JP3912428B2 - Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus - Google Patents

Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus Download PDF

Info

Publication number
JP3912428B2
JP3912428B2 JP2006512253A JP2006512253A JP3912428B2 JP 3912428 B2 JP3912428 B2 JP 3912428B2 JP 2006512253 A JP2006512253 A JP 2006512253A JP 2006512253 A JP2006512253 A JP 2006512253A JP 3912428 B2 JP3912428 B2 JP 3912428B2
Authority
JP
Japan
Prior art keywords
measuring
measurement
measured
signal
electrical characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006512253A
Other languages
Japanese (ja)
Other versions
JPWO2005101034A1 (en
Inventor
岳 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Application granted granted Critical
Publication of JP3912428B2 publication Critical patent/JP3912428B2/en
Publication of JPWO2005101034A1 publication Critical patent/JPWO2005101034A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • G01R27/32Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response in circuits having distributed constants, e.g. having very long conductors or involving high frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2822Testing of electronic circuits specially adapted for particular applications not provided for elsewhere of microwave or radiofrequency circuits

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、フィルタやカプラ、バランのような電子部品、またはチップインダクタ、チップコンデンサ等のようなインピーダンス素子の高周波電気特性の測定方法に関する。より詳しくは、ネットワークアナライザなどの測定器によって前記電子部品の散乱係数やインピーダンス値を測定する際の測定誤差の補正方法に関する。 The present invention relates to a method for measuring high-frequency electrical characteristics of electronic components such as filters, couplers, and baluns, or impedance elements such as chip inductors and chip capacitors. More specifically, the present invention relates to a method for correcting a measurement error when measuring a scattering coefficient or impedance value of the electronic component using a measuring instrument such as a network analyzer.

ネットワークアナライザを用いて、表面実装タイプのフィルタやカプラ、またはチップインダクタ等のインピーダンス素子の高周波電気特性を測定する場合、これらの電子部品に直接同軸ケーブル等を接続することは不可能であるため、通常はネットワークアナライザに同軸ケーブルを介して平面伝送路(マイクロストリップラインやコプレーナウェーブガイドなど)を接続し、この平面伝送路上に電子部品を接触させて測定する。この場合、被検体であるインピーダンス素子の散乱係数行列の真値を得るためには、測定系の誤差要因を同定して測定結果から誤差要因の影響を取り除かなければならない。これを補正または校正(キャリブレーション)という。 When measuring high-frequency electrical characteristics of impedance elements such as surface mount type filters and couplers, or chip inductors using a network analyzer, it is impossible to connect a coaxial cable directly to these electronic components. Usually, a planar transmission line (such as a microstrip line or a coplanar waveguide) is connected to a network analyzer via a coaxial cable, and an electronic component is brought into contact with the planar transmission line for measurement. In this case, in order to obtain the true value of the scattering coefficient matrix of the impedance element that is the subject, it is necessary to identify the error factor of the measurement system and remove the influence of the error factor from the measurement result. This is called correction or calibration.

ネットワークアナライザによる測定において、測定系の誤差を除去する従来技術として、非特許文献1に示されるように、TRL(Through-Reflection-Load) 補正やSOLT(Short-Open-Load-Through) 補正が知られている。 As shown in Non-Patent Document 1, TRL (Through-Reflection-Load) correction and SOLT (Short-Open-Load-Through) correction are known as conventional techniques for removing measurement system errors in measurement using a network analyzer. It has been.

図1,図2に、ネットワークアナライザを用いた測定系と、SOLT補正,TRL補正で使用される各誤差モデルとを示す。
被検体である電子部品1は、測定治具2の上面に形成された伝送路上に接続される。測定治具2の伝送路の両端は同軸ケーブル3を介して図示しないネットワークアナライザの測定ポートに接続されている。
SOLT補正の誤差モデルにおいて、S11A 〜S22A は被検体を含む伝送路の散乱係数、EDF,RF,SFは一方の測定ポート側の散乱係数、ELF,TFは他方の測定ポート側の散乱係数である。
TRL補正の誤差モデルにおいて、S11A 〜S22A は被検体の散乱係数、e00〜e11は一方の測定ポート側の散乱係数、f00〜f11は他方の測定ポート側の散乱係数である。
1 and 2 show a measurement system using a network analyzer, and error models used in SOLT correction and TRL correction.
The electronic component 1 that is the subject is connected to a transmission path formed on the upper surface of the measurement jig 2. Both ends of the transmission path of the measurement jig 2 are connected to a measurement port of a network analyzer (not shown) via a coaxial cable 3.
In the error model for SOLT correction, S 11A to S 22A are the scattering coefficients of the transmission path including the subject, E DF, E RF and E SF are the scattering coefficients of one measurement port, and E LF and E TF are the other measurement Port side scattering coefficient.
In the error model for TRL correction, S 11A to S 22A are the scattering coefficients of the object, e 00 to e 11 are the scattering coefficients on one measurement port side, and f 00 to f 11 are the scattering coefficients on the other measurement port side. .

誤差要因を同定するためには、被検体測定面に少なくとも3種類の散乱係数が既知のデバイス(標準器)を取りつけて測定を行わなければならない。伝統的に開放(OPEN) 、短絡(SHORT )、終端(LOAD=50Ω)が使用されることが多く、同軸環境であればこのような標準器を実現できるため、この方法は広く使用されており、SOLT補正と呼ばれる。SOLT補正では、図3に示すように、短絡(0Ω)と開放(∞Ω)と終端(50Ω)の3種類のコネクタ4を使用するとともに、ポート間を直結してスルー(Through )状態としている。 In order to identify the error factor, it is necessary to perform measurement by attaching at least three types of devices (standard devices) with known scattering coefficients to the object measurement surface. Traditionally, open (OPEN), short circuit (SHORT), and termination (LOAD = 50Ω) are often used, and such a standard device can be realized in a coaxial environment, so this method is widely used. , Called SOLT correction. In the SOLT correction, as shown in FIG. 3, three types of connectors 4 of a short circuit (0Ω), an open circuit (∞Ω), and a termination (50Ω) are used, and the ports are directly connected to form a through state. .

しかし、SOLT補正の場合、同軸環境以外ではこのような標準器の実現は極めて困難であり、補正に必要な標準器をチップデバイス形状で実現することができない。例えば表面実装部品を測定する際に用いられる平面伝送路は、導波管や同軸伝送路とは異なり、良好な「開放」や「終端」を得ることができず、現実的にSOLT補正を実施することができない。また、一般的に測定によって得られる測定値は、被検体1そのものではなく、被検体1と被検体を接続した測定治具2とを合成した特性となり、被検体単体の特性を測定することができない。 However, in the case of SOLT correction, it is extremely difficult to realize such a standard device except in a coaxial environment, and the standard device necessary for correction cannot be realized in a chip device shape. For example, unlike a waveguide or a coaxial transmission line, a flat transmission line used when measuring surface-mount components cannot obtain good “open” or “termination”, and actually performs SOLT correction. Can not do it. In general, the measurement value obtained by the measurement is not the subject 1 itself but a characteristic obtained by synthesizing the subject 1 and the measurement jig 2 to which the subject is connected, and the characteristics of the subject alone can be measured. Can not.

TRL補正とは、実現の難しいデバイス形状の標準器に代えて、図4に示すように、ポート間直結状態(Through )の伝送路5a、全反射(Reflection=通常短絡)の伝送路5b、及び長さが異なる数種類の伝送路(Line )5c,5dを標準器として使用するものである。伝送路5a〜5dは、比較的散乱係数が既知のものを製作しやすく、また全反射も短絡であれば、比較的簡単にその特性を予想できることから、伝送路のみで補正を可能としたものである。そのため、原理的には被検体1単体の特性を測定することができる。
この例では、スルー伝送路5aはいわゆるZero-throughである。被検体の測定時には、スルー伝送路5aより被検体の大きさだけ長さを長くした測定治具2に被検体をシリーズ接続して測定する。
As shown in FIG. 4, the TRL correction means that the transmission line 5a in the directly connected state (Through), the transmission line 5b in total reflection (Reflection = normal short circuit), Several types of transmission lines (Lines) 5c and 5d having different lengths are used as standard devices. The transmission lines 5a to 5d can be easily manufactured with a comparatively known scattering coefficient, and if the total reflection is short-circuited, its characteristics can be predicted relatively easily. It is. Therefore, in principle, the characteristics of the subject 1 alone can be measured.
In this example, the through transmission line 5a is a so-called zero-through. At the time of measuring the subject, the subject is connected in series to the measuring jig 2 that is longer than the through transmission path 5a by the size of the subject.

ところが、被検体である表面実装型デバイスにTRL補正を適用しようとすると、以下のような課題を生じる。
1)標準器である伝送路(Line 数種類とReflectionとThrough)5a〜5dにおいて、同軸コネクタ3と伝送路5a〜5dとの接続部に生じる誤差要因が全て等しくなければならない。しかし、たとえ各標準器で同じ種類のコネクタを使用しても、各標準器を測定器に接続する際に特性バラツキが非常に大きくなり、補正誤差を生じ、ミリ波帯に近づくと事実上実施不可能となる。
2)前記課題を解決するため、同軸コネクタ3を共通とし、その同軸ピンを標準器である伝送路と接触接続することでコネクタ測定のバラツキの影響を回避しようという工夫もされている。しかし、同軸ピンが破損するなど、構造上接触部に十分な押しつけ荷重を確保することが難しく、接触が安定しないために補正が不安定になることが多い。また、測定周波数が高くなると一般に伝送路も同軸ピンも細くなるので、これらの位置決め再現性による測定バラツキが大きくなってしまう。
3)補正時の測定が正常であるかどうかを補正作業中に判断することが困難であるので、手間のかかる補正作業を終えて実際に被検体を測定して初めて、補正時の接触不良などの事故に気づくといった無駄を生じる。
However, when the TRL correction is applied to the surface mount device that is the subject, the following problems occur.
1) In transmission lines (several types of lines, reflection and through) 5a to 5d, which are standard devices, all error factors generated in the connection portion between the coaxial connector 3 and the transmission lines 5a to 5d must be equal. However, even if the same type of connector is used for each standard device, the characteristic variation becomes extremely large when connecting each standard device to the measuring instrument, causing a correction error, which is practically performed when approaching the millimeter wave band. It becomes impossible.
2) In order to solve the above-mentioned problem, there has been an effort to avoid the influence of variations in connector measurement by using the coaxial connector 3 in common and connecting the coaxial pins to a standard transmission line. However, it is difficult to secure a sufficient pressing load on the contact portion due to the structure such as the coaxial pin being damaged, and the correction is often unstable because the contact is not stable. In addition, when the measurement frequency is increased, the transmission path and the coaxial pin are generally narrowed, so that the measurement variation due to the positioning reproducibility increases.
3) Since it is difficult to determine whether the measurement at the time of correction is normal or not during the correction work, the contact failure at the time of the correction, etc. is not made until the subject is actually measured after the time-consuming correction work. The waste of noticing the accident.

特許文献1には、ストリップ線路を経由して被検体に接続される2つの試験端子を有するネットワークアナライザを校正する方法が開示されている。すなわち、最初の校正測定においては、伝送と反射のパラメータを、伝搬定数が未知の線路上で、前記2つの試験端子間で無反射の仕方で接続されたストリップ線路上で測定し、同じ線路を使用してさらなる3回の校正測定を、前記線路上の3つの異なる位置において挿入された反射対称でかつ相反的な不連続部により実現された3つの校正標準器で実施するものである。
つまり、伝送路の状態を3つの状態に変化させることで、3種類の標準器を実現し、標準器の接続を1回のみとするものである。この方法であれば、TRL補正に比べて、標準器の接続回数を減らすことができ、校正作業における測定誤差を少なくできる。
Patent Document 1 discloses a method for calibrating a network analyzer having two test terminals connected to a subject via a strip line. That is, in the first calibration measurement, transmission and reflection parameters are measured on a strip line connected in a non-reflective manner between the two test terminals on a line whose propagation constant is unknown, and the same line is measured. In use, three additional calibration measurements are performed with three calibration standards implemented by reflection-symmetric and reciprocal discontinuities inserted at three different locations on the line.
That is, by changing the state of the transmission path to three states, three types of standard devices are realized, and the standard devices are connected only once. If this method is used, the number of connections of the standard device can be reduced as compared with the TRL correction, and the measurement error in the calibration operation can be reduced.

しかし、実際に被検体の測定を行う場合には、標準器として使用したストリップ線路を取り外し、被検体を接続できるストリップ線路(治具)を再度接続しなければならない。当然、再接続した際の接続部の特性は変化するので、測定誤差になってしまう。
また、2つの試験端子間にストリップ線路を無反射の仕方で接続することは、実際上難しく、試験端子とストリップ線路との接続部での反射係数が誤差要因となる。
さらに、被検体を接続して得られる測定値は、被検体だけでなく、被検体と被検体を接続したストリップ線路とを合成した特性となり、被検体単体の特性を測定することができない。
Application Note 1287-9; In-Fixture Measurements Using Vector Network Analyzers ((C) 1999 Hewlett-Packard Company) 特開平6−34686号公報
However, when actually measuring the subject, it is necessary to remove the strip line used as a standard device and reconnect a strip line (jig) to which the subject can be connected. Naturally, the characteristics of the connecting portion when reconnected change, resulting in a measurement error.
Further, it is practically difficult to connect the strip line between the two test terminals in a non-reflective manner, and the reflection coefficient at the connection between the test terminal and the strip line becomes an error factor.
Furthermore, the measurement value obtained by connecting the subject is not only the subject but also a characteristic obtained by synthesizing the subject and the strip line connecting the subject, and the characteristics of the subject alone cannot be measured.
Application Note 1287-9; In-Fixture Measurements Using Vector Network Analyzers ((C) 1999 Hewlett-Packard Company) JP-A-6-34686

そこで、本発明の目的は、TRL補正やSOLT補正における問題点を解消するとともに、接続部の特性ばらつきの影響を受けない高精度な電子部品の高周波電気特性測定方法を提供することにある。
また、高精度な電子部品の高周波電気特性測定装置を提供することにある。
さらに、高精度な高周波電気特性測定装置の校正方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for measuring high-frequency electrical characteristics of an electronic component with high accuracy that is free from the influence of variations in characteristics of connecting portions, while solving problems in TRL correction and SOLT correction.
Another object of the present invention is to provide a high-precision electronic component high-frequency electrical property measuring apparatus.
Another object of the present invention is to provide a highly accurate method for calibrating a high-frequency electrical characteristic measuring apparatus.

前記目的を達成するため、請求項1に記載の発明は、電子部品の高周波電気特性を測定する方法において、互いに離間して配置された複数の信号導体と、少なくとも1つの接地導体とを持ち、単位長さ当たりの電気特性が既知の伝送路を準備するステップと、前記各信号導体と前記接地導体とを測定器の測定ポートにそれぞれ接続するステップと、前記各信号導体の長さ方向の少なくとも3箇所において、信号導体と接地導体とを接続状態にして電気特性を測定するステップと、前記信号導体間を相互にスルー状態にして電気特性を測定するステップと、前記接続状態での測定値、スルー状態での測定値および前記伝送路の電気特性から、前記伝送路を含む測定系の誤差要因を求めるステップと、前記信号導体間あるいは前記信号導体間と前記接地導体との間に、被測定電子部品を接続して電気特性を測定するステップと、前記被測定電子部品の測定値から前記測定系の誤差要因を除去し、被測定電子部品の電気特性の真値を求めるステップと、を含むことを特徴とする電子部品の高周波電気特性測定方法を提供する。 In order to achieve the above object, an invention according to claim 1 is a method for measuring high-frequency electrical characteristics of an electronic component, comprising a plurality of signal conductors spaced apart from each other, and at least one ground conductor, Preparing a transmission line with known electrical characteristics per unit length; connecting each of the signal conductors and the ground conductor to a measurement port of a measuring instrument; and at least a length direction of each of the signal conductors Measuring the electrical characteristics by connecting the signal conductor and the ground conductor in three locations, measuring the electrical characteristics by mutually connecting the signal conductors, and the measured values in the connected state; A step of obtaining an error factor of a measurement system including the transmission path from a measurement value in a through state and an electrical characteristic of the transmission path, and between the signal conductors or between the signal conductors; Connecting the measured electronic component between the ground conductor and measuring the electrical characteristics; removing the error factor of the measurement system from the measured value of the measured electronic component; and measuring the electrical characteristics of the measured electronic component And a step of obtaining a true value. A method for measuring high-frequency electrical characteristics of an electronic component is provided.

本発明は、測定治具である伝送路の信号導体と接地導体との間に被検体をシリーズ接続するか、あるいは信号導体間と接地導体との間に接続して、その反射および伝達係数などを測定し、これからインピーダンス値や品質係数等の電気特性を求める方法において、伝送路その他の測定系の誤差を除去する手法である。本発明は、測定系の誤差を測定する際、伝送路の短絡状態は良質なものを容易に実現できる、という知見に基づいてなされたものである。
本発明にかかる補正方法(以下、RRRR校正と呼ぶ)の好ましい例では、校正基準(標準器)として短絡基準を用いる。これは、短絡状態であればほぼ全反射状態になるので、信号導体の終端側の影響を受けないこと、及び、対象とする伝送路がTEM単一モード動作する周波数範囲では短絡状態の特性には誘電体の影響が実質的に無く、電磁界シミュレーションで非常に精度良くその電気特性を予想できること等の理由による。
一般的に、伝送路特性のシミュレーション時の精度を制限するパラメータは誘電率であるが、短絡状態の反射特性では誘電率を変化させてもほとんど計算結果に変化が見られないことを確認しており、シミュレーション結果を物理的真値と仮定して校正時に使用して差し支えないといえる。なお、伝送路の幅が測定信号の波長よりも十分に小さい場合は、短絡特性として−1(理想短絡の反射係数)を使用しても大きな誤差にはならないと考えられる。
In the present invention, a subject is connected in series between a signal conductor and a ground conductor of a transmission line, which is a measurement jig, or connected between signal conductors and a ground conductor, and its reflection and transmission coefficients, etc. Is a method for removing errors in the transmission line and other measurement systems in the method of measuring the electrical characteristics and obtaining the electrical characteristics such as the impedance value and the quality factor. The present invention has been made based on the knowledge that when a measurement system error is measured, a short-circuit state of a transmission line can be easily realized with a good quality.
In a preferred example of the correction method according to the present invention (hereinafter referred to as RRRR calibration), a short circuit reference is used as a calibration reference (standard device). This is almost totally reflected in the short circuit state, so it is not affected by the terminal end of the signal conductor, and in the frequency range where the target transmission line operates in the TEM single mode, the characteristics of the short circuit state are obtained. This is because there is substantially no influence of the dielectric, and its electric characteristics can be predicted with high accuracy by electromagnetic field simulation.
In general, the dielectric constant is the parameter that limits the accuracy of transmission line characteristics when simulating, but it is confirmed that there is almost no change in the calculation result even if the dielectric constant is changed in the short-circuit reflection characteristics. Therefore, it can be said that the simulation result is assumed to be a physical true value and can be used for calibration. When the width of the transmission line is sufficiently smaller than the wavelength of the measurement signal, it is considered that a large error does not occur even when -1 (reflection coefficient of an ideal short circuit) is used as the short circuit characteristic.

ここで、本発明にかかるRRRR校正の概略について説明する。
校正工程1:短絡状態での測定
RRRR校正では、長さ方向に一様な電気特性を有する複数の信号導体を持つ伝送路上の少なくとも3箇所において、伝送路を短絡状態とすることで、測定系の誤差要因を同定する。短絡状態とするため、例えば短絡基準を信号導体と接地導体との間に接続する。具体的には、伝送路の被検体測定位置に短絡基準を接続して測定を行い、次に被検体測定位置からL1 だけ離れた点に短絡基準を接続して測定を行い、さらに被検体測定位置からL2 だけ離れた点に短絡基準を接続して測定を行う。なお、伝送路特性が未知の場合には、さらに異なる1点での測定が必要である。
ここで短絡基準とは、電気的に短絡状態の部品一般を指し、チップ部品に限らず、金属片や工具などでもよい。望ましくは、ナイフエッジのような伝送路の長さ方向の接触長さが短いものがよい。短絡基準が理想的であれば、反射係数が−1(全反射)の値になるが、実際には短絡基準といえどもある程度のインダクタンスを持つので、インダクタンス値が既知である必要があるということである。通常、マイクロ波帯では、オープン状態と比較してショート状態は比較的容易に理想に近い状態を得られる。高い測定精度が要求される場合には、簡単なシミュレーション等によって短絡基準のインダクタンスを求めれば良い。
校正工程2:スルー状態での測定
短絡状態での測定とは別に、信号導体間を相互にスルー状態にして測定系の誤差要因を同定する。スルー状態を得るために、例えば伝達係数に方向性がないスルーチップをシリーズ接続する。シリーズ法による測定が可能なRRRR校正では、ポート間をスルー接続する必要がある。このとき、スルーチップの特性は既知でなくても良く、例えば抵抗値が未知のチップ抵抗でも良いが、方向性はあってはならない。なお、アイソレータやサーキュレータ(直流磁界下の磁性体を使用した特殊な素子)、または半導体アンプのような能動素子を除き、信号伝達に方向性を有するデバイスは作れない(相反定理)ので、この仮定は事実上自動的に満たされる。スルーチップとは、チップ部品に限らず、信号伝達に方向性がない部品であれば、いかなる部品でもよい。
実測工程:被検体の測定
伝送路の信号導体間に被測定電子部品をシリーズ接続するか、あるいはシリーズ接続および接地導体との接続の両方を同時に行って、その電気特性を測定する。
測定した被検体の電気特性と校正工程1,2で求めた誤差要因とを用いて、計算により被検体の電気特性の真値を求めることができる。
特に、短絡状態での測定を4箇所以上で実施すれば、測定系の誤差要因に加えて、伝送路の電気特性も求めることができる。
Here, an outline of the RRRR calibration according to the present invention will be described.
Calibration process 1: Measurement in short-circuit state In RRRR calibration, the transmission line is short-circuited in at least three locations on the transmission line having a plurality of signal conductors having uniform electrical characteristics in the length direction, thereby measuring the measurement system. Identify error factors. In order to achieve a short circuit state, for example, a short circuit reference is connected between the signal conductor and the ground conductor. Specifically, measurement is performed with a short-circuit reference connected to the subject measurement position on the transmission line, and then measurement is performed with the short-circuit reference connected to a point separated by L 1 from the subject measurement position. A measurement is performed with a short-circuit reference connected to a point separated by L 2 from the measurement position. If the transmission line characteristics are unknown, it is necessary to measure at a different point.
Here, the short-circuit standard refers to general components in an electrical short-circuit state, and is not limited to a chip component, and may be a metal piece or a tool. Desirably, the contact length in the longitudinal direction of the transmission path such as a knife edge is short. If the short-circuit standard is ideal, the reflection coefficient will be -1 (total reflection). However, even though the short-circuit standard actually has some inductance, the inductance value needs to be known. It is. Usually, in the microwave band, a short state can be obtained relatively easily in an ideal state compared to an open state. When high measurement accuracy is required, the short-circuited reference inductance may be obtained by simple simulation or the like.
Calibration step 2: Measurement in the through state Separately from the measurement in the short circuit state, the signal conductors are mutually brought into the through state to identify the error factors of the measurement system. In order to obtain the through state, for example, through chips having no directivity in the transmission coefficient are connected in series. In the RRRR calibration that can be measured by the series method, it is necessary to make a through connection between the ports. At this time, the characteristics of the through chip may not be known, and for example, a chip resistor having an unknown resistance value may be used, but there should be no directivity. It is assumed that devices that have directionality in signal transmission cannot be made (reciprocity theorem), except for isolators, circulators (special elements that use magnetic materials under a DC magnetic field), or active elements such as semiconductor amplifiers. Is virtually automatically charged. The through chip is not limited to a chip component, and may be any component as long as it has no directivity in signal transmission.
Actual measurement step: The electronic components to be measured are connected in series between the signal conductors of the measurement transmission path of the subject, or both the series connection and the connection with the ground conductor are performed simultaneously to measure the electrical characteristics.
Using the measured electrical characteristics of the subject and the error factors obtained in the calibration steps 1 and 2, the true value of the electrical characteristics of the subject can be obtained by calculation.
In particular, if measurement in a short-circuit state is performed at four or more locations, the electrical characteristics of the transmission line can be obtained in addition to the error factors of the measurement system.

前記説明では、校正工程において、信号導体と接地導体とを短絡させたが、必ずしも短絡させる必要はなく、何らかの反射状態が得られるように信号導体と接地導体とを接続すればよい。
短絡基準に代えてチップ抵抗のような伝達係数のある校正基準を用いた場合、一方のポートから入力された信号のうち一部が校正基準との接触部を通過し、信号導体の開放端で全反射して戻ってくるため、測定誤差になる可能性がある。しかしながら、例えば入力信号のうち16%(−16dB)が校正基準との接触部を通過して信号導体の開放端へ伝達し、ここで全反射したと仮定すると、往復で約−32db(=−16×2)となり、誤差のレベルは入力信号の約2.5%程度である。したがって、開放端へ流れる信号が入力信号の16%程度以下であれば、誤差は非常に小さく、校正に必要な精度が得られる。
一方、16%より大きな信号が校正基準との接触部を通過した場合には、誤差が大きくなる可能性があるが、その場合は、接触検出と同様にポート1とポート2との間をスルーチップなどで接続しておけばよい。スルーチップを介して信号がポート2側へ伝達し、信号導体の開放端で全反射しないため、戻ってくる信号レベルを低くできる。
In the above description, the signal conductor and the ground conductor are short-circuited in the calibration step. However, it is not always necessary to short-circuit, and the signal conductor and the ground conductor may be connected so as to obtain some reflection state.
When a calibration standard with a transfer coefficient such as chip resistance is used instead of the short circuit standard, a part of the signal input from one port passes through the contact with the calibration standard, and the open end of the signal conductor Since it returns after being totally reflected, there is a possibility of measurement errors. However, assuming that, for example, 16% (−16 dB) of the input signal passes through the contact with the calibration reference and is transmitted to the open end of the signal conductor, where it is totally reflected, about −32 db (= − 16 × 2), and the error level is about 2.5% of the input signal. Therefore, if the signal flowing to the open end is about 16% or less of the input signal, the error is very small and the accuracy required for calibration can be obtained.
On the other hand, if a signal larger than 16% passes through the contact portion with the calibration reference, there is a possibility that the error becomes large. Connect it with a chip. Since the signal is transmitted to the port 2 side through the through chip and is not totally reflected at the open end of the signal conductor, the signal level returned can be lowered.

以上のようにして実施される本RRRR校正法は、次のような特徴を有する。
(1)補正・測定は全て同一の1つの伝送路上で行う。
TRL補正では、いくつもの長さの伝送路が標準器として必要で、かつこれらと同軸ケーブルとの接続部の電気特性が全て等しい必要があるが、RRRR校正では補正作業だけでなく、測定作業でも全て同一の1つの伝送路を使用するので、伝送路を付け替える必要がなく、伝送路やコネクタ、接続部などの特性バラツキの影響を受けない。
(2)2端子素子のシリーズ法による測定はもちろん、通常の2ポート以上の電子部品(3端子以上の電子部品)の測定も問題なく行うことができ、測定対象を選ばない。特に、伝送路の特性インピーダンスより高いインピーダンスを持つ電子部品の測定精度が高い。
(3)測定治具に必要な伝送路の長さは、測定したい周波数の下限によって決まる。低周波数に対応するには長い伝送路が必要であるが、高周波数に対応するには短い伝送路で足りる。
(4)補正のための測定は、伝送路上の数ヵ所での校正基準(例えば短絡基準)による測定と適当なデバイスによるスルー測定を行うことで行う。
被検体の測定位置からどれだけ離れた位置で何ヶ所の校正基準による測定をすべきかは、測定周波数帯域幅と周波数上限によって決定する。また、スルーチップは方向性さえなければ、その散乱係数は未知でよい。
(5)校正基準での測定を伝送路の4箇所以上で実施すれば、伝送路の特性も知ることができる。
伝送路の特性が既知である場合には、3箇所で校正基準を接続すれば、測定系の誤差要因を求めることができるが、4箇所以上で校正基準を接続すれば、測定系の誤差要因だけでなく伝送路自体の特性(誘電率,損失係数など)を求めることが可能になる。したがって、伝送路治具に使用する誘電体材料の誘電率や損失係数が未知の場合や、誘電体材料がロット毎に特性バラツキを有する場合であっても、使用する伝送路治具そのものの特性を正確に求めることができ、誤差のない高精度な校正が可能になる。
一般に、テフロン(登録商標)やアルミナなどの基材で構成された伝送路治具は、電気特性のバラツキが小さく、その物理的真値を求めやすいが、高価である。これに対し、エポキシ樹脂などの汎用樹脂よりなる基材で構成された伝送路治具は、安価であるが、材料特性のばらつきが大きく、誘電率や損失係数にもばらつきがある。このような場合には、4箇所以上で校正基準を接続して伝送路特性を求めれば、伝送路特性のばらつきの影響を受けず、被検体の電気特性を高精度に測定できる。
(6)インピーダンス測定を行う場合には、伝送路の特性インピーダンス等は既知である必要がある。
伝送路の特性インピーダンスを基準とする散乱係数測定のみが必要な場合には、伝送路の特性インピーダンスは未知で良いが、インピーダンス測定を行いたい場合等には、伝送路の特性インピーダンスが既知である必要がある。これには、シミュレーションで計算したり、タイムドメインリフレクトリー法で実測するなどした値を用いれば良い。
The present RRRR calibration method implemented as described above has the following characteristics.
(1) Correction and measurement are all performed on the same transmission line.
In TRL correction, transmission lines of several lengths are necessary as standard devices, and all of the electrical characteristics of the connection portion between these and the coaxial cable need to be equal. Since all the same transmission lines are used, there is no need to change the transmission lines, and there is no influence of variations in characteristics such as transmission lines, connectors, and connection parts.
(2) The measurement of the two-terminal element series method as well as the measurement of ordinary electronic components having two or more ports (electronic components having three or more terminals) can be performed without any problem, and the measurement target is not selected. In particular, the measurement accuracy of electronic components having an impedance higher than the characteristic impedance of the transmission line is high.
(3) The length of the transmission line required for the measurement jig is determined by the lower limit of the frequency to be measured. A long transmission line is required to cope with a low frequency, but a short transmission line is sufficient to cope with a high frequency.
(4) Measurement for correction is performed by performing measurement based on a calibration standard (for example, short circuit standard) at several points on the transmission line and through measurement using an appropriate device.
How far away from the measurement position of the subject how many calibration standards should be measured is determined by the measurement frequency bandwidth and the upper frequency limit. Further, the scattering coefficient of the through chip may be unknown as long as it does not have directivity.
(5) If the measurement based on the calibration standard is performed at four or more locations on the transmission line, the characteristics of the transmission line can also be known.
If the characteristics of the transmission line are known, the error factor of the measurement system can be obtained by connecting the calibration reference at three locations, but if the calibration reference is connected at four or more locations, the error factor of the measurement system can be obtained. As well as the characteristics of the transmission line itself (dielectric constant, loss factor, etc.) can be obtained. Therefore, even if the dielectric constant and loss factor of the dielectric material used in the transmission path jig are unknown or the dielectric material has characteristic variations from lot to lot, the characteristics of the transmission path jig itself used Can be obtained accurately, and high-precision calibration without error becomes possible.
In general, a transmission line jig made of a base material such as Teflon (registered trademark) or alumina has little variation in electrical characteristics, and its physical true value can be easily obtained, but is expensive. On the other hand, a transmission line jig made of a base material made of a general-purpose resin such as an epoxy resin is inexpensive, but has a large variation in material characteristics, and a variation in dielectric constant and loss coefficient. In such a case, if the transmission path characteristics are obtained by connecting calibration standards at four or more locations, the electrical characteristics of the subject can be measured with high accuracy without being affected by variations in the transmission path characteristics.
(6) When impedance measurement is performed, the characteristic impedance and the like of the transmission path need to be known.
If only the scattering coefficient measurement based on the characteristic impedance of the transmission line is required, the characteristic impedance of the transmission line may be unknown. However, if the impedance measurement is desired, the characteristic impedance of the transmission line is known. There is a need. For this purpose, a value calculated by simulation or measured by a time domain reflectometry method may be used.

前述の説明では、短絡状態での測定結果の他に、伝達係数に方向性のないスルーチップをシリーズ接続した測定結果を用いて誤差係数を決定したが、被検体に方向性がない場合には、被検体も一種のスルーチップとみなすことができる。そのため、スルーチップによる測定を省略し、被検体の測定結果と短絡状態での測定結果とを用いて誤差係数を決定することが可能である。
この場合、被検体は2端子に限らず、各ポート間に方向性がなければ3端子以上の電子部品でも適用可能である。
In the above description, in addition to the measurement result in the short-circuit state, the error coefficient is determined using the measurement result obtained by connecting a series of through-chips with no directivity in the transfer coefficient. The subject can also be regarded as a kind of through chip. Therefore, it is possible to omit the measurement using the through chip and determine the error coefficient using the measurement result of the subject and the measurement result in the short circuit state.
In this case, the subject is not limited to two terminals, and an electronic component having three or more terminals can be applied as long as there is no direction between the ports.

短絡基準の測定時に、被検体測定箇所に適当なスルーチップを接続しておく事で、短絡基準の接触不良を伝達係数の大小で検出できる。すなわち、何らかの原因で接触不良が発生じている場合には、ポート間の伝達係数が大きくなることで、接触不良を検出できる。このように、補正手順中に測定ミスを検出できるため、後に被検体を測定した時点で補正に失敗していたと判明するような無駄を防げる。 By connecting an appropriate through chip to the object measurement location at the time of the short-circuit reference measurement, it is possible to detect a short-circuit reference contact failure with the magnitude of the transmission coefficient. That is, when contact failure occurs for some reason, the contact failure can be detected by increasing the transmission coefficient between the ports. In this way, since a measurement error can be detected during the correction procedure, it is possible to prevent waste that would prove that the correction failed when the subject was measured later.

上記補正では、被検体測定位置までの誤差要因を除去できるが、被検体測定位置間の誤差、例えば2ポートの場合なら各ポートの被検体電極の接触点間の誤差要因は未考慮である。このような誤差のなかで最大のものは、信号導体間に存在する浮遊容量である。浮遊容量があると、被検体を測定したとき、浮遊容量を含んだ値を測定することになり、誤差要因となる。
そこで、信号導体に何も接続しない状態(オープン状態)の電気特性を測定し、その測定結果から浮遊アドミタンスを求め、被検体の測定結果から浮遊アドミタンスの影響を数学的に除去すれば、浮遊容量による誤差を解消でき、より高精度の特性測定が可能になる。
In the above correction, the error factor up to the subject measurement position can be removed, but the error between the subject measurement positions, for example, the error factor between the contact points of the subject electrode of each port is not considered in the case of two ports. The largest of these errors is stray capacitance that exists between signal conductors. If there is stray capacitance, when the subject is measured, a value including the stray capacitance is measured, which causes an error.
Therefore, by measuring the electrical characteristics of the signal conductor that is not connected to anything (open state), obtaining the floating admittance from the measurement result, and mathematically removing the effect of the floating admittance from the measurement result of the subject, the floating capacitance Error can be eliminated, and more accurate characteristic measurement becomes possible.

伝送路の信号導体と接地導体とを短絡状態にするため、短絡基準を伝送路に接続したが、周波数が高いために短絡基準の残留インダクタンスの影響が大きく、十分に短絡に近くならない場合(ポート間を信号が通過してしまい、全反射が得られない場合)がある。
この場合には、校正基準を伝送路に対して近接(非接触)させ、伝送路と校正基準との間に発生する浮遊容量と校正基準の残留インダクタンスを直列共振状態とするのがよい。
直列共振状態では、校正基準接続部のインピーダンスは0Ω、つまり理想の短絡状態になる。つまり、良好な短絡基準が得られない高い周波数においても、良好な短絡基準を使用したのと同じ効果が得られる。
なお、校正基準として微小容量のコンデンサを用いた場合には、このコンデンサを伝送路に接触(完全接続)させて直列共振させることもできる。
In order to short-circuit the signal conductor and grounding conductor of the transmission line, the short-circuit reference is connected to the transmission line, but the effect of the residual inductance of the short-circuit reference is large due to the high frequency, and it is not close enough to the short-circuit (port Signal may pass between them and total reflection may not be obtained).
In this case, it is preferable that the calibration reference is brought close to (not in contact with) the transmission line, and the stray capacitance generated between the transmission line and the calibration reference and the residual inductance of the calibration reference are in a series resonance state.
In the series resonance state, the impedance of the calibration reference connection portion is 0Ω, that is, an ideal short-circuit state. That is, even at a high frequency where a good short-circuit standard cannot be obtained, the same effect as that obtained by using a good short-circuit standard can be obtained.
When a capacitor with a very small capacity is used as a calibration standard, the capacitor can be brought into contact (completely connected) with the transmission line to cause series resonance.

本発明の伝送路としては、信号導体と接地導体とが同一平面上に形成された伝送路を用いるのがよい。校正基準を用いた補正作業や被検体を用いた測定作業において、校正基準や被検体を信号導体と接地導体とに同時に接続しやすいからである。しかも、補正測定時の校正基準や被検体の押し付けを伝送路に対して垂直に行えるので、十分な押しつけ荷重を確保することが容易で、接触が安定しやすい。
具体的な伝送路としては、コプレーナウエーブガイドやスロット線路を用いることができる。コプレーナウエーブガイドは信号導体とこの信号導体を間にしてその両側に接地導体を有し、前記信号導体と接地導体とが同一平面上に形成されたものであり、10GHzまでの高周波特性の測定に適している。
一方、スロット線路は、信号導体と接地導体とが同一平面上に間隔をあけて設けられたものであり、10GHz以上の高周波特性の測定に適している。
As the transmission line of the present invention, it is preferable to use a transmission line in which a signal conductor and a ground conductor are formed on the same plane. This is because it is easy to connect the calibration reference and the subject to the signal conductor and the ground conductor simultaneously in the correction work using the calibration reference and the measurement work using the subject. In addition, since the calibration reference and the subject can be pressed perpendicularly to the transmission path during the correction measurement, it is easy to secure a sufficient pressing load and the contact is easily stabilized.
As a specific transmission line, a coplanar wave guide or a slot line can be used. The coplanar wave guide has a signal conductor and a ground conductor on both sides of the signal conductor. The signal conductor and the ground conductor are formed on the same plane. For measuring high frequency characteristics up to 10 GHz. Is suitable.
On the other hand, in the slot line, a signal conductor and a ground conductor are provided on the same plane with a space therebetween, and is suitable for measurement of high frequency characteristics of 10 GHz or more.

校正基準を接続する位置は、各位置間の位相差が70°〜145°となる位置とするのが望ましい。
補正を高精度に行うためには、補正データが相互にできるだけ離れていることが望ましく、校正基準の反射の位相によって異なる補正データを得るRRRR校正では、補正に必要な校正基準の接続位置間の位相差を70°〜145°とするのが、校正精度を高める上で望ましい。但し、接続位置間の位相差を前記のように設定すれば、校正精度は高いが、1組の校正基準で対応できる周波数範囲がかなり狭くなってしまう。しかし、校正基準接続位置の設定が非常に簡単で、かつ、校正時の測定データをうまく使いまわせば、広帯域測定であっても実用上問題になるほどは校正基準測定回数が増えるわけでも無い。
The position where the calibration reference is connected is preferably a position where the phase difference between the positions is 70 ° to 145 °.
In order to perform correction with high accuracy, it is desirable that the correction data is as far as possible from each other. In the RRRR calibration in which correction data that differs depending on the reflection phase of the calibration reference is obtained, the connection between the calibration reference connection positions necessary for the correction A phase difference of 70 ° to 145 ° is desirable for improving calibration accuracy. However, if the phase difference between the connection positions is set as described above, the calibration accuracy is high, but the frequency range that can be handled by one set of calibration standards is considerably narrowed. However, if the calibration reference connection position is set very easily and the measurement data at the time of calibration is used well, the number of calibration reference measurements will not increase to a practical level even for wideband measurements.

従来のネットワークアナライザを用いた測定系およびSOLT補正の誤差モデルを示す図である。It is a figure which shows the error model of the measurement system and SOLT correction | amendment using the conventional network analyzer. 従来のネットワークアナライザを用いた測定系およびTRL補正の誤差モデルを示す図である。It is a figure which shows the error model of the measurement system and TRL correction | amendment using the conventional network analyzer. SOLT校正法を示す図である。It is a figure which shows a SOLT calibration method. TRL校正法を示す図である。It is a figure which shows the TRL calibration method. 本発明にかかるRRRR校正法の一例を示す高周波電気特性測定装置の平面図である。It is a top view of the high frequency electrical property measuring apparatus which shows an example of the RRRR calibration method concerning this invention. 図5に示す校正時における高周波電気特性測定装置の正面図である。It is a front view of the high frequency electrical property measuring apparatus at the time of calibration shown in FIG. 本発明にかかるスルー測定における高周波電気特性測定装置の平面図である。It is a top view of the high frequency electrical property measuring apparatus in the through measurement concerning the present invention. 本発明にかかるRRRR校正法で使用される誤差モデル図である。It is an error model figure used with the RRRR calibration method concerning this invention. 本発明にかかる高周波電気特性測定装置の被検体測定時における平面図である。It is a top view at the time of the subject measurement of the high frequency electrical property measuring device concerning the present invention. 本発明にかかるRRRR校正法の一例のフローチャート図である。It is a flowchart figure of an example of the RRRR calibration method concerning this invention. 本発明にかかるRRRR校正法の他の例のフローチャート図である。It is a flowchart figure of the other example of the RRRR calibration method concerning this invention. 伝送路間に発生する浮遊容量の影響を示す図である。It is a figure which shows the influence of the stray capacitance which generate | occur | produces between transmission lines. 本発明にかかるRRRR校正法を用いて測定したチップインダクタの高周波特性図である。It is a high frequency characteristic figure of a chip inductor measured using RRRR calibration method concerning the present invention. 本発明にかかるRRRR校正法の他の例を示す高周波電気特性測定装置の平面図である。It is a top view of the high frequency electrical property measuring apparatus which shows the other example of the RRRR calibration method concerning this invention. 校正基準と伝送路との間で直列共振させる例を示す図である。It is a figure which shows the example which carries out a series resonance between a calibration reference | standard and a transmission line. 3ポートを持つ伝送路の例を示す平面図である。It is a top view which shows the example of the transmission line which has 3 ports. 伝送路としてスロット線路を用いた例の平面図である。It is a top view of the example which used the slot line as a transmission line.

以下に、本発明によるRRRR校正について、実施例を参照しながら具体的に説明する。 Hereinafter, RRRR calibration according to the present invention will be described in detail with reference to examples.

図5〜図9は本発明にかかる第1実施例を示す。
−RRRR校正の校正基準−
RRRR校正では、測定すべき校正基準は全て同じ短絡基準10であり、使用する測定治具11(伝送路12)も同じ治具である。
図5に示すように、測定治具11に形成された伝送路12上の3箇所以上で測定する。ここではポート1(コネクタ11a)側の補正について説明するが、ポート2(コネクタ11b)側についても同じ操作が必要である。
5 to 9 show a first embodiment according to the present invention.
-Calibration standard for RRRR calibration-
In the RRRR calibration, the calibration standards to be measured are all the same short-circuit standard 10, and the measurement jig 11 (transmission path 12) to be used is also the same jig.
As shown in FIG. 5, the measurement is performed at three or more locations on the transmission line 12 formed in the measurement jig 11. Although the correction on the port 1 (connector 11a) side will be described here, the same operation is required on the port 2 (connector 11b) side.

測定治具11として、ここではコプレーナウエーブガイドを例にして説明する。測定治具11は、図5,図6に示すように、治具基板11cの上面に2つの信号導体12a,12bが一直線上にかつ一端が間隔をあけて配置され、他端がコネクタ11a,11bにそれぞれ接続されている。信号導体12a,12bの幅方向両側に間隔をあけて接地導体12cが配置されており、信号導体12a,12bと接地導体12cとが治具基板11c上の同一平面上に形成されている。なお、この治具基板11aでは、裏面にも接地導体12dが形成されている。コネクタ11a,11bには同軸ケーブル14がそれぞれ接続され、測定器の一例であるネットワークアナライザ20の測定ポート21〜24に接続されている。同軸ケーブル14の信号線14aは、接続ばらつきを解消するため信号導体12a,12bに半田付けや溶接等によって固定されている。測定ポート21,24は同軸ケーブル14を介して信号導体12a,12bに接続され、測定ポート22,23は接地導体12bに接続されている。 Here, a coplanar wave guide will be described as an example of the measuring jig 11. As shown in FIGS. 5 and 6, the measurement jig 11 has two signal conductors 12 a and 12 b arranged on a straight line on the upper surface of the jig substrate 11 c with one end being spaced and the other end being a connector 11 a, 11b, respectively. Ground conductors 12c are arranged on both sides in the width direction of the signal conductors 12a and 12b, and the signal conductors 12a and 12b and the ground conductor 12c are formed on the same plane on the jig substrate 11c. In this jig substrate 11a, a ground conductor 12d is also formed on the back surface. A coaxial cable 14 is connected to each of the connectors 11a and 11b, and is connected to measurement ports 21 to 24 of a network analyzer 20 which is an example of a measuring instrument. The signal line 14a of the coaxial cable 14 is fixed to the signal conductors 12a and 12b by soldering or welding in order to eliminate connection variation. The measurement ports 21 and 24 are connected to the signal conductors 12a and 12b via the coaxial cable 14, and the measurement ports 22 and 23 are connected to the ground conductor 12b.

測定治具11の上方には、図6に示すように短絡基準10を伝送路12に押し付けるプッシャ15と、プッシャ15を伝送路12に沿って自由に移動できる機構16とが設けられている。ここでは、短絡基準10として、絶縁性のプッシャ15の先端に取り付けたナイフエッジ状の導体を用いた。 As shown in FIG. 6, a pusher 15 that presses the short-circuit reference 10 against the transmission path 12 and a mechanism 16 that can freely move the pusher 15 along the transmission path 12 are provided above the measurement jig 11. Here, a knife-edge conductor attached to the tip of the insulating pusher 15 was used as the short-circuit reference 10.

−短絡基準の接続・測定−
まず、被検体の測定時に一方の電極を接続する箇所(図5中の測定点1:P1、以下「被検体測定箇所」という)に短絡基準10を接続して測定を行い、この時の測定結果をS11M1とする。この際、測定箇所における反射係数の真値をΓA1とする。ΓA1は短絡基準の真値であるが、これは短絡基準10の伝送路12の長さ方向の大きさが測定信号波長と比較して十分に小さければ−1とすればよく、そうでなければその真値の予想値をシミュレーション等で求めておくべきものである。
-Connection and measurement of short circuit reference-
First, measurement is performed by connecting the short-circuit reference 10 to a location (measurement point 1: P1 in FIG. 5, hereinafter referred to as “subject measurement location”) where one electrode is connected during measurement of the subject. The result is S11M1 . At this time, the true value of the reflection coefficient at the measurement location is Γ A1 . Γ A1 is a true value of the short-circuit reference, and this may be −1 if the length in the length direction of the transmission line 12 of the short-circuit reference 10 is sufficiently smaller than the measurement signal wavelength. For example, the expected value of the true value should be obtained by simulation or the like.

次に、被検体測定箇所よりポート1側にL1 だけ離れた信号導体12a上の位置(測定点2:P2)に短絡基準10を接続して測定を行い、この時の測定結果をS11M2とする。この際、測定点2における短絡基準10の反射係数の真値はもちろんΓA1であるが、被検体測定箇所を基準面にとると、反射係数の真値は数式1のように変換される。ポート1側より入射した電磁波は、短絡基準10で全反射するため、被検体測定箇所に短絡基準10を接続した場合と比較して往復分2L1 だけ伝送路を伝達する距離が短いからである。ここで、αは単位長さ当たりの伝送路の伝達度[U/mm]、βは伝送路の位相定数[rad/mm]であり、ΓA2は被検体測定箇所を基準面とした場合の測定点2に接続された短絡基準10の真値である。

Figure 0003912428
Then, the position of the signal conductors 12a at a distance L 1 to the port 1 side of the analyte measurement points (measurement point 2: P2) was measured by connecting a short circuit reference 10, the measurement results of the S 11M2 And At this time, the true value of the reflection coefficient of the short-circuit reference 10 at the measurement point 2 is of course Γ A1 , but when the object measurement location is taken as the reference plane, the true value of the reflection coefficient is converted as shown in Equation 1. This is because the electromagnetic wave incident from the port 1 side is totally reflected by the short-circuit reference 10, and therefore the distance for transmitting the transmission path by 2L 1 for the round trip is shorter than when the short-circuit reference 10 is connected to the subject measurement location. . Where α is the transmission rate [U / mm] of the transmission line per unit length, β is the phase constant [rad / mm] of the transmission line, and Γ A2 is the value when the subject measurement point is the reference plane The true value of the short-circuit reference 10 connected to the measurement point 2.
Figure 0003912428

続けて、被検体測定箇所よりポート1側にL2 だけ離れた信号導体12a上の位置(測定点3:P3)に短絡基準10を接続して測定を行い、この時の測定結果をS11M3とする。測定点2の場合と同様に被検体測定箇所を基準面に取ると、反射係数の真値は数式2のようになる。

Figure 0003912428
Subsequently, the position of the signal conductors 12a in port 1 side of the analyte measurement points separated by L 2 (measurement point 3: P3) was measured by connecting a short circuit reference 10, the measurement results of the S 11M3 And As in the case of the measurement point 2, when the subject measurement point is taken as the reference plane, the true value of the reflection coefficient is expressed by Equation 2.
Figure 0003912428

なお、数式1、数式2は伝送路の伝達度の負の冪になっていることから明らかなように、ΓA2、ΓA3はその大きさが1を越えることがある。通常であれば、反射係数の大きさが1を超える短絡基準など存在し得ないが、これはあくまでも数式1、数式2が基準面を被検体測定箇所に取っているために発生している状態であり、異常ではない。It should be noted that Γ A2 and Γ A3 may exceed 1 as apparent from the fact that Equations 1 and 2 are negative power of the transmission path. Normally, there cannot be a short circuit reference having a reflection coefficient larger than 1, but this is caused by the fact that Equation 1 and Equation 2 take the reference plane as the object measurement location. It is not abnormal.

伝送路の特性α,βが未知の場合には、さらに測定点1よりポート1側に距離L3 だけ離れた伝送路上の位置(測定点4:P4)に短絡基準10を接続して測定を行い、この時の測定結果をS11M4とする。測定点2の場合と同様に測定点1を基準面に取ると、測定点4における反射係数の真値ΓA4は数式3のようになる。

Figure 0003912428
Characteristics of the transmission path alpha, when β is unknown, further position of apart transmission line distance L 3 from the measuring point 1 to the port 1 side (measurement point 4: P4) to the measurement by connecting the short circuit reference 10 The measurement result is S 11M4 . When the measurement point 1 is taken as the reference plane as in the case of the measurement point 2, the true value Γ A4 of the reflection coefficient at the measurement point 4 is expressed by Equation 3.
Figure 0003912428

ここで、次式の通りα,βを含む式をξとおく。ξは、物理的には単位長さ当たりの伝送路の伝達係数を表している。

Figure 0003912428
Here, an expression including α and β is set as ξ as follows. ξ physically represents the transmission coefficient of the transmission line per unit length.
Figure 0003912428

数式4を用いると、数式1〜数式3はそれぞれ数式5〜数式7のように書き直すことが出来る。

Figure 0003912428
Figure 0003912428
Figure 0003912428
Using Equation 4, Equations 1 to 3 can be rewritten as Equations 5 to 7, respectively.
Figure 0003912428
Figure 0003912428
Figure 0003912428

前述のとおり、伝送路特性ξが未知の場合には、短絡基準を伝送路の4箇所で短絡させることで、誤差係数だけでなく、伝送路特性ξをも求めることができる。
伝送路特性ξには伝達度αと位相係数βの2つの未知数が含まれるが、伝送路特性ξは、実数部が伝達度αに関係し、虚数部が位相係数βに関係する複素数であるから、1つの未知数として求めることができる。
なお、後の計算の都合により、短絡基準を測定する被検体測定位置からの距離L1 ,L2 ,L3 は、次のいづれかの関係を満たすことが望ましい。
1 :L2 :L3 =1:2:3
1 :L2 :L3 =1:2:4
前記関係を満たしていれば、以下に示す数式を用いて伝送路特性を陽に計算することができる。前記関係を満たしていない場合、下記数式では伝送路特性を計算できないので、反復計算等によって求める必要がある。
As described above, when the transmission line characteristic ξ is unknown, not only the error coefficient but also the transmission line characteristic ξ can be obtained by short-circuiting the short-circuit reference at four locations of the transmission line.
The transmission line characteristic ξ includes two unknowns, a transmission factor α and a phase coefficient β, but the transmission line characteristic ξ is a complex number whose real part is related to the transmission degree α and whose imaginary part is related to the phase coefficient β. From this, it can be obtained as one unknown.
For convenience of later calculations, it is desirable that the distances L 1 , L 2 , L 3 from the subject measurement position for measuring the short-circuit reference satisfy one of the following relationships.
L 1 : L 2 : L 3 = 1: 2: 3
L 1 : L 2 : L 3 = 1: 2: 4
If the relationship is satisfied, the transmission path characteristic can be calculated explicitly using the following mathematical formula. If the above relationship is not satisfied, the transmission path characteristics cannot be calculated by the following formula, so it is necessary to obtain it by iterative calculation or the like.

短絡基準を測定する位置L1 ,L2 ,L3 が、L1 :L2 :L3 =1:2:3の関係を満足している場合は、数式8によってξを求めることができる。

Figure 0003912428
When the positions L 1 , L 2 , and L 3 for measuring the short-circuit reference satisfy the relationship of L 1 : L 2 : L 3 = 1: 2: 3, ξ can be obtained by Expression 8.
Figure 0003912428

一方、L1 :L2 :L3 =1:2:4の関係を満足している場合は、数式9によってξを求めることができる。

Figure 0003912428
1 :L2 :L3 の比が前記の条件を満たさない場合については、ξを求める式を陽に導いていないので、必要に応じて同様の式を誘導しておくか、あるいは反復計算によってξを求めるかすれば良い。On the other hand, when the relationship of L 1 : L 2 : L 3 = 1: 2: 4 is satisfied, ξ can be obtained by Equation 9.
Figure 0003912428
In the case where the ratio of L 1 : L 2 : L 3 does not satisfy the above condition, the formula for obtaining ξ is not derived explicitly, so a similar formula is derived as necessary or iterative calculation is performed. It is sufficient to obtain ξ by

数式8または数式9によってξが求まれば、数式5、数式6によってΓA2、ΓA3の値が計算できるので、後述の誤差係数を順次求めることが可能になる。If ξ is obtained by Equation 8 or Equation 9, the values of Γ A2 and Γ A3 can be calculated by Equation 5 and Equation 6, so that error coefficients described later can be obtained sequentially.

−スルーチップの接続・測定−
次に、図7に示すようにスルー(ポート間直結)状態での測定を行う。ポート間を接続するために適当なデバイス(以下、スルーチップという)13を信号導体12a,12b間にシリーズ接続する。測定値は、反射係数がS11MT、S22MTで、伝達係数はS21MT、S12MTとする。なお、後述するが、スルーチップ13の電気特性は未知で良く、例えば抵抗値が分からないチップ抵抗などでも良いが、伝達係数に方向性があってはならない。伝達係数は、直流磁界下のフェライトなどの特殊な材料を使用しない限り、相反定理により方向性を持たないので、通常この条件は自動的に満足される。
-Through-chip connection and measurement-
Next, as shown in FIG. 7, measurement is performed in a through (direct connection between ports) state. An appropriate device (hereinafter referred to as a through chip) 13 for connecting the ports is connected in series between the signal conductors 12a and 12b. Measurements, reflection coefficient S 11MT, in S 22MT, the transfer coefficient and S 21MT, S 12MT. As will be described later, the electrical characteristics of the through chip 13 may be unknown. For example, a chip resistance whose resistance value is unknown may be used, but the transmission coefficient should not have directionality. This condition is usually satisfied automatically because the transfer coefficient does not have directionality according to the reciprocity theorem unless a special material such as ferrite under a DC magnetic field is used.

−RRRR校正の誤差モデルの誤差係数の計算−
RRRR校正の誤差モデルを図8に示す。これは特に新規なものではなく、従来から使用されているTRL補正の誤差モデルと同じものである。図中のS11M 、S21M は反射係数及び伝達係数の測定値であり、S11A 、S21A 等は被検体の散乱係数の真値である。また、誤差係数Exx、Fxxは8個あるが、散乱係数測定は比測定であるので、このうち7個の誤差要因を定められれば良い。具体的には、E21=1と置けば良い。
-Calculation of error coefficient of error model for RRRR calibration-
An error model for RRRR calibration is shown in FIG. This is not particularly novel, and is the same as the error model for TRL correction that has been conventionally used. In the figure, S 11M and S 21M are measured values of the reflection coefficient and the transmission coefficient, and S 11A and S 21A and the like are true values of the scattering coefficient of the object. Further, although there are eight error coefficients E xx and F xx , the scattering coefficient measurement is a ratio measurement, and therefore, seven error factors may be determined. Specifically, E 21 = 1 may be set.

さて、前述の短絡基準10の接続による測定結果から、図8中の各誤差係数を求めなければならないが、まずE11(E 12 ・E 22 、F11、(F21・F12) 、F22は次式で求められる。なお、FxxはExxと同様のため、Exxとのみ記載する。この段階では( 21 12)については、2つの誤差係数 21 12の積は求められるが、これらを別個独立に求めることはできない。なお、D1 は中間変数である。

Figure 0003912428
Now, it is necessary to obtain each error coefficient in FIG. 8 from the measurement result obtained by connecting the short-circuit reference 10 described above. First, E 11 , (E 12 · E 22 ) , F 11 , (F 21 · F 12 ) , F 22 is obtained by the following equation. Incidentally, F xx are same as E xx, described only E xx. At this stage, for ( E 21 · E 12 ), the product of the two error coefficients E 21 and E 12 is obtained, but these cannot be obtained independently. D 1 is an intermediate variable.
Figure 0003912428

次に、スルーチップの順方向および逆方向の伝達係数の測定結果S21MT、S12MTは、図8の誤差要因を用いて次式のように書ける。ただし、スルーチップの散乱係数の真値を仮にS11A , S21A , S12A ,S22A としておく。

Figure 0003912428
Next, the measurement results S 21MT and S 12MT of the forward and reverse transfer coefficients of the through chip can be written as follows using the error factors of FIG. However, the true value of the through-chip scattering coefficient is assumed to be S 11A , S 21A , S 12A , S 22A .
Figure 0003912428

ここで、S21MT、S12MTの比を考える。数式11をもとに、スルーチップの正逆方向の伝達係数が等しい(S21A =S12A )ことに注意しつつ整理すると、次式が得られる。ここで注目すべきは、スルーチップの散乱係数S11A , S21A , S12A ,S22A は除算ですべて消滅してしまう点である。つまり、スルーチップの散乱係数真値が不明であっても、スルーチップに方向性がない場合はS21MT、S12MT(これは測定可能量である)の比さえ分かれば、誤差係数の関係が決まるという事である。

Figure 0003912428
Here, the ratio of S 21MT and S 12MT is considered. Based on Equation 11, the following equation can be obtained by arranging the transmission coefficients in the forward and reverse directions of the through chip with equality (S 21A = S 12A ). It should be noted here that the through-chip scattering coefficients S 11A , S 21A , S 12A , and S 22A are all eliminated by division. In other words, even if the true value of the scattering coefficient of the through chip is unknown, if the through chip has no directionality, if the ratio of S 21MT and S 12MT (this is a measurable amount) is known, the relationship of the error coefficient is It is to be decided.
Figure 0003912428

数式10と数式12をもとに、次式の通り全誤差係数を決定できる。

Figure 0003912428
Based on Equation 10 and Equation 12, the total error coefficient can be determined as follows:
Figure 0003912428

以上で、全ての誤差係数を決定する事ができた。以上はポート1側からポート2側へ信号を印加した場合(順方向)の議論であるが、逆方向についてはE21=1とする代わりにF21=1とすれば導出できる。With the above, all error coefficients could be determined. The above is a discussion when a signal is applied from the port 1 side to the port 2 side (forward direction), but the reverse direction can be derived by setting F 21 = 1 instead of E 21 = 1.

−被検体の測定とRRRR校正の実施−
誤差係数が求まれば、被検体17を伝送路12に接続し、その特性を測定する。例えばチップマウンタなどを用いて被検体17を吸着し、この被検体17を伝送路12の被検体測定位置へ接触させて、電気特性(S11M,21M,12M,22M )を測定する。この際、被検体17が2端子の場合には、図9の(a)のように信号導体12a,12b間にシリーズ接続すればよいが、3端子または4端子の場合には、図9の(b)のように信号導体12a,12bおよび接地導体12cの間に接続すればよい。したがって、本発明による測定方法は、2端子の電子部品の他、フィルタのような3端子以上の電子部品にも適用できる。
-Measurement of subject and implementation of RRRR calibration-
When the error coefficient is obtained, the subject 17 is connected to the transmission path 12 and its characteristics are measured. For example, the subject 17 is adsorbed using a chip mounter or the like, and the subject 17 is brought into contact with the subject measurement position of the transmission path 12 to measure the electrical characteristics (S 11M, S 21M, S 12M, S 22M ). . At this time, when the subject 17 has two terminals, the signal conductors 12a and 12b may be connected in series as shown in FIG. 9A. However, when the subject 17 has three terminals or four terminals, FIG. What is necessary is just to connect between signal conductor 12a, 12b and the grounding conductor 12c like (b). Therefore, the measuring method according to the present invention can be applied not only to a two-terminal electronic component but also to an electronic component having three or more terminals such as a filter.

RRRR校正の誤差モデルはTRL補正の誤差モデルと同じものであるから、実際の被検体測定結果から誤差の影響を除去するにはTRL補正と同様の計算を行えば良く、誤差の影響を除去する数式を以下に記載しておく。なお、誤差要因の影響を除去するには、本式は2ポート測定の場合の反射係数をもとに計算する式であるが、ネットワークアナライザの4つのレシーバ出力から計算してもよい。また、3ポート以上の場合にも、本式と同様の式を使用してもよいし、あるいは回路シミュレーション手法を用いて誤差要因の影響を除去しても良い。要するに、どのような公知技術を選択しても良い。なお、数式14において、D2 は中間変数である。

Figure 0003912428
Since the error model for RRRR calibration is the same as the error model for TRL correction, the same calculation as TRL correction may be performed to remove the effect of error from the actual measurement result of the object, and the effect of error is removed. The mathematical formula is described below. In order to eliminate the influence of the error factor, this equation is calculated based on the reflection coefficient in the case of 2-port measurement, but may be calculated from the four receiver outputs of the network analyzer. Also, in the case of three or more ports, the same equation as this equation may be used, or the influence of the error factor may be removed using a circuit simulation method. In short, any known technique may be selected. In Equation 14, D 2 is an intermediate variable.
Figure 0003912428

図10は、RRRR校正方法の一例のフローチャート図である。
補正を開始すると、まず測定器と測定治具とを同軸ケーブルを介して接続する(ステップS1)。次に、一方の信号導体12aの開放端である第1の位置で短絡基準10により信号導体12aと接地導体12cとを短絡する(ステップS2)。第1の位置とは被検体測定位置近傍でもよいし、他の位置でもよい。短絡基準10を接続した状態で、ポート1側の反射係数(S11M1)を測定する(ステップS3)。
次に、第2の位置で短絡基準10により信号導体12aと接地導体12cとを短絡し(ステップS4)、ポート1側の反射係数(S11M2)を測定する(ステップS5)。続いて、第3の位置で短絡基準10により信号導体12aと接地導体12cとを短絡し(ステップS6)、ポート1側の反射係数(S11M3)を測定する(ステップS7)。伝送路特性が未知の場合には、さらに第4の位置で短絡基準10により信号導体12aと接地導体12cとを短絡し(ステップS8)、ポート1側の反射係数(S11M4)を測定する(ステップS9)。そして、これら反射係数からポート1側の伝送路特性ξを計算で求める(ステップS10)。伝送路特性が既知の場合には、ステップS8〜S10の工程は不要である。
次に、他方の信号導体12bの開放端である第5の位置で短絡基準10により信号導体12bと接地導体12cとを短絡する(ステップS11)。第5の位置とは被検体測定位置近傍でもよいし、他の位置でもよい。短絡基準10を接続した状態で、ポート2側の反射係数(S22M1)を測定する(ステップS12)。
次に、第6の位置で短絡基準10により信号導体12bと接地導体12cとを短絡し(ステップS13)、ポート2側の反射係数(S22M2)を測定する(ステップS14)。続いて、第7の位置で短絡基準10により信号導体12bと接地導体12cとを短絡し(ステップS15)、ポート2側の反射係数(S22M3)を測定する(ステップS16)。伝送路特性が未知の場合には、さらに第8の位置で短絡基準10により信号導体12bと接地導体12cとを短絡し(ステップS17)、ポート2側の反射係数(S22M4 )を測定する(ステップS18)。そして、これら反射係数からポート2側の伝送路特性ξを計算で求める(ステップS19)。伝送路特性が既知の場合には、ステップS17〜S19の工程は不要である。
次に、スルーチップ13を信号導体12a,12b間にシリーズ接続し(ステップS20)、伝達係数(S21MT,12MT) を測定する(ステップS21)。
その後、測定した反射係数、伝達係数、および伝送路特性ξを用いて、数式10〜数式13により誤差係数を計算する(ステップS22)。
誤差係数を計算した後、測定治具に被検体を接続し(ステップS23)、被検体の順方向・逆方向の反射係数および伝達係数(S11M,21M,12M,22M )を測定する(ステップS24)。次に、数式14で測定値から誤差の影響を除去し(ステップS25)、誤差除去結果(被検体の真値)のディスプレーなどへの表示や被検体の選別等を実施する(ステップS26)。その後、全ての被検体の測定が完了するまでステップS23〜26を繰り返し(ステップS27)、全ての被検体の測定が完了すれば、RRRR校正を終了する。
FIG. 10 is a flowchart of an example of the RRRR calibration method.
When the correction is started, first, the measuring instrument and the measuring jig are connected via a coaxial cable (step S1). Next, the signal conductor 12a and the ground conductor 12c are short-circuited by the short-circuit reference 10 at the first position that is the open end of one signal conductor 12a (step S2). The first position may be near the subject measurement position, or may be another position. With the short-circuit reference 10 connected, the reflection coefficient (S 11M1 ) on the port 1 side is measured (step S 3).
Next, the signal conductor 12a and the ground conductor 12c are short-circuited by the short-circuit reference 10 at the second position (step S4), and the reflection coefficient (S 11M2 ) on the port 1 side is measured (step S5). Subsequently, the signal conductor 12a and the ground conductor 12c are short-circuited by the short-circuit reference 10 at the third position (step S6), and the reflection coefficient (S 11M3 ) on the port 1 side is measured (step S7). If the transmission line characteristics are unknown, the signal conductor 12a and the ground conductor 12c are further short-circuited by the short-circuit reference 10 at the fourth position (step S8), and the reflection coefficient (S 11M4 ) on the port 1 side is measured ( Step S9). Then, the transmission line characteristic ξ on the port 1 side is obtained by calculation from these reflection coefficients (step S10). If the transmission path characteristics are known, steps S8 to S10 are not necessary.
Next, the signal conductor 12b and the ground conductor 12c are short-circuited by the short-circuit reference 10 at the fifth position which is the open end of the other signal conductor 12b (step S11). The fifth position may be near the subject measurement position or may be another position. With the short-circuit reference 10 connected, the reflection coefficient (S 22M1 ) on the port 2 side is measured (step S12).
Next, the signal conductor 12b and the ground conductor 12c are short-circuited by the short-circuit reference 10 at the sixth position (step S13), and the reflection coefficient (S 22M2 ) on the port 2 side is measured (step S14). Subsequently, the signal conductor 12b and the ground conductor 12c are short-circuited by the short-circuit reference 10 at the seventh position (step S15), and the reflection coefficient (S 22M3 ) on the port 2 side is measured (step S16). If the transmission line characteristics are unknown, the signal conductor 12b and the ground conductor 12c are further short-circuited by the short-circuit reference 10 at the eighth position (step S17), and the reflection coefficient (S 22M4 ) on the port 2 side is measured (step S17). Step S18). Then, the transmission path characteristic ξ on the port 2 side is obtained by calculation from these reflection coefficients (step S19). If the transmission path characteristics are known, steps S17 to S19 are not necessary.
Next, the through chip 13 is connected in series between the signal conductors 12a and 12b (step S20), and the transmission coefficients (S 21MT, S 12MT ) are measured (step S21).
Thereafter, using the measured reflection coefficient, transmission coefficient, and transmission path characteristic ξ, an error coefficient is calculated by Expressions 10 to 13 (step S22).
After calculating the error coefficient, and connect the subject to the measurement jig (Step S23), the reflection coefficient and transmission coefficient of the forward and backward direction of the subject (S 11M, S 21M, S 12M, S 22M) measured (Step S24). Next, the influence of the error is removed from the measured value by Equation 14 (step S25), and the error removal result (the true value of the subject) is displayed on the display, the subject is selected, etc. (step S26). Thereafter, steps S23 to S26 are repeated until the measurement of all the objects is completed (step S27). When the measurement of all the objects is completed, the RRRR calibration is terminated.

前記短絡基準10の接続時、短絡基準10と伝送路12との間で接触不良が発生していると、測定された反射係数は誤った値となる。接触不良を知らずに測定を行うと、後で被検体を測定した時点で補正に失敗していたと判明するような無駄が発生する。
図11は、図10の誤差係数の導出過程において、伝達係数から接触不良を検出するステップを追加したものである。ここでは、第1の位置における接触不良検出についてのみ示すが、他の位置においても同様である。
まず、測定器と測定治具とを同軸ケーブルを介して接続し(ステップS1)、第1の位置で短絡基準10により信号導体12aと接地導体12cとを短絡する(ステップS2)と同時に、スルーチップ13を信号導体12a,12b間に接続する(ステップS30)。短絡基準10とスルーチップ13とを同時に接続した状態で、ポート1側の反射係数(S11M1)と伝達係数(S21M1)とを測定し(ステップS31)、測定した伝達係数が十分に小さいか否かを判定し(ステップS32)、十分に小さくない場合には接触不良であると判定し、再度ステップS2以下を繰り返す。一方、伝達係数が十分に小さい場合には、接触が良好であると判定し、次の第2の位置での測定に移る。
前記のように、短絡基準10が正常に接触している場合には全反射が起こるため、治具ポート間の伝達係数は非常に小さいが、短絡基準10と伝送路12との間で接触不良が発生していると、ポート間の伝達係数が大きくなる。この伝達係数の違いを利用して、接触不良を簡単に判別できる。
このように、補正手順中に測定ミスを検出できるため、後に被検体を測定した時点で補正に失敗していたと判明するような無駄を防げる。
If a contact failure occurs between the short-circuit reference 10 and the transmission line 12 when the short-circuit reference 10 is connected, the measured reflection coefficient becomes an incorrect value. If the measurement is performed without knowing the contact failure, waste that causes a correction failure at the time when the subject is measured later occurs.
FIG. 11 is obtained by adding a step of detecting a contact failure from the transmission coefficient in the error coefficient derivation process of FIG. Here, only contact failure detection at the first position is shown, but the same applies to other positions.
First, the measuring instrument and the measurement jig are connected via a coaxial cable (step S1), and the signal conductor 12a and the ground conductor 12c are short-circuited by the short-circuit reference 10 at the first position (step S2). The chip 13 is connected between the signal conductors 12a and 12b (step S30). With the short-circuit reference 10 and the through chip 13 connected at the same time, the reflection coefficient (S 11M1 ) and the transmission coefficient (S 21M1 ) on the port 1 side are measured (step S31), and the measured transmission coefficient is sufficiently small. If it is not sufficiently small, it is determined that the contact is defective, and step S2 and subsequent steps are repeated again. On the other hand, when the transmission coefficient is sufficiently small, it is determined that the contact is good, and the measurement at the next second position is started.
As described above, since the total reflection occurs when the short-circuit reference 10 is in normal contact, the transmission coefficient between the jig ports is very small. However, the contact failure between the short-circuit reference 10 and the transmission path 12 is poor. If this occurs, the transfer coefficient between ports increases. By utilizing this difference in transmission coefficient, it is possible to easily determine a contact failure.
In this way, since a measurement error can be detected during the correction procedure, it is possible to prevent waste that would prove that the correction failed when the subject was measured later.

ここで、短絡基準10の測定位置をどのように選択するべきかについて説明する。
伝送路12の被検体測定箇所と、ここから5mm離れた点で短絡基準10を測定したとする。伝送路12の損失が大きくないとすると、この2点の測定結果の違いは位相だけである。ここで、波長が30mm(真空中での1GHzの電磁波の波長)であるとする。5mm位置の違いは、往復で10mmの位置の違いに相当するので、測定データは(10mm÷30mm)×360°=120°の位相差があると期待できる。ところが、波長が10mm(真空中での3GHzの電磁波の波長)であったとすると、同じく往復10mmの位置の違いが生み出す位相差は10mm÷10mm×360°=360°であり、結局位相の差が生じない。このため、5mmの位置の違いでは、波長10mmの周波数では補正を正常に行えない。
Here, how to select the measurement position of the short-circuit reference 10 will be described.
It is assumed that the short-circuit reference 10 is measured at the object measurement location on the transmission line 12 and at a point 5 mm away from the object measurement location. If the loss of the transmission line 12 is not large, the difference between the two measurement results is only the phase. Here, it is assumed that the wavelength is 30 mm (the wavelength of an electromagnetic wave of 1 GHz in a vacuum). Since the difference in the 5 mm position corresponds to the difference in the 10 mm position in the reciprocation, the measurement data can be expected to have a phase difference of (10 mm ÷ 30 mm) × 360 ° = 120 °. However, if the wavelength is 10 mm (wavelength of 3 GHz electromagnetic wave in vacuum), the phase difference produced by the difference in the position of 10 mm in the reciprocation is 10 mm ÷ 10 mm × 360 ° = 360 °. Does not occur. For this reason, if the position is 5 mm, correction cannot be normally performed at a frequency of 10 mm.

補正を高精度に行うためには、補正データが相互にできるだけ離れていることが望ましく、短絡基準の反射の位相によって異なる補正データを得るRRRR校正では、短絡基準の接続位置間の位相差が70°〜145°となる条件を採用するのがよい。
校正基準間の位相差を大きく確保すると校正の精度は向上するが、一組の校正基準で対応できる周波数範囲が狭くなり、広帯域の測定をする場合に多くの校正基準を測定する必要が生じる。RRRR校正と同じく校正基準間の位相差を用いて校正を行うTRL校正の場合、良好な測定精度を得るために校正基準間の位相差は20°〜30°以上程度確保するべきであるとされている。
これに対し、短絡基準の接続位置間の位相差を70°〜145°とすると、校正精度は高いが1組の校正基準で対応できる周波数範囲が前記の場合と比較してかなり狭くなってしまう。しかし、以下に説明するように短絡基準接続位置の設定が非常に簡単で、かつ、校正時の測定データをうまく使いまわせば、広帯域測定であっても実用上問題になるほどは短絡基準測定回数が増えるわけでも無いからである。
In order to perform correction with high accuracy, it is desirable that the correction data is as far as possible from each other. In RRRR calibration in which correction data that differs depending on the phase of reflection of the short circuit reference is obtained, the phase difference between the connection positions of the short circuit reference is 70. It is preferable to adopt the condition of ° to 145 °.
If a large phase difference between the calibration standards is secured, the accuracy of calibration is improved, but the frequency range that can be handled by a set of calibration standards is narrowed, and it is necessary to measure many calibration standards when performing a broadband measurement. In the case of TRL calibration in which calibration is performed using the phase difference between calibration standards as in RRRR calibration, the phase difference between calibration standards should be secured to about 20 ° to 30 ° or more in order to obtain good measurement accuracy. ing.
On the other hand, when the phase difference between the connection positions of the short-circuit reference is set to 70 ° to 145 °, the calibration accuracy is high, but the frequency range that can be handled by one set of calibration reference is considerably narrower than the above case. . However, as described below, the setting of the short-circuit reference connection position is very simple, and if the measurement data at the time of calibration is used well, even if it is a wideband measurement, the number of short-circuit reference measurements is such that it becomes a practical problem. This is because there is no increase.

まず、測定上限周波数において位相が145°程度になる第2の短絡基準測定位置を求める。具体的には、β[rad/mm]を位相定数、L[mm]を短絡基準測定位置として次式により求めれば良い。

Figure 0003912428
次に、第3の短絡基準測定位置を2L[mm]に、第4の短絡基準測定位置を4L[mm]に設定する。同様に、第nの短絡基準測定位置を2n-2 L[mm]に設定する。
測定上限周波数fmax からfmax /2までの周波数帯は、第1、第2、第3の短絡基準測定位置の測定結果によってRRRR校正を行う。fmax /2〜fmax /4までの周波数帯は、第1、第3、第4の短絡基準測定位置の測定結果を用いる。同様に、n番目の周波数帯、すなわちfmax /2n-1 〜fmax /2n の周波数帯は、第1、第n+1、第n+2の短絡基準測定位置の測定結果を用いる。このようにすることで、概ね短絡基準測定位置間の位相差が70°〜145°の範囲に保たれる。First, a second short-circuit reference measurement position where the phase is about 145 ° at the measurement upper limit frequency is obtained. Specifically, β [rad / mm] may be obtained by the following equation using a phase constant and L [mm] as a short-circuit reference measurement position.
Figure 0003912428
Next, the third short-circuit reference measurement position is set to 2 L [mm], and the fourth short-circuit reference measurement position is set to 4 L [mm]. Similarly, the nth short-circuit reference measurement position is set to 2 n−2 L [mm].
In the frequency band from the measurement upper limit frequency f max to f max / 2, RRRR calibration is performed based on the measurement results at the first, second, and third short-circuit reference measurement positions. frequency band up to f max / 2~f max / 4, the first, third, using the measurement results of the fourth short circuit reference measurement position. Similarly, the measurement results of the first, n + 1, and n + 2 short-circuit reference measurement positions are used for the nth frequency band, that is, the frequency band of f max / 2 n−1 to f max / 2 n . By doing in this way, the phase difference between short circuit standard measurement positions is generally maintained in the range of 70 ° to 145 °.

−オープン補正−
RRRR校正では、被検体測定位置までの誤差要因を除去できるが、被検体測定位置間の誤差、例えば2ポートの場合なら各ポートの被検体電極の接触点間の誤差要因は未考慮である。このような誤差の中で最大のものは、図12に示すようなポート間の浮遊容量(信号導体12a,12b間の浮遊容量Cs)である。つまり、コプレーナウェーブガイドをTEM伝送してきた信号は、高インピーダンスの被検体17に阻まれて反射するが、一部がTM波として伝達してしまうという誤差要因が存在する。RRRR法が属するシリーズ法は、高いアイソレーションの測定治具を使用すれば高いインピーダンスの測定に対応できるはずのものであるが、ガラスエポキシ材等の誘電率の高い材料の治具を使用したり、あるいは治具の厚みが例えば1.6mm等と厚いものを使用すると、ポート間の浮遊容量が大きくなり、アイソレーションが低くなってしまう。テフロン(登録商標)のように誘電率が低い材料で、薄い治具を作成すればこの問題は低減する。しかし、これでも十分でない場合、あるいは、コスト等の問題で満足できる特性の治具を使用できない場合(テフロン(登録商標)基板は一般的に高価である)には、数学的にこの誤差を補正できる。
つまり、測定治具単体(オープン状態)の測定結果から、測定結果の浮遊アドミタンスを求め、被検体測定結果から浮遊アドミタンスの影響を数学的に除去するのである。測定治具単体をRRRR校正してインピーダンスを求めたものをZC 、被検体測定結果をRRRR校正してインピーダンスを求めたものをZM とすると、前記数学処理(オープン補正)後のインピーダンスZL は次式で求められる。あまりにZC が大きいと測定系のダイナミックレンジが狭くなり、測定バラツキが大きくなるなどの問題が生じる可能性があるので、あまりにアイソレーションが低い治具を使用するべきではないが、通常は以上の処理で十分な結果を得られる。

Figure 0003912428
-Open correction-
In the RRRR calibration, the error factor up to the subject measurement position can be removed, but the error factor between the subject measurement positions, for example, in the case of two ports, the error factor between the contact points of the subject electrode of each port is not considered. The largest of such errors is the stray capacitance between the ports (stray capacitance Cs between the signal conductors 12a and 12b) as shown in FIG. In other words, the signal transmitted through the TEM through the coplanar waveguide is reflected by the high-impedance subject 17 and reflected, but there is an error factor that part of the signal is transmitted as a TM wave. The series method to which the RRRR method belongs should be able to cope with high impedance measurement if a high-isolation measuring jig is used. However, a jig made of a material having a high dielectric constant such as a glass epoxy material may be used. Alternatively, if a jig having a thickness as thick as 1.6 mm, for example, is used, the stray capacitance between the ports increases and the isolation decreases. If a thin jig is made of a material having a low dielectric constant such as Teflon (registered trademark), this problem is reduced. However, if this is not enough, or if you cannot use a jig with satisfactory characteristics due to problems such as cost (Teflon (registered trademark) substrate is generally expensive), this error is corrected mathematically. it can.
That is, the floating admittance of the measurement result is obtained from the measurement result of the measurement jig alone (open state), and the influence of the floating admittance is mathematically removed from the measurement result of the object. Assuming that Z C is the impedance obtained by RRRR calibration of the measurement jig alone and Z M is the impedance obtained by RRRR calibration of the subject measurement result, impedance Z L after the mathematical processing (open correction) Is obtained by the following equation. If Z C is too large, the dynamic range of the measurement system will be narrowed, and problems such as increased measurement variation may occur. Therefore, jigs with too low isolation should not be used. Sufficient results can be obtained by processing.
Figure 0003912428

RRRR法の説明は主に散乱係数で議論してきているが、オープン補正についてはインピーダンスを用いて議論している。インピーダンスと散乱係数は相互変換可能な物理量で、伝送路の特性インピーダンスをZ0 、散乱係数の反射係数をS11、伝達係数をS21とすると、散乱係数とインピーダンスZは次式で変換できる。2つの式を載せているが、どちらの式を用いても原理的には同じ結果を与える。

Figure 0003912428
The explanation of the RRRR method has been discussed mainly with the scattering coefficient, but the open correction is discussed with the impedance. The impedance and the scattering coefficient are physical quantities that can be converted to each other. If the characteristic impedance of the transmission path is Z 0 , the reflection coefficient of the scattering coefficient is S 11 , and the transmission coefficient is S 21 , the scattering coefficient and the impedance Z can be converted by the following equation. Although two equations are listed, the same result is obtained in principle regardless of which equation is used.
Figure 0003912428

−測定結果−
以上のRRRR校正およびオープン補正を用いて、1mm×0.5mmサイズで10nHのチップインダクタ(巻線タイプチップインダクタ)を100MHz〜20GHzの範囲で測定してみた結果が図13である。
図13から分かるように、インダクタの一般的なインピーダンス特性カーブが得られている。つまり、自己共振周波数までは周波数上昇に比例してインピーダンスが上昇し、自己共振周波数以降は周波数上昇に反比例してインピーダンスが低下している。また、従来技術であるTRL校正法による測定にもほぼトレースした結果が得られている。
以上のとおり、RRRR校正により被検体の真値を測定できることが確かめられた。
-Measurement results-
Using the above RRRR calibration and open correction, FIG. 13 shows the result of measuring a 1 mm × 0.5 mm size 10 nH chip inductor (winding type chip inductor) in the range of 100 MHz to 20 GHz.
As can be seen from FIG. 13, a general impedance characteristic curve of the inductor is obtained. That is, the impedance increases in proportion to the frequency increase up to the self-resonance frequency, and the impedance decreases in inverse proportion to the frequency increase after the self-resonance frequency. Further, a result of almost tracing is also obtained in the measurement by the TRL calibration method which is a conventional technique.
As described above, it was confirmed that the true value of the subject can be measured by the RRRR calibration.

−スルーチップを用いない誤差補正方法−
実施例1では、方向性のないスルーチップ13を信号導体12a,12b間にシリーズ接続して、順方向および逆方向の伝達係数S21MT、S12MTを測定し、その比S21MT/S12MTの比を求めることで誤差係数の関係を決定したが、被検体に方向性がない場合には、スルーチップ測定を省略して被検体の測定結果を用いて誤差係数を決定することが可能である。
例えば、フィルタ、カプラ、バラン、コンデンサ、抵抗、コイルなどの殆どの被検体では、被検体に方向性がないので、被検体も一種のスルーチップとみなすことができる。被検体の測定結果から伝達係数の比S21M /S12M を求め、この比をS21MT/S12MTに代えて用いれば、数式12から誤差係数の関係を決定できる。
-Error correction method without using through-chip-
In the first embodiment, through chips 13 having no directivity are connected in series between the signal conductors 12a and 12b, the forward and reverse transmission coefficients S 21MT and S 12MT are measured, and the ratio S 21MT / S 12MT is determined. Although the relationship between the error coefficients is determined by determining the ratio, if the subject does not have directionality, it is possible to omit the through-chip measurement and determine the error coefficient using the measurement result of the subject. .
For example, in most subjects such as filters, couplers, baluns, capacitors, resistors, and coils, the subject has no directionality, so the subject can also be regarded as a kind of through chip. If the transmission coefficient ratio S 21M / S 12M is obtained from the measurement result of the subject and this ratio is used in place of S 21MT / S 12MT , the relationship between the error coefficients can be determined from Equation 12.

−短絡基準以外の校正基準を用いた校正方法−
RRRR校正において、短絡基準10に代えてチップ抵抗のような伝達係数のある校正基準18を用いた場合、一方のポートから入力された信号のうち一部が校正基準との接触部を通過し、信号導体の開放端で全反射して戻ってくるため、測定誤差になる可能性がある。
この場合には、図14に示すように、信号導体12aの開放端と信号導体12bの開放端とをスルーチップ19で接続しておき、この状態で、校正基準18を伝送路12の少なくとも3か所に接続してRRRR校正を実施すればよい。スルーチップ19は、スルー測定(図7参照)におけるスルーチップ13と同様な部品であってもよいし、短絡基準10のようなショートチップでもよい。
信号の一部が校正基準18と信号導体12aとの接触部を通過しても、その信号はスルーチップ19を介してポート2側へ伝達され、信号がポート2側で吸収されてポート1側へ戻ってくる信号レベルを低くできる。例えば、通常予想されるポート2での反射レベルは−15dB〜−25dBであり、その平均を−20dBとすると、入力信号のうち50%(−6dB)が校正基準との接触部を通過してポート2側へ伝達しても、往復で約−32db(=−6−20−6)となり、誤差のレベルは入力信号の約2.5%程度となる。
したがって、伝達係数のある校正基準18を使用しても、高い校正精度を確保できる。
-Calibration method using calibration standard other than short circuit standard-
In the RRRR calibration, when the calibration reference 18 having a transfer coefficient such as a chip resistance is used instead of the short-circuit reference 10, a part of the signal input from one port passes through the contact portion with the calibration reference, Since it is totally reflected at the open end of the signal conductor and returns, there is a possibility of a measurement error.
In this case, as shown in FIG. 14, the open end of the signal conductor 12 a and the open end of the signal conductor 12 b are connected by the through chip 19, and in this state, the calibration reference 18 is connected to at least 3 of the transmission line 12. What is necessary is just to connect to a place and to perform RRRR calibration. The through chip 19 may be a component similar to the through chip 13 in the through measurement (see FIG. 7), or may be a short chip such as the short-circuit reference 10.
Even if a part of the signal passes through the contact portion between the calibration reference 18 and the signal conductor 12a, the signal is transmitted to the port 2 side through the through chip 19, and the signal is absorbed on the port 2 side to be port 1 side. The signal level returning to can be lowered. For example, when the reflection level at the port 2 is normally expected to be −15 dB to −25 dB and the average is −20 dB, 50% (−6 dB) of the input signal passes through the contact portion with the calibration standard. Even if it is transmitted to the port 2 side, it is about −32 db (= −6−20−6) in the round trip, and the error level is about 2.5% of the input signal.
Therefore, even if the calibration standard 18 having a transfer coefficient is used, high calibration accuracy can be ensured.

RRRR校正は、単体で行えば測定系全体の誤差を補正できる。一方、治具基板を接続する同軸コネクタまでをSOLT補正等の手法で補正した上で、RRRR校正を行うと、得られる誤差係数は治具基板の誤差係数になる。つまり、RRRR校正を治具の誤差要因の同定手法として利用できる。
最近のネットワークアナライザには、治具などの誤差係数を与えれば、測定結果から与えた誤差の影響を自動的に除去してくれる機能(ディエンベディング機能)がある。しかし、治具の誤差を求める方法がないために、実際にはあまり使われない機能である。本発明にかかるRRRR校正の手法と組み合わせると、これは非常に便利な機能になる。
なお、ディエンベディングとは、既知の誤差要因を数学的に除去する手法であり、伝送行列を用いると簡単に実施できる。得られた治具の誤差要因の散乱係数行列を伝送行列に変換して逆行列にしたものを、ポート1側、ポート2側それぞれE-1、F-1とする。このとき、治具の各ポートの誤差要因の伝送行列がEFである。さらに、デバイスの伝送行列をAとする。この時、同軸ケーブル先端まで校正したネットワークアナライザで治具ごとデバイスを測定した測定結果は、デバイスに各ポートの誤差が重畳されたものであるから
E・A・F
が測定されているはずである。そこで、左右からそれぞれE-1、F-1をかけると、
-1・E・A・F・F-1=A
となり、デバイスの特性を得ることができる。
If the RRRR calibration is performed alone, the error of the entire measurement system can be corrected. On the other hand, when the RRRR calibration is performed after correcting up to the coaxial connector to which the jig substrate is connected by a technique such as SOLT correction, the obtained error coefficient becomes the error coefficient of the jig substrate. That is, RRRR calibration can be used as a method for identifying an error factor of a jig.
A recent network analyzer has a function (de-embedding function) that automatically removes the influence of an error given from a measurement result if an error coefficient such as a jig is given. However, since there is no method for obtaining the error of the jig, it is a function that is not often used in practice. When combined with the RRRR calibration technique of the present invention, this is a very convenient function.
De-embedding is a technique for mathematically removing known error factors, and can be easily implemented using a transmission matrix. The obtained scattering coefficient matrix of the error factor of the jig is converted into a transmission matrix and converted into an inverse matrix, which are designated as E −1 and F −1 on the port 1 side and the port 2 side, respectively. At this time, an error factor transmission matrix of each port of the jig is EF. Furthermore, let A be the transmission matrix of the device. At this time, the measurement result of measuring the device together with the jig with the network analyzer calibrated to the end of the coaxial cable is that the error of each port is superimposed on the device.
Should have been measured. So if you multiply E -1 and F -1 from the left and right respectively
E −1・ E ・ A ・ F ・ F −1 = A
Thus, the characteristics of the device can be obtained.

ディエンベディング手法を用いると、高い精度での校正基準の位置決め等が必要なRRRR校正手順は研究室的な環境で行い、各治具の誤差要因を高精度に定めておき、量産工程では誤差要因が既に分かっている治具を使用して量産することができる。勿論、治具の誤差は研究室で求めた誤差要因をディエンベディングすることで除去する。
このようにすることで、各工程で高い精度での校正基準の位置決め手段等を準備することなくRRRR法を運用でき、コスト的・工程管理的に有利である。
When the de-embedding method is used, the RRRR calibration procedure that requires positioning of the calibration reference with high accuracy is performed in a laboratory environment, the error factors of each jig are determined with high accuracy, and the error factors in the mass production process Can be mass-produced using a known jig. Of course, the error of the jig is removed by de-embedding the error factor obtained in the laboratory.
By doing so, the RRRR method can be operated without preparing a calibration reference positioning means or the like with high accuracy in each process, which is advantageous in terms of cost and process control.

測定器に計算機と専用ソフトウェアを備え、校正基準の残留インダクタンス及び伝送路のパラメータ(位相定数β[rad/mm]及び伝達損失δ[dB/Hz])と校正基準の接触位置を入力すると、各位置における校正基準特性を数式1〜3に基づいて自動的に算出し、これを数式10〜数式13の補正計算に使用することもできる。要するに、ネットワークアナライザが自動的に校正基準の値を予想してRRRR校正をすることができるものである。
量産工場のデバイスの検査工程において、校正基準の値をオペレータ等が計算する必要が無くなり、また測定器単体でRRRR校正が行えるため、工程を簡素化できる。
When the measuring instrument is equipped with a computer and dedicated software, and the calibration reference residual inductance and transmission path parameters (phase constant β [rad / mm] and transmission loss δ [dB / Hz]) and the calibration reference contact position are entered, It is also possible to automatically calculate the calibration reference characteristic at the position based on Equations 1 to 3, and use this for the correction calculation of Equations 10 to 13. In short, the network analyzer can automatically predict the value of the calibration reference and perform RRRR calibration.
In the inspection process of devices in a mass production factory, it is not necessary for an operator or the like to calculate a calibration reference value, and since the RRRR calibration can be performed by a single measuring instrument, the process can be simplified.

周波数が高いなどのために校正基準(例えば短絡基準)の残留インダクタンスの影響が大きく、校正基準を伝送路に接続しても、十分に短絡に近くならない場合(ポート間を信号が通過してしまい、全反射が得られない場合)がある。
この場合には、図15の(a)のように校正基準25を伝送路12から浮かして、伝送路と校正基準の間に発生する容量C[F] と校正基準の残留インダクタンスL[H] を直列共振状態とするのがよい。この場合C=1/(2πf√L)となるように設定する。
なお、校正基準と伝送路の間の浮遊容量を利用する方法に代えて、図15の(b)のように校正基準26を伝送路12に接触させて直列共振させることもできる。この場合の校正基準26は微小容量のコンデンサを用いればよい。
直列共振状態では、校正基準接続部のインピーダンスは0Ω、つまり理想の短絡状態になる。つまり、良い短絡基準が得られない高い周波数においても良い短絡基準を使用したのと同じ効果が得られる。
If the calibration standard (for example, short-circuit standard) has a large effect on the residual inductance due to the high frequency, etc., and the calibration standard is connected to the transmission line, it is not close enough to the short-circuit (the signal passes between the ports) If total reflection cannot be obtained).
In this case, as shown in FIG. 15A, the calibration reference 25 is lifted from the transmission line 12, and the capacitance C [F] generated between the transmission line and the calibration reference and the calibration reference residual inductance L [H]. Is in a series resonance state. In this case, C = 1 / (2πf√L) is set.
Instead of using the stray capacitance between the calibration reference and the transmission line, the calibration reference 26 can be brought into contact with the transmission line 12 for series resonance as shown in FIG. In this case, the calibration standard 26 may be a very small capacitor.
In the series resonance state, the impedance of the calibration reference connection portion is 0Ω, that is, an ideal short-circuit state. That is, the same effect as using a good short-circuit reference can be obtained even at high frequencies where a good short-circuit reference cannot be obtained.

図16は3ポートを持つ測定治具の例を示す。
図において、30は治具基板、31〜33は治具基板30の上面に形成された3本の信号導体、34は同じく治具基板30の上面に信号導体31〜33の両側を挟むように形成された接地導体、35〜37は治具基板30の端部に設けられたコネクタである。信号導体31〜33の一端は3方から互いに近接して対向しており、他端がコネクタ35〜37にそれぞれ接続されている。各信号導体31〜33と接地導体34との間にそれぞれ校正基準を接続し、補正を行った後、信号導体31〜33間、または信号導体31〜33と接地導体32との間に被検体38を接続し、電気特性を測定する。
このように3端子以上の被検体38の電気特性を測定することもできる。
FIG. 16 shows an example of a measuring jig having three ports.
In the figure, 30 is a jig substrate, 31 to 33 are three signal conductors formed on the upper surface of the jig substrate 30, and 34 is also arranged to sandwich both sides of the signal conductors 31 to 33 on the upper surface of the jig substrate 30. The formed ground conductors 35 to 37 are connectors provided at the ends of the jig substrate 30. One ends of the signal conductors 31 to 33 are opposed to each other in three directions, and the other ends are connected to the connectors 35 to 37, respectively. A calibration standard is connected between each of the signal conductors 31 to 33 and the ground conductor 34, and after correction is performed, the subject is between the signal conductors 31 to 33, or between the signal conductors 31 to 33 and the ground conductor 32. 38 is connected and the electrical characteristics are measured.
In this way, the electrical characteristics of the subject 38 having three or more terminals can be measured.

前記実施例では、伝送路としてコプレーナウエーブガイドを用いた例を示したが、図17のようなスロット線路40を用いることもできる。スロット線路40は、信号導体41,42と接地導体43とが同一平面上に隙間をあけて設けられたものである。この場合は、被検体44を信号導体41,42間、あるいは信号導体41,42と接地導体43との間に接続して電気特性を測定する。 In the above-described embodiment, an example in which a coplanar wave guide is used as a transmission line is shown. However, a slot line 40 as shown in FIG. 17 can also be used. In the slot line 40, signal conductors 41 and 42 and a ground conductor 43 are provided on the same plane with a gap therebetween. In this case, the electrical property is measured by connecting the subject 44 between the signal conductors 41 and 42 or between the signal conductors 41 and 42 and the ground conductor 43.

本発明にかかる高周波電気特性測定方法は、前記実施例に限定されるものではない。
本発明における測定器としては、ネットワークアナライザに限らず、高周波電気特性を測定できるものであれば、使用可能である。
被検体測定位置で校正基準を測定したが、被検体測定位置で校正基準を測定する必要はなく、その場合、3回以上の校正基準測定が全て数式1のような形で表される。
伝送路は、平面伝送路に限るものではなく、校正基準を接続でき、スルーチップをシリーズ接続でき、かつ被検体を信号導体間あるいは信号導体間と接地導体との間に接続できるものであれば、任意の構造のものを用いることができる。
1ポート〜3ポートを持つ測定治具を用いた例について説明したが、4ポート以上の測定治具を用いることもできる。この場合も、同様の補正と測定とを実施できる。
The high-frequency electrical characteristic measuring method according to the present invention is not limited to the above-described embodiment.
The measuring instrument in the present invention is not limited to a network analyzer, and any measuring instrument that can measure high-frequency electrical characteristics can be used.
Although the calibration reference is measured at the subject measurement position, it is not necessary to measure the calibration reference at the subject measurement position. In this case, all three or more calibration reference measurements are expressed in the form of Equation 1.
The transmission path is not limited to a planar transmission path, as long as calibration standards can be connected, through-chips can be connected in series, and an object can be connected between signal conductors or between signal conductors and a ground conductor. Any structure can be used.
Although an example using a measurement jig having 1 port to 3 ports has been described, a measurement jig having 4 ports or more can also be used. In this case, the same correction and measurement can be performed.

以上のように、本発明にかかる高周波電気特性測定方法は次のような効果を有する。
(1)補正に使用する伝送路と被検体測定に使用する伝送路は同じものであるから、伝送路のバラツキの影響を受けにくい。また、伝送路と測定器との接続も、補正および実測定において固定であり、再接続の必要がないので、伝送路の接触不良等による補正失敗等の事故も起こらない。
(2)被検体の部品単体の特性を高精度に測定可能であり、治具等の誤差の影響を受けない。特に、伝送路の特性インピーダンスより高いインピーダンスを持つ電子部品の測定精度が高い。
(3)被検体は2端子だけでなく、3端子以上の電子部品でも測定でき、測定できる対象部品を選ばない。従って、本発明はフィルタやカプラ、バランのような電子部品、またはチップインダクタ、チップコンデンサなどのようなインピーダンス素子の散乱係数やインピーダンス値を精度よく測定するためには非常に有効な方法である。
As described above, the high-frequency electrical characteristic measuring method according to the present invention has the following effects.
(1) Since the transmission path used for the correction and the transmission path used for the subject measurement are the same, the transmission path is hardly affected by variations in the transmission path. In addition, the connection between the transmission line and the measuring instrument is fixed in correction and actual measurement, and there is no need for reconnection. Therefore, an accident such as a correction failure due to poor contact of the transmission line does not occur.
(2) The characteristics of a single part of the subject can be measured with high accuracy and are not affected by errors such as jigs. In particular, the measurement accuracy of electronic components having an impedance higher than the characteristic impedance of the transmission line is high.
(3) The subject can be measured not only with two terminals but also with electronic components with three or more terminals, and any target part that can be measured is not selected. Therefore, the present invention is a very effective method for accurately measuring the scattering coefficient and impedance value of electronic components such as filters, couplers and baluns, or impedance elements such as chip inductors and chip capacitors.

Claims (22)

電子部品の高周波電気特性を測定する方法において、
互いに離間して配置された複数の信号導体と、少なくとも1つの接地導体とを持ち、単位長さ当たりの電気特性が既知の伝送路を準備するステップと、
前記各信号導体と前記接地導体とを測定器の測定ポートにそれぞれ接続するステップと、
前記各信号導体の長さ方向の少なくとも3箇所において、信号導体と接地導体とを接続状態にして電気特性を測定するステップと、
前記信号導体間を相互にスルー状態にして電気特性を測定するステップと、
前記接続状態での測定値、スルー状態での測定値および前記伝送路の電気特性から、前記伝送路を含む測定系の誤差要因を求めるステップと、
前記信号導体間あるいは前記信号導体間と前記接地導体との間に、被測定電子部品を接続して電気特性を測定するステップと、
前記被測定電子部品の測定値から前記測定系の誤差要因を除去し、被測定電子部品の電気特性の真値を求めるステップと、を含むことを特徴とする電子部品の高周波電気特性測定方法。
In a method of measuring high frequency electrical characteristics of an electronic component,
Providing a transmission line having a plurality of signal conductors spaced apart from each other and at least one ground conductor and having a known electrical characteristic per unit length;
Connecting each of the signal conductors and the ground conductor to a measurement port of a measuring instrument,
Measuring the electrical characteristics by connecting the signal conductor and the ground conductor in at least three locations in the length direction of each signal conductor; and
A step of measuring electrical characteristics between the signal conductors in a through state;
From the measured value in the connected state, the measured value in the through state and the electrical characteristics of the transmission line, obtaining an error factor of the measurement system including the transmission line;
Measuring electrical characteristics by connecting an electronic component to be measured between the signal conductors or between the signal conductors and the ground conductor;
Removing the error factor of the measurement system from the measured value of the electronic component to be measured, and obtaining the true value of the electric characteristic of the electronic component to be measured.
電子部品の高周波電気特性を測定する方法において、
互いに離間して配置された複数の信号導体と、少なくとも1つの接地導体とを持ち、単位長さ当たりの電気特性が未知の伝送路を準備するステップと、
前記各信号導体と前記接地導体とを測定器の測定ポートにそれぞれ接続するステップと、
前記各信号導体の長さ方向の少なくとも4箇所において、信号導体と接地導体とを接続状態にして電気特性を測定するステップと、
前記信号導体間を相互にスルー状態にして電気特性を測定するステップと、
前記接続状態での測定値およびスルー状態での測定値から、前記伝送路を含む測定系の誤差要因および前記伝送路の電気特性を求めるステップと、
前記信号導体間あるいは前記信号導体間と前記接地導体との間に、被測定電子部品を接続して電気特性を測定するステップと、
前記被測定電子部品の測定値から前記測定系の誤差要因を除去し、被測定電子部品の電気特性の真値を求めるステップと、を含むことを特徴とする電子部品の高周波電気特性測定方法。
In a method of measuring high frequency electrical characteristics of an electronic component,
Providing a transmission line having a plurality of signal conductors spaced apart from each other and at least one ground conductor, and having an unknown electrical characteristic per unit length;
Connecting each of the signal conductors and the ground conductor to a measurement port of a measuring instrument,
Measuring the electrical characteristics by connecting the signal conductor and the ground conductor in at least four locations in the length direction of each signal conductor; and
A step of measuring electrical characteristics between the signal conductors in a through state;
From the measurement value in the connection state and the measurement value in the through state, obtaining an error factor of the measurement system including the transmission path and electrical characteristics of the transmission path;
Measuring electrical characteristics by connecting an electronic component to be measured between the signal conductors or between the signal conductors and the ground conductor;
Removing the error factor of the measurement system from the measured value of the electronic component to be measured, and obtaining the true value of the electric characteristic of the electronic component to be measured.
電子部品の高周波電気特性を測定する方法において、
互いに離間して配置された複数の信号導体と、少なくとも1つの接地導体とを持ち、単位長さ当たりの電気特性が既知の伝送路を準備するステップと、
前記各信号導体と前記接地導体とを測定器の測定ポートにそれぞれ接続するステップと、
前記各信号導体の長さ方向の少なくとも3箇所において、信号導体と接地導体とを接続状態にして電気特性を測定するステップと、
前記信号導体間あるいは前記信号導体間と前記接地導体との間に、被測定電子部品を接続して電気特性を測定するステップと、
前記接続状態での測定値、前記被測定電子部品を接続して測定された測定値および前記伝送路の電気特性から、前記伝送路を含む測定系の誤差要因を求めるステップと、
前記被測定電子部品の測定値から前記測定系の誤差要因を除去し、被測定電子部品の電気特性の真値を求めるステップと、を含むことを特徴とする電子部品の高周波電気特性測定方法。
In a method of measuring high frequency electrical characteristics of an electronic component,
Providing a transmission line having a plurality of signal conductors spaced apart from each other and at least one ground conductor and having a known electrical characteristic per unit length;
Connecting each of the signal conductors and the ground conductor to a measurement port of a measuring instrument,
Measuring the electrical characteristics by connecting the signal conductor and the ground conductor in at least three locations in the length direction of each signal conductor; and
Measuring electrical characteristics by connecting an electronic component to be measured between the signal conductors or between the signal conductors and the ground conductor;
Obtaining an error factor of the measurement system including the transmission path from the measurement value in the connection state, the measurement value measured by connecting the electronic device to be measured, and the electrical characteristics of the transmission path;
Removing the error factor of the measurement system from the measured value of the electronic component to be measured, and obtaining the true value of the electric characteristic of the electronic component to be measured.
電子部品の高周波電気特性を測定する方法において、
互いに離間して配置された複数の信号導体と、少なくとも1つの接地導体とを持ち、単位長さ当たりの電気特性が未知の伝送路を準備するステップと、
前記各信号導体と前記接地導体とを測定器の測定ポートにそれぞれ接続するステップと、
前記各信号導体の長さ方向の少なくとも4箇所において、信号導体と接地導体とを接続状態にして電気特性を測定するステップと、
前記信号導体間あるいは前記信号導体間と前記接地導体との間に、被測定電子部品を接続して電気特性を測定するステップと、
前記接続状態での測定値および前記被測定電子部品を接続して測定された測定値から、前記伝送路を含む測定系の誤差要因および前記伝送路の電気特性を求めるステップと、
前記被測定電子部品の測定値から前記測定系の誤差要因を除去し、被測定電子部品の電気特性の真値を求めるステップと、を含むことを特徴とする電子部品の高周波電気特性測定方法。
In a method of measuring high frequency electrical characteristics of an electronic component,
Providing a transmission line having a plurality of signal conductors spaced apart from each other and at least one ground conductor, and having an unknown electrical characteristic per unit length;
Connecting each of the signal conductors and the ground conductor to a measurement port of a measuring instrument,
Measuring the electrical characteristics by connecting the signal conductor and the ground conductor in at least four locations in the length direction of each signal conductor; and
Measuring electrical characteristics by connecting an electronic component to be measured between the signal conductors or between the signal conductors and the ground conductor;
From the measurement value in the connection state and the measurement value measured by connecting the electronic device to be measured, obtaining an error factor of the measurement system including the transmission path and the electrical characteristics of the transmission path;
Removing the error factor of the measurement system from the measured value of the electronic component to be measured, and obtaining the true value of the electric characteristic of the electronic component to be measured.
前記信号導体と接地導体とを接続状態にするため、短絡基準を前記信号導体と接地導体とに対して接触させることを特徴とする請求項1ないし4のいずれかに記載の高周波電気特性測定方法。 5. The method of measuring high-frequency electrical characteristics according to claim 1, wherein a short-circuit reference is brought into contact with the signal conductor and the ground conductor in order to connect the signal conductor and the ground conductor. . 前記信号導体と接地導体とを接続状態にして電気特性を測定するステップを、前記信号導体間にスルーチップを接続した状態で実施することを特徴とする請求項1ないし5のいずれかに記載の高周波電気特性測定方法。 6. The step of measuring the electrical characteristics by connecting the signal conductor and the ground conductor is performed in a state where a through chip is connected between the signal conductors. High frequency electrical property measurement method. 前記信号導体間にスルーチップを接続した状態で、前記信号導体と接地導体とを接続状態にして伝達係数を測定し、測定した伝達係数に基づいて前記接続状態の接触不良を検出するサブステップを含むことを特徴とする請求項6に記載の高周波電気特性測定方法。 With the through chip connected between the signal conductors, the transmission coefficient is measured by connecting the signal conductor and the ground conductor, and a sub-step of detecting a contact failure in the connection state based on the measured transmission coefficient The high frequency electrical property measuring method according to claim 6, comprising: 前記信号導体と接地導体とを接続状態にするため、校正基準を前記信号導体と接地導体とに対して接触または近接させ、前記校正基準内の容量または前記校正基準と伝送路の間の容量と、前記校正基準の残留インダクタンスとで直列共振させることを特徴とする請求項1ないし4のいずれかに記載の高周波電気特性測定方法。 In order to connect the signal conductor and the ground conductor, a calibration reference is brought into contact with or close to the signal conductor and the ground conductor, and a capacitance within the calibration reference or a capacitance between the calibration reference and the transmission line 5. The high-frequency electrical characteristic measuring method according to claim 1, wherein series resonance is performed with the residual inductance of the calibration standard. 前記スルー状態とするため、伝達係数に方向性がないスルーチップを前記信号導体間にシリーズ接続することを特徴とする請求項1に記載の高周波電気特性測定方法。 2. The high frequency electrical characteristic measuring method according to claim 1, wherein a through chip having no directivity in a transmission coefficient is connected in series between the signal conductors in order to achieve the through state. 前記測定系の誤差要因を求めるために、前記接続状態およびスルー状態での測定値のほかに、前記伝送路をオープン状態として測定した測定値を用いることを特徴とする請求項1ないし4のいずれかに記載の高周波電気特性測定方法。 5. The measurement value obtained by measuring the transmission line in an open state, in addition to the measurement value in the connection state and the through state, is used to obtain an error factor of the measurement system. A method for measuring high-frequency electrical characteristics according to claim 1. 前記伝送路を含む測定系の誤差要因を求めるステップは、次式により実行されることを特徴とする請求項1,2,5〜9のいずれかに記載の高周波電気特性測定方法。
Figure 0003912428
Figure 0003912428
Figure 0003912428
上式において、ΓA1:第1の測定位置における反射係数、ΓA2:第2の測定位置における反射係数、ΓA3:第3の測定位置における反射係数、S11M1:第1の測定位置における測定値、S11M2:第2の測定位置における測定値、S11M3:第3の測定位置における測定値、S11MT:スルー状態での反射係数,S21MT:スルー状態での伝達係数、Exx,xx:測定系の誤差要因。
10. The method for measuring high-frequency electrical characteristics according to claim 1, wherein the step of obtaining an error factor of a measurement system including the transmission path is executed according to the following equation.
Figure 0003912428
Figure 0003912428
Figure 0003912428
Γ A1 : reflection coefficient at the first measurement position, Γ A2 : reflection coefficient at the second measurement position, Γ A3 : reflection coefficient at the third measurement position, S 11M1 : measurement at the first measurement position Value, S 11M2 : measured value at the second measuring position, S 11M3 : measured value at the third measuring position, S 11MT : reflection coefficient in the through state, S 21MT : transmission coefficient in the through state, E xx, F xx : Error factor of measurement system.
前記被測定電子部品の測定値から前記測定系の誤差要因を除去し、被測定電子部品の電気特性の真値を求めるステップは、次式により実行されることを特徴とする請求項11に記載の電子部品の高周波電気特性測定方法。
Figure 0003912428
上式において、S11A :被測定電子部品の反射係数、S21A :被測定電子部品の伝達係数。
The step of removing an error factor of the measurement system from the measurement value of the electronic component to be measured and obtaining the true value of the electrical characteristic of the electronic component to be measured is executed according to the following equation. Of measuring high-frequency electrical characteristics of electronic parts.
Figure 0003912428
In the above equation, S 11A is the reflection coefficient of the electronic component to be measured, and S 21A is the transmission coefficient of the electronic component to be measured.
前記伝送路は、信号導体と接地導体とが同一平面上に形成された伝送路であることを特徴とする請求項1ないし12のいずれかに記載の高周波電気特性測定方法。 13. The high-frequency electrical characteristic measuring method according to claim 1, wherein the transmission line is a transmission line in which a signal conductor and a ground conductor are formed on the same plane. 前記伝送路は、信号導体とこの信号導体を間にしてその両側に接地導体とを有するコプレーナウエーブガイドであることを特徴とする請求項13に記載の高周波電気特性測定方法。 The high-frequency electrical characteristic measuring method according to claim 13, wherein the transmission line is a coplanar wave guide having a signal conductor and a ground conductor on both sides of the signal conductor. 前記伝送路は、信号導体と接地導体とが間隔をあけて設けられたスロット線路であることを特徴とする請求項13に記載の高周波電気特性測定方法。 The high-frequency electrical characteristic measuring method according to claim 13, wherein the transmission line is a slot line in which a signal conductor and a ground conductor are provided at an interval. 前記信号導体と接地導体とを接続状態にして電気特性を測定する位置は、各位置間の位相差が70°〜145°となる位置であることを特徴とする請求項1ないし15のいずれかに記載の高周波電気特性測定方法。 The position at which the signal conductor and the ground conductor are connected to measure the electrical characteristics is a position where the phase difference between the positions is 70 ° to 145 °. 2. A method for measuring high-frequency electrical characteristics according to 1. 電子部品の高周波電気特性を測定する装置において、
互いに離間して配置された複数の信号導体と、少なくとも1つの接地導体とを持ち、単位長さ当たりの電気特性が既知の伝送路と、
前記各信号導体に接続された測定ポートと、前記接地導体に接続された測定ポートとを有し、高周波電気特性を測定可能な測定器と、
前記各信号導体の長さ方向の少なくとも3箇所において、信号導体と接地導体とを接続状態にする手段と、
前記信号導体間を相互にスルー状態にする手段と、
前記接続状態での測定値、スルー状態での測定値および前記伝送路の電気特性から、前記伝送路を含む測定系の誤差要因を求める手段と、
前記信号導体間あるいは前記信号導体間と前記接地導体との間に、被測定電子部品を接続する手段と、
前記被測定電子部品を前記信号導体間あるいは前記信号導体間と前記接地導体との間に接続して測定される測定値から前記測定系の誤差要因を除去し、被測定電子部品の電気特性の真値を求める手段と、を含むことを特徴とする電子部品の高周波電気特性測定装置。
In a device that measures high-frequency electrical characteristics of electronic components,
A transmission line having a plurality of signal conductors spaced apart from each other and at least one ground conductor, and having a known electrical characteristic per unit length;
A measuring port connected to each of the signal conductors, a measuring port connected to the ground conductor, and a measuring instrument capable of measuring high-frequency electrical characteristics;
Means for connecting the signal conductor and the ground conductor in at least three locations in the length direction of each signal conductor;
Means for bringing the signal conductors into a mutually through state;
Means for determining an error factor of a measurement system including the transmission line from the measurement value in the connection state, the measurement value in the through state, and the electrical characteristics of the transmission line;
Means for connecting an electronic component to be measured between the signal conductors or between the signal conductors and the ground conductor;
An error factor of the measurement system is removed from a measurement value measured by connecting the measured electronic component between the signal conductors or between the signal conductor and the ground conductor, and the electrical characteristics of the measured electronic component A high-frequency electrical characteristic measuring apparatus for electronic parts, comprising:
電子部品の高周波電気特性を測定する装置において、
互いに離間して配置された複数の信号導体と、少なくとも1つの接地導体とを持ち、単位長さ当たりの電気特性が未知の伝送路と、
前記各信号導体に接続された測定ポートと、前記接地導体に接続された測定ポートとを有し、高周波電気特性を測定可能な測定器と、
前記各信号導体の長さ方向の少なくとも4箇所において、信号導体と接地導体とを接続状態にする手段と、
前記信号導体間を相互にスルー状態にする手段と、
前記接続状態での測定値およびスルー状態での測定値から、前記伝送路を含む測定系の誤差要因および前記伝送路の電気特性を求めるステップと、
前記信号導体間あるいは前記信号導体間と前記接地導体との間に、被測定電子部品を接続する手段と、
前記被測定電子部品を前記信号導体間あるいは前記信号導体間と前記接地導体との間に接続して測定される測定値から前記測定系の誤差要因を除去し、被測定電子部品の電気特性の真値を求める手段と、を含むことを特徴とする電子部品の高周波電気特性測定装置。
In a device that measures high-frequency electrical characteristics of electronic components,
A transmission line having a plurality of signal conductors arranged at a distance from each other and at least one ground conductor, and having an unknown electrical characteristic per unit length;
A measuring port connected to each of the signal conductors, a measuring port connected to the ground conductor, and a measuring instrument capable of measuring high-frequency electrical characteristics;
Means for connecting the signal conductor and the ground conductor in at least four locations in the length direction of each signal conductor;
Means for bringing the signal conductors into a mutually through state;
From the measurement value in the connection state and the measurement value in the through state, obtaining an error factor of the measurement system including the transmission path and electrical characteristics of the transmission path;
Means for connecting an electronic component to be measured between the signal conductors or between the signal conductors and the ground conductor;
An error factor of the measurement system is removed from a measurement value measured by connecting the measured electronic component between the signal conductors or between the signal conductor and the ground conductor, and the electrical characteristics of the measured electronic component A high-frequency electrical characteristic measuring apparatus for electronic parts, comprising:
前記信号導体と接地導体とを接続状態にする手段は、短絡基準と、この短絡基準を伝送路に対して接触させる手段とで構成されることを特徴とする請求項16または17に記載の高周波電気特性測定装置。 The high-frequency signal according to claim 16 or 17, wherein the means for connecting the signal conductor and the ground conductor includes a short-circuit reference and a means for bringing the short-circuit reference into contact with the transmission line. Electrical property measuring device. 前記スルー状態にする手段は、伝達係数に方向性がないスルーチップと、このスルーチップを伝送路にシリーズ接続する手段とで構成されることを特徴とする請求項17ないし19のいずれかに記載の高周波電気特性測定装置。 20. The means for setting the through state includes a through chip having no directivity in transmission coefficient, and means for connecting the through chip in series with a transmission line. High-frequency electrical property measuring device. 電子部品の高周波電気特性測定装置の校正方法において、
互いに離間して配置された複数の信号導体と、少なくとも1つの接地導体とを持ち、単位長さ当たりの電気特性が既知の伝送路を準備するステップと、
前記各信号導体と前記接地導体とを測定器の測定ポートにそれぞれ接続するステップと、
前記各信号導体の長さ方向の少なくとも3箇所において、信号導体と接地導体とを接続状態にして電気特性を測定するステップと、
前記信号導体間を相互にスルー状態にして電気特性を測定するステップと、
前記接続状態での測定値、スルー状態での測定値および前記伝送路の電気特性から、前記伝送路を含む測定系の誤差要因を求めるステップと、を含むことを特徴とする校正方法。
In the calibration method of the high-frequency electrical property measuring device for electronic components,
Providing a transmission line having a plurality of signal conductors spaced apart from each other and at least one ground conductor and having a known electrical characteristic per unit length;
Connecting each of the signal conductors and the ground conductor to a measurement port of a measuring instrument,
Measuring the electrical characteristics by connecting the signal conductor and the ground conductor in at least three locations in the length direction of each signal conductor; and
A step of measuring electrical characteristics between the signal conductors in a through state;
And a step of obtaining an error factor of a measurement system including the transmission line from a measurement value in the connection state, a measurement value in a through state, and electrical characteristics of the transmission line.
電子部品の高周波電気特性測定装置の校正方法において、
互いに離間して配置された複数の信号導体と、少なくとも1つの接地導体とを持ち、単位長さ当たりの電気特性が未知の伝送路を準備するステップと、
前記各信号導体と前記接地導体とを測定器の測定ポートにそれぞれ接続するステップと、
前記各信号導体の長さ方向の少なくとも4箇所において、信号導体と接地導体とを接続状態にして電気特性を測定するステップと、
前記信号導体間を相互にスルー状態にして電気特性を測定するステップと、
前記接続状態での測定値およびスルー状態での測定値から、前記伝送路を含む測定系の誤差要因および前記伝送路の電気特性を求めるステップと、を含むことを特徴とする校正方法。
In the calibration method of the high-frequency electrical property measuring device for electronic components,
Providing a transmission line having a plurality of signal conductors spaced apart from each other and at least one ground conductor, and having an unknown electrical characteristic per unit length;
Connecting each signal conductor and the ground conductor to a measurement port of a measuring instrument,
Measuring the electrical characteristics by connecting the signal conductor and the ground conductor in at least four locations in the length direction of each signal conductor; and
A step of measuring electrical characteristics between the signal conductors in a through state;
And a step of obtaining an error factor of a measurement system including the transmission line and an electrical characteristic of the transmission line from a measurement value in the connection state and a measurement value in the through state.
JP2006512253A 2004-04-02 2004-12-21 Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus Active JP3912428B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2004/004882 WO2005101037A1 (en) 2004-04-02 2004-04-02 High frequency electric characteristics measuring method and equipment for electronic component
JPPCT/JP2004/004882 2004-04-02
PCT/JP2004/019086 WO2005101034A1 (en) 2004-04-02 2004-12-21 Method and instrument for measuring high-frequency electric characteristic of electronic component, and method for calibrating high-frequency electrical characteristic measuring instrument

Publications (2)

Publication Number Publication Date
JP3912428B2 true JP3912428B2 (en) 2007-05-09
JPWO2005101034A1 JPWO2005101034A1 (en) 2008-03-06

Family

ID=35150130

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006512253A Active JP3912428B2 (en) 2004-04-02 2004-12-21 Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus
JP2006512254A Active JP3912429B2 (en) 2004-04-02 2004-12-21 Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2006512254A Active JP3912429B2 (en) 2004-04-02 2004-12-21 Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus

Country Status (3)

Country Link
JP (2) JP3912428B2 (en)
DE (2) DE112004002805B4 (en)
WO (3) WO2005101037A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090550A1 (en) * 2005-02-22 2006-08-31 Murata Manufacturing Co., Ltd. Method for measuring dielectric constant of transmission line material and method for measuring electric characteristic of electronic component using the dielectric constant measuring method
WO2008065791A1 (en) 2006-11-30 2008-06-05 Murata Manufacturing Co., Ltd. High frequency characteristics error correction method of electronic component
JP2012198182A (en) * 2011-03-23 2012-10-18 Fujitsu Ltd Calibration substrate and measuring method of circuit parameters
JP7153309B2 (en) * 2018-06-04 2022-10-14 国立研究開発法人産業技術総合研究所 Measurement method of reflection coefficient using vector network analyzer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354649A (en) * 1989-07-24 1991-03-08 Oki Electric Ind Co Ltd Buffer storage control system
EP0568889A3 (en) * 1992-05-02 1994-06-22 Berthold Lab Prof Dr Process for calibrating a network analyser
JPH0784879A (en) * 1993-09-09 1995-03-31 Toshiba Corp Cache memory device
DE4433375C2 (en) * 1993-10-26 1998-07-02 Rohde & Schwarz Procedure for calibrating a network analyzer
JP3404238B2 (en) * 1997-01-10 2003-05-06 京セラ株式会社 Calibration standard and calibration method for high frequency measurement and method for measuring transmission loss of transmission line for high frequency
JPH11211766A (en) * 1998-01-26 1999-08-06 Advantest Corp Automatic calibration device
JP2000029788A (en) * 1998-07-15 2000-01-28 Nec Corp Cache memory system, cache control method used therefor and recording medium control program therefor recorded therein
JP2001222467A (en) * 2000-02-07 2001-08-17 Matsushita Electric Ind Co Ltd Cache device
DE10242932B4 (en) * 2002-09-16 2009-02-05 Rohde & Schwarz Gmbh & Co. Kg The LRR method for calibrating vectorial 4-terminal network analyzers

Also Published As

Publication number Publication date
DE112004002808B4 (en) 2017-09-21
JPWO2005101035A1 (en) 2008-03-06
JP3912429B2 (en) 2007-05-09
JPWO2005101034A1 (en) 2008-03-06
WO2005101034A1 (en) 2005-10-27
DE112004002805T5 (en) 2007-02-01
WO2005101035A1 (en) 2005-10-27
WO2005101037A1 (en) 2005-10-27
DE112004002808T5 (en) 2007-02-15
DE112004002805B4 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
US7439748B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
US7405576B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
JP4650487B2 (en) Method for measuring dielectric constant of transmission line material and method for measuring electrical characteristics of electronic component using this dielectric constant measuring method
CN109444721B (en) Method for detecting S parameter and terminal equipment
US7107170B2 (en) Multiport network analyzer calibration employing reciprocity of a device
US7532014B2 (en) LRL vector calibration to the end of the probe needles for non-standard probe cards for ATE RF testers
US20150138026A1 (en) Device and method for calibrating antenna array systems
WO2005111635A1 (en) Method and apparatus for measuring electric circuit parameter
CN111426885A (en) CSRR microstrip resonance sensor for measuring complex dielectric constant and application thereof
JP5483132B2 (en) Correction method for high frequency characteristics error of electronic parts
US7375534B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
CN109239480B (en) Transmission line, scattering parameter testing system and method
CN112684253A (en) Non-contact load impedance test system and working method thereof
US20030115008A1 (en) Test fixture with adjustable pitch for network measurement
JP3912428B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus
JP7153309B2 (en) Measurement method of reflection coefficient using vector network analyzer
JP3912427B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus
JP4743208B2 (en) Method for measuring electrical characteristics of electronic components
CN111781479A (en) On-wafer calibration piece model building method
Preuss et al. A Study on Low-Cost Calibration Kits for U. FL Connector Systems
CN115372665A (en) Radio frequency device testing device and testing system
JP2022105348A (en) Substrate for measuring electrical characteristics of electronic component, and method for measuring electrical characteristics of electronic component using the same
CN117368820A (en) Calibration device, differential clamp and related device and system
CN115542011A (en) Method for extracting load inductance from on-chip S parameters, electronic device and storage medium
WO2008066137A1 (en) Electronic part high-frequency characteristic error correction method and device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Ref document number: 3912428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6