JP3915016B2 - Resin composition for cable jacket or air hose having bending resistance and low friction resistance - Google Patents

Resin composition for cable jacket or air hose having bending resistance and low friction resistance Download PDF

Info

Publication number
JP3915016B2
JP3915016B2 JP19658096A JP19658096A JP3915016B2 JP 3915016 B2 JP3915016 B2 JP 3915016B2 JP 19658096 A JP19658096 A JP 19658096A JP 19658096 A JP19658096 A JP 19658096A JP 3915016 B2 JP3915016 B2 JP 3915016B2
Authority
JP
Japan
Prior art keywords
cable
weight
parts
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19658096A
Other languages
Japanese (ja)
Other versions
JPH09251811A (en
Inventor
信博 藤尾
章博 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP19658096A priority Critical patent/JP3915016B2/en
Publication of JPH09251811A publication Critical patent/JPH09251811A/en
Application granted granted Critical
Publication of JP3915016B2 publication Critical patent/JP3915016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐屈曲性に優れた低摩擦性ケーブルに関する。詳しくは、ロボットアーム等の作用部が移動機器に搭載される、産業用ロボット等のFA機器のためのケーブルに関する。
【0002】
本発明は、また、FA機器の駆動のための圧縮空気用エアホースに関する。
【0003】
【従来の技術】
近年、産業用ロボット等のFA機器が急速に普及しているが、ロボットアーム等の作用部を平行移動させる移動機器を備えたものにおいては、多くの場合ケーブル・ホース支持案内装置が使用される。移動機器に搭載された作用部と駆動、供給側の固定端との間には、作用部の移動に追随して変形自在であるケーブル・ホース支持案内装置(以下支持案内装置と呼ぶ)が配されて、多数のケーブルおよびエアホースを案内している。
【0004】
ここで、支持案内装置内のケーブルは、前記作用部の移動に伴い絶えず屈伸し周囲と摩擦する。ケーブルが絶えず屈曲されては引き延ばされると共に、ケーブルの外面間、ケーブルの外面とエアホースの外面、およびケーブル外面と支持案内装置の内面とが摩擦を受け続ける。その結果、ケーブル外被の耐屈曲性および表面滑り性が十分でない場合には、短時間の継続使用でケーブルが変形、被覆破れを起こす。そして最後には導体の断線に至る。
【0005】
ケーブル外被に耐屈曲性を与える方法としては、例えば特開平5−325651のように、アラミド繊維やフッ素系樹脂をケーブル外被の補強材として用いることが知られている。
【0006】
しかし、このような高価な樹脂を汎用産業機器に用いることはコスト増加につながり好ましくない。
【0007】
電線被覆材表面の滑り性のみを改良することは、特許公報4−74803に示されているが、耐屈曲性の向上については全く言及されておらず示唆もされていない。該公報に開示された発明は、半硬質塩化ビニル樹脂からなるジャンパ線といった本来それほど耐屈曲性を要しない半硬質被覆電線に関するものであって、上記のような支持案内装置に配置されるケーブルには適用できない。
【0008】
一方、近年、熱可塑性ウレタン樹脂でケーブル外被を構成したケーブルや熱可塑性ウレタン樹脂からなる各種チューブ・ホース類が用いられている。低温柔軟性及び耐油性に優れ、機械物性が良好であるからである。しかし、上記の様な高度の耐屈曲性と表面滑り性とが要求される用途には十分ではない。
【0009】
【発明が解決しようとする課題】
本発明の目的は、上記問題点を解決することのできる、耐屈曲性と低摩擦性に優れたケーブルを提供することにある。すなわち、移動機器を備えた産業用ロボット等において、移動機器の移動に追随して変形自在の支持案内装置内に案内されるケーブルが変形、被覆破れを起こすことを防止することにある。特には、多数のケーブルおよびエアホースが支持案内装置内に配された場合に発生する、ケーブルの変形による蛇行、ならびに座屈(折れ曲がり)および被覆破れを大幅に抑制するケーブルを与えることにある。
【0010】
【課題を解決するための手段】
請求項1記載の耐屈曲低摩擦性ケーブル外被用の樹脂組成物においては、ポリ塩化ビニル樹脂、塩化ビニル・酢酸ビニル共重合体樹脂、エチレン・塩化ビニル共重合体樹脂、または、エチレン・酢酸ビニル共重合体に塩化ビニルをグラフトした3元共重合体樹脂のいずれかの樹脂100重量部に対して、脂肪酸アミドを0.2〜3.0重量部、液体可塑剤を55〜90重量部配合してなることを特徴とする。
【0011】
請求項2記載の耐屈曲低摩擦性のケーブル外被又はエアホースのための樹脂組成物は、熱可塑性ポリウレタン樹脂100重量部に対して、エルシルアミドを0.2〜3.0重量部配合してなることを特徴とする。
【0012】
請求項3記載の耐屈曲低摩擦性のケーブル外被又はエアホースのための樹脂組成物は、ソフトセグメントがポリテトラメチレングリコール又はポリプロピレングリコールからなる熱可塑性ポリウレタン樹脂100重量部に対して、炭素数20〜30の脂肪酸の第1アミドを0.2〜3.0重量部配合してなることを特徴とする。
【0013】
【発明の実施の形態】
本発明の請求項1の組成物は、ケーブル外被を構成する組成物のベース樹脂としてポリ塩化ビニル樹脂または塩化ビニル系共重合体樹脂を用いている。塩化ビニル系樹脂は安価で難燃性であり加工が容易であるためである。
【0014】
ポリ塩化ビニル樹脂としては、一般的なものならば全て使用でき、部分架橋されたものも用いられる。塩化ビニル系共重合体樹脂としては、塩化ビニル・酢酸ビニル共重合体樹脂、エチレン・塩化ビニル共重合体樹脂、または、エチレン・酢酸ビニル共重合体に塩化ビニルをグラフトした3元共重合体樹脂などが好適に用いられるがその他のものも可能である。
【0015】
塩化ビニル系樹脂に添加する脂肪酸アミドとしては、エルシルアミドおよびオレイルアミドが特に好ましいものとして挙げられる。しかし、その他の脂肪酸アミド、例えばエチレンビスアミド、メチロールアミドなども使用可能である。
【0016】
脂肪酸アミドの配合量は、上記塩化ビニル樹脂又は塩化ビニル系共重合体樹脂100重量部に対して0.2〜3.0重量部であり好ましくは0.4〜2.0重量部である。脂肪酸アミドの配合量が0.2重量部より少ないとケーブル外被の耐屈曲低摩擦性が不十分であり、3.0重量部を越えると該組成物からケーブル外被を成形する混練、押し出しの際の加工性に劣る。
【0017】
液体可塑剤としては、DOP(ジオクチルフタレート)をはじめ、フタル酸エステル系、トリメリット酸エステル系、リン酸エステル系、脂肪酸エステル系など種々の塩化ビニル系樹脂用の液体可塑剤が単独または併用で使用できる。フタル酸エステル系のものとしては、ジオクチルフタレート、ジエチルヘキシルフタレート、ジトリデシルフタレート等が挙げられ、トリメリット酸系のものとしては、トリオクチルトリメリテート、トリ−n−オクチルトリメリテート等が、脂肪酸エステル系のものとしては、ジオクチルアジペート、ジオクチルアゼレート、ジオクチルセバケート等が挙げられる。また、リン酸エステル系の液体可塑剤としてトリクレジルホスフェートが用い得る他、大豆油等の植物系油をエポキシ化して安定化させたものも用い得る。
【0018】
液体可塑剤の添加量は、上記塩化ビニル樹脂又は塩化ビニル系共重合体樹脂100重量部に対して55〜90重量部、好ましくは60〜80重量部である。液体可塑剤の量が55重量部以下の場合には十分な柔軟性が得られずしたがって、脂肪酸アミドの量が十分であっても、十分な耐屈曲性が得られない。逆に液体可塑剤の量が90重量部を越えるとケーブル外被が過度に柔軟となり、特に耐摩擦性の低下を招く。
【0019】
本発明の請求項1の組成物において、上記基本成分のほか、塩化ビニル系樹脂に一般に用いられる、充填材および安定剤、ならびに、難燃剤、滑剤および着色剤を適宜添加することができる。充填材としては、例えば、炭酸カルシウム、水酸化アルミニウム、ケイ酸アルミニウム(焼成クレー)などを、安定剤としては、例えば、鉛系、カルシウム−亜鉛系、スズ系のものなどを用いることができる。
【0020】
本発明の請求項2及び3の組成物は、ケーブル外被又はエアホースを構成するための組成物であって熱可塑性ウレタン樹脂に特定の脂肪酸アミドを適量加えたものである。
【0021】
熱可塑性ウレタン樹脂とは、長鎖ジオール成分に由来するソフトセグメントと短鎖ジオール成分に由来するハードセグメントからなる。加熱溶融時には全体が均一に流動するが、成形後には、ソフトセグメントがゴム状態〜軟化状態、ハードセグメントがガラス状態にあって物理的架橋部(加硫と同様の効果をなす部分)を形成する。
【0022】
熱可塑性ウレタン樹脂としては、長鎖ジオールが、ポリテトラメチレングリコール(PTMG)又はポリプロピレングリコール(PPG)である最も一般的なものの他、長鎖ジオールがポリカプロラクトン(PCL)やポリカーボネートポリエステル(PCP)といったポリエステルジオールであるもの又はポリブタジエンジオールといった特殊ジオールであるものを用いることもできる。物性及び耐久性と価格とのバランスからポリテトラメチレングリコール(PTMG)型が好ましい。
【0023】
熱可塑性ウレタン樹脂に加える脂肪酸アミドとしては、炭素数20〜30の高級脂肪酸アミドが好ましく、さらに好ましくはこのようなものであってモノエン不飽和脂肪酸の第1アミドであり、特に好ましくはエルシルアミドである。ポリテトラメチレングリコール(PTMG)型又はポリプロピレングリコール型の熱可塑性ウレタン樹脂に加える脂肪酸第1アミドとしては、炭素数が20〜30であることを要する(請求項3)。
【0024】
脂肪酸アミドの配合量は、熱可塑性ウレタン樹脂100重量部に対して0.2〜3.0重量部であり好ましくは0.3〜2.5重量部である。脂肪酸アミドの配合量が0.2重量部より少ないとケーブルの耐屈曲低摩擦性が不十分であり、3.0重量部を越えると該組成物からケーブル外被を成形する混練、押し出しの際の加工性に劣る。
【0025】
上記の請求項1、2又は3に係る組成物から押し出し成形等によりケーブル外被が成形される。
【0026】
また、請求項2又は3に係る熱可塑性ウレタン樹脂組成物から同様にしてFA機器駆動用のエアホースが成形される。エアホースは、例えば、ロボットアームの屈伸させるための圧縮空気を導くものであって、下記のような支持案内装置にケーブルと共に収納され該ケーブルのケーブル外被と全く同様の繰り返し屈曲・摩擦を受ける。したがって、耐圧性を備えたものである熱可塑性ウレタン樹脂ベースの組成物にあってはケーブル外被に用いられるものをそのままエアホースに用いることができる。
【0027】
ケーブル外被の耐屈曲低摩擦性に係るケーブルの耐久性能の評価は以下のように行った。
【0028】
耐久性能の評価に用いたケーブルは、図1の断面図で示すように、4対の導体線を含む、対より形ビニル絶縁ビニルシースケーブル(1)である。0.2平方ミリの断面積をもつ2本の導体(3)をそれぞれ絶縁体(4)で被覆し互いに撚り合わせ、このような対より電線を4対束ねて円筒形のケーブルとしたものである。ここで、ケーブル外被(2)の断面内には電磁遮蔽層が設けられている。
【0029】
耐久性能試験装置および試験条件について図2〜3を用いて説明する。
【0030】
図2に示すように、水平のレール(5)に沿って移動端(6)が移動可能に配されており、レール(5)の下方の台面(9)上に固定端(7)が設けられている。移動端(6)と固定端(7)との間にはキャタピラチェーン形の支持案内装置(8)が配される。支持案内装置(8)は、移動端(6)が固定端(7)の真上に来たとき、横に伏せた細長の略U字形をなしており、移動端(6)の左右への移動に伴い、台面(9)上を左右に走行するキャタピラのチェーンの一部分のような動きをする。ここで、支持案内装置としては、(株)椿本チエイン社製TKP0320−2B(キャタピラ湾曲部の曲率半径(R)37mm)を用いた。
【0031】
このような装置に、6本のケーブル(1)を取り付けた。ケーブル(1)は、固定端(7)および支持案内装置(8)中において3本ずつ2段に緩やかに配線されており(図3)、移動端(6)においてだけ治具により圧締されてケーブルの長さ方向の移動が規制されている。
【0032】
移動端(6)をレール(5)上に繰り返し往復運動させることでケーブルの耐屈曲性試験を行った。ここで、レール上での移動端の移動ストロークを100cmに、移動速度を100m/minに設定した。それぞれのケーブルは屈伸を続けるとともに、隣接するケーブルならびに支持案内装置の内面との摩擦を受け続ける。屈曲を繰り返すと、ケーブル中にまず蛇行部分が発生し、次いでケーブルの被覆破れが生じる直前でケーブルが折れ曲がる。この状態を座屈と判定した。座屈を起こすまでの移動端の往復回数を耐屈曲回数とし、3回測定を繰り返して、測定値の概略範囲でもって表した。
【0033】
(実施例1〜3)
ケーブル外被(2)を構成する組成物のベース樹脂として、信越化学工業(株)製ポリ塩化ビニル樹脂TK−2500LS(平均重合度2250)を用いた。ベース樹脂100重量部に対して、液体可塑剤として60、80、および70重量部のDOPをそれぞれ加えた。また、脂肪酸アミドとしては、ライオンアクゾ社製のエルシルアミド製品であるアーモスリップE(登録商標)を0.5重量部加えた。さらに、安定剤として三塩基性硫酸鉛6重量部およびステアリン酸鉛1重量部を、充填剤として炭酸カルシウム50重量部を加えた組成物を用いた。
【0034】
表1に、耐屈曲回数で表される耐久性能評価の結果を組成の一覧とともに示す。実施例1〜3いずれにおいても、50,000〜60,000という非常に優れた耐久性能が得られた。また、表1の下端に示すようにケーブル外被を成形する際の加工性にはなんら問題がなかった。
【0035】
【表1】

Figure 0003915016
(実施例4〜5)
実施例4〜5においては、脂肪酸アミドの添加量を0.25重量部とした。
【0036】
実施例4においては、脂肪酸アミドの添加量を0.25重量部と減少させ、炭酸カルシウムの添加量を60重量部と増加させた他は実施例3と同条件とした。
【0037】
実施例5においては、脂肪酸アミドとして、エルシルアミド製品であるアーモスリップE(登録商標)に代えライオンアクゾ社製のオレイルアミド製品であるアーモスリップCP−P(登録商標)0.25重量部を用い、炭酸カルシウム添加量を40重量部とした他は実施例3〜4と同条件とした。
【0038】
表1中に示すように、エルシルアミドとオレイルアミドとのいずれを用いても、脂肪酸アミドの量が0.25重量部では耐屈曲回数30,000〜40,000となり実用上十分な耐久性能を備えたケーブルが得られた。しかし、0.5重量部添加の実施例1〜3に比べケーブルの耐久性能は少し低いものであった。
【0039】
(実施例6)
アーモスリップE(エルシルアミド)の添加量を2.8重量部と増加させた他は実施例3と全く同じ条件とした。表1に示すように、測定された耐屈曲回数は0.5重量部添加の実施例3と同様であり、添加量増加によるさらなる効果は見られなかった。一方、表1の下端に示す加工性に問題は見られなかった。
【0040】
(比較例1〜3)
ケーブル外被(2)を構成する組成物において他の組成は実施例3と同様とし、脂肪酸アミドの添加量を0、0.1および0.15重量部とした。ここで、比較例2においてだけは、アーモスリップE(エルシルアミド)に代えてアーモスリップCP−P(オレイルアミド)を用いた。結果を表2に示す。添加量0の比較例1および添加量0.15重量部の比較例2では耐屈曲回数が20以下に過ぎず、添加量0.15重量部の比較例3でも耐屈曲回数が40以下に過ぎなかった。これらの結果から、脂肪酸アミドの添加量が0.15重量部以下ではほとんど添加の効果が見られないことが知られる。実施例4〜5の結果と照らし合わせると添加量0.15重量部と0.25重量部の間でケーブルの耐久性能が劇的に変化することが知られる。
【0041】
【表2】
Figure 0003915016
(比較例4)
脂肪酸アミドの添加量を3.5重量部とした他は実施例3および6と同条件とした。耐屈曲回数は、実施例1〜3および6と同様の50,000〜60,000であったが、混練および押し出しにおける加工性に難があり工業的にケーブル外被を成形することには困難を伴う。すなわち、脂肪酸アミドの量を3.5重量部程度に増加しても耐久性能向上の効果は見られず加工性を損なう結果とだけなった。
【0042】
(比較例5〜6)
DOPの添加量を45重量部および100重量部とし他の組成は実施例1〜3と同様とした。表2に示すように、いずれも耐久性能が不十分であった。
【0043】
DOP添加量が過小である比較例5においては、ケーブルの柔軟性が低いので、ケーブルが曲がりにくく、ケーブルの曲がりのRを大きくし支持案内装置(8)の湾曲を押し拡げてしまい、移動端(6)の移動に支障を来すだけでなく、実際の使用条件においては、支持案内装置に隣接する他の部材と接触や衝突を起こし、該部材ならびに支持案内装置の損傷を引き起こすこととなる。したがって、支持案内装置(8)の湾曲部の盛り上がりが明瞭に観察される時点で使用不能と判定した。引き続き移動端(6)の往復を続けると、20,000〜30,000で座屈を生じた。ケーブルの柔軟性が低く屈曲性が悪いために、支持案内装置内での摩擦が大きくなり、耐久性能が不十分であったと考えられる。
【0044】
逆にDOP添加量が過剰であると、耐屈曲回数は5,000〜10,000と、実施例のものに比べ著しく低い値となった。ケーブルが過度に柔軟となり特に低摩擦性が得られないために耐屈曲回数で表される耐久性能が不十分であったと考えられる。
【0045】
以上の結果は、適量のDOPと適量の脂肪酸アミドとの相乗効果によってはじめて本発明の効果が得られることを示している。
【0046】
(実施例7〜9)
ケーブル外被(2)を構成する組成物のベース樹脂としてポリ塩化ビニル樹脂に代えて、塩化ビニル系共重合体樹脂を用い他の条件は実施例1〜3と同様とした。塩化ビニル共重合体樹脂としては以下の3種類の樹脂をそれぞれ用いた。エチレン−塩化ビニル共重合体樹脂である東ソー(株)製リュウロンE−2800(平均重合度2750)、酢酸ビニル−塩化ビニル共重合体樹脂であるVA−PVC樹脂であるチッソ(株)製ニポリットMH(平均重合度1500)、およびエチレン−酢酸ビニル共重合体に塩化ビニルをグラフトした3元共重合体樹脂である新第一塩ビ(株)製ZEST GR5F(平均重合度1400)を用いた。
【0047】
表3に示すように、これら共重合体樹脂を用いてもポリ塩化ビニル樹脂を用いた場合と同様の結果が得られた。
【0048】
【表3】
Figure 0003915016
(実施例10〜12)
ケーブル外被(2)を構成する樹脂組成物として、(株)クラレ社製熱可塑性ウレタン樹脂クラミロンU−9185にアーモスリップE(登録商標)をそれぞれ0.3重量部、0.5重量部及び2.5重量部加えたものを用いた。
【0049】
表4に、耐屈曲回数で表される耐久性能評価の結果を示す。実施例10において30,000〜40,000、実施例11〜12において、50,000〜60,000という非常に優れた耐久性能が得られた。また、表4の下端に示すようにケーブル外被を成形する際の加工性にはなんら問題がなかった。
【0050】
【表4】
Figure 0003915016
(比較例7〜8)
比較例7及び8では、アーモスリップE(登録商標)の添加量をそれぞれ0重量部及び0.1重量部とした他は実施例10〜12と同様とした。共に耐屈曲回数が1〜5と極端に低く、脂肪酸アミドを添加しないか、添加しても添加量が不足する場合には耐久性能が得られないことが知られる。
【0051】
(比較例9〜10)
比較例9及び10では、アーモスリップEに代えてアーモスリップCP−Pを0.5重量部及び1.0重量部加え、他は実施例10〜12と同様とした。比較例9及び10のケーブルでは表面に、脂肪酸アミドのブリードが観察されなかった。すなわち、アーモスリップCP−Pでは、上記熱可塑性ウレタン樹脂との相溶性が高すぎるため樹脂中に包含されてしまい、樹脂表面への滲出が認められなかった。
【0052】
エルシルアミド(アーモスリップE)とオレイルアミド(アーモスリップCP−P)とは共に、モノエン不飽和脂肪酸の第1アミドであって、炭素数がそれぞれ22及び18である点においてだけ相違している。したがって、実施例10〜12との対比より、この種の脂肪酸アミドにおいては、上記熱可塑性ウレタン樹脂に耐屈曲性を付与する性能が炭素数20前後で臨界的に変化することが知られる。
【0053】
(比較例11)
比較例11では、アーモスリップE(登録商標)の添加量を3.5重量部とした。耐屈曲回数は、実施例11〜12と同様の50,000〜60,000であったが、混練および押し出しにおける加工性に難があり工業的にケーブル外被を成形することには困難を伴う。すなわち、脂肪酸アミドの量を3.5重量部程度に増加しても耐久性能向上の効果は見られず加工性を損なう結果となった。
【0054】
【表5】
Figure 0003915016
(実施例13)
実施例11と同一の組成物より上記ケーブル外被(2)と同一の径及び厚さでチューブを成形した。上記熱可塑性ウレタン樹脂は、耐圧ホースとして用いられるものであり、元来、圧縮空気に対する十分な耐圧性及びその信頼性を備えたものである。該チューブ内部を圧縮空気により約1気圧の陽圧に保った状態で、上記ケーブル(2)の場合と同様に耐屈曲性試験を行ったところ、耐屈曲回数は50,000回以上であった。
【0055】
【発明の効果】
ケーブル外被として、塩化ビニル樹脂または塩化ビニルと酢酸ビニル等との共重合体樹脂に比較的多量の液体可塑剤と適量の脂肪酸アミドとを添加した組成物からなるものを用いることにより、耐屈曲性に優れた低摩擦性ケーブルを与える。特に、ロボットアーム等の作用部が移動機器に搭載されるFA機器にあって、該作用部に接続するケーブルが、該作用部の移動に追随して変形自在な支持案内装置内に配されるものにおいて、安価で長期継続使用に耐えるケーブルを与える。
【0056】
ケーブル外被として、熱可塑性ウレタン樹脂に脂肪酸アミドを0.2〜3.0重量部添加した組成物からなるものを用いることによっても、同様に、耐屈曲性に優れた低摩擦性ケーブルを与える。
【図面の簡単な説明】
【図1】耐久性能評価に用いたケーブルの断面図である。
【図2】耐久性能試験装置の模式図である。
【図3】耐久性能試験装置の固定端におけるケーブルの配列について示す。
【符号の説明】
1 対より形ビニル絶縁ビニルシースケーブル
2 ケーブル外被
3 導体
4 絶縁体
6 移動端
7 固定端
8 支持案内装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low friction cable excellent in bending resistance. Specifically, the present invention relates to a cable for an FA device such as an industrial robot in which a working unit such as a robot arm is mounted on a mobile device.
[0002]
The present invention also relates to a compressed air hose for driving FA equipment.
[0003]
[Prior art]
In recent years, FA devices such as industrial robots have rapidly spread, but in many cases, cable / hose support and guide devices are used in devices equipped with moving devices that move the working parts such as robot arms in parallel. . A cable / hose support guide device (hereinafter referred to as a support guide device) that can be deformed following the movement of the action portion is arranged between the action portion mounted on the mobile device and the fixed end on the drive and supply side. It has been guiding a number of cables and air hoses.
[0004]
Here, the cable in the support guide device continuously bends and stretches with the movement of the action portion and rubs against the surroundings. The cable is continuously bent and stretched, and friction between the outer surface of the cable, the outer surface of the cable and the outer surface of the air hose, and the outer surface of the cable and the inner surface of the support guide device continues. As a result, if the cable jacket has insufficient bending resistance and surface slipperiness, the cable will be deformed and the coating will be broken by continuous use for a short time. Finally, the conductor breaks.
[0005]
As a method for imparting bending resistance to a cable jacket, it is known to use an aramid fiber or a fluorine-based resin as a reinforcing material for a cable jacket as disclosed in, for example, Japanese Patent Laid-Open No. 5-325651.
[0006]
However, it is not preferable to use such an expensive resin for general-purpose industrial equipment because it increases costs.
[0007]
Although improving only the slipperiness | lubricity of the electric wire coating | covering material surface is shown by patent publication 4-74803, the improvement of bending resistance is not mentioned at all and is not suggested. The invention disclosed in the publication relates to a semi-rigid coated electric wire that does not require bending resistance such as a jumper wire made of a semi-rigid polyvinyl chloride resin, and is used for a cable arranged in the support guide device as described above. Is not applicable.
[0008]
On the other hand, in recent years, cables having a cable jacket made of thermoplastic urethane resin and various tubes and hoses made of thermoplastic urethane resin have been used. It is because it is excellent in low temperature flexibility and oil resistance and has good mechanical properties. However, it is not sufficient for applications that require a high degree of bending resistance and surface slip.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a cable that can solve the above problems and is excellent in bending resistance and low friction. That is, in an industrial robot or the like equipped with a mobile device, the cable guided in the support guide device that can be deformed following the movement of the mobile device is prevented from being deformed and torn. In particular, it is intended to provide a cable that significantly suppresses meandering due to deformation of the cable, buckling (bending), and covering breakage that occur when a large number of cables and air hoses are arranged in the support guide device.
[0010]
[Means for Solving the Problems]
In the resin composition for a bend resistant low friction cable jacket according to claim 1, polyvinyl chloride resin, vinyl chloride / vinyl acetate copolymer resin, ethylene / vinyl chloride copolymer resin, or ethylene / acetic acid The fatty acid amide is 0.2 to 3.0 parts by weight and the liquid plasticizer is 55 to 90 parts by weight with respect to 100 parts by weight of any one of the terpolymer resins obtained by grafting vinyl chloride to the vinyl copolymer. It is characterized by blending.
[0011]
The resin composition for a cable jacket or an air hose having a low bending resistance and a low friction according to claim 2 is obtained by blending 0.2 to 3.0 parts by weight of erucylamide with 100 parts by weight of a thermoplastic polyurethane resin. It is characterized by that.
[0012]
The resin composition for a cable sheath or an air hose having bending resistance and low friction according to claim 3 has 20 carbon atoms relative to 100 parts by weight of a thermoplastic polyurethane resin whose soft segment is made of polytetramethylene glycol or polypropylene glycol. It is characterized by comprising 0.2 to 3.0 parts by weight of a primary amide of ˜30 fatty acids.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The composition of claim 1 of the present invention uses a polyvinyl chloride resin or a vinyl chloride copolymer resin as the base resin of the composition constituting the cable jacket. This is because vinyl chloride resin is inexpensive, flame retardant, and easy to process.
[0014]
As the polyvinyl chloride resin, all ordinary ones can be used, and partially crosslinked ones are also used. Examples of vinyl chloride copolymer resins include vinyl chloride / vinyl acetate copolymer resins, ethylene / vinyl chloride copolymer resins, or ternary copolymer resins obtained by grafting vinyl chloride to ethylene / vinyl acetate copolymers. Are preferably used, but others are possible.
[0015]
As the fatty acid amide added to the vinyl chloride resin, erucylamide and oleylamide are particularly preferable. However, other fatty acid amides such as ethylene bisamide, methylol amide and the like can also be used.
[0016]
The blending amount of the fatty acid amide is 0.2 to 3.0 parts by weight, preferably 0.4 to 2.0 parts by weight with respect to 100 parts by weight of the vinyl chloride resin or vinyl chloride copolymer resin. When the blending amount of the fatty acid amide is less than 0.2 parts by weight, the bending and low friction resistance of the cable jacket is insufficient, and when it exceeds 3.0 parts by weight, kneading and extrusion for forming the cable jacket from the composition It is inferior in workability in the case of.
[0017]
As the liquid plasticizer, liquid plasticizers for various vinyl chloride resins such as DOP (dioctyl phthalate), phthalate ester, trimellitic ester, phosphate ester and fatty acid ester can be used alone or in combination. Can be used. Examples of phthalic acid ester-based compounds include dioctyl phthalate, diethylhexyl phthalate, and ditridecyl phthalate.Examples of trimellitic acid-based compounds include trioctyl trimellitate, tri-n-octyl trimellitate, and the like. Examples of fatty acid esters include dioctyl adipate, dioctyl azelate, dioctyl sebacate and the like. Further, tricresyl phosphate can be used as a phosphoric ester-based liquid plasticizer, and those obtained by epoxidizing and stabilizing vegetable oils such as soybean oil can also be used.
[0018]
The addition amount of the liquid plasticizer is 55 to 90 parts by weight, preferably 60 to 80 parts by weight with respect to 100 parts by weight of the vinyl chloride resin or vinyl chloride copolymer resin. When the amount of the liquid plasticizer is 55 parts by weight or less, sufficient flexibility cannot be obtained. Therefore, even when the amount of the fatty acid amide is sufficient, sufficient bending resistance cannot be obtained. On the other hand, when the amount of the liquid plasticizer exceeds 90 parts by weight, the cable jacket becomes excessively flexible, and particularly the friction resistance is lowered.
[0019]
In the composition of claim 1 of the present invention, in addition to the above basic components, fillers and stabilizers generally used for vinyl chloride resins, flame retardants, lubricants and colorants can be added as appropriate. As the filler, for example, calcium carbonate, aluminum hydroxide, aluminum silicate (calcined clay) and the like can be used, and as the stabilizer, for example, lead-based, calcium-zinc-based, tin-based, and the like can be used.
[0020]
The compositions of Claims 2 and 3 of the present invention are compositions for constituting a cable jacket or an air hose, and are obtained by adding an appropriate amount of a specific fatty acid amide to a thermoplastic urethane resin.
[0021]
The thermoplastic urethane resin is composed of a soft segment derived from a long-chain diol component and a hard segment derived from a short-chain diol component. When heated and melted, the entire fluid flows uniformly, but after molding, the soft segment is in the rubber state to the softened state, and the hard segment is in the glass state to form a physical cross-linked portion (portion that has the same effect as vulcanization). .
[0022]
As the thermoplastic urethane resin, the long chain diol is polytetramethylene glycol (PTMG) or polypropylene glycol (PPG), and the long chain diol is polycaprolactone (PCL) or polycarbonate polyester (PCP). A polyester diol or a special diol such as polybutadiene diol can also be used. The polytetramethylene glycol (PTMG) type is preferred from the balance between physical properties, durability and price.
[0023]
The fatty acid amide added to the thermoplastic urethane resin is preferably a higher fatty acid amide having 20 to 30 carbon atoms, more preferably such a primary amide of a monoene unsaturated fatty acid, and particularly preferably erucyl amide. . The fatty acid primary amide added to the polytetramethylene glycol (PTMG) type or polypropylene glycol type thermoplastic urethane resin needs to have 20 to 30 carbon atoms (Claim 3).
[0024]
The compounding amount of the fatty acid amide is 0.2 to 3.0 parts by weight, preferably 0.3 to 2.5 parts by weight with respect to 100 parts by weight of the thermoplastic urethane resin. When the blending amount of the fatty acid amide is less than 0.2 parts by weight, the cable has insufficient bending resistance and low frictional properties. When the blending amount exceeds 3.0 parts by weight, the cable jacket is molded from the composition at the time of kneading and extrusion. Inferior in workability.
[0025]
A cable jacket is formed from the composition according to claim 1, 2 or 3 by extrusion molding or the like.
[0026]
An FA hose driving air hose is molded in the same manner from the thermoplastic urethane resin composition according to claim 2 or 3. The air hose, for example, guides compressed air for bending and stretching the robot arm, and is housed together with a cable in the following support guide device and is subjected to repeated bending and friction in exactly the same manner as the cable jacket of the cable. Therefore, in the thermoplastic urethane resin-based composition having pressure resistance, those used for the cable jacket can be used as they are for the air hose.
[0027]
Evaluation of the durability performance of the cable relating to the bending resistance and low friction resistance of the cable jacket was performed as follows.
[0028]
The cable used for the evaluation of the durability performance is a twisted vinyl insulation vinyl sheath cable (1) including four pairs of conductor wires as shown in the sectional view of FIG. Two conductors (3) having a cross-sectional area of 0.2 square millimeters are each covered with an insulator (4) and twisted together, and four pairs of electric wires are bundled from such a pair to form a cylindrical cable. is there. Here, an electromagnetic shielding layer is provided in the cross section of the cable jacket (2).
[0029]
A durability performance test apparatus and test conditions will be described with reference to FIGS.
[0030]
As shown in FIG. 2, the movable end (6) is movably arranged along the horizontal rail (5), and the fixed end (7) is provided on the base surface (9) below the rail (5). It has been. Between the moving end (6) and the fixed end (7), a caterpillar chain-shaped support guide device (8) is arranged. When the moving end (6) comes directly above the fixed end (7), the support guide device (8) has an elongated, generally U-shaped shape that lies on its side. Along with the movement, it moves like a part of a caterpillar chain running left and right on the base surface (9). Here, TKP0320-2B (Curved radius of curvature of caterpillar curved portion (R) 37 mm) manufactured by Enomoto Chain Co., Ltd. was used as the support guide device.
[0031]
Six cables (1) were attached to such a device. The cable (1) is gently wired in two steps in three in the fixed end (7) and the support guide device (8) (FIG. 3), and is clamped by a jig only at the moving end (6). The movement of the cable in the length direction is restricted.
[0032]
The cable was tested for bending resistance by repeatedly reciprocating the moving end (6) on the rail (5). Here, the moving stroke of the moving end on the rail was set to 100 cm, and the moving speed was set to 100 m / min. Each cable continues to bend and stretch, and continues to receive friction with the adjacent cable and the inner surface of the support guide device. When the bending is repeated, a meandering portion is first generated in the cable, and then the cable is bent just before the cable is broken. This state was determined to be buckling. The number of reciprocations of the moving end until buckling occurred was regarded as the number of bending resistances, and the measurement was repeated three times to represent the approximate range of measured values.
[0033]
(Examples 1-3)
A polyvinyl chloride resin TK-2500LS (average polymerization degree 2250) manufactured by Shin-Etsu Chemical Co., Ltd. was used as the base resin of the composition constituting the cable jacket (2). 60, 80, and 70 parts by weight of DOP were added as liquid plasticizers to 100 parts by weight of the base resin. As fatty acid amide, 0.5 part by weight of Armoslip E (registered trademark), an Elsilamide product manufactured by Lion Akzo, was added. Further, a composition in which 6 parts by weight of tribasic lead sulfate and 1 part by weight of lead stearate as a stabilizer and 50 parts by weight of calcium carbonate as a filler was added was used.
[0034]
Table 1 shows the results of durability performance evaluation expressed by the number of bending resistances together with a list of compositions. In each of Examples 1 to 3, very excellent durability performance of 50,000 to 60,000 was obtained. Moreover, as shown in the lower end of Table 1, there was no problem in workability when forming the cable jacket.
[0035]
[Table 1]
Figure 0003915016
(Examples 4 to 5)
In Examples 4 to 5, the amount of fatty acid amide added was 0.25 parts by weight.
[0036]
In Example 4, the same conditions as in Example 3 were used except that the amount of fatty acid amide added was reduced to 0.25 parts by weight and the amount of calcium carbonate added was increased to 60 parts by weight.
[0037]
In Example 5, 0.25 parts by weight of Armoslip CP-P (registered trademark), an oleylamide product manufactured by Lion Akzo, was used as the fatty acid amide in place of Armoslip E (registered trademark), which is an erucylamide product. The conditions were the same as in Examples 3 to 4, except that the amount of calcium carbonate added was 40 parts by weight.
[0038]
As shown in Table 1, even if either erucylamide or oleylamide is used, when the amount of fatty acid amide is 0.25 parts by weight, the number of flexing is 30,000 to 40,000, and practically sufficient durability performance is provided. A cable was obtained. However, the durability performance of the cable was slightly lower than in Examples 1 to 3 to which 0.5 part by weight was added.
[0039]
(Example 6)
The conditions were exactly the same as in Example 3 except that the amount of Armoslip E (Elsylamide) added was increased to 2.8 parts by weight. As shown in Table 1, the measured number of flexing resistances was the same as in Example 3 with 0.5 parts by weight added, and no further effect was observed due to the increase in the amount added. On the other hand, no problem was found in the workability shown at the lower end of Table 1.
[0040]
(Comparative Examples 1-3)
In the composition constituting the cable jacket (2), other compositions were the same as those in Example 3, and the addition amount of fatty acid amide was 0, 0.1 and 0.15 parts by weight. Here, only in Comparative Example 2, armor slip CP-P (oleylamide) was used instead of armor slip E (erucylamide). The results are shown in Table 2. In Comparative Example 1 with an addition amount of 0 and Comparative Example 2 with an addition amount of 0.15 parts by weight, the number of flexing resistances is only 20 or less, and in Comparative Example 3 with an addition amount of 0.15 parts by weight, the number of flexing resistances is only 40 or less. There wasn't. From these results, it is known that the effect of addition is hardly seen when the amount of fatty acid amide added is 0.15 parts by weight or less. In light of the results of Examples 4 to 5, it is known that the durability performance of the cable changes dramatically between 0.15 parts by weight and 0.25 parts by weight.
[0041]
[Table 2]
Figure 0003915016
(Comparative Example 4)
The conditions were the same as in Examples 3 and 6, except that the amount of fatty acid amide added was 3.5 parts by weight. The number of bending resistances was 50,000 to 60,000 as in Examples 1 to 3 and 6, but there was difficulty in workability in kneading and extrusion, and it was difficult to form a cable jacket industrially. Accompanied by. That is, even if the amount of the fatty acid amide was increased to about 3.5 parts by weight, the effect of improving the durability performance was not seen, and the processability was only impaired.
[0042]
(Comparative Examples 5-6)
The amount of DOP added was 45 parts by weight and 100 parts by weight, and the other compositions were the same as in Examples 1-3. As shown in Table 2, all of the durability performance was insufficient.
[0043]
In Comparative Example 5 in which the amount of DOP added is too small, the flexibility of the cable is low, so that the cable is difficult to bend, and the curvature of the support guide device (8) is increased by increasing the curvature R of the cable. In addition to hindering the movement of (6), in actual use conditions, it may cause contact or collision with other members adjacent to the support guide device, causing damage to the member and the support guide device. . Therefore, it was determined that the curved portion of the support guide device (8) was unusable when the bulge of the curved portion was clearly observed. When the reciprocation of the moving end (6) was continued, buckling occurred at 20,000 to 30,000. Since the cable has low flexibility and poor bendability, friction in the support guide device is increased, and it is considered that the durability performance was insufficient.
[0044]
On the other hand, when the amount of DOP added is excessive, the number of flexing resistances was 5,000 to 10,000, which was significantly lower than that of the example. It is considered that the durability performance represented by the number of bending resistances was insufficient because the cable was excessively flexible and low friction was not obtained.
[0045]
The above results show that the effects of the present invention can be obtained only by a synergistic effect of an appropriate amount of DOP and an appropriate amount of fatty acid amide.
[0046]
(Examples 7 to 9)
A vinyl chloride copolymer resin was used in place of the polyvinyl chloride resin as the base resin of the composition constituting the cable jacket (2), and other conditions were the same as in Examples 1 to 3. The following three types of resins were used as vinyl chloride copolymer resins. Rislon E-2800 (average polymerization degree 2750) manufactured by Tosoh Corporation which is an ethylene-vinyl chloride copolymer resin, and Nipolit MH manufactured by Chisso Corporation which is a VA-PVC resin which is a vinyl acetate-vinyl chloride copolymer resin. (Average polymerization degree 1500) and ZEST GR5F (average polymerization degree 1400) manufactured by Shin-Daiichi PVC Co., Ltd., which is a ternary copolymer resin obtained by grafting vinyl chloride onto an ethylene-vinyl acetate copolymer.
[0047]
As shown in Table 3, even when these copolymer resins were used, the same results as those obtained using the polyvinyl chloride resin were obtained.
[0048]
[Table 3]
Figure 0003915016
(Examples 10 to 12)
As a resin composition constituting the cable jacket (2), Armor slip E (registered trademark) is 0.3 parts by weight, 0.5 part by weight and Kuraray Co., Ltd. thermoplastic urethane resin Clamiron U-9185, respectively. What added 2.5 weight part was used.
[0049]
Table 4 shows the results of durability performance evaluation expressed by the number of bending resistances. In Example 10, very excellent durability performance of 30,000 to 40,000 and in Examples 11 to 12 of 50,000 to 60,000 were obtained. Moreover, as shown in the lower end of Table 4, there was no problem in workability when forming the cable jacket.
[0050]
[Table 4]
Figure 0003915016
(Comparative Examples 7-8)
Comparative Examples 7 and 8 were the same as Examples 10 to 12 except that the addition amount of Armoslip E (registered trademark) was 0 parts by weight and 0.1 parts by weight, respectively. In both cases, the bending resistance is extremely low, 1 to 5, and it is known that the durability performance cannot be obtained when the fatty acid amide is not added or the added amount is insufficient even if it is added.
[0051]
(Comparative Examples 9 to 10)
In Comparative Examples 9 and 10, 0.5 parts by weight and 1.0 parts by weight of Armoslip CP-P were added in place of Armoslip E, and the others were the same as in Examples 10-12. In the cables of Comparative Examples 9 and 10, no fatty acid amide bleed was observed on the surface. That is, the armor slip CP-P was included in the resin because the compatibility with the thermoplastic urethane resin was too high, and no exudation to the resin surface was observed.
[0052]
Both erucylamide (Armoslip E) and oleylamide (Armoslip CP-P) differ only in that they are the primary amides of monoene unsaturated fatty acids having 22 and 18 carbon atoms, respectively. Therefore, it is known from the comparison with Examples 10 to 12 that in this type of fatty acid amide, the performance of imparting bending resistance to the thermoplastic urethane resin changes critically around 20 carbon atoms.
[0053]
(Comparative Example 11)
In Comparative Example 11, the amount of Armoslip E (registered trademark) added was 3.5 parts by weight. The number of bending resistances was 50,000 to 60,000 as in Examples 11 to 12, but there were difficulties in workability in kneading and extrusion, and it was difficult to form a cable jacket industrially. . That is, even if the amount of the fatty acid amide was increased to about 3.5 parts by weight, the effect of improving the durability performance was not seen, and the processability was impaired.
[0054]
[Table 5]
Figure 0003915016
(Example 13)
A tube was formed from the same composition as in Example 11 with the same diameter and thickness as the cable jacket (2). The thermoplastic urethane resin is used as a pressure-resistant hose, and originally has sufficient pressure resistance against compressed air and its reliability. When the inside of the tube was kept at a positive pressure of about 1 atm with compressed air, the bending resistance test was performed in the same manner as in the case of the cable (2), and the number of bending resistances was 50,000 times or more. .
[0055]
【The invention's effect】
By using a cable jacket made of a composition comprising a vinyl chloride resin or a copolymer resin of vinyl chloride and vinyl acetate and the like with a relatively large amount of a liquid plasticizer and an appropriate amount of a fatty acid amide, Provides a low-friction cable with excellent properties. In particular, in an FA device in which an action part such as a robot arm is mounted on a mobile device, a cable connected to the action part is arranged in a support guide device that can be deformed following the movement of the action part. The cable that can withstand long-term continuous use is inexpensive.
[0056]
Similarly, by using a cable jacket made of a composition obtained by adding 0.2 to 3.0 parts by weight of a fatty acid amide to a thermoplastic urethane resin, a low-friction cable having excellent bending resistance can be obtained. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cable used for durability performance evaluation.
FIG. 2 is a schematic diagram of a durability performance test apparatus.
FIG. 3 shows an arrangement of cables at the fixed end of the durability test apparatus.
[Explanation of symbols]
1 pair twisted vinyl insulated vinyl sheath cable 2 cable jacket 3 conductor 4 insulator 6 moving end 7 fixed end 8 support guide device

Claims (3)

移動機器に搭載されるロボットアームまたはその他の作用部の移動に追随して変形自在の支持案内装置(8)中に案内されて、屈伸を続けるとともに、隣接するケーブル(1)ならびに支持案内装置(8)の内面との摩擦を受け続けるケーブル(1)のためのケーブル外被(2)用の樹脂組成物であって、
ポリ塩化ビニル樹脂、塩化ビニル・酢酸ビニル共重合体樹脂、エチレン・塩化ビニル共重合体樹脂、または、エチレン・酢酸ビニル共重合体に塩化ビニルをグラフトした3元共重合体樹脂のいずれかの樹脂100重量部に対して、エルシルアミドまたはオレイルアミドを0.2〜3.0重量部、液体可塑剤を55〜90重量部配合してなることを特徴とする耐屈曲低摩擦性ケーブル外被用の樹脂組成物。
Following the movement of the robot arm or other action part mounted on the mobile device, it is guided into the deformable support guide device (8) and continues to bend and stretch, and the adjacent cable (1) and the support guide device ( 8) A resin composition for the cable jacket (2) for the cable (1) that continues to receive friction with the inner surface,
Any of polyvinyl chloride resin, vinyl chloride / vinyl acetate copolymer resin, ethylene / vinyl chloride copolymer resin, or terpolymer resin obtained by grafting vinyl chloride to ethylene / vinyl acetate copolymer For bending-resistant low-friction cable jackets, comprising 0.2 to 3.0 parts by weight of erucylamide or oleylamide and 55 to 90 parts by weight of a liquid plasticizer with respect to 100 parts by weight Resin composition.
エルシルアミドまたはオレイルアミドの添加量が0.4〜2.0重量部であり、液体可塑剤の添加量が60〜80重量部であることを特徴とする請求項1に記載の耐屈曲低摩擦性ケーブル外被用の樹脂組成物。The bending resistance and low friction resistance according to claim 1, wherein the addition amount of erucylamide or oleylamide is 0.4 to 2.0 parts by weight and the addition amount of the liquid plasticizer is 60 to 80 parts by weight. Resin composition for cable jackets. 前記ケーブル(1)が、U字形の湾曲部をなすキャタピラチェーン形の支持案内装置(8)に支持・案内されるものであることを特徴とする請求項1に記載の耐屈曲低摩擦性ケーブル外被用の樹脂組成物。The cable (1) according to claim 1, wherein the cable (1) is supported and guided by a caterpillar chain-type support guide device (8) having a U-shaped curved portion. Resin composition for jacket.
JP19658096A 1996-01-11 1996-07-25 Resin composition for cable jacket or air hose having bending resistance and low friction resistance Expired - Lifetime JP3915016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19658096A JP3915016B2 (en) 1996-01-11 1996-07-25 Resin composition for cable jacket or air hose having bending resistance and low friction resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-3034 1996-01-11
JP303496 1996-01-11
JP19658096A JP3915016B2 (en) 1996-01-11 1996-07-25 Resin composition for cable jacket or air hose having bending resistance and low friction resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006326938A Division JP4430655B2 (en) 1996-01-11 2006-12-04 Resin composition for cable jacket or air hose having bending resistance and low friction resistance

Publications (2)

Publication Number Publication Date
JPH09251811A JPH09251811A (en) 1997-09-22
JP3915016B2 true JP3915016B2 (en) 2007-05-16

Family

ID=26336531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19658096A Expired - Lifetime JP3915016B2 (en) 1996-01-11 1996-07-25 Resin composition for cable jacket or air hose having bending resistance and low friction resistance

Country Status (1)

Country Link
JP (1) JP3915016B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478095B2 (en) 2008-11-18 2013-07-02 Fujikura Ltd. Optical fiber cable for wiring in premises

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830256A1 (en) * 2001-10-03 2003-04-04 Nexans SUPRAMOLECULAR POLYMER COMPOSITION, AS WELL AS ITS MANUFACTURING PROCESS AND CABLE INCLUDING SUCH COMPOSITION
US20060065428A1 (en) * 2004-07-13 2006-03-30 Kummer Randy D Electrical cable having a surface with reduced coefficient of friction
US10763008B2 (en) 2004-09-28 2020-09-01 Southwire Company, Llc Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US7749024B2 (en) 2004-09-28 2010-07-06 Southwire Company Method of manufacturing THHN electrical cable, and resulting product, with reduced required installation pulling force
US8800967B2 (en) 2009-03-23 2014-08-12 Southwire Company, Llc Integrated systems facilitating wire and cable installations
JP5465459B2 (en) * 2008-05-15 2014-04-09 大日精化工業株式会社 Thermoplastic polyurethane resin composition
KR100899436B1 (en) * 2008-09-03 2009-05-26 (주)영일인더스트리 The insulated union tape for a covered wire and the making method thereof
US8986586B2 (en) 2009-03-18 2015-03-24 Southwire Company, Llc Electrical cable having crosslinked insulation with internal pulling lubricant
US8658576B1 (en) 2009-10-21 2014-02-25 Encore Wire Corporation System, composition and method of application of same for reducing the coefficient of friction and required pulling force during installation of wire or cable
US10325696B2 (en) 2010-06-02 2019-06-18 Southwire Company, Llc Flexible cable with structurally enhanced conductors
US9352371B1 (en) 2012-02-13 2016-05-31 Encore Wire Corporation Method of manufacture of electrical wire and cable having a reduced coefficient of friction and required pulling force
US11328843B1 (en) 2012-09-10 2022-05-10 Encore Wire Corporation Method of manufacture of electrical wire and cable having a reduced coefficient of friction and required pulling force
US10056742B1 (en) 2013-03-15 2018-08-21 Encore Wire Corporation System, method and apparatus for spray-on application of a wire pulling lubricant
US10431350B1 (en) 2015-02-12 2019-10-01 Southwire Company, Llc Non-circular electrical cable having a reduced pulling force
JP6757558B2 (en) * 2015-07-09 2020-09-23 信越ポリマー株式会社 Thermoplastic polyurethane elastomer composition, flexible material, and communication cable
JP6975378B2 (en) * 2017-06-06 2021-12-01 日立金属株式会社 Sheath material and cable
JP7424253B2 (en) * 2020-09-07 2024-01-30 株式会社プロテリアル Cables and insulated wires

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478095B2 (en) 2008-11-18 2013-07-02 Fujikura Ltd. Optical fiber cable for wiring in premises

Also Published As

Publication number Publication date
JPH09251811A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
JP3915016B2 (en) Resin composition for cable jacket or air hose having bending resistance and low friction resistance
US8532453B2 (en) High voltage cabtire cable
JP2013258104A (en) Cable with oil resistant and flex resistant sheath, cable harness using the same, and manufacturing method of the same
JP2013041794A (en) Wire/cable and composition
JP4430655B2 (en) Resin composition for cable jacket or air hose having bending resistance and low friction resistance
JP2006104395A (en) Resin composition and insulating wire, wire and cable, tubing and heat-shrinkable tubing using the same
JP6942484B2 (en) Sheath material and cable
JP5111890B2 (en) Movable flat cable
WO2018043392A1 (en) Cable
CN114072478A (en) Adhesive tape
JP2016076429A (en) Stretchable wire
JP5358048B2 (en) Free standing cable
CN1109626A (en) Jacketed cables with improved flexibility, and the method of manufacturing them
JP2023104496A (en) Expanding/contracting cable
JPH09288915A (en) Fluorine-containing-elastomer-covered wire or cable
KR100202359B1 (en) Polyvinyl chloride resin composition
CN112279040A (en) Elevator load bearing member having jacket comprising fluoropolymer
JPH0826174B2 (en) Vinyl chloride thermoplastic elastomer
JP2000129585A (en) Control cable
KR102563545B1 (en) Pvc composition, as well as electric wire and cable using the same
JPH0864039A (en) Rubber sheath cable
JP2022158408A (en) cable
JP2009054312A (en) Elastic optic fiber composite cable, and manufacturing method thereof
JPH07276523A (en) Pvf3-made flexible sheath and application thereof to flexible metallic tube
JP2013187011A (en) Movable cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

EXPY Cancellation because of completion of term