であり、同じく水素原子が5個を超えるような量では、硬化後のゴムの物理的物性が低下するので 0.5〜5個となる使用量が好ましい。このオルガノハイドロジェンポリシロキサンとしては下記式[化6]〜[化8]のものが例示されるがこれに限定されない。
【化6】
(ここで L、mは0、1、2または3で L+m=3、nは0または正数、pは正数で2L +p≧2である。)
【化7】
(ここでqは2以上の整数、rは0または正の整数でq+r=4〜8。)
【化8】
(ここでsは1、2または3、tは0、1または2でs+t=3、u、v、wは正数。)
【0010】
前記白金系触媒としては白金担持カーボンまたは白金担持シリカ、塩化白金酸、白金−オレフィン錯体、白金−アルコール錯体、白金−リン錯体、白金配位化合物等が挙げられる。この白金系触媒の使用量は上記オルガノポリシロキサンに対し白金量で1ppm 未満では硬化が遅くなるうえ、触媒毒の影響も受けやすく、100ppmを超えても特に硬化速度の向上等を期待することができず経済性の面で好ましくないので1〜100ppmの範囲が好ましい。
【0011】
本発明における(B)の非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリエチレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル等が挙げられ、特にはポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルが好ましく、これらは単独でまたは2種以上の併用で用いることができる。
【0012】
本発明における(C)のイオン性界面活性剤としては、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、アルケニルコハク酸塩、スルホコハク酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、脂肪酸塩、ポリオキシエチレンアルキルエーテル酢酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、N−アシルタウリン酸塩、N−アシルアミノ酸塩等のアニオン性界面活性剤、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、トリエタノールアミン・ジ脂肪酸エステル四級塩、N−ヒドロキシエチル−N−メチル−プロパンジアミンの脂肪酸モノエステルモノアミドの塩、アルキルベンジルジメチルアンモニウム塩、アルキルアンモニウム塩、アルキルピリジニウム塩などのカチオン性界面活性剤あるいはアルキルジメチルアミンオキシド、アルキルカルボキシベタイン、アルキルスルホベタイン、アミドアミノ酸塩、ホスファチジルコリンなどの両イオン性界面活性が挙げられる。なかでもアニオン性界面活性剤のポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩およびカチオン性界面活性剤のアルキルトリメチルアンモニウム塩が好ましい。なおアニオン性界面活性剤、カチオン性界面活性剤および両イオン性界面活性剤を併用で用いることはできないが、同じイオン性であれば2種以上の併用で用いることができる。
【0013】
本発明における(A)の配合量は、30重量%未満であると、本発明の分散液の添加配合量が増加するために非効率であるし、80重量%を超えると、粘度が高くなり取り扱いが困難となるし、添加時の希釈性が低下する。従って30〜80重量%が必要であり、好ましくは40〜60重量%である。
本発明における(B)の配合量は、 0.1重量%未満であっても、30重量%を超えても安定性に乏しいものとなるため、0.1 〜30重量%であり、より好ましくは、1〜10重量%である。
本発明における(C)の配合量は、0.01重量%未満であっても、10重量%を超えても安定性に乏しいものとなるため、0.01〜10重量%であり、より好ましくは0.02〜1重量%である。
本発明における(B)/(C)の重量比は 100/100より小さくても、100/0.1 より大きくても、得られる水性分散液の安定性が乏しいものとなるため、 100/100〜100/0.1 の範囲が必要であり、好ましくは100/10〜100/0.5 である。
【0014】
本発明における(D)の配合量は、10重量%未満であると、粘度が高くなり取り扱いが困難となるし、 69.89重量%を超えると、本発明の分散液を添加使用する際の添加量が増加するために非効率であることから10〜 69.89重量%であり、好ましくは30〜60重量%である。
【0015】
上記(A)、(B)、(C)、(D)の含有量が上記数値限定内に入るように、本発明における(A)を製造する際これらを配合すればよいが、(B)はその一部を、また(C)はその一部または全量を(A)の製造後に配合してもよい。本発明の球状シリコーンゴムの水性分散液における(A)の球状シリコーンゴムの平均粒径は 0.1μm未満では表面平滑性が十分ではなく、 100μmを超えると、安定性が低下するため、 0.1〜 100μmが必要で好ましくは1〜20μmである。
本発明の水性分散液は前記のように各種水性材料に添加配合あるいは処理対象物に直接塗布されるが、水性材料に配合する場合、配合量はその有効成分(A)基準で1〜10重量%となる量が好ましい。
【0016】
【実施例】
以下に実施例をあげて本発明を詳細に説明するが、本発明はこれらによって限定されるものではない。なお実施例中の粘度は25℃における測定値である。
(実施例1)
下記式[化9]で示され、粘度が 10cStのメチルビニルポリシロキサン380gと下記式[化10]で示され、粘度が130cStのメチルハイドロジェンポリシロキサン100gを容量1リットルのガラスビーカーに仕込み(組成a)、ホモミキサーを用いて2,000rpmで撹拌混合した後、ポリオキシエチレン(付加モル数9)ラウリルエーテル(非イオン性界面活性剤a)3.4g、ポリオキシエチレン(付加モル数23)ラウリルエーテル(非イオン性界面活性剤b)4.6g、水 80gを加え6,000rpmで撹拌を継続したところ転相が起こり増粘が認められた。次いで2,000rpmで撹拌を行いながら水194.6gを加え、更に高圧ホモジナイザーで 300kg/cm2の圧力で処理したところ水中油型エマルジョンが得られた。次いでこのエマルジョンを撹拌装置の付いたガラスフラスコに移し、室温で撹拌下に塩化白金酸−オレフィン錯体のトルエン溶液(塩化白金酸含有量0.5 重量%)1.4g、非イオン性界面活性剤a 14.6gおよび非イオン性界面活性剤b 19.8gから成る混合物を添加し、24時間反応させ、ポリオキシエチレン(付加モル数3)ラウリルエーテル硫酸ナトリウム(イオン性界面活性剤a)の25%水溶液1.6gを添加したところ、均一な白濁分散液が得られた。この分散液を 105℃で3時間乾燥した後の不揮発分は64.9重量%であり、分散液中の粒子の平均粒径をマルチサイザーII(コールター社製)を用いて測定したところ 1.6μmであった。この分散液の数g を室温で乾燥したところ弾性のある白色粉末であり、光学顕微鏡で観察したところ球状であった。この分散液100gを 100mlガラスビンに採取し25℃と40℃で静置保存したときの保存安定性評価結果を表1に示す。
【0017】
【化9】
【化10】
【0018】
(実施例2)
下記式[化11]で示される粘度が600cStのメチルビニルポリシロキサン462gと下記式[化12]で示される粘度が 25cStのメチルハイドロジェンポリシロキサン 18gを容量1リットルのガラスビーカーに仕込み(組成b)、ホモミキサーを用いて2,000rpmで撹拌混合した後、非イオン性界面活性剤a3.4g、非イオン性界面活性剤b4.6g、水 56gを加え6,000rpmで撹拌を継続したところ、転相が起こり増粘が認められた。次いで2,000rpmで撹拌を行いながら水218.6gを加え、更に高圧ホモジナイザーで、 300kg/cm2の圧力で処理したところ水中油型エマルジョンが得られた。次いでこのエマルジョンを撹拌装置の付いたガラスフラスコに移し、室温で撹拌下に、塩化白金酸−オレフィン錯体のトルエン溶液(塩化白金酸含有量0.5 重量%)1.4g、非イオン性界面活性剤a 14.6gおよび非イオン性界面活性剤b 19.8gから成る混合物を添加し、24時間反応させ、イオン性界面活性剤aの25%水溶液1.6gを添加したところ、均一な白濁分散液が得られた。この分散液を 105℃で3時間乾燥した後の不揮発分は65.1重量%であり、分散液中の粒子の平均粒径をマルチサイザーII(コールター社製)を用いて測定したところ 2.5μmであった。この分散液の数g を室温で乾燥したところ弾性のある白色粉末であり、光学顕微鏡で観察したところ球状であった。この分散液100gを 100mlガラスビンに採取し25℃と40℃で静置保存したときの保存安定性評価結果を表1に示す。
【0019】
【化11】
【化12】
【0020】
(実施例3)
前記式[化9]で示される粘度が 10cStのメチルビニルポリシロキサン380gと前記式[化10]で示される粘度が130cStのメチルハイドロジェンポリシロキサン100gを容量1リットルのガラスビーカーに仕込み(組成a)、ホモミキサーを用いて2,000rpmで撹拌混合した後、非イオン性界面活性剤a3.4g、非イオン性界面活性剤b4.6g、水 80gを加え6,000rpmで撹拌を継続したところ、転相が起こり増粘が認められた。次いで2,000rpmで撹拌を行いながら水195.8gを加え、更に高圧ホモジナイザーで、 300kg/cm2の圧力で処理したところ水中油型エマルジョンが得られた。次いでこのエマルジョンを撹拌装置の付いたガラスフラスコに移し、室温で撹拌下に、塩化白金酸−オレフィン錯体のトルエン溶液(塩化白金酸含有量0.5 重量%)1.4g、非イオン性界面活性剤a 14.6gおよび非イオン性界面活性剤b 19.8gから成る混合物を添加し、24時間反応させ、ポリオキシエチレン(付加モル数3)ノニルフェニルエーテル硫酸アンモニウム(イオン性界面活性剤b)0.4gを添加したところ、均一な白濁分散液が得られた。この分散液を 105℃で3時間乾燥した後の不揮発分は64.1重量%であり、分散液中の粒子の平均粒径をマルチサイザーII(コールター社製)を用いて測定したところ 1.5μmであった。この分散液の数g を室温で乾燥したところ弾性のある白色粉末であり、光学顕微鏡で観察したところ球状であった。この分散液100gを 100mlガラスビンに採取し25℃と40℃で静置保存したときの保存安定性評価結果を表1に示す。
【0021】
(実施例4)
前記式[化9]で示される粘度が 10cStのメチルビニルポリシロキサン380gと前記式[化10]で示される粘度が130cStのメチルハイドロジェンポリシロキサン100gを容量1リットルのガラスビーカーに仕込み(組成a)、ホモミキサーを用いて2,000rpmで撹拌混合した後、非イオン性界面活性剤a3.4g、非イオン性界面活性剤b4.6g、水 80gを加え6,000rpmで撹拌を継続したところ、転相が起こり増粘が認められた。次いで2,000rpmで撹拌を行いながら水194.8gを加え、更に高圧ホモジナイザーで、 300kg/cm2の圧力で処理したところ水中油型エマルジョンが得られた。次いでこのエマルジョンを撹拌装置の付いたガラスフラスコに移し、室温で撹拌下に、塩化白金酸−オレフィン錯体のトルエン溶液(塩化白金酸含有量0.5 重量%)1.4g、非イオン性界面活性剤a 14.6gおよび非イオン性界面活性剤b 19.8gから成る混合物を添加し、24時間反応させ、ステアリルトリメチルアンモニウムクロライド(イオン性界面活性剤c)の28%水溶液1.4gを添加したところ、均一な白濁分散液が得られた。この分散液を 105℃で3時間乾燥した後の不揮発分は64.8重量%であり、分散液中の粒子の平均粒径をマルチサイザーII(コールター社製)を用いて測定したところ 1.5μmであった。この分散液の数g を室温で乾燥したところ弾性のある白色粉末であり、光学顕微鏡で観察したところ球状であった。この分散液100gを 100mlガラスビンに採取し25℃と40℃で静置保存したときの保存安定性評価結果を表1に示す。
【0022】
(実施例5)
前記式[化9]で示される粘度が 10cStのメチルビニルポリシロキサン380gと前記式[化10]で示される粘度が130cStのメチルハイドロジェンポリシロキサン100gを容量1リットルのガラスビーカーに仕込み(組成a)、ホモミキサーを用いて2,000rpmで撹拌混合した後、非イオン性界面活性剤a3.4g、非イオン性界面活性剤b4.6g、水 80gを加え6,000rpmで撹拌を継続したところ、転相が起こり増粘が認められた。次いで2,000rpmで撹拌を行いながら水193.4gを加え、更に高圧ホモジナイザーで、 300kg/cm2の圧力で処理したところ水中油型エマルジョンが得られた。次いでこのエマルジョンを撹拌装置の付いたガラスフラスコに移し、室温で撹拌下に、塩化白金酸−オレフィン錯体のトルエン溶液(塩化白金酸含有量0.5 重量%)1.4g、非イオン性界面活性剤a 14.6gおよび非イオン性界面活性剤b 19.8gから成る混合物を添加し24時間反応させ、イオン性界面活性剤cの28%水溶液2.8gを添加したところ、均一な白濁分散液が得られた。この分散液を 105℃で3時間乾燥した後の不揮発分は64.5重量%であり、分散液中の粒子の平均粒径をマルチサイザーII(コールター社製)を用いて測定したところ 1.6μmであった。この分散液の数g を室温で乾燥したところ弾性のある白色粉末であり、光学顕微鏡で観察したところ球状であった。この分散液100gを 100mlガラスビンに採取し25℃と40℃で静置保存したときの保存安定性評価結果を表1に示す。
【0023】
(実施例6)
前記式[化9]で示される粘度が 10cStのメチルビニルポリシロキサン380gと前記式[化10]で示される粘度が130cStのメチルハイドロジェンポリシロキサン100gを容量1リットルのガラスビーカーに仕込み(組成a)、ホモミキサーを用いて2,000rpmで撹拌混合した後、非イオン性界面活性剤a1.7g、非イオン性界面活性剤b2.3g、水 80gを加え6,000rpmで撹拌を継続したところ、転相が起こり増粘が認められた。次いで2,000rpmで撹拌を行いながら水214.7gを加え、更に高圧ホモジナイザーで、 300kg/cm2の圧力で処理したところ水中油型エマルジョンが得られた。次いでこのエマルジョンを撹拌装置の付いたガラスフラスコに移し、室温で撹拌下に、塩化白金酸−オレフィン錯体のトルエン溶液(塩化白金酸含有量0.5 重量%)1.4g、非イオン性界面活性剤a7.3gおよび非イオン性界面活性剤b9.9gから成る混合物を添加し、24時間反応させ、非イオン性界面活性剤cの28%水溶液2.8gを添加したところ、均一な白濁分散液が得られた。この分散液を 105℃で3時間乾燥した後の不揮発分は61.6重量%であり、分散液中の粒子の平均粒径をマルチサイザーII(コールター社製)を用いて測定したところ 2.0μmであった。この分散液の数g を室温で乾燥したところ弾性のある白色粉末であり、光学顕微鏡で観察したところ球状であった。この分散液100gを 100mlガラスビンに採取し25℃と40℃で静置保存したときの保存安定性評価結果を表1に示す。
【0024】
(比較例1)
前記式[化9]で示される粘度が 10cStのメチルビニルポリシロキサン380gと前記式[化10]で示される粘度が130cStのメチルハイドロジェンポリシロキサン100gを容量1リットルのガラスビーカーに仕込み(組成a)、ホモミキサーを用いて2,000rpmで撹拌混合した後、非イオン性界面活性剤a3.4g、非イオン性界面活性剤b4.6g、水 80gを加え6,000rpmで撹拌を継続したところ、転相が起こり増粘が認められた。次いで2,000rpmで撹拌を行いながら水196.2gを加え、更に高圧ホモジナイザーで、 300kg/cm2の圧力で処理したところ水中油型エマルジョンが得られた。次いでこのエマルジョンを撹拌装置の付いたガラスフラスコに移し、室温で撹拌下に、塩化白金酸−オレフィン錯体のトルエン溶液(塩化白金酸含有量0.5 重量%)1.4g、非イオン性界面活性剤a 14.6gおよび非イオン性界面活性剤b 19.8gから成る混合物を添加し、24時間反応させたところ、均一な白濁分散液が得られた。この分散液を 105℃で3時間乾燥した後の不揮発分は61.0重量%であり、分散液中の粒子の平均粒径をマルチサイザーII(コールター社製)を用いて測定したところ 1.5μmであった。この分散液の数g を室温で乾燥したところ弾性のある白色粉末であり、光学顕微鏡で観察したところ球状であった。この分散液100gを 100mlガラスビンに採取し25℃と40℃で静置保存したときの保存安定性評価結果を表1に示す。
【0025】
(比較例2)
前記式[化9]で示される粘度が 10cStのメチルビニルポリシロキサン380gと前記式[化10]で示される粘度が130cStのメチルハイドロジェンポリシロキサン100gを容量1リットルのガラスビーカーに仕込み(組成a)、ホモミキサーを用いて2,000rpmで撹拌混合した後、非イオン性界面活性剤a3.4g、非イオン性界面活性剤b4.6g、水 80gを加え6,000rpmで撹拌を継続したところ、転相が起こり増粘が認められた。次いで2,000rpmで撹拌を行いながら水196.2gを加え、更に高圧ホモジナイザーで、 300kg/cm2の圧力で処理したところ水中油型エマルジョンが得られた。次いでこのエマルジョンを撹拌装置の付いたガラスフラスコに移し、室温で撹拌下に、塩化白金酸−オレフィン錯体のトルエン溶液(塩化白金酸含有量0.5 重量%)1.4g、非イオン性界面活性剤a4.6gおよび非イオン性界面活性剤b6.2gから成る混合物を添加し、24時間反応させ、イオン性界面活性剤b 2.36gを添加したところ、均一な白濁分散液が得られた。この分散液を 105℃で3時間乾燥した後の不揮発分は61.0重量%であり、分散液中の粒子の平均粒径をマルチサイザーII(コールター社製)を用いて測定したところ 1.6μmであった。この分散液の数g を室温で乾燥したところ弾性のある白色粉末であり、光学顕微鏡で観察したところ球状であった。この分散液100gを 100mlガラスビンに採取し25℃と40℃で静置保存したときの保存安定性評価結果を表1に示す。
【0026】
(比較例3)
前記式[化9]で示される粘度が 10cStのメチルビニルポリシロキサン380gと前記式[化10]で示される粘度が130cStのメチルハイドロジェンポリシロキサン100gを容量1リットルのガラスビーカーに仕込み(組成a)、ホモミキサーを用いて2,000rpmで撹拌混合した後、非イオン性界面活性剤a3.4g、非イオン性界面活性剤b4.6g、水 80gを加え6,000rpmで撹拌を継続したところ、転相が起こり増粘が認められた。次いで2,000rpmで撹拌を行いながら水135.5gを加え、更に高圧ホモジナイザーで、 300kg/cm2の圧力で処理したところ水中油型エマルジョンが得られた。次いでこのエマルジョンを撹拌装置の付いたガラスフラスコに移し、室温で撹拌下に、塩化白金酸−オレフィン錯体のトルエン溶液(塩化白金酸含有量0.5 重量%)1.4g、非イオン性界面活性剤a4.6gおよび非イオン性界面活性剤b6.2gから成る混合物を添加し、24時間反応させ、イオン性界面活性剤cの28%水溶液 84.3gを添加したところ、均一な白濁分散液が得られた。この分散液を 105℃で3時間乾燥した後の不揮発分は61.0重量%であり、分散液中の粒子の平均粒径をマルチサイザーII(コールター社製)を用いて測定したところ 1.4μmであった。この分散液の数g を室温で乾燥したところ弾性のある白色粉末であり、光学顕微鏡で観察したところ球状であった。この分散液100gを 100mlガラスビンに採取し25℃と40℃で静置保存したときの保存安定性評価結果を表1に示す。
【0027】
【表1】
【0028】
【発明の効果】
本発明の球状シリコーンゴム水性分散液は、従来のそれに比較して保存安定性が良好である。また潤滑剤、離型剤、化粧品添加剤、塗料添加剤、合成樹脂添加剤として水性材料に添加配合するかあるいは直接塗布して離型性やブロッキング防止性を付与できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aqueous dispersion of spherical silicone rubber useful in a wide range of fields.
[0002]
[Prior art]
Conventionally, spherical silicone rubber powders have been proposed for use in a wide range of industrial fields. That is, cosmetics (see JP-A-8-12546, JP-A-8-12545, JP4-17162 and JP4-66446), synthetic resin material (JP-63-12489) JP-B-6-55805), synthetic rubber materials (see JP-A-2-102263) and the like.
[0003]
[Problems to be solved by the invention]
However, when these spherical silicone rubber powders are added to the aqueous material, it is difficult to mix them uniformly because of low dispersibility.
On the other hand, aqueous dispersions of silicone rubber particulates have been proposed. For example, Japanese Patent Laid-Open No. 63-309565 proposes an aqueous dispersion of silicone rubber granules using nonionic surface activity, but the concentration of the silicone rubber granules is low and uneconomical. Also, the stability was insufficient. Japanese Examined Patent Publication No. 4-55611 proposes an aqueous dispersion of a silicone rubber granule using nonionic surface activity, but has a drawback that the silicone rubber granule is separated over time.
[0004]
[Means for Solving the Problems]
The present invention is intended to solve the above problems, the following (A) and also contains ~ a (D), and (B) / spherical silicone rubber weight ratio of (C) is 100 / 100-100 / 0.1 An aqueous dispersion of
(A) 30-80% by weight of a cured spherical silicone rubber having an average particle size of 0.1-100 μm, containing 70 mol% or more of a unit represented by the following general formula [Chemical Formula 2] in the molecule;
[Chemical 2]
(Where R is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms)
(B) nonionic surfactant 0.1-30% by weight,
(C) 0.01-10% by weight of an ionic surfactant,
(D) 10 ~ 69.89 weight percent water.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the molecule of the spherical silicone rubber (A), R in the — (R 2 SiO) — unit is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, specifically methyl. Group, ethyl group, propyl group, butyl group, hexyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, eicosyl group and other alkyl groups; phenyl group, tolyl group and other aryl groups; β-phenylethyl group, β An aralkyl group such as a phenylpropyl group; or a hydrocarbon group in which some or all of the hydrogen atoms bonded to the carbon atoms of these groups are substituted with a halogen atom or a cyano group, that is, a chloromethyl group, 3, 3, A 3-trifluoropropyl group or the like is shown, but a methyl group is preferable from the viewpoint of providing good smoothness and releasability, and a molecule of-(R 2 SiO)-is contained in an amount of 70 mol% or more in the molecule. This Is required. If this is less than 70%, smoothness and releasability will be poor. Preferably it is 80 mol% or more.
[0006]
The spherical silicone rubber aqueous dispersion of the present invention uses (B) a nonionic surfactant and (C) an ionic surfactant as an organopolysiloxane containing a curable-(R 2 SiO)-unit. After dispersing in water and curing, or after dispersing and curing organopolysiloxane containing curable-(R 2 SiO)-units in water using the nonionic surfactant of (B) , (C) ionic surfactant is added and blended. When there is a possibility of delaying the curing reaction due to (C), the latter is preferred. This curing may be any curing method such as curing by addition reaction, condensation reaction, ultraviolet irradiation, or radiation irradiation, but curing by addition reaction using a platinum catalyst is particularly preferable.
[0007]
As an example of an addition reaction using a platinum catalyst, 0.1 to 30% by weight of the nonionic surfactant (B) is added to 30 to 80% by weight of the organopolysiloxane containing a curable-(R 2 SiO) -unit. Using, after being dispersed in water (D) of the remaining amount%, a platinum catalyst is added and blended, and cured to obtain a silicone rubber spherical cured product having an average particle size of 0.1 to 100 μm. overall added blended surfactant 0.01-10 by weight% to 100 weight%.
The organopolysiloxane includes an alkenyl group-containing organopolysiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule and at least 2 hydrogen atoms bonded to silicon atoms in one molecule. A single organohydrogenpolysiloxane may be used.
The alkenyl group-containing organopolysiloxane may be any alkenyl group present in any part of the molecule, but is preferably present at the end of the molecule. The molecular structure may be linear, branched, or a mixture thereof.
[0008]
The molecular weight of the alkenyl group-containing organopolysiloxane in the present invention is not particularly limited. The viscosity at 25 ° C. is less likely to be cured when the viscosity is less than 1 cSt, and the surface smoothness is lowered when the viscosity exceeds 10,000 cSt, so the range is from 1 to 10,000 cSt, preferably from 5 to 1,000 cSt. Examples of the alkenyl group-containing organopolysiloxane include those represented by the following formulas [Chemical Formula 3] to [Chemical Formula 5], but are not limited thereto.
[Chemical 3]
(Where a and b are 0, 1, 2 or 3 and a + b = 3, c is a positive number, d is 0 or a positive number and 2a + d ≧ 2.)
[Formula 4]
(Here, e is an integer of 2 or more, f is 0 or a positive integer, and e + f = 4 to 8.)
[Chemical formula 5]
(Where g is 1, 2 or 3, h is 0, 1 or 2, g + h = 3, i, j, k are positive numbers.)
[0009]
The molecular structure of the organohydrogenpolysiloxane is not particularly limited, and may be linear, branched or cyclic, or a mixture thereof, and the molecular weight is not limited. In view of good compatibility with polysiloxane, those having a viscosity at 25 ° C. of 1 to 10,000 cSt are preferred. The organohydrogenpolysiloxane is used in such an amount that the number of hydrogen atoms bonded to silicon atoms is less than 0.5 per alkenyl group of the alkenyl group-containing organopolysiloxane. It is difficult to obtain, and if the amount exceeds 5 hydrogen atoms, the physical properties of the rubber after curing will decrease, so the amount used is preferably 0.5-5. Examples of the organohydrogenpolysiloxane include those represented by the following formulas [Chemical Formula 6] to [Chemical Formula 8], but are not limited thereto.
[Chemical 6]
(Where L and m are 0, 1, 2 or 3 and L + m = 3, n is 0 or a positive number, p is a positive number and 2L + p ≧ 2.)
[Chemical 7]
(Where q is an integer of 2 or more, r is 0 or a positive integer, and q + r = 4 to 8)
[Chemical 8]
(Where s is 1, 2 or 3, t is 0, 1 or 2 and s + t = 3, u, v, w are positive numbers.)
[0010]
Examples of the platinum-based catalyst include platinum-supported carbon or platinum-supported silica, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, platinum-phosphorus complexes, and platinum coordination compounds. The amount of platinum-based catalyst used is less than 1 ppm of platinum relative to the organopolysiloxane. Curing is slow, and it is easily affected by catalyst poisons. Since it is not possible in view of economic efficiency, it is preferably in the range of 1 to 100 ppm.
[0011]
As the nonionic surfactant (B) in the present invention, polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene alkylphenyl ether, polyethylene glycol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene Sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester, glycerin fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyglycerin fatty acid ester, propylene glycol fatty acid ester, etc., especially polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether These may be used alone or in combination of two or more.
[0012]
Examples of the ionic surfactant (C) in the present invention include alkyl sulfates, alkylbenzene sulfonates, alkenyl succinates, sulfosuccinates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, Anionic surfactants such as fatty acid salts, polyoxyethylene alkyl ether acetates, alkyl phosphates, polyoxyethylene alkyl ether phosphates, N-acyl taurates, N-acyl amino acid salts, alkyl trimethyl ammonium salts, Dialkyldimethylammonium salt, triethanolamine difatty acid ester quaternary salt, N-hydroxyethyl-N-methyl-propanediamine fatty acid monoester monoamide salt, alkylbenzyldimethylammonium salt, alkylammo Umushio, cationic surfactant or alkyl dimethyl amine oxides such as alkyl pyridinium salts, alkyl carboxy betaine, alkyl sulfobetaine, amide amino acid salts, amphoteric, such as phosphatidylcholine. Among these, anionic surfactant polyoxyethylene alkyl ether sulfate, polyoxyethylene alkylphenyl ether sulfate and cationic surfactant alkyltrimethylammonium salt are preferred. In addition, although an anionic surfactant, a cationic surfactant, and an amphoteric surfactant cannot be used together, if it is the same ionicity, it can be used by 2 or more types of combined use.
[0013]
If the blending amount of (A) in the present invention is less than 30% by weight, it is inefficient because the blending amount of the dispersion of the present invention increases, and if it exceeds 80% by weight, the viscosity increases. Handling becomes difficult, and dilutability at the time of addition decreases. Therefore, 30 to 80% by weight is necessary, and preferably 40 to 60% by weight.
The blending amount of (B) in the present invention is from 0.1 to 30% by weight, even if it is less than 0.1% by weight or more than 30% by weight, so that it is from 0.1 to 30% by weight. 10% by weight.
The blending amount of (C) in the present invention is 0.01 to 10% by weight, more preferably 0.02 to 1 because the stability is poor even if it is less than 0.01% by weight or more than 10% by weight. % By weight.
Even if the weight ratio of (B) / (C) in the present invention is less than 100/100 or greater than 100 / 0.1, the resulting aqueous dispersion has poor stability. A range of /0.1 is required, preferably 100/10 to 100 / 0.5.
[0014]
If the blending amount of (D) in the present invention is less than 10% by weight, the viscosity becomes high and handling becomes difficult. If it exceeds 69.89% by weight, the amount added when the dispersion of the present invention is added is used. Is inefficient because it increases, it is 10 to 69.89% by weight, preferably 30 to 60% by weight.
[0015]
These may be blended when producing (A) in the present invention so that the contents of (A), (B), (C), and (D) fall within the above numerical limits. May be blended in part, and (C) may be blended in part or in whole after the production of (A). If the average particle size of the spherical silicone rubber (A) in the aqueous dispersion of the spherical silicone rubber of the present invention is less than 0.1 μm, the surface smoothness is not sufficient, and if it exceeds 100 μm, the stability decreases. Is necessary, and preferably 1 to 20 μm.
As described above, the aqueous dispersion of the present invention is added to various aqueous materials or directly applied to an object to be treated. When blended in an aqueous material, the amount is 1 to 10 weights based on the active ingredient (A). % Is preferred.
[0016]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto. In addition, the viscosity in an Example is a measured value in 25 degreeC.
Example 1
A glass beaker having a capacity of 1 liter is charged with 380 g of methyl vinyl polysiloxane having the following formula [Chemical 9] and having a viscosity of 10 cSt and 100 g of methyl hydrogen polysiloxane having the viscosity of 130 cSt and having the following formula [Chemical 10] ( Composition a), after stirring and mixing at 2,000 rpm using a homomixer, 3.4 g of polyoxyethylene (addition mole number 9) lauryl ether (nonionic surfactant a), polyoxyethylene (addition mole number 23) lauryl When 4.6 g of ether (nonionic surfactant b) and 80 g of water were added and stirring was continued at 6,000 rpm, phase inversion occurred and thickening was observed. Subsequently, 194.6 g of water was added while stirring at 2,000 rpm, and further treated with a high-pressure homogenizer at a pressure of 300 kg / cm 2, an oil-in-water emulsion was obtained. The emulsion was then transferred to a glass flask equipped with a stirrer, and 1.4 g of toluene solution of chloroplatinic acid-olefin complex (chloroplatinic acid content 0.5 wt%) and 14.6 g of nonionic surfactant a were stirred at room temperature. And a mixture consisting of 19.8 g of nonionic surfactant b and reacted for 24 hours, 1.6 g of 25% aqueous solution of polyoxyethylene (addition mole number 3) sodium lauryl ether sulfate (ionic surfactant a) is added. When added, a uniform cloudy dispersion was obtained. The non-volatile content after drying this dispersion at 105 ° C. for 3 hours was 64.9% by weight. The average particle size of the particles in the dispersion was measured using Multisizer II (manufactured by Coulter Inc.) and found to be 1.6 μm. It was. When several g of this dispersion was dried at room temperature, it was an elastic white powder, which was spherical when observed with an optical microscope. Table 1 shows the storage stability evaluation results when 100 g of this dispersion was collected in a 100 ml glass bottle and stored at 25 ° C. and 40 ° C.
[0017]
[Chemical 9]
[Chemical Formula 10]
[0018]
(Example 2)
A glass beaker having a capacity of 1 liter is charged with 462 g of methyl vinyl polysiloxane having a viscosity of 600 cSt represented by the following formula [Chem. 11] and 18 g of methyl hydrogen polysiloxane having a viscosity of 25 cSt represented by the following formula [Chem. ), After stirring and mixing at 2,000 rpm using a homomixer, after adding 3.4 g of nonionic surfactant b, 4.6 g of nonionic surfactant b and 56 g of water, stirring was continued at 6,000 rpm. And thickening was observed. Next, 218.6 g of water was added while stirring at 2,000 rpm, and further treated with a high-pressure homogenizer at a pressure of 300 kg / cm 2, an oil-in-water emulsion was obtained. The emulsion was then transferred to a glass flask equipped with a stirrer, and with stirring at room temperature, 1.4 g of a toluene solution of a chloroplatinic acid-olefin complex (chloroplatinic acid content 0.5 wt%), nonionic surfactant a 14.6 When a mixture consisting of 19.8 g of nonionic surfactant b and 19.8 g of nonionic surfactant b was added and reacted for 24 hours, and 1.6 g of a 25% aqueous solution of ionic surfactant a was added, a uniform white turbid dispersion was obtained. After the dispersion was dried at 105 ° C. for 3 hours, the non-volatile content was 65.1% by weight. The average particle size of the particles in the dispersion was measured using Multisizer II (manufactured by Coulter Inc.) and found to be 2.5 μm. It was. When several g of this dispersion was dried at room temperature, it was an elastic white powder, which was spherical when observed with an optical microscope. Table 1 shows the storage stability evaluation results when 100 g of this dispersion was collected in a 100 ml glass bottle and stored at 25 ° C. and 40 ° C.
[0019]
Embedded image
Embedded image
[0020]
(Example 3)
A glass beaker having a capacity of 1 liter is charged with 380 g of methyl vinyl polysiloxane having a viscosity of 10 cSt represented by the above formula [Chemical 9] and 100 g of methyl hydrogen polysiloxane having a viscosity of 130 cSt represented by the above [Chemical 10] (composition a) ), After stirring and mixing at 2,000 rpm using a homomixer, after adding 3.4 g of nonionic surfactant b, 4.6 g of nonionic surfactant b and 80 g of water, stirring was continued at 6,000 rpm. And thickening was observed. Next, 195.8 g of water was added while stirring at 2,000 rpm, and further treated with a high-pressure homogenizer at a pressure of 300 kg / cm 2, an oil-in-water emulsion was obtained. The emulsion was then transferred to a glass flask equipped with a stirrer, and with stirring at room temperature, 1.4 g of a toluene solution of a chloroplatinic acid-olefin complex (chloroplatinic acid content 0.5 wt%), nonionic surfactant a 14.6 The mixture consisting of 19.8 g of g and nonionic surfactant b was added, reacted for 24 hours, and 0.4 g of polyoxyethylene (addition mole number 3) nonylphenyl ether ammonium sulfate (ionic surfactant b) was added. A uniform white turbid dispersion was obtained. After the dispersion was dried at 105 ° C. for 3 hours, the non-volatile content was 64.1% by weight. The average particle size of the particles in the dispersion was measured using Multisizer II (manufactured by Coulter Inc.) and found to be 1.5 μm. It was. When several g of this dispersion was dried at room temperature, it was an elastic white powder, which was spherical when observed with an optical microscope. Table 1 shows the storage stability evaluation results when 100 g of this dispersion was collected in a 100 ml glass bottle and stored at 25 ° C. and 40 ° C.
[0021]
Example 4
A glass beaker having a capacity of 1 liter is charged with 380 g of methyl vinyl polysiloxane having a viscosity of 10 cSt represented by the above formula [Chemical 9] and 100 g of methyl hydrogen polysiloxane having a viscosity of 130 cSt represented by the above [Chemical 10] (composition a) ), After stirring and mixing at 2,000 rpm using a homomixer, after adding 3.4 g of nonionic surfactant b, 4.6 g of nonionic surfactant b and 80 g of water, stirring was continued at 6,000 rpm. And thickening was observed. Next, 194.8 g of water was added while stirring at 2,000 rpm, and further treated with a high-pressure homogenizer at a pressure of 300 kg / cm 2, an oil-in-water emulsion was obtained. The emulsion was then transferred to a glass flask equipped with a stirrer, and with stirring at room temperature, 1.4 g of a toluene solution of a chloroplatinic acid-olefin complex (chloroplatinic acid content 0.5 wt%), nonionic surfactant a 14.6 A mixture of 19.8 g of g and nonionic surfactant b was added, reacted for 24 hours, and 1.4 g of 28% aqueous solution of stearyltrimethylammonium chloride (ionic surfactant c) was added. A liquid was obtained. After the dispersion was dried at 105 ° C. for 3 hours, the non-volatile content was 64.8% by weight. The average particle size of the particles in the dispersion was measured using Multisizer II (manufactured by Coulter Inc.) and found to be 1.5 μm. It was. When several g of this dispersion was dried at room temperature, it was an elastic white powder, which was spherical when observed with an optical microscope. Table 1 shows the storage stability evaluation results when 100 g of this dispersion was collected in a 100 ml glass bottle and stored at 25 ° C. and 40 ° C.
[0022]
(Example 5)
A glass beaker having a capacity of 1 liter is charged with 380 g of methyl vinyl polysiloxane having a viscosity of 10 cSt represented by the above formula [Chemical 9] and 100 g of methyl hydrogen polysiloxane having a viscosity of 130 cSt represented by the above [Chemical 10] (composition a) ), After stirring and mixing at 2,000 rpm using a homomixer, after adding 3.4 g of nonionic surfactant b, 4.6 g of nonionic surfactant b and 80 g of water, stirring was continued at 6,000 rpm. And thickening was observed. Next, 193.4 g of water was added while stirring at 2,000 rpm, and further treated with a high-pressure homogenizer at a pressure of 300 kg / cm 2, an oil-in-water emulsion was obtained. The emulsion was then transferred to a glass flask equipped with a stirrer, and with stirring at room temperature, 1.4 g of a toluene solution of a chloroplatinic acid-olefin complex (chloroplatinic acid content 0.5 wt%), nonionic surfactant a 14.6 When a mixture consisting of 19.8 g of nonionic surfactant b and 19.8 g of nonionic surfactant b was added and reacted for 24 hours, and 2.8 g of 28% aqueous solution of ionic surfactant c was added, a uniform white turbid dispersion was obtained. After the dispersion was dried at 105 ° C. for 3 hours, the non-volatile content was 64.5% by weight. The average particle size of the particles in the dispersion was measured using Multisizer II (manufactured by Coulter Inc.) and found to be 1.6 μm. It was. When several g of this dispersion was dried at room temperature, it was an elastic white powder, which was spherical when observed with an optical microscope. Table 1 shows the storage stability evaluation results when 100 g of this dispersion was collected in a 100 ml glass bottle and stored at 25 ° C. and 40 ° C.
[0023]
(Example 6)
A glass beaker having a capacity of 1 liter is charged with 380 g of methyl vinyl polysiloxane having a viscosity of 10 cSt represented by the above formula [Chemical 9] and 100 g of methyl hydrogen polysiloxane having a viscosity of 130 cSt represented by the above [Chemical 10] (composition a) ) After stirring and mixing at 2,000 rpm using a homomixer, 1.7 g of nonionic surfactant a, 2.3 g of nonionic surfactant b and 80 g of water were added and stirring was continued at 6,000 rpm. And thickening was observed. Next, 214.7 g of water was added while stirring at 2,000 rpm, and further treated with a high-pressure homogenizer at a pressure of 300 kg / cm 2, an oil-in-water emulsion was obtained. The emulsion was then transferred to a glass flask equipped with a stirrer. Under stirring at room temperature, 1.4 g of a toluene solution of a chloroplatinic acid-olefin complex (chloroplatinic acid content 0.5 wt%), a nonionic surfactant a7. When a mixture of 3 g and 9.9 g of nonionic surfactant b was added and reacted for 24 hours, and 2.8 g of a 28% aqueous solution of nonionic surfactant c was added, a uniform white turbid dispersion was obtained. . After the dispersion was dried at 105 ° C. for 3 hours, the non-volatile content was 61.6% by weight. The average particle size of the particles in the dispersion was measured using Multisizer II (manufactured by Coulter Inc.) and found to be 2.0 μm. It was. When several g of this dispersion was dried at room temperature, it was an elastic white powder, which was spherical when observed with an optical microscope. Table 1 shows the storage stability evaluation results when 100 g of this dispersion was collected in a 100 ml glass bottle and stored at 25 ° C. and 40 ° C.
[0024]
(Comparative Example 1)
A glass beaker having a capacity of 1 liter is charged with 380 g of methyl vinyl polysiloxane having a viscosity of 10 cSt represented by the above formula [Chemical 9] and 100 g of methyl hydrogen polysiloxane having a viscosity of 130 cSt represented by the above [Chemical 10] (composition a) ), After stirring and mixing at 2,000 rpm using a homomixer, after adding 3.4 g of nonionic surfactant b, 4.6 g of nonionic surfactant b and 80 g of water, stirring was continued at 6,000 rpm. And thickening was observed. Next, 196.2 g of water was added while stirring at 2,000 rpm, and further treated with a high-pressure homogenizer at a pressure of 300 kg / cm 2, an oil-in-water emulsion was obtained. The emulsion was then transferred to a glass flask equipped with a stirrer, and with stirring at room temperature, 1.4 g of a toluene solution of a chloroplatinic acid-olefin complex (chloroplatinic acid content 0.5 wt%), nonionic surfactant a 14.6 When a mixture consisting of 19.8 g of g and nonionic surfactant b was added and reacted for 24 hours, a uniform cloudy dispersion was obtained. After the dispersion was dried at 105 ° C. for 3 hours, the non-volatile content was 61.0% by weight. The average particle size of the particles in the dispersion was measured using Multisizer II (manufactured by Coulter Inc.) and found to be 1.5 μm. It was. When several g of this dispersion was dried at room temperature, it was an elastic white powder, which was spherical when observed with an optical microscope. Table 1 shows the storage stability evaluation results when 100 g of this dispersion was collected in a 100 ml glass bottle and stored at 25 ° C. and 40 ° C.
[0025]
(Comparative Example 2)
A glass beaker having a capacity of 1 liter is charged with 380 g of methyl vinyl polysiloxane having a viscosity of 10 cSt represented by the above formula [Chemical 9] and 100 g of methyl hydrogen polysiloxane having a viscosity of 130 cSt represented by the above [Chemical 10] (composition a) ) After stirring and mixing at 2,000 rpm using a homomixer, non-ionic surfactant a3.4 g, non-ionic surfactant b 4.6 g and water 80 g were added and stirring was continued at 6,000 rpm. And thickening was observed. Next, 196.2 g of water was added while stirring at 2,000 rpm, and further treated with a high-pressure homogenizer at a pressure of 300 kg / cm 2, an oil-in-water emulsion was obtained. The emulsion was then transferred to a glass flask equipped with a stirrer. Under stirring at room temperature, 1.4 g of a toluene solution of a chloroplatinic acid-olefin complex (chloroplatinic acid content 0.5% by weight), a nonionic surfactant a4. When a mixture consisting of 6 g and 6.2 g of nonionic surfactant b was added and reacted for 24 hours, and 2.36 g of ionic surfactant b was added, a uniform cloudy dispersion was obtained. After the dispersion was dried at 105 ° C. for 3 hours, the non-volatile content was 61.0% by weight. The average particle size of the particles in the dispersion was measured using Multisizer II (manufactured by Coulter Inc.), and was 1.6 μm. It was. When several g of this dispersion was dried at room temperature, it was an elastic white powder, which was spherical when observed with an optical microscope. Table 1 shows the storage stability evaluation results when 100 g of this dispersion was collected in a 100 ml glass bottle and stored at 25 ° C. and 40 ° C. by standing.
[0026]
(Comparative Example 3)
A glass beaker having a capacity of 1 liter is charged with 380 g of methyl vinyl polysiloxane having a viscosity of 10 cSt represented by the above formula [Chemical 9] and 100 g of methyl hydrogen polysiloxane having a viscosity of 130 cSt represented by the above [Chemical 10] (composition a ) After stirring and mixing at 2,000 rpm using a homomixer, non-ionic surfactant a3.4 g, non-ionic surfactant b 4.6 g and water 80 g were added and stirring was continued at 6,000 rpm. And thickening was observed. Next, 135.5 g of water was added while stirring at 2,000 rpm, and further treated with a high-pressure homogenizer at a pressure of 300 kg / cm 2, an oil-in-water emulsion was obtained. The emulsion was then transferred to a glass flask equipped with a stirrer. Under stirring at room temperature, 1.4 g of a toluene solution of a chloroplatinic acid-olefin complex (chloroplatinic acid content 0.5 wt%), a nonionic surfactant a4. When a mixture of 6 g and nonionic surfactant b 6.2 g was added and reacted for 24 hours, and 84.3 g of 28% aqueous solution of ionic surfactant c was added, a uniform cloudy dispersion was obtained. After the dispersion was dried at 105 ° C. for 3 hours, the non-volatile content was 61.0% by weight. The average particle size of the particles in the dispersion was measured using Multisizer II (manufactured by Coulter Inc.) and found to be 1.4 μm. It was. When several g of this dispersion was dried at room temperature, it was an elastic white powder, which was spherical when observed with an optical microscope. Table 1 shows the storage stability evaluation results when 100 g of this dispersion was collected in a 100 ml glass bottle and stored at 25 ° C. and 40 ° C. by standing.
[0027]
[Table 1]
[0028]
【The invention's effect】
The aqueous spherical silicone rubber dispersion of the present invention has better storage stability than that of the conventional one. Further, as a lubricant, a release agent, a cosmetic additive, a paint additive, and a synthetic resin additive, they can be added to and mixed with an aqueous material or directly applied to impart release properties and antiblocking properties.
Claims (1)
(A)分子中に下記一般式[化1]で表わされる単位を70モル%以上含有する平均粒径 0.1〜 100μmの球状シリコーンゴム硬化物 30〜80重量%、
(B)非イオン性界面活性剤 0.1 〜30重量%、
(C)イオン性界面活性剤 0.01〜10重量%、
(D)水 10 〜 69.89 重量%。Following (A) ~ and also contains the (D), and (B) / (C) an aqueous dispersion of spherical silicone rubber weight ratio is 100 / 100-100 / 0.1.
(A) 30 to 80% by weight of a cured spherical silicone rubber having an average particle size of 0.1 to 100 μm and containing 70 mol% or more of a unit represented by the following general formula [Chemical Formula 1] in the molecule;
(B) nonionic surfactant 0.1-30% by weight,
(C) 0.01-10% by weight of an ionic surfactant,
(D) 10 ~ 69.89 weight percent water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30566697A JP3916740B2 (en) | 1997-11-07 | 1997-11-07 | Aqueous dispersion of spherical silicone rubber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30566697A JP3916740B2 (en) | 1997-11-07 | 1997-11-07 | Aqueous dispersion of spherical silicone rubber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11140191A JPH11140191A (en) | 1999-05-25 |
JP3916740B2 true JP3916740B2 (en) | 2007-05-23 |
Family
ID=17947896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30566697A Expired - Lifetime JP3916740B2 (en) | 1997-11-07 | 1997-11-07 | Aqueous dispersion of spherical silicone rubber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3916740B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6087317A (en) * | 1998-12-10 | 2000-07-11 | Dow Corning Corporation | Particle size stable silicone emulsions |
JP2000178448A (en) * | 1998-12-15 | 2000-06-27 | Dow Corning Toray Silicone Co Ltd | Water dispersion of particles of cured silicone |
JP4772953B2 (en) | 2000-09-08 | 2011-09-14 | 東レ・ダウコーニング株式会社 | Water-based coating composition and method for producing the same |
JP4694005B2 (en) * | 2001-02-08 | 2011-06-01 | 東レ・ダウコーニング株式会社 | Aqueous dispersion of crosslinked silicone particles |
JP5337333B2 (en) | 2001-06-29 | 2013-11-06 | 東レ・ダウコーニング株式会社 | Aqueous suspension of crosslinked silicone particles and an aqueous emulsion of oil containing crosslinked silicone particles |
AU2003261777A1 (en) * | 2002-08-30 | 2004-03-19 | Dow Corning Toray Silicone Co., Ltd. | Aqueous suspension of crosslinked silicone particles, aqueous emulsion of oil containing crosslinked silicone particles, and cosmetic ingredients |
JP5415154B2 (en) * | 2009-06-03 | 2014-02-12 | アイカ工業株式会社 | Production method of silicone rubber fine particles without interparticle fusion |
JP5931832B2 (en) | 2013-10-29 | 2016-06-08 | 信越化学工業株式会社 | Aqueous dispersion of silicone rubber particles, silicone rubber particles, and cosmetics |
JP6754193B2 (en) | 2016-02-19 | 2020-09-09 | 旭化成ワッカーシリコーン株式会社 | Method for manufacturing silicone rubber particle dispersion emulsion |
US20220234257A1 (en) * | 2019-05-24 | 2022-07-28 | Shin-Etsu Chemical Co., Ltd. | Release agent for plastic |
KR102256439B1 (en) * | 2019-06-24 | 2021-05-26 | 휴먼켐 주식회사 | a silicone rubber particle production method using ionic surfactants and the silicone rubber particle |
JP7273702B2 (en) | 2019-12-05 | 2023-05-15 | 信越化学工業株式会社 | Method for producing silicone particles |
JP7219698B2 (en) | 2019-12-05 | 2023-02-08 | 信越化学工業株式会社 | Method for producing hydrophilic silicone particles |
JP7181915B2 (en) * | 2020-10-27 | 2022-12-01 | 信越化学工業株式会社 | Release agent for plastic |
JP7492485B2 (en) | 2021-04-13 | 2024-05-29 | 信越化学工業株式会社 | Method for producing silicone particles |
-
1997
- 1997-11-07 JP JP30566697A patent/JP3916740B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11140191A (en) | 1999-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3916740B2 (en) | Aqueous dispersion of spherical silicone rubber | |
EP3418320B1 (en) | Silica-coated silicone rubber particles and cosmetic | |
JP2832143B2 (en) | Silicone fine particles and method for producing the same | |
EP3368590B1 (en) | Manufacturing method of silicone rubber particle-dispersed emulsion | |
JP6601565B2 (en) | Organopolysiloxane emulsion composition and resin composition | |
EP0893467A2 (en) | Silicone polyether stabilized silicone latex solvent thickening | |
EP2813210A1 (en) | Silicone elastomer particle and an aqueous dispersion comprising the same | |
JP3529593B2 (en) | Manufacturing method of cosmetics | |
JP3501658B2 (en) | Cosmetics containing silicone cured product powder | |
JP7426283B2 (en) | Polyether/polysiloxane crosslinked rubber spherical particles and method for producing the same, polyether/polysiloxane crosslinked composite particles and method for producing the same | |
JP4694005B2 (en) | Aqueous dispersion of crosslinked silicone particles | |
JP5337333B2 (en) | Aqueous suspension of crosslinked silicone particles and an aqueous emulsion of oil containing crosslinked silicone particles | |
JP5956822B2 (en) | Water-in-oil emulsified cosmetic | |
JP6758161B2 (en) | Silicone emulsion composition | |
JP4194270B2 (en) | Aqueous suspension of crosslinked silicone particles and an aqueous emulsion of silicone oil containing crosslinked silicone particles | |
JP4190176B2 (en) | Organosilicon polymer emulsion and method for producing the same | |
JP6765922B2 (en) | Emulsion composition for hair cosmetics | |
JPH09176512A (en) | Granular inorganic oxide treated with cyclic polysiloxane | |
JPH115905A (en) | Surface modifier composition | |
JPWO2019021800A1 (en) | Oil-in-water emulsion composition, method for producing the same and use thereof | |
JP2001081324A (en) | Silicone gel emulsion and its production | |
EP2478038B1 (en) | Emulsion, its manufacturing method and silicone oil composition | |
JP3702942B2 (en) | Silicone elastomer spherical powder dispersion and method for producing the same | |
JPH111615A (en) | Aqueous dispersion of cured spherical silicone rubber product | |
JP2008088441A (en) | Organosilicone polymer emulsion and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040602 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061016 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070207 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160216 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |