JP2009266702A - Self supporting cable - Google Patents

Self supporting cable Download PDF

Info

Publication number
JP2009266702A
JP2009266702A JP2008116427A JP2008116427A JP2009266702A JP 2009266702 A JP2009266702 A JP 2009266702A JP 2008116427 A JP2008116427 A JP 2008116427A JP 2008116427 A JP2008116427 A JP 2008116427A JP 2009266702 A JP2009266702 A JP 2009266702A
Authority
JP
Japan
Prior art keywords
cable
self
supporting
compression
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008116427A
Other languages
Japanese (ja)
Other versions
JP5358048B2 (en
Inventor
Hiroshi Takeuchi
弘 竹内
Yasuhiro Misu
康弘 三須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junkosha Co Ltd
Original Assignee
Junkosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junkosha Co Ltd filed Critical Junkosha Co Ltd
Priority to JP2008116427A priority Critical patent/JP5358048B2/en
Publication of JP2009266702A publication Critical patent/JP2009266702A/en
Application granted granted Critical
Publication of JP5358048B2 publication Critical patent/JP5358048B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Insulated Conductors (AREA)
  • Electric Cable Arrangement Between Relatively Moving Parts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self supporting cable capable of restraining vertical variation. <P>SOLUTION: In this self supporting cable 1, a self-supporting auxiliary member formed by arranging, in parallel to each other, and integrating, with each other, a compression-resistant member 21 hardly deformed with respect to compression stress in the cable longitudinal direction and easily deformed with respect to tensile stress in the cable longitudinal direction, and tension-resistant member 22 hardly deformed with respect to tensile stress in the cable longitudinal direction, and a multiple cable 11 are arranged in parallel to each other and integrated with each other. Since the self-supporting auxiliary member resultantly has both compression-resistant function and tensile-resistant function, the multiple cable can be supported while responding to compression stress and tensile stress generated in the multiple cable in moving a movable part, and the vertical variation of the multiple cable in moving the movable part can be almost completely restrained even if the multiple cable is housed in a cable bear. The self-supporting auxiliary member is never scraped because of being integrated with the cable, and the need of the cable bear is obviated, whereby the problem caused by the cable bear is solved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数のケーブルが並列配置されて一体化された多連ケーブルを備え、上下に配置されている可動部と固定部に、多連ケーブルの一端側と他端側がそれぞれ連結される自立型ケーブルに関し、例えば機械加工ライン、半導体製造装置、電子部品実装装置等に組み込まれたロボット走行装置等に用いられる自立型ケーブルに関する。   The present invention includes a multiple cable in which a plurality of cables are arranged in parallel and integrated, and one end side and the other end side of the multiple cable are respectively connected to a movable part and a fixed part that are arranged vertically. For example, the present invention relates to a self-standing cable used for a robot traveling apparatus or the like incorporated in a machining line, a semiconductor manufacturing apparatus, an electronic component mounting apparatus, or the like.

機械加工ライン、半導体製造装置、電子部品実装装置には、加工材、ウエハ、基板等のワークを把持して搬送するためのロボット走行装置が組み込まれている。例えば特許文献1(特開2005−96018号公報)には、ロボット走行装置の軌道の両側に複数の加工機械を配置した機械加工ラインが開示されている。ロボット走行装置は、軌道上を移動する走行台車に、ワークをハンドリングするロボットが搭載されている。このロボットのアームのハンドを動作させることにより、ワークをハンドに把持させ、該ワークを各加工機械に着脱することができる。また、走行台車を軌道に沿って移動させることにより、ワークを各加工機械の間で移動させ、複数の機械加工を該ワークに施すことができる。   In a machining line, a semiconductor manufacturing apparatus, and an electronic component mounting apparatus, a robot traveling apparatus for gripping and transporting a workpiece such as a workpiece, a wafer, or a substrate is incorporated. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2005-96018) discloses a machining line in which a plurality of processing machines are arranged on both sides of a track of a robot traveling device. In the robot traveling apparatus, a robot that handles a workpiece is mounted on a traveling carriage that moves on a track. By operating the hand of the arm of the robot, the work can be held by the hand, and the work can be attached to and detached from each processing machine. Further, by moving the traveling carriage along the track, the workpiece can be moved between the processing machines, and a plurality of machining operations can be performed on the workpiece.

このようなロボット走行装置では、軌道の側部にケーブルベア(登録商標)が敷設されている。ケーブルベアは、一列に並べた複数の略矩形のフレームをピンによって回動可能に結合し、上下方向に屈曲可能としたものである。そして、ケーブルベア内部に形成された空間には、信号ラインや電力、油圧、空圧の動力ラインのケーブルやチューブ(以下、単にケーブルという)が収納されている。ケーブルベアは、一端側がU字状に折り返され、その先端部が走行台車に連結されている。これにより、ケーブルベアの摺動に合わせたケーブルの配線及び配管ができ、自立不可なケーブルであっても該ケーブルの上下変動を抑えることができる。そして、走行台車の移動を妨げることなく、走行台車及びロボットに必要な制御信号及び動力等を供給することができる。   In such a robot traveling device, a cable bear (registered trademark) is laid on the side of the track. The cable bearer is configured such that a plurality of substantially rectangular frames arranged in a row are coupled by a pin so as to be rotatable, and can be bent in the vertical direction. In the space formed inside the cable bear, cables and tubes (hereinafter simply referred to as cables) of signal lines, power lines, power lines, hydraulic lines, and pneumatic lines are housed. One end of the cable bear is folded back in a U shape, and its tip is connected to the traveling carriage. Thereby, the wiring and piping of the cable can be performed in accordance with the sliding of the cable bearer, and the vertical fluctuation of the cable can be suppressed even if the cable cannot stand by itself. And a control signal, motive power, etc. which are required for a running cart and a robot can be supplied, without disturbing a movement of a running cart.

ところが、ケーブルベアとケーブルとの擦れにより、発塵や振動・騒音が生じる場合がでてきた。そこで、例えば特許文献2(特開2006−228841号公報)には、ケーブルを平面的に並べて結束して帯状体とする結束部材と、帯状体を部分的に接触して支持する支持体を備えたケーブルベアが提案されている。このケーブルベアによれば、ケーブルとの擦れが発生せず、発塵を防止することができる。また、例えば特許文献3(特開2006−159346号公報)には、ベルト・プーリ機構を備えたケーブルベアが提案されている。このケーブルベアによれば、プーリ駆動機構が可動部と一体に軸方向に移動することがないため、ケーブルベアによる振動・騒音の発生を抑制することができる。   However, there are cases where dust, vibration, or noise occurs due to friction between the cable bear and the cable. Therefore, for example, Patent Document 2 (Japanese Patent Application Laid-Open No. 2006-228841) includes a bundling member that forms a band-like body by arranging and bundling cables in a plane, and a support body that partially contacts and supports the band-like body. Cable bearers have been proposed. According to this cable bear, rubbing with the cable does not occur and dust generation can be prevented. Further, for example, Patent Document 3 (Japanese Patent Laid-Open No. 2006-159346) proposes a cable bear having a belt / pulley mechanism. According to this cable track, since the pulley drive mechanism does not move in the axial direction integrally with the movable part, it is possible to suppress the occurrence of vibration and noise due to the cable track.

特開2005−96018号公報JP-A-2005-96018 特開2006−228841号公報JP 2006-228841 A 特開2006−159346号公報JP 2006-159346 A

上述した従来のケーブルベアは、ケーブル全体を収納可能な容積が必要であるため、摺動させるための動力やスペースが余分に必要である。また、ケーブルベアの重量分の慣性により摺動停止位置の精度が取り難くなる。また、ケーブルベアの分のコストが余分に掛かる。   The conventional cable bear described above requires a volume that can accommodate the entire cable, and therefore requires extra power and space for sliding. In addition, the accuracy of the sliding stop position becomes difficult to take due to the inertia of the weight of the cable carrier. In addition, the cost of the cable bear is extra.

本発明は、上記のような課題に鑑みなされたものであり、その目的は、上下変動を抑制することができる自立型のケーブルを提供することにある。   This invention is made | formed in view of the above subjects, The objective is to provide the self-supporting type | mold cable which can suppress a vertical fluctuation.

上記目的達成のため、本発明の自立型ケーブルでは、複数のケーブルが並列配置されて一体化された多連ケーブルを備え、上下に配置された、往復移動する可動部と固定された固定部に、前記多連ケーブルの一端側と他端側がそれぞれ連結される自立型ケーブルであって、ケーブル長方向の圧縮応力に対して変形し難く、前記ケーブル長方向の引張応力に対して変形し易い耐圧縮部材と、前記ケーブル長方向の引張応力に対して変形し難い耐引張部材とを、並列配置して一体化した自立補助部材が、前記多連ケーブルと並列配置されて一体化されていることを特徴としている。   In order to achieve the above object, the self-supporting cable of the present invention includes a multiple cable in which a plurality of cables are arranged in parallel and integrated, and a movable part that moves up and down and a fixed part fixed to the fixed part. The self-supporting cable in which one end side and the other end side of the multiple cable are respectively connected, and is not easily deformed by a compressive stress in the cable length direction and is easily deformed by a tensile stress in the cable length direction. A self-supporting auxiliary member in which a compression member and a tension-resistant member that is difficult to deform with respect to the tensile stress in the cable length direction are arranged in parallel and integrated with the multiple cable in parallel. It is characterized by.

これにより、自立補助部材は耐圧縮及び耐引張の機能を兼ね備えることになるので、可動部移動時に多連ケーブルに生じる圧縮応力及び引張応力に対応しつつ多連ケーブルを支えることができ、多連ケーブルをケーブルベア内部に収納しなくても、可動部移動時の多連ケーブルの上下変動を略完全に抑制することができる。更に、自立補助部材はケーブルと一体化されているので擦れることは無く、ケーブルベアは不要となるので、ケーブルベアで発生した課題は解消されることになる。   As a result, the self-supporting auxiliary member has both a compression resistance and a tension resistance function, so that the multiple cable can be supported while accommodating the compressive stress and the tensile stress generated in the multiple cable when the movable part moves. Even if the cable is not housed in the cable carrier, the vertical movement of the multiple cable during movement of the movable part can be suppressed almost completely. Furthermore, since the self-supporting auxiliary member is integrated with the cable, it does not rub, and the cable bear is not necessary, so that the problem generated by the cable bear is solved.

前記耐圧縮部材及び前記耐引張部材は、ケーブル状に形成されており、前記耐圧縮部材の中心軸が、前記可動部の移動時に前記多連ケーブルの引張応力発生側に位置するように、前記耐引張部材の中心軸が、前記多連ケーブルの各中心軸を通る線上に位置するように、並列配置されていることを特徴としている。   The compression-resistant member and the tensile-resistant member are formed in a cable shape, and the central axis of the compression-resistant member is positioned on the tensile stress generation side of the multiple cable when the movable part moves. The tension-resistant members are arranged in parallel so that the central axes thereof are located on a line passing through the central axes of the multiple cable.

可動部が静止状態のときは、可動部からU字状折り返し部までの多連ケーブルは、自重により垂れ下がってケーブル上側には圧縮応力が生じケーブル下側には引張応力が生じる。また、可動部が移動状態のときは、U字状折り返し部における多連ケーブルは、ケーブル内側(ケーブル下側)には圧縮応力が生じケーブル外側(ケーブル上側)には引張応力が生じる。よって、耐圧縮部材は、可動部静止時にはケーブル上側に位置しているので多連ケーブルの自重による垂れ下がりを防止することができ、可動部移動時にはケーブル外側(ケーブル上側)に位置しているので多連ケーブルをU字状にスムーズに折り返すことができる。更に、耐引張部材は、可動部静止時及び可動部移動時にも常に多連ケーブルと並列しているので、耐圧縮部材が多連ケーブルの自重による垂れ下がりを防止する際、及び耐圧縮部材が多連ケーブルをU字状にスムーズに折り返す際に補助することができ、可動部移動時の多連ケーブルの上下変動を略完全に抑制することができる。   When the movable part is stationary, the multiple cable from the movable part to the U-shaped folded part hangs down due to its own weight, causing compressive stress on the upper side of the cable and tensile stress on the lower side of the cable. When the movable part is in a moving state, the multiple cables in the U-shaped folded part are subjected to compressive stress on the cable inner side (cable lower side) and tensile stress on the cable outer side (cable upper side). Therefore, since the compression resistant member is located on the upper side of the cable when the movable part is stationary, the multiple cable can be prevented from sagging due to its own weight, and when the movable part is moved, it is located on the outer side of the cable (upper side of the cable). The continuous cable can be smoothly folded back into a U shape. Further, since the tension-resistant member is always in parallel with the multiple cable even when the movable part is stationary and the movable part is moved, the compression-resistant member prevents the sagging due to the weight of the multiple cable, and there are many compression-resistant members. It is possible to assist when the continuous cable is smoothly folded back into a U-shape, and the vertical fluctuation of the multiple cable during movement of the movable part can be suppressed almost completely.

また、前記自立補助部材は、前記多連ケーブルの両側にそれぞれ並列配置されて一体化されていることを特徴としている。
これにより、自立補助部材が多連ケーブルを両側から支持することになるので、上記作用をより効果的に発揮させることができる。
Further, the self-supporting auxiliary members are arranged in parallel on both sides of the multiple cable, and are integrated.
Thereby, since the self-supporting auxiliary member supports the multiple cable from both sides, the above action can be exhibited more effectively.

以下、本発明に係る自立型ケーブルの実施形態について説明する。尚、以下に説明する実施形態は特許請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, embodiments of the self-supporting cable according to the present invention will be described. The embodiments described below do not limit the invention according to the scope of claims, and all combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. Absent.

図1(A)は、本発明に係る自立型ケーブルの第1の実施形態を示す平面図、同図(B)は、そのA−A線断面図である。この自立型ケーブル1は、6本のケーブルユニット10を並列配置させ融着し一体化して多連ケーブル11とし、更にこの多連ケーブル11両側のケーブルユニット10にケーブル状に形成された2本の自立補助部材20をそれぞれ並列配置させ融着し一体化した自立型平型ケーブルである。即ち、自立型ケーブル1は、2本の自立補助部材20に多連ケーブル11が挟まれて支持された構成となっている。そして、図2に示す上部に配置された可動部61に自立型ケーブル1の図1(A)に示す下端が図1(B)の下面をU字状折り返し部Cの内側になるようにして連結され、図2に示す下部に配置された固定部62に自立型ケーブル1の図1(A)に示す上端がU字状に折り曲げられて連結される。   FIG. 1A is a plan view showing a first embodiment of a self-supporting cable according to the present invention, and FIG. 1B is a cross-sectional view taken along the line AA. The self-supporting cable 1 includes six cable units 10 arranged in parallel, fused and integrated to form a multiple cable 11, and two cable units 10 formed on the cable units 10 on both sides of the multiple cable 11. This is a self-supporting flat cable in which the self-supporting auxiliary members 20 are arranged in parallel and fused and integrated. That is, the self-supporting cable 1 has a configuration in which the multiple cable 11 is sandwiched and supported by two self-supporting auxiliary members 20. Then, the lower end shown in FIG. 1A of the self-standing cable 1 is placed on the movable part 61 arranged in the upper part shown in FIG. 2 so that the lower surface of FIG. 1B is inside the U-shaped folded part C. The upper end of the self-standing cable 1 shown in FIG. 1A is bent into a U shape and connected to the fixed portion 62 that is connected and arranged at the lower part shown in FIG.

ケーブルユニット10は、複数本の同軸ケーブル等を筒状の束に纏めプラスチックからなるシースを押出し被覆した信号ラインや電力の動力ラインのケーブルである。尚、ケーブルユニット10と共に油圧、空圧の動力ラインのケーブルを並列配置させ融着して一体化し、更に両側のケーブルユニット10等に自立補助部材20を並列配置させ融着して一体化した自立型複合平型ケーブルとしても良い。また、ケーブルユニット10等及び自立補助部材20の並列本数は任意の本数であって良い。   The cable unit 10 is a cable for a signal line or electric power line in which a plurality of coaxial cables or the like are bundled in a cylindrical bundle and a sheath made of plastic is extruded and covered. The cable unit 10 and the cable of the hydraulic and pneumatic power lines are arranged in parallel and fused to be integrated, and the self-supporting auxiliary member 20 is arranged in parallel to the cable units 10 and the like on both sides and fused and integrated. It is good also as a type compound flat cable. Moreover, the parallel number of the cable units 10 and the like and the self-supporting auxiliary member 20 may be an arbitrary number.

自立補助部材20は、並列配置され融着されて一体化された耐圧縮部材21と耐引張部材22を備えている。耐圧縮部材21とは、ケーブル長方向に圧縮されるときは弾性係数が高くなり、ケーブル長方向に引っ張られるときは弾性係数が低くなる部材のことである。即ち、ケーブル長方向の圧縮応力に対して変形し難く、ケーブル長方向の引張応力に対して変形し易い部材のことである。耐引張部材22とは、ケーブル長方向に引っ張られるときは弾性係数が高くなる部材のことである。即ち、ケーブル長方向の引張応力に対して変形し難い部材のことである。   The self-supporting auxiliary member 20 includes a compression-resistant member 21 and a tensile-resistant member 22 that are arranged in parallel and fused and integrated. The compression resistant member 21 is a member that has a high elastic modulus when compressed in the cable length direction and a low elastic coefficient when pulled in the cable length direction. That is, it is a member that is not easily deformed by a compressive stress in the cable length direction and is easily deformed by a tensile stress in the cable length direction. The tension member 22 is a member having a high elastic modulus when pulled in the cable length direction. That is, it is a member that is not easily deformed by a tensile stress in the cable length direction.

耐圧縮部材21は、U字状に折り曲げられた多連ケーブル11の外側に位置し、耐引張部材22は、U字状に折り曲げられた多連ケーブル11と同列に位置するように配置されている。即ち、耐圧縮部材21は、中心軸21aが可動部61(図2参照)の移動時に多連ケーブル11の引張応力発生側に位置するように配置され、耐引張部材22は、中心軸22aがケーブルユニット10の各中心軸10aを通る線L上に位置するように配置されている。耐引張部材22の中心軸22aをケーブルユニット10の各中心軸10aを通る線L上に位置させることにより、多連ケーブル11に余計な負荷が掛からなくなるので、多連ケーブル11の断線を防止することができる。   The compression resistant member 21 is positioned outside the multiple cable 11 bent in a U shape, and the tensile resistant member 22 is arranged in the same row as the multiple cable 11 bent in a U shape. Yes. That is, the compression resistant member 21 is arranged so that the central shaft 21a is positioned on the tensile stress generation side of the multiple cable 11 when the movable portion 61 (see FIG. 2) is moved. It arrange | positions so that it may be located on the line L which passes each center axis | shaft 10a of the cable unit 10. FIG. By positioning the central axis 22a of the tensile member 22 on the line L passing through each central axis 10a of the cable unit 10, an unnecessary load is not applied to the multiple cable 11, and thus disconnection of the multiple cable 11 is prevented. be able to.

耐圧縮部材21としては、例えば金属製の密着コイルばねに樹脂製の外皮が一体化された部材が使用される。密着コイルばねであれば、長手方向の圧縮応力に対して巻線間に隙間が無いため変形し難く、長手方向の引張応力に対してバネ作用により変形し易いので、耐圧縮部材21として構成することができ、例えばステンレス線が巻回されて作製される。外皮は、密着コイルばねに融着可能であってケーブルユニット10のシースに融着可能で断面形状及び軸方向の相対位置を固定、即ち密着コイルばねとケーブルユニット10が一体化された状態を維持可能な材料であれば良く、例えばポリ塩化ビニル(PVC)を押出成形することにより作製される。尚、PVCの代わりにウレタン等の軟質樹脂やゴム等を使用することもできる。   As the compression resistant member 21, for example, a member in which a resin-made outer skin is integrated with a metal close coil spring is used. If it is a close-contact coil spring, it is difficult to deform because there is no gap between the windings with respect to the compressive stress in the longitudinal direction, and it is easily deformed by the spring action with respect to the tensile stress in the longitudinal direction. For example, a stainless steel wire is wound. The outer skin can be fused to the close coil spring and can be fused to the sheath of the cable unit 10, and the cross-sectional shape and the relative position in the axial direction are fixed, that is, the tight coil spring and the cable unit 10 are maintained in an integrated state. Any material can be used, and for example, it can be produced by extruding polyvinyl chloride (PVC). Note that soft resin such as urethane, rubber or the like can be used instead of PVC.

耐引張部材22としては、例えば金属製のワイヤロープに樹脂製の外皮が一体化された部材が使用される。ワイヤロープであれば、長手方向の引張応力に対して大きな破断力を有しているため変形し難いので、耐引張部材22として構成することができ、例えばさらに樹脂繊維を芯としステンレス線を撚り合わせて作製される。外皮は、ワイヤロープに融着可能であってケーブルユニット10のシースに融着可能で断面形状及び軸方向の相対位置を固定、即ちワイヤロープとケーブルユニット10が一体化された状態を維持可能な材料であれば良く、例えばPVCを押出成形することにより作製される。尚、ワイヤロープの代わりに、大きな破断力を有する例えばアラミド繊維等でなる樹脂ロープを使用することもできる。また、PVCの代わりにウレタン等の軟質樹脂やゴム等を使用することもできる。   As the tension-resistant member 22, for example, a member in which a resin outer skin is integrated with a metal wire rope is used. If it is a wire rope, it has a large breaking force with respect to the tensile stress in the longitudinal direction and is not easily deformed. Therefore, it can be configured as a tension-resistant member 22, for example, a resin wire is used as a core and a stainless wire is twisted. It is produced together. The outer skin can be fused to the wire rope and can be fused to the sheath of the cable unit 10 to fix the sectional shape and the relative position in the axial direction, that is, the wire rope and the cable unit 10 can be maintained in an integrated state. Any material may be used, and for example, it is produced by extruding PVC. Instead of the wire rope, a resin rope made of aramid fiber or the like having a large breaking force can be used. Also, a soft resin such as urethane or rubber can be used instead of PVC.

ここで、自立補助部材20を持たない多連ケーブル11では、可動部61が静止状態のときは、可動部61からU字状折り返し部までの多連ケーブル11は、自重により垂れ下がってケーブル上側には圧縮応力が生じケーブル下側には引張応力が生じる。また、可動部61が移動状態のときは、U字状折り返し部における多連ケーブル11は、ケーブル内側(ケーブル下側)には圧縮応力が生じケーブル外側(ケーブル上側)には引張応力が生じる。   Here, in the multiple cable 11 that does not have the self-supporting auxiliary member 20, when the movable part 61 is in a stationary state, the multiple cable 11 from the movable part 61 to the U-shaped folded part hangs down by its own weight and is on the upper side of the cable. Compressive stress occurs, and tensile stress occurs below the cable. When the movable portion 61 is in a moving state, the multiple cable 11 in the U-shaped folded portion has a compressive stress on the cable inner side (the cable lower side) and a tensile stress on the cable outer side (the cable upper side).

しかし、本実施形態の自立型ケーブル1では、耐圧縮部材21は、可動部61の静止時にはケーブル上側に位置しているので、発生した圧縮応力に耐えて多連ケーブル11の自重による垂れ下がりを防止することができる。また、可動部61の移動時にはケーブル外側(ケーブル上側)に位置しているので、発生した引張応力により伸びて多連ケーブル11をU字状にスムーズに折り返すことができる。   However, in the self-supporting cable 1 of the present embodiment, the compression resistant member 21 is located on the upper side of the cable when the movable portion 61 is stationary, so that it can withstand the generated compressive stress and prevent the multiple cable 11 from sagging due to its own weight. can do. In addition, since the movable portion 61 is located outside the cable (on the upper side of the cable) when moving, the multiple cable 11 can be smoothly folded back into a U shape by extending due to the generated tensile stress.

更に、耐引張部材22は、可動部61の静止時には多連ケーブル11と並列しているので、発生した引張応力に耐えて多連ケーブル11の自重による垂れ下がりを防止することができる。また、可動部61の移動時にも多連ケーブル11と並列しているが、耐引張部材22は屈曲性にも優れているため多連ケーブル11に追従することができ、多連ケーブル11をU字状にスムーズに折り返すことができる。   Furthermore, since the tension-resistant member 22 is in parallel with the multiple cable 11 when the movable portion 61 is stationary, it can withstand the generated tensile stress and prevent the multiple cable 11 from sagging due to its own weight. Further, while the movable portion 61 is moved, it is in parallel with the multiple cable 11, but the tension-resistant member 22 is excellent in flexibility and can follow the multiple cable 11. It can be folded back smoothly into a letter shape.

即ち、耐引張部材22は、可動部61の静止時及び可動部61の移動時にも常に多連ケーブル11と並列しているので、上述したように耐圧縮部材21が多連ケーブル11の自重による垂れ下がりを防止する際、及び耐圧縮部材21が多連ケーブル11をU字状にスムーズに折り返す際に補助することができる。特に、自立補助部材20は、多連ケーブル11の両側にそれぞれ並列配置されて一体化されて多連ケーブル11を両側から支持することになるので、上記作用をより効果的に発揮させることができる。   That is, since the tension-resistant member 22 is always in parallel with the multiple cable 11 even when the movable part 61 is stationary and when the movable part 61 is moved, the compression-resistant member 21 is caused by the weight of the multiple cable 11 as described above. When preventing drooping and when the compression resistant member 21 smoothly folds the multiple cable 11 into a U shape, it can assist. In particular, since the self-supporting auxiliary member 20 is arranged in parallel on both sides of the multiple cable 11 and integrated to support the multiple cable 11 from both sides, the above action can be exhibited more effectively. .

以上のように、自立補助部材20は耐圧縮及び耐引張の機能を兼ね備えることになるので、可動部61の移動時に多連ケーブル11に生じる圧縮応力及び引張応力に対応しつつ多連ケーブル11を支えることができ、多連ケーブル11をケーブルベア内部に収納しなくても、可動部61の移動時の多連ケーブル11の上下変動を略完全に抑制することができる。更に、自立補助部材20は多連ケーブル11と一体化されているので擦れることは無く、ケーブルベアは不要となるので、上述したケーブルベアの問題は解消されることになる。尚、自立型ケーブル1は、複数のケーブルユニット10を一体化した多連ケーブル11と、耐圧縮部材21及び耐引張部材22を一体化した自立補助部材20とを、更に一体化した構成であるので、ケーブルユニット10のシースと耐圧縮部材21及び耐引張部材22の外皮を同一材料とすることにより、例えば押出により一括成形することができ、低コスト化を図ることができる。   As described above, since the self-supporting auxiliary member 20 has both a compression resistance and a tension resistance function, the multiple cable 11 can be accommodated while accommodating the compressive stress and the tensile stress generated in the multiple cable 11 when the movable portion 61 is moved. Even if the multiple cable 11 is not housed in the cable carrier, the vertical fluctuation of the multiple cable 11 when the movable portion 61 is moved can be suppressed almost completely. Furthermore, since the self-supporting auxiliary member 20 is integrated with the multiple cable 11 and is not rubbed, the cable bear is not necessary, so that the above-described problem of the cable bear is solved. The self-supporting cable 1 has a configuration in which a multiple cable 11 in which a plurality of cable units 10 are integrated and a self-supporting auxiliary member 20 in which a compression-resistant member 21 and a tensile-resistant member 22 are integrated are further integrated. Therefore, when the sheath of the cable unit 10 and the outer skin of the compression resistant member 21 and the tensile resistant member 22 are made of the same material, for example, extrusion can be performed at once and cost reduction can be achieved.

次に、本実施形態の自立型ケーブルと、比較のために6本のケーブルユニットを並列配置し融着して一体化したのみであって自立補助部材が融着されていない従来の多連ケーブルを、移動試験装置に組み込んで移動繰り返し試験を行った。
図2は、移動試験装置を示す平面図である。この移動試験装置60は、上下にそれぞれ所定間隔で配置された可動部61と固定部62を備えている。可動部61は、水平な移動面63に沿って図示矢印a方向に往復移動するようになっている。固定部62は、移動面63に平行な基準面64上に固定されている。そして、後述する自立型ケーブル1A、1B、1Cもしくは多連ケーブル9の一端側が可動部61に連結され、他端側がU字状に折り返され、その先端部が固定部62に連結されている。
Next, the self-supporting cable of this embodiment and a conventional multiple cable in which six cable units are arranged in parallel and fused and integrated for comparison, and the self-supporting auxiliary member is not fused. Was incorporated into a moving test apparatus, and a repeated movement test was conducted.
FIG. 2 is a plan view showing the movement test apparatus. The movement test apparatus 60 includes a movable part 61 and a fixed part 62 that are arranged vertically at predetermined intervals. The movable portion 61 is configured to reciprocate in the direction of arrow a along the horizontal moving surface 63. The fixed part 62 is fixed on a reference surface 64 parallel to the moving surface 63. Then, one end side of a self-standing cable 1A, 1B, 1C or multiple cable 9 described later is connected to the movable portion 61, the other end side is folded back in a U shape, and the tip end portion is connected to the fixed portion 62.

移動試験装置60の移動繰り返し試験は、以下の条件とした。
可動部61のストローク:900mm、1000mm、1500mm
可動部61の移動速度:1500mm/sec
可動部61の移動速度到達時間:50ms
可動部61(移動面63)と固定部62(基準面64)との間隔:250mm
このような移動試験装置60に組み込まれる本実施形態の実施例である自立型ケーブル1A、1B、1C及び従来の比較例であるケーブル9を以下説明する。
The moving repetition test of the moving test apparatus 60 was performed under the following conditions.
Stroke of movable part 61: 900 mm, 1000 mm, 1500 mm
Movement speed of movable part 61: 1500 mm / sec
Movement speed arrival time of movable part 61: 50 ms
Distance between movable part 61 (moving surface 63) and fixed part 62 (reference surface 64): 250 mm
The self-supporting cables 1A, 1B, and 1C that are examples of the present embodiment incorporated in the mobile test apparatus 60 and the cable 9 that is a conventional comparative example will be described below.

[実施例]
3種類のケーブルユニット10A、10B、10Cを10C、10B、10A、10A、10B、10Cの順になるように並列配置し融着して一体化した6連平型ケーブルを3本作製した。また、3種類の耐圧縮部材21A、21B、21Cと1種類の耐引張部材22とをそれぞれ並列配置し融着して一体化して3種類の自立補助部材20A、20B、20Cを作製した。そして、3本の6連平型ケーブルの各両側のケーブルユニット10C、10Cに、3種類の自立補助部材20A、20B、20Cをそれぞれ並列配置し融着して一体化して3種類の自立型ケーブル1A、1B、1Cを作製した。尚、ケーブルユニット10A、10B、10Cのケーブル長は、1250mmであり、ケーブル重量は、803g/mである。
[Example]
Three 6-unit flat cables were produced by arranging and fusing three types of cable units 10A, 10B, and 10C in parallel in the order of 10C, 10B, 10A, 10A, 10B, and 10C. In addition, three types of compression-resistant members 21A, 21B, and 21C and one type of tensile-resistant member 22 were arranged in parallel, fused, and integrated to produce three types of self-supporting auxiliary members 20A, 20B, and 20C. Then, three types of self-supporting cables are arranged by fusing and integrating three types of self-supporting auxiliary members 20A, 20B, and 20C to the cable units 10C and 10C on both sides of the three six-flat cables. 1A, 1B and 1C were produced. The cable lengths of the cable units 10A, 10B, and 10C are 1250 mm, and the cable weight is 803 g / m.

ケーブルユニット10Aの構成を説明する。錫めっき軟銅線からなる導体素線(AWG17)を撚って外径1.66mmとした導体の周囲に、エチレンーテトラフルオロエチレン共重合体(ETFE)の絶縁体を被覆して外径2.26mmとし、この単純線を4本、撚り合わせてコアケーブル体を形成する。このコアケーブル体と綿糸介在の周囲に、ポリテトラフルオロエチレン(PTFE)からなるテープ(厚さ0.1mm)を押さえテープとして巻回し、更にこの押さえテープの周囲に、錫めっき錫入り銅合金からなる素線を巻回してシールド層を形成して外径を5.9mmとし、このシールド層の周囲に、ポリ塩化ビニル(PVC)からなるシースを押出し被覆し、全体として外径8.0mmのケーブルユニット10Aを作製した。   The configuration of the cable unit 10A will be described. 1. A conductor made of tinned annealed copper wire (AWG17) is twisted and covered with an insulator of ethylene-tetrafluoroethylene copolymer (ETFE) around an outer diameter of 1.66 mm. The core cable body is formed by twisting four of these simple wires. A tape (thickness 0.1 mm) made of polytetrafluoroethylene (PTFE) is wound around the core cable body and cotton yarn as a pressing tape. Further, a tin-plated tin-containing copper alloy is wound around the pressing tape. A shield layer is formed by winding an element wire to have an outer diameter of 5.9 mm, and a sheath made of polyvinyl chloride (PVC) is extruded and coated around the shield layer to form an outer diameter of 8.0 mm as a whole. A cable unit 10A was produced.

ケーブルユニット10Bの構成を説明する。錫めっき軟銅線からなる導体素線(AWG25)を撚って外径0.58mmとした導体の周囲に、エチレンーテトラフルオロエチレン共重合体(ETFE)の絶縁体を被覆して形成した外径0.98mmの単純線を2ヶ撚りして、撚り外径1.96mmの2ケ撚り電線を形成し、この2ケ撚り電線を4対、撚り合わせてコアケーブル体を形成する。このコアケーブル体と綿糸介在の周囲に、ポリテトラフルオロエチレン(PTFE)からなるテープ(厚さ0.1mm)を押さえテープとして巻回し、更にこの押さえテープの周囲に、錫めっき錫入り銅合金からなる素線を巻回してシールド層を形成して外径を5.1mmとし、このシールド層の周囲に、ポリ塩化ビニル(PVC)からなるシースを押出し被覆し、全体として外径8.0mmのケーブルユニット10Bを作製した。   The configuration of the cable unit 10B will be described. Outer diameter formed by coating an insulator of ethylene-tetrafluoroethylene copolymer (ETFE) around a conductor twisted with a conductor wire (AWG25) made of tinned annealed copper wire to an outer diameter of 0.58 mm Two simple wires of 0.98 mm are twisted to form a two-stranded electric wire having a stranded outer diameter of 1.96 mm, and four pairs of the two-stranded wires are twisted to form a core cable body. A tape (thickness 0.1 mm) made of polytetrafluoroethylene (PTFE) is wound around the core cable body and cotton yarn as a pressing tape. Further, a tin-plated tin-containing copper alloy is wound around the pressing tape. A shield layer is formed by winding an element wire to an outer diameter of 5.1 mm, and a sheath made of polyvinyl chloride (PVC) is extruded and coated around the shield layer, and the outer diameter is 8.0 mm as a whole. A cable unit 10B was produced.

ケーブルユニット10Cの構成を説明する。錫めっき軟銅線からなる導体素線(AWG25)を撚って外径0.58mmとした導体の周囲に、エチレン−テトラフルオロエチレン共重合体(ETFE)の絶縁体を被覆して外径0.98mmとし、この単純線を14本、綿糸介在の周囲に撚り合わせてコアケーブル体を形成する。このコアケーブル体の周囲に、多孔質ポリテトラフルオロエチレン(EPTFE)からなるテープ(厚さ0.1mm)を押さえテープとして巻回し、更にこの押さえテープの周囲に、ポリ塩化ビニル(PVC)からなるシースを押出し被覆し、全体として外径8.0mmのケーブルユニット10Cを作製した。   The configuration of the cable unit 10C will be described. A conductor wire (AWG25) made of a tinned annealed copper wire is twisted to coat a conductor having an outer diameter of 0.58 mm, and an insulator of ethylene-tetrafluoroethylene copolymer (ETFE) is covered with an outer diameter of 0. The core cable body is formed by twisting 14 simple wires around the interposition of cotton yarn. A tape (thickness 0.1 mm) made of porous polytetrafluoroethylene (EPTFE) is wound around the core cable body as a pressing tape, and further, polyvinyl chloride (PVC) is wound around the pressing tape. The sheath was extrusion coated to produce a cable unit 10C having an outer diameter of 8.0 mm as a whole.

1種類目の自立型ケーブル1Aの耐圧縮部材21Aは、外径φ6.0mm、線径1.0mmのステンレス製の密着スプリングに、ポリ塩化ビニル(PVC)からなる外皮を押出成形により融着し一体化して作製した。2種類目の自立型ケーブル1Bの耐圧縮部材21Bは、外径φ7.0mm、線径1.0mmのステンレス製の密着スプリングに、ポリ塩化ビニル(PVC)からなる外皮を押出成形により融着し一体化して作製した。3種類目の自立型ケーブル1Cの耐圧縮部材21Cは、外径φ8.0mm、線径1.0mmのステンレス製の密着スプリングに、ポリ塩化ビニル(PVC)からなる外皮を押出成形により融着し一体化して作製した。自立型ケーブル1Aの耐引張部材22は、ステンレス製のワイヤとナイロン(登録商標)繊維を拠り合わせたワイヤロープに、ポリ塩化ビニル(PVC)からなる外皮を押出成形により融着し一体化して作製した。   The compression resistant member 21A of the first type of self-standing cable 1A is formed by fusion-bonding an outer skin made of polyvinyl chloride (PVC) to a stainless steel close spring having an outer diameter of 6.0 mm and a wire diameter of 1.0 mm. It was made by integrating. The compression resistant member 21B of the second type of self-standing cable 1B is formed by fusion-bonding an outer skin made of polyvinyl chloride (PVC) to a stainless steel close spring having an outer diameter of 7.0 mm and a wire diameter of 1.0 mm. It was made by integrating. The compression resistant member 21C of the third type of self-standing cable 1C is formed by fusion-bonding an outer skin made of polyvinyl chloride (PVC) to a stainless steel close spring having an outer diameter of 8.0 mm and a wire diameter of 1.0 mm. It was made by integrating. The tension-resistant member 22 of the self-supporting cable 1A is manufactured by fusing and integrating a sheath made of polyvinyl chloride (PVC) onto a wire rope made of stainless steel wire and nylon (registered trademark) fiber. did.

[比較例]
3種類のケーブルユニット10A、10B、10Cを10C、10B、10A、10A、10B、10Cの順になるように並列配置し融着して一体化した6連平型ケーブルを3本作製した。
[Comparative example]
Three 6-unit flat cables were produced by arranging and fusing three types of cable units 10A, 10B, and 10C in parallel in the order of 10C, 10B, 10A, 10A, 10B, and 10C.

図3は、移動繰り返し試験の結果を示す図である。試験結果は、可動部61が図2の左端から右端に移動するときの途中位置(可動部61の最右端位置を基点として図示左方向に300mm、400mm、500mmの位置)における実施例の自立型ケーブル1A、1B、1C及び比較例のケーブル9の基準面63から下方への最大撓み量を可動部61のストローク(900mm、1000mm、1500mm)別に示している。   FIG. 3 is a diagram showing the results of the moving repetition test. The test results are as follows. The self-supporting type of the embodiment at the midway position when the movable portion 61 moves from the left end to the right end in FIG. 2 (positions of 300 mm, 400 mm, and 500 mm in the left direction in the drawing with the rightmost end position of the movable portion 61 as a base point). The maximum amount of bending downward from the reference surface 63 of the cables 1A, 1B, 1C and the cable 9 of the comparative example is shown for each stroke (900 mm, 1000 mm, 1500 mm) of the movable portion 61.

図3から明らかなように、可動部61のストロークが900mmのとき、比較例のケーブル9では、移動途中において最大撓み量が100mm、90mm、70mmに達している。これに対し、実施例の自立型ケーブル1A、1B、1Cでは何れも、移動途中において最大撓み量が0mm、0mm、0mmと良好である。このように、可動部61のストロークが900mmのときは、耐圧縮部材21Aの密着スプリングの外径に左右されずに、自立型ケーブル1A、1B、1Cの上下変動をほぼ抑制することができる。   As is clear from FIG. 3, when the stroke of the movable portion 61 is 900 mm, the maximum deflection amount reaches 100 mm, 90 mm, and 70 mm in the middle of movement in the cable 9 of the comparative example. On the other hand, in the self-supporting cables 1A, 1B, and 1C of the examples, the maximum deflection amount is 0 mm, 0 mm, and 0 mm in the middle of movement. Thus, when the stroke of the movable part 61 is 900 mm, the vertical fluctuation of the self-supporting cables 1A, 1B, 1C can be substantially suppressed without being influenced by the outer diameter of the contact spring of the compression resistant member 21A.

また、可動部61のストロークが1000mmのとき、比較例のケーブル9では、大きく撓んで可動できず測定不能であった。これに対し、実施例の自立型ケーブル1Aでは、移動途中において最大撓み量が0mm、5mm、10mmと良好である。また、実施例の自立型ケーブル1B、1Cでは何れも、移動途中において最大撓み量が0mm、0mm、0mmと最も良好である。このように、可動部61のストロークが1000mmのときは、耐圧縮部材21Aの密着スプリングの外径が所定値(6mm)のときに、自立型ケーブル1Aの上下変動をほぼ抑制することができ、更に耐圧縮部材21B、21Cの密着スプリングの外径が所定値より大きい(7mm以上)ときに、自立型ケーブル1B、1Cの上下変動を完全に抑制することができる。   Further, when the stroke of the movable part 61 was 1000 mm, the cable 9 of the comparative example was largely bent and could not be moved, and measurement was impossible. On the other hand, in the self-supporting cable 1A of the example, the maximum deflection amount during the movement is as good as 0 mm, 5 mm, and 10 mm. Moreover, in the self-supporting cables 1B and 1C of the examples, the maximum deflection amount is 0 mm, 0 mm, and 0 mm in the middle of movement, which is the best. Thus, when the stroke of the movable part 61 is 1000 mm, when the outer diameter of the close contact spring of the compression resistant member 21A is a predetermined value (6 mm), the vertical fluctuation of the self-standing cable 1A can be substantially suppressed, Furthermore, when the outer diameters of the contact springs of the compression resistant members 21B and 21C are larger than a predetermined value (7 mm or more), the vertical fluctuation of the self-standing cables 1B and 1C can be completely suppressed.

また、可動部61のストロークが1500mmのとき、比較例のケーブル9では、大きく撓んで可動できず測定不能であった。これに対し、実施例の自立型ケーブル1A、1Bでは、移動途中において最大撓み量が0mm、5mm、10mmと良好である。また、実施例の自立型ケーブル1Cでは、移動途中において最大撓み量が0mm、0mm、0mmと最も良好である。このように、可動部61のストロークが1500mmのときは、耐圧縮部材21A、21Bの密着スプリングの外径が所定値より小さい(7mm以下)ときに、自立型ケーブル1A、1Bの上下変動をほぼ抑制することができ、更に耐圧縮部材21Cの密着スプリングの外径が所定値(8mm)ときに、自立型ケーブル1Cの上下変動を完全に抑制することができる。   Further, when the stroke of the movable portion 61 was 1500 mm, the cable 9 of the comparative example was bent greatly and could not be moved, and measurement was impossible. On the other hand, in the self-supporting cables 1A and 1B of the example, the maximum deflection amount during the movement is as good as 0 mm, 5 mm, and 10 mm. Further, in the self-standing cable 1C of the example, the maximum deflection amount is 0 mm, 0 mm, and 0 mm in the middle of movement, which is the best. As described above, when the stroke of the movable portion 61 is 1500 mm, when the outer diameter of the contact springs of the compression resistant members 21A and 21B is smaller than a predetermined value (7 mm or less), the vertical fluctuations of the self-standing cables 1A and 1B are substantially reduced. Further, when the outer diameter of the contact spring of the compression resistant member 21C is a predetermined value (8 mm), the vertical fluctuation of the self-standing cable 1C can be completely suppressed.

尚、本発明の範囲は上述した実施形態や実施例に限定されることはなく、特許請求の範囲の記載に反しない限り、他の様々な実施形態に適用可能である。例えば、上記実施例では、図2において、61を可動部及び62を固定部としたが、61を固定部及び62を可動部とした場合、61及び62を可動部とした場合、あるいは図の構成を時計回り、もしくは反時計回りに任意の角度に回転させて設定した、例えば垂直方向にした場合にも、本発明は適用できることは言うまでもないことである。また、上記実施形態では、自立補助部材20を多連ケーブル11の両側のケーブルユニット10に設けたが、ケーブルユニット10の間に設けても良い。また、上述した各実施形態の自立型ケーブル1は平型としたが、これに限定されるものでは無く、筒型等のケーブルであっても適用可能である。   The scope of the present invention is not limited to the above-described embodiments and examples, and can be applied to various other embodiments as long as they do not contradict the description of the claims. For example, in the above embodiment, in FIG. 2, 61 is a movable part and 62 is a fixed part, but 61 is a fixed part and 62 is a movable part, 61 and 62 are movable parts, or It goes without saying that the present invention can also be applied to a case where the configuration is set by rotating it at an arbitrary angle clockwise or counterclockwise, for example, in the vertical direction. Moreover, in the said embodiment, although the self-supporting auxiliary member 20 was provided in the cable unit 10 of the both sides of the multiple cable 11, you may provide between the cable units 10. FIG. Moreover, although the self-supporting cable 1 of each embodiment mentioned above was made into the flat type, it is not limited to this, Even if it is a cable of a cylindrical type etc., it is applicable.

本発明に係る自立型ケーブルは、例えば機械加工ライン、半導体製造装置、電子部品実装装置等に組み込まれたロボット走行装置等に適用が可能である。   The self-supporting cable according to the present invention can be applied to, for example, a robot traveling apparatus incorporated in a machining line, a semiconductor manufacturing apparatus, an electronic component mounting apparatus, or the like.

本発明に係る自立型ケーブルの実施形態を示す平面図及びA−A線断面図である。It is the top view and AA sectional view taken on the line which show embodiment of the self-supporting cable which concerns on this invention. 移動試験装置を示す平面図である。It is a top view which shows a movement test apparatus. 移動繰り返し試験の結果を示す図である。It is a figure which shows the result of a movement repetition test.

符号の説明Explanation of symbols

1、1A、1B、1C 自立型ケーブル、10 ケーブルユニット、11 多連ケーブル、20、20A、20B、20C 自立補助部材、60 移動試験装置、61 可動部、62 固定部、63 移動面、64 基準面   1, 1A, 1B, 1C Self-standing cable, 10 Cable unit, 11 Multiple cable, 20, 20A, 20B, 20C Self-supporting auxiliary member, 60 Moving test device, 61 Moving part, 62 Fixed part, 63 Moving surface, 64 Reference surface

Claims (3)

複数のケーブルが並列配置されて一体化された多連ケーブルを備え、上下に配置された、往復移動する可動部と固定された固定部に、前記多連ケーブルの一端側と他端側がそれぞれ連結される自立型ケーブルであって、
ケーブル長方向の圧縮応力に対して変形し難く、前記ケーブル長方向の引張応力に対して変形し易い耐圧縮部材と、前記ケーブル長方向の引張応力に対して変形し難い耐引張部材とを、並列配置して一体化した自立補助部材が、前記多連ケーブルと並列配置されて一体化されていることを特徴とする自立型ケーブル。
A multiple cable in which a plurality of cables are arranged in parallel is integrated, and one end side and the other end side of the multiple cable are respectively connected to a movable part that is reciprocally moved and a fixed part that is arranged vertically. A free-standing cable,
A compression-resistant member that is not easily deformed with respect to a compressive stress in the cable length direction and that is easily deformed with respect to a tensile stress in the cable length direction; and a tension-resistant member that is not easily deformed with respect to the tensile stress in the cable length direction. A self-supporting cable, wherein self-supporting auxiliary members arranged in parallel and integrated with each other are arranged in parallel with the multiple cable.
前記耐圧縮部材及び前記耐引張部材は、ケーブル状に形成されており、前記耐圧縮部材の中心軸が、前記可動部の移動時に前記多連ケーブルの引張応力発生側に位置するように、前記耐引張部材の中心軸が、前記多連ケーブルの各中心軸を通る線上に位置するように、並列配置されていることを特徴とする請求項1に記載の自立型ケーブル。 The compression-resistant member and the tensile-resistant member are formed in a cable shape, and the central axis of the compression-resistant member is positioned on the tensile stress generation side of the multiple cable when the movable part moves. 2. The self-supporting cable according to claim 1, wherein the tension-resistant members are arranged in parallel so that the central axes of the tensile members are located on a line passing through the central axes of the multiple cables. 前記自立補助部材は、前記多連ケーブルの両側にそれぞれ並列配置されて一体化されていることを特徴とする請求項1又は2に記載の自立型ケーブル。 The self-supporting cable according to claim 1 or 2, wherein the self-supporting auxiliary members are arranged in parallel on both sides of the multiple cable and integrated.
JP2008116427A 2008-04-25 2008-04-25 Free standing cable Expired - Fee Related JP5358048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116427A JP5358048B2 (en) 2008-04-25 2008-04-25 Free standing cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116427A JP5358048B2 (en) 2008-04-25 2008-04-25 Free standing cable

Publications (2)

Publication Number Publication Date
JP2009266702A true JP2009266702A (en) 2009-11-12
JP5358048B2 JP5358048B2 (en) 2013-12-04

Family

ID=41392259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116427A Expired - Fee Related JP5358048B2 (en) 2008-04-25 2008-04-25 Free standing cable

Country Status (1)

Country Link
JP (1) JP5358048B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325741A2 (en) 2009-11-24 2011-05-25 Sony Corporation Remote control apparatus, remote control system, information processing method of remote control apparatus, and program
WO2013158520A1 (en) * 2012-04-15 2013-10-24 Fawcett Jonathan Eric Charge and sync cables for mobile devices
JP2014517891A (en) * 2011-04-28 2014-07-24 スネクマ Assembly comprising a protective device and a turbine machine element to be protected
JP2017056541A (en) * 2015-09-20 2017-03-23 株式会社潤工社 Filament holding mechanism
CN110335707A (en) * 2019-05-27 2019-10-15 扬州曙光电缆股份有限公司 Rail traffic Special power cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026036B1 (en) * 1969-10-04 1975-08-28
JPH06338185A (en) * 1993-05-25 1994-12-06 Sony Corp Flexible printed board and disk device
JP2009159777A (en) * 2007-12-27 2009-07-16 Junkosha Co Ltd Self-supporting type cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026036B1 (en) * 1969-10-04 1975-08-28
JPH06338185A (en) * 1993-05-25 1994-12-06 Sony Corp Flexible printed board and disk device
JP2009159777A (en) * 2007-12-27 2009-07-16 Junkosha Co Ltd Self-supporting type cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325741A2 (en) 2009-11-24 2011-05-25 Sony Corporation Remote control apparatus, remote control system, information processing method of remote control apparatus, and program
JP2014517891A (en) * 2011-04-28 2014-07-24 スネクマ Assembly comprising a protective device and a turbine machine element to be protected
WO2013158520A1 (en) * 2012-04-15 2013-10-24 Fawcett Jonathan Eric Charge and sync cables for mobile devices
JP2017056541A (en) * 2015-09-20 2017-03-23 株式会社潤工社 Filament holding mechanism
CN110335707A (en) * 2019-05-27 2019-10-15 扬州曙光电缆股份有限公司 Rail traffic Special power cable

Also Published As

Publication number Publication date
JP5358048B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5358048B2 (en) Free standing cable
TWI400722B (en) Expandable electric cord and production method thereof
JP5159132B2 (en) Flat cable
JP5672582B2 (en) Movable part wiring cable and movable part wiring flat cable
US7314996B2 (en) Coaxial cable
TW201622282A (en) Elongate body and support device for cable and the like
TWI656539B (en) Flat cable for mobil part wiring
US20020129969A1 (en) Electrical cable
JP5111890B2 (en) Movable flat cable
JP2007305479A (en) Electric cable
JP2012146591A (en) Multicore cable, and method of manufacturing the same
KR20170082104A (en) Guide chain for cables support apparatus and cables support apparatus comprising the same
JP5857993B2 (en) Flat cable
JP2009159777A (en) Self-supporting type cable
JP2016225093A (en) Wire feeding device and method for correcting curling of wire
JP6569923B2 (en) Braided shielded cable
JP2017010717A (en) Flat cable for movable portion wiring
JP6713712B2 (en) Multi-core cable
JP2009102773A (en) Self-supporting cable
JP7495302B2 (en) Electric wire manufacturing equipment and twist elimination equipment
JP2022170751A (en) Multi-core cable
JP2020095825A (en) cable
US5551224A (en) Device for reverse-twisting stranding elements
WO2023013376A1 (en) Robot
US20240145122A1 (en) Insulated electric wire and wiring harness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees