WO2008066137A1 - Electronic part high-frequency characteristic error correction method and device - Google Patents

Electronic part high-frequency characteristic error correction method and device Download PDF

Info

Publication number
WO2008066137A1
WO2008066137A1 PCT/JP2007/073110 JP2007073110W WO2008066137A1 WO 2008066137 A1 WO2008066137 A1 WO 2008066137A1 JP 2007073110 W JP2007073110 W JP 2007073110W WO 2008066137 A1 WO2008066137 A1 WO 2008066137A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement system
electronic component
correction data
measured
data acquisition
Prior art date
Application number
PCT/JP2007/073110
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Fujii
Gaku Kamitani
Taichi Mori
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2007/067378 external-priority patent/WO2008065791A1/en
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to DE112007002891.2T priority Critical patent/DE112007002891B4/en
Priority to CN2007800440531A priority patent/CN101542299B/en
Priority to JP2008547039A priority patent/JP5126065B2/en
Publication of WO2008066137A1 publication Critical patent/WO2008066137A1/en
Priority to US12/474,389 priority patent/US8423868B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the present invention relates to a method for correcting high-frequency characteristic errors of electronic components, and more particularly to a method for correcting errors in a measurement system in measuring high-frequency characteristics of a two-terminal impedance component.
  • the electrical characteristics of the electronic parts have been measured using an automatic characteristic sorter. Since the measurement system with the automatic characteristic sorter has different circuit characteristics from the standard measurement system, by correcting the measurement value with the automatic characteristic sorter and estimating the measurement value with the standard measurement system, Yield can be improved. As a method for performing such correction, techniques called SOLT, TRL calibration, and RRRR / TRRR calibration are known.
  • TRL calibration is the most effective technique that can be used to measure the true value of the scattering coefficient matrix of a surface-mounted component that is the subject.
  • SOLT calibration Another widely used conventional technology is SOLT calibration. These will be briefly described.
  • Figure 1 shows the error model used in a typical error elimination method (calibration method).
  • the electronic component 2 as the subject is connected on a transmission path formed on the upper surface of the measurement jig 10.
  • Connectors 51a and 61 provided at one end of the coaxial cables 50 and 60 are connected to the connectors 11a and ib provided at both ends of the transmission line of the measuring jig 10, and the other ends of the coaxial cables 50 and 60 are Connected to the network analyzer measurement port (not shown).
  • Arrows 51s and 61s indicate the calibration plane.
  • Figure 1 (b) is an error model for TRL correction, expressed as scattering coefficients S 1, S 2, S 3, and S 2.
  • Figure 1 (c) shows the error of the SOLT correction, which is measured by the scattering coefficients S 1, S 2, S 3, and S 2.
  • One measurement port represented by scattering coefficients E, E, ⁇ , ⁇ on both sides of the fixture circuit 14
  • Circuit 54 on the other side and circuit 64 on the other measurement port side represented by the scattering coefficients ⁇ and ⁇
  • TRL calibration instead of a standard device with a difficult device shape, several types of transmission lines (Lines) with different lengths are used, with direct connection between ports (Through), total reflection (Reflection usually short-circuited), and different lengths. Used as a standard device.
  • the transmission path of the standard device can be expected to be the most accurate, especially in a waveguide environment, as soon as a relatively known scattering coefficient is manufactured and the total reflection is short-circuited.
  • FIG. 3 shows the TRL calibration error factor derivation method.
  • the transmission line is hatched.
  • the calibration surface is the connection with the device as shown by arrows 2s and 2t.
  • the board 86 directly connected between the ports (Through), the board 83 of total reflection (normally short-circuited), and boards 84 and 85 of several types of transmission lines (Lines) of different lengths are used. Use as a standard device. In this example, Through is so-called Zero-Through.
  • the subject 2 is connected in series to a measurement substrate 87 that is longer by the size of the subject.
  • Fig. 4 shows the TRRR calibration error model, which is the same as the SOLT calibration error model shown in Fig. 1 (c).
  • Figure 5 shows the RRRR calibration error model, which is the same as the TRL calibration error model shown in Figure 1 (b).
  • the point of the RRRR / TRRR calibration method is the measurement method of “standard measurement value” used for calibration.
  • the measurement value of the standard device in SOLT and the standard transmission line in TRL is “standard measurement value”.
  • the measurement value measured by changing the position of the short-circuit reference on the measurement substrate 10a is taken as the “standard measurement value”. Since there is no influence of the connector, it can be said that this is a more accurate and effective method for desktop measurement than SOLT calibration and TRL calibration.
  • the jig transmission line 10s, 10t is connected to the short circuit reference (short chip). (2s) is used as a calibration reference because of the change in the reflection coefficient caused by the difference in the connection position, so if the wavelength of the signal to be measured is long (the frequency is low), the connection position of the short-circuit reference must be changed significantly. Since T and T in the figure need to be lengthened,
  • the jig 10a should be provided with a GND terminal for correction, and the short chip 2s can be positioned accurately. (For example, see Patent Documents 1 and 2).
  • Patent Document 1 WO2005 / 101033 Publication
  • Patent document 2 WO2005 / 101034
  • Non-Patent Document 1 Application Note 1287-9: In- Fixture Measurements Using Vector Net work Analyzers, ((1999 1999 Hewlett-Packard Company)
  • the test pins 32a and 32b protruding from the measurement terminal part 30 are connected to the test object.
  • the electrodes 2a and 2b of an electronic component 2 are pressed against each other and connected in series between the measurement pins 32a and 32b, and the measurement pins 32a and 32b are connected to the measuring device (not shown) via coaxial cables 34 and 36. It is connected to the. If the space is small enough to connect the electronic component 2 around the measurement terminal section 30 and it cannot be secured, the sample on the measurement terminal section 30 is substantially the same as the mass production device itself or the mass production device. Measurement system error correction must be performed under the restriction that it cannot be connected. In such a case, the following problem arises.
  • SOLT calibration requires measurement of 1-port devices at each port. That is, as shown in the plan view of the measurement board 10b in Fig. 7, when measuring two-terminal electronic parts in series connection between the slits 10k of one signal line ⁇ , it is not necessary for the measurement and is grounded to the terminal part. The terminal is V. However, since one-port devices cannot be measured without a ground conductor in SOLT calibration, it is necessary to provide a ground terminal only for calibration in order to apply SOLT calibration.
  • the present invention corrects the high-frequency characteristic error of an electronic component that can be calibrated for a two-terminal impedance component while the measurement system to be corrected remains in the same state as at the time of actual measurement. Is to provide a method.
  • the present invention provides a method for correcting a high-frequency characteristic error of an electronic component configured as follows.
  • the method of correcting the high-frequency characteristic error of an electronic component may be obtained by measuring the electronic component, which is a two-terminal impedance component, using an actual measurement system and measuring the electronic component using a reference measurement system. This is a method of calculating an estimated value of the high frequency characteristics of the electronic component.
  • the sub-component high-frequency characteristic error correction method includes: (1) a first step of preparing at least three first correction data acquisition samples with different high-frequency characteristics, which are priced in the reference measurement system; ) At least three first correction data acquisition samples, or at least three second correction data acquisition samples that can be regarded as having the same high frequency characteristics as the first correction data acquisition sample, And (3) pricing data in the reference measurement system of the first correction data acquisition sample prepared in the first step and the actual measurement in the second step.
  • the first correction data acquisition sample prepared in the first step may be pre-valued by other methods even if it is pre-valued by actually measuring with a reference measurement system. May be. For example, for a large number of samples that can be regarded as equivalent characteristics, only some of the samples may actually be measured with a reference measurement system, and the measured values may be used for pricing other samples.
  • the first and second steps can be executed using the correction data acquisition sample having substantially the same shape and size as the electronic component.
  • the force that could only be calibrated up to the tip of the coaxial connector in the measurement system of the automatic characteristic sorter The compensation up to the tip of the terminal to which the electronic component is connected can be performed by the above method.
  • the first correction data acquisition sample and the electronic component or the first correction data acquisition sample and the second correction data acquisition are used.
  • the sample for use and the electronic component are connected in series.
  • the above formula is expressed in terms of terminals 1 and 2 where impedance Z is measured when an electronic component is measured by the reference measurement system, and
  • Terminals 1 and 2 where impedance Z is measured when electronic components are measured using the actual measurement system described in mmm Are derived on the basis of an error model connected between and.
  • the error model is such that impedances Z and Z are connected in series between the terminal 1 and the terminal 1, and the impedance Z and Z An impedance Z is connected between the connection point and the ground, an impedance Z is connected between the terminal 2 and the terminal 2, and an impedance Z is connected between the terminal 2 and the ground.
  • the impedances Z, Z, Z, Z, Z are
  • Z fl -[ ⁇ (Z 22 + (Z 21 + Z 0 )) Z dl + ((Z 21 + Z.) + Z 12 ) Z 22 + Z 12 (Z 21 + Z 0 ) ⁇ Z m
  • Z / 2 -[ ⁇ (Z 22 + (Z 21 + Z.)) Z d2 + ((Z 21 + Z 0 ) + Z 12 ) Z 22 + Z 12 (Z 21 + Z 0 ) ⁇ Z ml2
  • Z 3 -[ ⁇ (Z 22 + (Z 21 + Z.)) Z rf3 + ((Z 21 + Z 0 ) + Z 12 ) Z 22 + Z n (Z 21 + z 0 ) ⁇ z ml3
  • the measurement result in the reference measurement system can be estimated by correcting the error in the transmission path for the measurement result in the series connection actual measurement system.
  • the first correction data acquisition sample and the electronic component, or the first correction data acquisition sample and the second correction data acquisition are shunt connected.
  • the above formulas are terminals 1 and 2 at which admittance Y is measured when measuring an electronic component in the reference measurement system, and terminals at which admittance Y is measured when measuring an electronic component in the above-mentioned mmm actual measurement system. Derived based on an error model connected between 1, 2 and ddd. Admittan m seen from the terminal 1 force m
  • Y is connected, and a signal is connected between the connection point between the terminal 1 and the admittance ⁇ and the ground.
  • Admittance Y is connected, and the connection point between the admittance Y and the terminal 1 is connected to the ground.
  • An admittance Y is connected between the terminals 2 and 2, and an admittance Y is connected between the terminals 2 and 2, and an admittance Y is connected between the connection point of the admittance Y and the terminal 2 and the ground.
  • the admittance Y, Y, Y, Y, Y is the first step
  • Tjl ⁇ [Satichi] ⁇ One ⁇ ⁇ ⁇
  • Y f -+ (Y 2l + Y 0 )) + ((+) + + Yn (Y +) ⁇
  • the measurement result in the reference measurement system can be estimated by correcting the error in the transmission path for the measurement result in the actual measurement system for shunt connection.
  • At least three of the first correction data acquisition sample or the second correction data acquisition sample are measured using an admittance ⁇ ⁇ , ,, ⁇
  • the first correction data acquisition sample and the electronic component, or the first correction data acquisition sample and the second correction data acquisition are connected in series.
  • the third step includes pricing in the reference measurement system of at least three samples for obtaining the first correction data having different high frequency characteristics prepared in the first step, and the second step. Acquire at least three second correction data that can be regarded as having the same high frequency characteristics as at least three of the first correction data acquisition samples or the first correction data acquisition samples that have different high frequency characteristics.
  • the mathematical formula is obtained when the electronic component is measured with two ports in the actual measurement system, compared to the impedance when the electronic component is measured in the reference measurement system.
  • Impedance is related through a two-port error model, which has only one port to which two-port differential signals are input that measure impedance when measuring electronic components in the reference measurement system 1 Derived based on the port error model.
  • the 2-port error model is converted by paying attention to the differential impedance component, and the mathematical expression for the 1-port error model is used for high-frequency characteristic error correction.
  • the formula for the 1-port error model can be uniquely determined without considering the sign from the data of the actual measurement system and the reference measurement system of at least three correction data acquisition samples with different high-frequency characteristics. As a result, the correction accuracy is improved, and effects such as mitigation of the influence of noise on the correction accuracy and simplification of the calculation algorithm can be obtained.
  • the first correction data acquisition sample and the electronic component, or the first correction data acquisition sample and the second correction data are used.
  • the sample for acquisition and the electronic component are shunt connected.
  • the third step includes pricing the at least three first correction data acquisition samples prepared in the first step, which have different high-frequency characteristics, in the reference measurement system, and the second step. At least three of the second correction data acquisition samples having different high frequency characteristics obtained in the step or at least three of the second correction data acquisition samples having the same high frequency characteristics as the first correction data acquisition sample.
  • the mathematical formula relates the admittance when an electronic component is measured with two ports in the actual measurement system to the admittance when the electronic component is measured with the reference measurement system through a two-port error model.
  • the admittance when the electronic component is measured by the reference measurement system is derived based on a one-port error model having only one port to which the in-phase signal of two ports is input.
  • the 2-port error model is converted by focusing on the in-phase admittance component, and the mathematical expression for the 1-port error model is used for high-frequency characteristic error correction.
  • the formula for the 1-port error model can be uniquely determined without considering the sign from the data of the actual measurement system and the reference measurement system of at least three correction data acquisition samples with different high-frequency characteristics. , Correction accuracy is improved, noise influence on correction accuracy is reduced, and And effects such as simplification of the calculation algorithm can be obtained.
  • the present invention also provides an electronic component high-frequency characteristic error correction apparatus used in at least the fifth step of the above-described electronic component high-frequency characteristic error correction method.
  • the high-frequency characteristic error correction apparatus for an electronic component uses (a) the mathematical expression determined in step V in the third step and the arbitrary electronic component obtained in the fourth step in the actual measurement system.
  • the present invention it is possible to perform the calibration work for the two-terminal impedance component while the measurement system to be corrected remains in the same state as that at the time of actual measurement.
  • the automatic characteristic sorter which has not had an effective calibration method, can perform sorting after performing accurate calibration. The user can guarantee the characteristics.
  • the conventional error correction technique requires work that is not in the original measurement, such as removing a terminal from the connector and connecting a standard device for error correction. For this purpose, it is necessary to provide a grounding terminal or to have a structure capable of pressing the short-circuit standard.
  • the measurement for correction may be performed by the same operation as the normal measurement.
  • there is no need for a GND terminal and a short-circuit mechanism for correction and the terminal section only needs to have a function that allows normal measurement.
  • FIG. L (a) An explanatory diagram of a measurement system, (b) a circuit diagram of an error model for TRL calibration, and (c) a circuit diagram of an error model for SOLT calibration. (Conventional example)
  • FIG. 2 is an explanatory diagram of a method for deriving an error factor in SOLT calibration. (Conventional example)
  • FIG. 3 is an explanatory diagram of a TRL calibration error factor derivation method. (Conventional example)
  • FIG. 4 is a circuit diagram of an error model for TRRR calibration. (Conventional example)
  • FIG. 5 is a circuit diagram of an error model for RRRR calibration.
  • FIG. 6 is an explanatory diagram of measurement positions in TRRR calibration and RRRR calibration.
  • Sono 7 It is a plan view of a series-connected measurement board.
  • Fig. 8 is a plan view of a measurement board for shunt connection. (Conventional example)
  • Fig. 9 is a cross-sectional configuration diagram of a main part showing a configuration of a measurement terminal unit. (Example)
  • FIG. 10 (a) Configuration diagram of measurement system, (b) Front view of measurement substrate. (Example 1)
  • FIG. 13 is a graph showing measurement results of chip resistance. (Example 2)
  • Example 17 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 1)
  • FIG. 21 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 2)
  • Fig. 23 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 2)
  • G. 24 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 2)
  • G. 26 is a circuit diagram showing a Z-parameter model of a 2-port circuit. (Examples 3 and 4) Sono 27]
  • FIG. 26 is a circuit diagram showing the T-type equivalent circuit of FIG. (Examples 3 and 4)
  • FIG. 28 is a circuit diagram showing an equivalent circuit at the time of differential signal input in FIG. 26.
  • Sono 29 is a circuit diagram showing a T-type equivalent circuit of the Z parameter of the 2-port error model. (Example 3)
  • FIG. 30 is a circuit diagram showing an equivalent circuit at the time of differential signal input of FIG. (Example 3) Sono 31]
  • FIG. 30 is a circuit diagram showing an equivalent circuit of FIG. (Example 3)
  • FIG. 32 is a circuit diagram showing a ⁇ -type equivalent circuit.
  • FIG. 33 is a circuit diagram showing an equivalent circuit when an in-phase signal is input in FIG. 31. (Example 4)
  • FIG. 34 is a circuit diagram showing a ⁇ -type equivalent circuit of the Y parameter of the 2-port error model. (Example 4)
  • FIG. 35 is a circuit diagram showing an equivalent circuit when the in-phase signal in FIG. 33 is input. (Example 4)
  • FIG. 36 is a circuit diagram showing an equivalent circuit of FIG. 34. (Example 4)
  • FIG. 37 is a block diagram of a 2-port probe. (Example 3)
  • the electrical characteristics of electronic components are usually represented by the scattering coefficient matrix. If it is a parameter that can be used, V is easier to use depending on the purpose.
  • an impedance T-type connection circuit is used here, and its error model is shown in Fig. 14. In the figure, the part enclosed by a dotted line is the error model for each port.
  • the error model is the terminals 1 and 2 where the object is measured in the reference measurement system, and the correction target.
  • the three impedance values for the correction data acquisition sample are Z, Z, and Z.
  • the error factor can be calculated by the following equation [Equation 5b] obtained from the equation [Equation 5a]. Which solution to choose from among the different soils in the equation will be described later.
  • Equation [5b] Z can be obtained by substituting Z and Z in Equation [5b] into Equation [5a] according to the following Equation [5c].
  • Z can be obtained by substituting Z and ⁇ found in the mathematical formula 6b] into the mathematical formula 6a].
  • Equation 6c can be obtained by using ZZ or ZZ ⁇ 21 dl ⁇ 22 d2 m23 d3 instead of ZZ.
  • the error model in FIG. 19 is that impedance Z and Z are connected in series between terminal 1 and terminal 1.
  • Impedance Z is connected between the connection point of impedance Z and Z and the ground
  • Impedance z is connected between
  • the impedance seen from port 1 represents the state in which the port 2 side is anti-reflective terminated (that is, normally connected to 50 ⁇ ) in the error model of Fig. 19. Is the force s that can be obtained from the set of the sample value Z for correction data acquisition and the measured value Z when it is connected.
  • Z is the characteristic impedance
  • Z / 2 -[ ⁇ (+ (Z 21 + Z 0 )) Z, 2 + ((Z 21 + Z 0 ) + Z, 2 ) Z 22 + Z 12 (Z 21 + Z 0 ) ⁇ Z ml2
  • Z Bed 3 - [ ⁇ (Z 22 + (Z 21 + Z 0)) Z rf3 + ((Z 21 + Z 0) + Z 12) Z 22 + Z 12 (Z 21 + Z 0) ⁇ Z ml3
  • the correction data acquisition sample is a series connection of two-terminal impedance elements, if the correction is performed based on the error model of FIG. 19, the same result as the correction based on FIG. 14 can be obtained.
  • the variable represents admittance.
  • the circuit model is different from that of series measurement, but they can be converted to each other.
  • the part displayed as DUT is the subject. Since it is a shunt measurement of a two-terminal impedance element, the subject can be modeled as a two-terminal impedance element.
  • the purpose of correction is to derive the value of the error model parameter in the figure from the measurement result of the correction data acquisition sample.
  • the correction data acquisition sample should be connected only in the state shown in the figure, so that the measurement jig is complicated and does not cause any problems!
  • port 2 is merely a terminal admittance, so the equivalent circuit of FIG. 21 is obtained.
  • Y is the equivalent admittance of port 2.
  • the error factor can be calculated by the following mathematical formula 8b] obtained from the mathematical formula 8a].
  • Equation 8c the mathematical formula [Equation 8c] can be obtained by using ⁇ ⁇ instead of ⁇ ⁇ , or ⁇ ⁇
  • the power can be obtained using mil dl ml2 d2 ml3 d.
  • this mathematical expression 8b] is substantially the same mathematical expression as in the case of series measurement. Which solution to choose from among the different soils in the equation will be described later.
  • the error factor can be calculated by the following mathematical formula 9b] obtained from the mathematical formula 9a].
  • Y can be obtained by substituting Y and Y obtained by the formula [Equation 9b] into the formula [Equation 9a].
  • Equation 9c uses Y, ⁇ instead of Y, ⁇ , or ⁇ , ⁇ ⁇ 21 dl ⁇ 22 d2 m23 d, The power to seek s.
  • Y and Y which are error factors that have not yet been obtained by the above procedure, are used for obtaining correction data.
  • admittance Y is connected between terminal 1 and terminal 1, and terminal 1
  • Admittance Y is connected between the connection point of admittance Y and ground and admittance m 12 11
  • the admittance Y is connected between the connection point between the terminal Y and the terminal 1 and the ground, and the terminal 2 and the terminal
  • admittance Y is connected to admittance Y, and the connection point between admittance ⁇ and terminal 2 and ground m 22 22 m
  • the impedance viewed from port 1 represents the state in which the port 2 side is anti-reflective terminated (that is, normally connected to 50 ⁇ ) in the error model of Fig. 23. Can be obtained from the set of the correction data acquisition sample value ⁇ and the measurement value ⁇ when it is connected. This is also the same as in the case of series measurement, and it is possible to calculate the following mathematical formula [10] -CY. Y in the formula indicates the characteristic admittance.
  • -[ ⁇ (3 ⁇ 4 + (7 21 + Y 0 w dl + ((r 2 , + Y Q ) + Y U ) Y 22 + negligence+ ⁇ (-3 ⁇ 4-r 11 ) (7 21 +7 0 ) - ⁇ 1 3 ⁇ 4 ⁇ r 22 -7 11 3 ⁇ 4 (7 21 + r 0 )]
  • Y f3 -[ ⁇ ( 22 + (7 21 + Y 0 )) + (( 21 + ⁇ 0 ) + ⁇ ⁇ ) ⁇ 22 tens Y i2 (Y 21 + ⁇ ⁇ ) ⁇ 7 ml3
  • Equation 10 Since there is only one value of ⁇ , ⁇ , ⁇ , and ⁇ ⁇ obtained in Equation 10 should have the same value
  • Y and Y are error factors that form Y by connecting them in parallel.
  • Example 1 A case of series connection will be described with reference to FIG. 10 and FIG. Series connection is a method of connecting a device under test between two ports of a measuring machine.
  • the electronic component 2 as the subject is placed on the measurement board 20. It is arranged so as to straddle the slit 22x between the transmission lines 22a and 22b formed on the upper surface, and is connected in series between the transmission lines 22a and 22b.
  • SMA connectors 56 66 are soldered to both ends of the transmission lines 22a, 22b; 24 on the upper and lower surfaces of the measurement board 20, and are connected to the network analyzer 70 via coaxial cables 58, 68.
  • the network analyzer 70 uses an Agilent network analyzer 8753D, and the measurement board 20 is designed with a characteristic impedance of 50 ⁇ .
  • the measurement board 20 has a length L of 50 mm and a width W of 30 mm.
  • the electronic component 2 that is the subject is a 56 nH chip inductor of 1.0 mm X 0.5 mm size.
  • the three correction data acquisition samples include
  • Resistors of 2.2 ⁇ , 51 ⁇ , and 510 ⁇ were used.
  • the correction coefficient is calculated from the measurement data of the reference measuring instrument (4291) and the measuring instrument (8753D) actually used for measurement on a personal computer based on the principle 1> described above.
  • the procedure up to this point is the measurement system correction procedure.
  • the corrected measurement is calculated by a personal computer.
  • FIG. 11 is a graph showing the results of measurement and correction processing performed on a 1005 size chip inductor (52 nH).
  • Figure 11 (a) is a graph of the reference value, the measurement value before correction, and the measurement value after correction.
  • the “reference value” is a value measured with a reference measuring machine.
  • Before correction is the measurement result itself with the measuring instrument that is actually used for measurement, and is corrected, measured, and measured value.
  • “After correction” is a value obtained by correcting the measured value of the measuring instrument actually used for measurement (estimated value of the measured value when measured with the reference measuring instrument).
  • Fig. 1 l (b-1) is a graph of measured values before correction, Fig.
  • Fig. 11 (a) is a graph of measured values after correction
  • Fig. 11 (c) is a graph of reference values. It is. [0109] As shown in Fig. 11 (a), “reference value” and “after correction” agree well enough that they cannot be distinguished in the figure, but “before correction” is different from “reference value”. There is a big shift. In other words, if correction is not performed, only measurement values that are significantly different from those measured with the reference measurement device can be obtained, but by performing correction, measurement values that are very close to the measurement values obtained with the reference measurement device can be obtained. Power S can be.
  • Shunt connection is a method of connecting a device under test between one port of the measuring instrument and the ground.
  • the electronic component 2 that is the subject is placed on the upper surface of the measurement substrate 21, as shown in the overall configuration diagram of FIG. It is connected between the formed signal conductor 24 and the ground conductor 25.
  • the measurement board 21 has SMA connectors 56 and 66 soldered to both ends of the signal conductor 24 and the ground conductor 25, and is connected to the network analyzer 70 via coaxial cables 58 and 68.
  • a network analyzer 8753D manufactured by Agilent is used as the network analyzer 70, and the measurement board 20 is designed with a characteristic impedance of 50 ⁇ .
  • the measurement board 20 has a length L of 50 mm and a width W of 30 mm.
  • the reference measurement system is the Agilent impedance analyzer 4291 attached to the Agilent measurement jig 16192A and measured.
  • the electronic component 2 which is the subject is a 50 ⁇ chip resistor of l.Omm ⁇ 0.5mm size.
  • the correction coefficient is calculated from the measurement data of the reference measuring instrument (4291) and the measuring instrument (8753D) actually used for measurement on a personal computer based on the principle 2> described above. The procedure up to this point is the correction procedure.
  • FIG. 13 is a graph showing the results of measurement and correction processing performed on a 1005 chip resistance (50 ⁇ ).
  • Figure 13 (a) is a graph of the reference value, the measurement value before correction, and the measurement value after correction.
  • the “reference value” is a value measured with a reference measuring machine.
  • “Before correction” is the measurement result of the measuring instrument that is actually used for measurement, and is the measurement value that has not been corrected.
  • “After correction” is a value obtained by correcting the measured value of the measuring instrument actually used for the measurement (estimated value of the measured value when measured with the reference measuring instrument).
  • Fig. 13 (b-1) is a graph of measured values before correction
  • Fig. 13 (b-2) is a graph of measured values after correction
  • Fig. 13 (c) is a graph of reference values. .
  • FIG. 26 An error correction method for high frequency characteristics of an electronic component according to a second type of embodiment of the present invention will be described with reference to FIGS. 26 to 37.
  • FIG. 26 An error correction method for high frequency characteristics of an electronic component according to a second type of embodiment of the present invention will be described with reference to FIGS. 26 to 37.
  • the combination of codes as in the first type embodiment of the present invention can be realized. No selection is required. This improves the accuracy of deriving error correction parameters and the accuracy of measurement error correction. Details will be described below.
  • FIG. 26 shows a circuit diagram of a model in which a 2-port circuit is represented by Z parameters.
  • the relationship shown in Fig. 26 can be expressed as a determinant as shown in the following equation 11].
  • the correction model is as follows.
  • FIG. 29 is a circuit diagram showing a two-port error model using a T-type equivalent circuit when two-terminal impedance elements are connected in series using a measurement jig.
  • the 2-port error model is the part enclosed by the dotted line, and when measuring electronic components with the reference measurement system. Impedance Z and impedance when measuring electronic components with the actual measurement system. It is connected between two specified ports (Portl, Port2).
  • Z ' Ze-Ze + "e-Ze' ( Zg 22- Ze i2 + ⁇ -Ze ⁇ + d ) x (Ze 12 + Ze ⁇ )
  • This mathematical model 14] is equivalent to the differential impedance component Zt of the Z parameter measured by connecting two-terminal impedance elements in series using a measurement jig. That is, the formula [
  • Equation 14 is an actual measurement for impedance Z when an electronic component is measured with a reference measurement system.
  • Equation 14 shows that the circuit of FIG. 30 is equivalent to the circuit shown in FIG.
  • Fig. 31 the impedance components in the circuit are combined into three, which is the same as the one-port error model in which the error of the measurement tool is represented by a T-type equivalent circuit. This indicates that the impedance of the DUT can be derived by performing measurement and correction in the following steps (1) to (4) in the case of series connection!
  • Measurement jigs for three correction samples (chip resistance, etc.) whose characteristics (impedance) are priced, or three correction samples that can be considered to have high frequency characteristics equivalent to these three correction samples Use to measure the Z parameter.
  • a network or impedance analyzer is used for the measurement.
  • the circuit diagram of Fig. 32 shows a circuit diagram of a ⁇ -type equivalent circuit using the ⁇ parameter. If Fig. 32 is transformed into an equivalent circuit when a common-mode signal is input, the parallel admittance component of ports 1 and 2 in the ⁇ -type equivalent circuit is ⁇ in Equation 13] as shown in the circuit diagram of Fig. 33. I understand.
  • the 2-port error model in the case where a 2-terminal impedance element is shunt-connected to the circuit diagram of Fig. 34 using a measurement jig is measured as a ⁇ -type equivalent. This is shown using a circuit.
  • the 2-port error model is the part enclosed by the dotted line. Two ports (the admittance ⁇ ⁇ when measuring electronic components with the reference measurement system and the admittance when measuring electronic components with the actual measurement system) Portl and Port2).
  • the circuit in Fig. 34 is transformed into an equivalent circuit when an in-phase signal is input, the circuit diagram in Fig. 35 is obtained.
  • Yt d ⁇ Ye n -Ye 12 + Ye ⁇ -Ye M + ⁇ —— ⁇ —— -——- ⁇ — ⁇ ————— d Ye 22 -Ye l2 + Ye 33 -Ye M + Y d + Ye 12 + Ye 34
  • Equation 15 is equivalent to the in-phase admittance component Yt of the Y parameter measured by shunting a two-terminal impedance element using a measurement jig.
  • Equation [15] shows that the circuit of FIG. 34 is equivalent to the circuit shown in FIG.
  • FIG. 35 there are three admittance components in the circuit, which is the same as the one-port error model in which the error of the measurement jig is represented by a ⁇ -type equivalent circuit. This is because, as with the series-connected vertical type equivalent circuit, the balance conversion of the vertical parameter measured using the measurement jig is performed, and then 1-port correction is performed for the common-mode admittance component. Demonstrate that DUT admittance can be derived! /
  • Example 3 A measurement error correction procedure when a two-terminal impedance element is connected in series in an actual measurement system will be described.
  • Next V connect the standard 2-port sample or a sample that can be regarded as having high-frequency characteristics equivalent to the standard 2-port sample to the two ports of the actual measurement system, and measure the S parameter.
  • the error parameter of the 1-port error model is calculated from the relationship between the impedance values determined for the three standard 2-port samples and the converted differential Z parameter.
  • the three unknowns shown in Figure 31 as error parameters, namely Ze — Ze + Ze — Ze and Ze — Ze + Ze — Ze.
  • the error parameter is not uniquely determined, and no problem arises. The effects of variations and measuring instrument trace noise are alleviated.
  • Example 4 A measurement error correction procedure when a two-terminal impedance element is shunt-connected in an actual measurement system will be described.
  • the S parameter measurement result is converted into an in-phase Y parameter using the following mathematical model 17].
  • This mathematical model 17] uses the S parameter for the Y parameter on the right side of the mathematical model 15] described above. Derived by converting to a parameter.
  • the relationship between the priced value of the standard 2-port sample and the converted in-phase Y parameter is expressed using a 1-port error model.
  • the one-port error model can be converted into a reflection coefficient instead of the one shown in Fig. 36, and the relationship can be modeled.
  • the error parameter of the 1-port error model is calculated from the relationship between the admittance values of the three standard 2-port samples and the converted in-phase Y parameter.
  • the error parameters are uniquely derived by replacing the relationship with the priced values of the standard 2-port sample with the 1-port error model using balance conversion for the actual 2-port measurement system. Is done.
  • the error parameter is not uniquely determined as in the AAA correction method (Example 2), and no problem arises. The effects of variations and measuring instrument trace noise are alleviated.
  • Table 3 shows the results of correcting the chip resistance (100 ⁇ , 392 ⁇ ) using the method of Example 3 and the AAA correction (Example 1) using the 1-port error model in Fig. 31. .
  • Table 3 shows the average correction error and 3 ⁇ . Except for the average value of the resistance of 392 ⁇ , which is marked with “*” to the value with the smallest correction error, all values show the values with the smallest correction error. Also, in AAA correction method, measured value S of port 1 and port
  • Example 3 shows that the method of Example 3 can be corrected more accurately than the AAA correction method (Example 1).
  • the present invention can be applied not only to a measurement system using a measurement substrate but also to a measurement system using a measurement pin.

Abstract

Provided is an electronic part high-frequency characteristic error correction method capable of performing calibration of a 2-terminal impedance part while a measurement system to be corrected is in the same state as in the actual measurement. At least three correction data acquiring samples having different high-frequency characteristics are measured in a reference measurement system and in an actual measurement system. An expression for correlating a measurement value obtained in the actual measurement system with a measurement value obtained in the reference measurement system is decided by using a transmission path error correction coefficient. An arbitrary electronic part (2) is measured in the actual measurement system and an estimated value of the high-frequency characteristic of the electronic part which would be obtained by measuring the electronic part in the reference measurement system is calculated by using the decided expression.

Description

明 細 書  Specification
電子部品の高周波特性誤差補正方法  Correction method for high frequency characteristics error of electronic parts
技術分野  Technical field
[0001] 本発明は、電子部品の高周波特性誤差補正方法に関し、詳しくは、 2端子インピー ダンス部品の高周波特性の測定において測定系の誤差を補正する方法に関する。 背景技術  [0001] The present invention relates to a method for correcting high-frequency characteristic errors of electronic components, and more particularly to a method for correcting errors in a measurement system in measuring high-frequency characteristics of a two-terminal impedance component. Background art
[0002] 従来、電子部品の量産工程において、 自動特性選別機を用いて電子部品の電気 特性が測定されている。 自動特性選別機での測定系は、基準となる測定系と回路特 性が異なるため、自動特性選別機による測定値を補正して、基準となる測定系での 測定値を推定することにより、歩留まりの向上を図ることができる。このような補正を行 う方法として、 SOLT、 TRL校正及び RRRR/TRRR校正と呼ばれる技術が知られ ている。  Conventionally, in the mass production process of electronic parts, the electrical characteristics of the electronic parts have been measured using an automatic characteristic sorter. Since the measurement system with the automatic characteristic sorter has different circuit characteristics from the standard measurement system, by correcting the measurement value with the automatic characteristic sorter and estimating the measurement value with the standard measurement system, Yield can be improved. As a method for performing such correction, techniques called SOLT, TRL calibration, and RRRR / TRRR calibration are known.
[0003] まず、 TRL/SOLT校正につ!/、て、説明する。  [0003] First, TRL / SOLT calibration will be explained!
[0004] 被検体である表面実装部品の散乱係数行列の真値を測定するために使用できる 従来技術としては、 TRL校正が最も有効な技術である。また、広く使用されている従 来技術として SOLT校正がある。これらについて簡単に説明する。  [0004] TRL calibration is the most effective technique that can be used to measure the true value of the scattering coefficient matrix of a surface-mounted component that is the subject. Another widely used conventional technology is SOLT calibration. These will be briefly described.
[0005] 被検体の真値を得るためには、測定系の誤差要因を同定して、測定結果から誤差 要因の影響を取り除かなければならない。図 1に、代表的な誤差除去方法 (校正方 法)で使用される誤差モデルを示す。  [0005] In order to obtain the true value of the subject, it is necessary to identify the error factor of the measurement system and remove the influence of the error factor from the measurement result. Figure 1 shows the error model used in a typical error elimination method (calibration method).
[0006] すなわち、図 1 (a)に示すように、被検体である電子部品 2は、測定治具 10の上面 に形成された伝送路上に接続される。測定治具 10の伝送路の両端に設けられたコ ネクタ 11a, l ibには、同軸ケーブル 50, 60の一端に設けられたコネクタ 51 , 61が 接続され、同軸ケーブル 50, 60の他端は不図示のネットワークアナライザの測定ポ ートに接続される。矢印 51s, 61sは校正面を示す。  That is, as shown in FIG. 1 (a), the electronic component 2 as the subject is connected on a transmission path formed on the upper surface of the measurement jig 10. Connectors 51a and 61 provided at one end of the coaxial cables 50 and 60 are connected to the connectors 11a and ib provided at both ends of the transmission line of the measuring jig 10, and the other ends of the coaxial cables 50 and 60 are Connected to the network analyzer measurement port (not shown). Arrows 51s and 61s indicate the calibration plane.
[0007] 図 1 (b)は TRL補正の誤差モデルであり、散乱係数 S , S , S , S で表さ  [0007] Figure 1 (b) is an error model for TRL correction, expressed as scattering coefficients S 1, S 2, S 3, and S 2.
11A 12A 21A 22A れる測定治具の回路 12と、端子対 a — b 、 a — bとの間に、散乱係数 e , e , e ,  11A 12A 21A 22A The scattering coefficient e, e, e, between the measurement jig circuit 12 and the terminal pairs a — b, a — b
1 1 2 2 00 01 10 e で表される一方の測定ポート側の回路 52と、散乱係数 f , f , f , f で表される 他方の測定ポート側の回路 62とが接続されている。 1 1 2 2 00 01 10 e expressed as one measurement port side circuit 52 and scattering coefficient expressed as f, f, f, f The circuit 62 on the other measurement port side is connected.
[0008] 図 1 (c)は SOLT補正の誤差であり、散乱係数 S , S , S , S で表される測 [0008] Figure 1 (c) shows the error of the SOLT correction, which is measured by the scattering coefficients S 1, S 2, S 3, and S 2.
11A 12A 21A 22A  11A 12A 21A 22A
定治具の回路 14の両側に、散乱係数 E , E , Ι , Ε で表される一方の測定ポート  One measurement port represented by scattering coefficients E, E, Ι, Ε on both sides of the fixture circuit 14
DF RF SF  DF RF SF
側の回路 54と、散乱係数 Ε , Ε で表される他方の測定ポート側の回路 64とが接  Circuit 54 on the other side and circuit 64 on the other measurement port side represented by the scattering coefficients Ε and Ε
LF TF  LF TF
続されている。  It has been continued.
[0009] SOLT校正の場合、誤差要因を同定するためには、被検体測定面に少なくとも 3種 類の散乱係数が既知のデバイスを取り付けて測定を行わなければならず、図 2に示 すように、伝統的に開放 (ΟΡΕΝ)、短絡 (SHORT)、終端 (LOAD=50 Q )の標準器 8 0, 81 , 82が使用されることが多いが、同軸環境以外では、良好な「開放」「終端」の 標準器の実現は極めて困難であり、治具 10の先端 (矢印 51s, 61sで示す校正面) で校正できない。同軸環境であれば、このような標準器はスライディングロード等の手 法で実現できるため、この方法は広く使用されており、 SOLT校正と呼ばれる。  [0009] In the case of SOLT calibration, in order to identify the cause of error, measurement must be performed by attaching a device with at least three types of scattering coefficients known to the subject measurement surface, as shown in Figure 2. Traditionally, open standard (ΟΡΕΝ), short circuit (SHORT), and termination (LOAD = 50 Q) standard devices 80, 81, 82 are often used. It is extremely difficult to realize the “terminal” standard device, and calibration cannot be performed at the tip of the jig 10 (the calibration surface indicated by arrows 51s and 61s). In a coaxial environment, such a standard can be realized by a method such as sliding road, so this method is widely used and is called SOLT calibration.
[0010] TRL校正とは、実現の難しいデバイス形状の標準器に代えて、ポート間直結状態( Through)と全反射 (Reflection通常は短絡)及び長さが異なる数種類の伝送路 (Li ne)を標準器として使用するものである。標準器の伝送路は、比較的散乱係数が既 知のものを製作しやすぐまた、全反射も短絡であれば比較的簡単にその特性を予 想できることから、特に導波管環境では最も精度の高い校正方法として知られている  [0010] In TRL calibration, instead of a standard device with a difficult device shape, several types of transmission lines (Lines) with different lengths are used, with direct connection between ports (Through), total reflection (Reflection usually short-circuited), and different lengths. Used as a standard device. The transmission path of the standard device can be expected to be the most accurate, especially in a waveguide environment, as soon as a relatively known scattering coefficient is manufactured and the total reflection is short-circuited. Known as a high calibration method
[0011] 図 3に TRL校正の誤差要因導出方法を示す。図中、伝送路には斜線を付している 。校正面は、矢印 2s, 2tで示すように、デバイスとの接続部である。誤差要因を同定 するためには、ポート間直結状態 (Through)の基板 86と全反射 (Reflection通常 は短絡)の基板 83及び長さが異なる数種類の伝送路 (Line)の基板 84, 85を、標準 器として使用する。この例では、 Throughはいわゆる Zero-Throughである。被検体 の測定時には、被検体の大きさだけ長さを長くした測定基板 87に被検体 2をシリーズ 接続して測定する。 [0011] Figure 3 shows the TRL calibration error factor derivation method. In the figure, the transmission line is hatched. The calibration surface is the connection with the device as shown by arrows 2s and 2t. In order to identify the error factors, the board 86 directly connected between the ports (Through), the board 83 of total reflection (normally short-circuited), and boards 84 and 85 of several types of transmission lines (Lines) of different lengths are used. Use as a standard device. In this example, Through is so-called Zero-Through. When measuring the subject, the subject 2 is connected in series to a measurement substrate 87 that is longer by the size of the subject.
[0012] TRL, SOLT校正の概要は、先に述べたとおりである力 S、これらの技術には、以下 の 2つの問題がある。  [0012] The outline of TRL and SOLT calibration is as described above. Force S, These technologies have the following two problems.
[0013] (1)標準器である伝送路等 (Line数種類と Reflection)と Throughにおいて、同軸 -平面伝送路の接続部に生じる誤差要因が全て等しくなければ校正誤差を生じる。 たとえ各標準器で同じ種類のコネクタを使用しても、おのおのが異なる場合には特に コネクタの特性バラツキの影響が非常に大きくなり、ミリ波帯に近づくと事実上実施不 可能である。 [0013] (1) Coaxial transmission line, etc. (several types of lines and reflection) and Through -Calibration error will occur if the error factors that occur in the plane transmission line connection are not all equal. Even if the same type of connector is used for each standard device, the effect of connector characteristic variation becomes very large, especially if they are different, and it is practically impossible to approach the millimeter wave band.
[0014] (2)上記課題を解決するため、市販治具では、同軸コネクタを共通として標準器伝 送路と接触接続することでコネクタ測定のバラツキの影響を回避しょうという工夫もさ れているが、同軸ピンが破損するため接触部に十分な押しつけ荷重を確保すること が構造上難しぐ接触が安定しないために校正が不安定になることが多い。また、測 定周波数が高くなると一般に伝送路も同軸ピンも細くなるので、これらの位置決め再 現性による測定バラツキが大きくなつてしまう。  [2] (2) In order to solve the above-mentioned problems, commercially available jigs have been devised to avoid the influence of variations in connector measurement by using a coaxial connector as a common contact connection with a standard device transmission path. However, since the coaxial pin is damaged, it is often difficult to secure a sufficient pressing load on the contact area. In addition, when the measurement frequency is increased, the transmission path and the coaxial pin are generally narrower, and the measurement variation due to these positioning repeatability increases.
[0015] これらの問題を解決するため、いわゆる RRRR/TRRR校正法が提案されている。  [0015] In order to solve these problems, a so-called RRRR / TRRR calibration method has been proposed.
[0016] 次に、 RRRR/TRRR校正法の概要を説明する。  [0016] Next, an outline of the RRRR / TRRR calibration method will be described.
[0017] これらは、ただ 1つの伝送路上の所定の数力所にて信号導体と接地導体を短絡す ることにより、伝送路先端までの測定系の誤差を同定し、表面実装部品の高周波電 気特性を高精度に測定できることが特徴である。 TRL/SOLT校正法で問題となつ て!/、た伝送路特性のバラツキや、伝送路と同軸コネクタの接点状態のバラツキと無関 係であることが利点となる。  [0017] By short-circuiting the signal conductor and the ground conductor at predetermined power points on only one transmission path, these identify errors in the measurement system up to the front end of the transmission path. The characteristic is that the gas characteristics can be measured with high accuracy. The problem with TRL / SOLT calibration methods is that they are unrelated to variations in transmission path characteristics and variations in the contact state between the transmission path and coaxial connector.
[0018] 誤差モデルは、図 4及び図 5に示すとおり、 SOLT/TRL校正と同様である。すな わち、図 4は TRRR校正の誤差モデルであり、図 1 (c)に示した SOLT校正の誤差モ デノレと同じである。図 5は RRRR校正の誤差モデルであり、図 1 (b)に示した TRL校 正の誤差モデルと同じである。  The error model is the same as that of SOLT / TRL calibration as shown in FIGS. In other words, Fig. 4 shows the TRRR calibration error model, which is the same as the SOLT calibration error model shown in Fig. 1 (c). Figure 5 shows the RRRR calibration error model, which is the same as the TRL calibration error model shown in Figure 1 (b).
[0019] RRRR/TRRR校正法のポイントは、校正に用いる「標準測定値」の測定方法であ り、 SOLTでは標準デバイス、 TRLでは標準伝送路の測定値を「標準測定値」として いるが、 RRRR/TRRR校正法では、図 6に示すように、測定基板 10a上で短絡基 準の位置を変えて測定した測定値を「標準測定値」として!/、る。コネクタの影響が生じ ないので、卓上測定においては、 SOLT校正や TRL校正より高精度で有効な方法 であるといえる。  [0019] The point of the RRRR / TRRR calibration method is the measurement method of “standard measurement value” used for calibration. The measurement value of the standard device in SOLT and the standard transmission line in TRL is “standard measurement value”. In the RRRR / TRRR calibration method, as shown in Fig. 6, the measurement value measured by changing the position of the short-circuit reference on the measurement substrate 10a is taken as the “standard measurement value”. Since there is no influence of the connector, it can be said that this is a more accurate and effective method for desktop measurement than SOLT calibration and TRL calibration.
[0020] しかし、 TRRR/RRRR校正では、治具伝送路 10s, 10tに短絡基準(ショートチッ プ 2s)を接続する位置の違いによって生じる反射係数の変化を校正基準として使用 するので、測定する信号の波長が長い場合 (周波数が低い)場合、短絡基準の接続 位置を大きく変える必要があり、図中の T , Tを長くする必要があるために、測定基 [0020] However, in TRRR / RRRR calibration, the jig transmission line 10s, 10t is connected to the short circuit reference (short chip). (2s) is used as a calibration reference because of the change in the reflection coefficient caused by the difference in the connection position, so if the wavelength of the signal to be measured is long (the frequency is low), the connection position of the short-circuit reference must be changed significantly. Since T and T in the figure need to be lengthened,
1 2  1 2
板 10aの長さ(矢印 Lで示す方向の寸法)を長くする必要がある。また、量産工程で用 いる自動特性選別機では、構造、寸法に制約があるので、治具 10aに補正のための GND端子を設けることや、ショートチップ 2sを精度良く位置決めできる構造にするこ とが難しい (例えば、特許文献 1、 2参照)。  It is necessary to increase the length of the plate 10a (the dimension in the direction indicated by the arrow L). In addition, the automatic characteristic sorter used in the mass production process has restrictions on the structure and dimensions. Therefore, the jig 10a should be provided with a GND terminal for correction, and the short chip 2s can be positioned accurately. (For example, see Patent Documents 1 and 2).
特許文献 1: WO2005/101033号公報  Patent Document 1: WO2005 / 101033 Publication
特許文献 2 : WO2005/101034号公報  Patent document 2: WO2005 / 101034
非特許文献 1: Application Note 1287-9: In- Fixture Measurements Using Vector Net work Analyzers, ( (しノ 1999 Hewlett-Packard Company)  Non-Patent Document 1: Application Note 1287-9: In- Fixture Measurements Using Vector Net work Analyzers, ((1999 1999 Hewlett-Packard Company)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0021] 電子部品の量産工程において用いられている自動特性選別機では、例えば図 9の 要部構成図に示したように、測定端子部 30から突出する測定ピン 32a, 32bに、被 検体である電子部品 2の電極 2a, 2bが押し当てられて測定ピン 32a, 32bの間に直 列に接続され、測定ピン 32a, 32bは、同軸ケーブル 34, 36を介して、不図示の測 定機に接続されている。測定端子部 30の周囲に、電子部品 2を接続できる程度の狭 い空間し力、確保できない場合、測定端子部 30に実質的に量産デバイス自体又は量 産デバイスと略同じ寸法 ·形状の試料しか接続できないという制約のもとで、測定系 の誤差補正を行わざるを得ない。このような場合には、次の課題を生じる。  [0021] In the automatic characteristic sorter used in the mass production process of electronic parts, for example, as shown in the main part configuration diagram of Fig. 9, the test pins 32a and 32b protruding from the measurement terminal part 30 are connected to the test object. The electrodes 2a and 2b of an electronic component 2 are pressed against each other and connected in series between the measurement pins 32a and 32b, and the measurement pins 32a and 32b are connected to the measuring device (not shown) via coaxial cables 34 and 36. It is connected to the. If the space is small enough to connect the electronic component 2 around the measurement terminal section 30 and it cannot be secured, the sample on the measurement terminal section 30 is substantially the same as the mass production device itself or the mass production device. Measurement system error correction must be performed under the restriction that it cannot be connected. In such a case, the following problem arises.
[0022] (1)長さの異なる伝送路を自動特性選別機の測定端子部に接続することは、そもそ も不可能であり、 TRL校正が適用できない。  [0022] (1) It is impossible to connect transmission lines of different lengths to the measurement terminal section of the automatic characteristic sorter, and TRL calibration cannot be applied.
[0023] (2)SOLT校正は、現実的には測定端子部先端での校正ができず、同軸、導波管 系にしか適用できないという制約がある。通常は、同軸コネクタ部までは SOLT校正 により校正し、それ以後の伝送路は誤差が生じないように設計することで十分な測定 精度を得ている。ところ力 自動特性選別機の測定端子部では、同軸コネクタ以後の 伝送路に形状、寸法制約があるので、同軸コネクタ部までの校正だけでは、十分な 精度が得られなレ、ことが多レ、。 [0023] (2) SOLT calibration cannot be calibrated at the end of the measurement terminal in practice, and is limited to being applied only to a coaxial or waveguide system. Normally, the coaxial connector is calibrated by SOLT calibration, and the subsequent transmission line is designed so that no error occurs, so that sufficient measurement accuracy is obtained. However, in the measurement terminal section of the force automatic characteristic sorter, there are restrictions on the shape and dimensions of the transmission line after the coaxial connector, so calibration alone to the coaxial connector section is sufficient. There are many cases where accuracy cannot be obtained.
[0024] (3)SOLT校正で何らかの工夫を行って測定端子部の先端で標準デバイスを測定 しょうとしても、次の問題が生じる。  [0024] (3) The following problems arise when trying to measure the standard device at the tip of the measurement terminal by using some means in SOLT calibration.
[0025] i) SOLT校正では各ポートでの 1ポートデバイスの測定が必要である。すなわち、 図 7の測定基板 10bの平面図に示すように 1本の信号線 ΙΟχのスリット 10kの間に 2 端子電子部品をシリーズ接続で測定する場合、測定に不要であるので端子部に接 地端子はな V、。しかし、 SOLT校正では接地導体がなければ 1ポートデバイスは測定 できないため、 SOLT校正を適用するには、校正のためだけに接地端子を設ける必 要がある。  [0025] i) SOLT calibration requires measurement of 1-port devices at each port. That is, as shown in the plan view of the measurement board 10b in Fig. 7, when measuring two-terminal electronic parts in series connection between the slits 10k of one signal line ΙΟχ, it is not necessary for the measurement and is grounded to the terminal part. The terminal is V. However, since one-port devices cannot be measured without a ground conductor in SOLT calibration, it is necessary to provide a ground terminal only for calibration in order to apply SOLT calibration.
[0026] ii) SOLT校正では、 2つのポートそれぞれで、値が既知の 3種類の 1ポートデバイス の測定が必要であるが、図 8の測定基板 10cの平面図に示すように信号導体 10pと 接地導体 10gとの間にデバイスの 2つの端子が接続されるために、各ポートが独立し た 1ポートデバイスの測定が不可能である。  [0026] ii) The SOLT calibration requires measurement of three types of 1-port devices with known values at each of the two ports. However, as shown in the plan view of the measurement board 10c in FIG. Since the two terminals of the device are connected to the ground conductor 10g, it is impossible to measure a single-port device in which each port is independent.
[0027] (4)2端子電子部品をシリーズ接続で測定する場合、測定に不要であるので端子部 に接地端子はない。し力、し、 RRRR校正ではショートでの測定が必要であるため、 RR RR校正を適用するには、校正のためだけに接地端子を設ける必要がある。  [4] (2) When measuring 2-terminal electronic components in series connection, there is no ground terminal in the terminal section because it is not necessary for measurement. Since RRRR calibration requires short-circuit measurement, to apply RR RR calibration, it is necessary to provide a ground terminal only for calibration.
[0028] (5)RRRR校正では基板の数箇所でショートを行!/、測定するが、周波数が低 V、場 合、短絡基準の接続位置を大きく変える必要があり、そのために測定基板の長さを 長くする必要がある。  [0028] (5) In RRRR calibration, short circuit is performed at several points on the board! /, But when the frequency is low V, it is necessary to change the connection position of the short circuit reference significantly, and therefore the length of the measurement board It is necessary to lengthen the length.
[0029] 本発明は、かかる実情に鑑み、 2端子インピーダンス部品について、補正の対象と なる測定系が実測時と同じ状態のままで校正作業を行うことができる、電子部品の高 周波特性誤差補正方法を提供しょうとするものである。  [0029] In view of such circumstances, the present invention corrects the high-frequency characteristic error of an electronic component that can be calibrated for a two-terminal impedance component while the measurement system to be corrected remains in the same state as at the time of actual measurement. Is to provide a method.
課題を解決するための手段  Means for solving the problem
[0030] 本発明は、上記課題を解決するために、以下のように構成した電子部品の高周波 特性誤差補正方法を提供する。 In order to solve the above-described problems, the present invention provides a method for correcting a high-frequency characteristic error of an electronic component configured as follows.
[0031] 電子部品の高周波特性誤差補正方法は、 2端子インピーダンス部品である電子部 品を実測測定系で測定した結果から、当該電子部品を基準測定系で測定したなら ば得られるであろう当該電子部品の高周波特性の推定値を算出する方法である。電 子部品の高周波特性誤差補正方法は、(1)前記基準測定系で値付けされている、 高周波特性の異なる少なくとも 3つの第 1の補正データ取得用試料を用意する第 1の ステップと、(2)少なくとも 3つの前記第 1の補正データ取得用試料、又は前記第 1の 補正データ取得用試料と同等の高周波特性を有すると見なせる少なくとも 3つの第 2 の補正データ取得用試料を、前記実測測定系で測定する第 2のステップと、(3)前記 第 1のステップで用意された前記第 1の補正データ取得用試料の前記基準測定系で の値付けデータと前記第 2のステップにおいて前記実測測定系で測定された前記第 1の補正データ取得用試料又は前記第 2の補正データ取得用試料の測定データと から、前記実測測定系で測定した測定値と前記基準測定系で測定した測定値とを、 伝送路の誤差補正係数を用いて関連付ける数式を決定する第 3のステップと、(4) 任意の電子部品を前記実測測定系で測定する第 4のステップと、 (5)前記第 4のステ ップで得られた測定結果に基づ!/、て、前記第 3のステップで決定した前記数式を用 V、て、当該電子部品を前記基準測定系で測定したならば得られるであろう当該電子 部品の高周波特性の推定値を算出する第 5のステップとを備える。 [0031] The method of correcting the high-frequency characteristic error of an electronic component may be obtained by measuring the electronic component, which is a two-terminal impedance component, using an actual measurement system and measuring the electronic component using a reference measurement system. This is a method of calculating an estimated value of the high frequency characteristics of the electronic component. Electric The sub-component high-frequency characteristic error correction method includes: (1) a first step of preparing at least three first correction data acquisition samples with different high-frequency characteristics, which are priced in the reference measurement system; ) At least three first correction data acquisition samples, or at least three second correction data acquisition samples that can be regarded as having the same high frequency characteristics as the first correction data acquisition sample, And (3) pricing data in the reference measurement system of the first correction data acquisition sample prepared in the first step and the actual measurement in the second step. From the measurement data of the first correction data acquisition sample or the second correction data acquisition sample measured in the system, the measurement value measured in the actual measurement system and the measurement value measured in the reference measurement system The A third step of determining an equation to be associated using an error correction coefficient of the transmission path; (4) a fourth step of measuring an arbitrary electronic component by the actual measurement system; and (5) the fourth step. Based on the measurement result obtained in step 3, the above formula determined in the third step is used to measure the electronic component in the reference measurement system. And a fifth step of calculating an estimated value of the high frequency characteristics of the electronic component.
[0032] 上記第 1のステップにおいて用意される第 1の補正データ取得用試料は、実際に基 準測定系で測定されることによって予め値付けされても、それ以外の方法で予め値 付けされてもよい。例えば、同等の特性と見なせる多数の試料について、一部の試 料のみを実際に基準測定系で測定し、その測定値を他の試料の値付けに用いても よい。 [0032] The first correction data acquisition sample prepared in the first step may be pre-valued by other methods even if it is pre-valued by actually measuring with a reference measurement system. May be. For example, for a large number of samples that can be regarded as equivalent characteristics, only some of the samples may actually be measured with a reference measurement system, and the measured values may be used for pricing other samples.
[0033] 上記方法によれば、電子部品と実質的に同じ形状、寸法の補正データ取得用試料 を用いて、第 1及び第 2のステップを実行することができる。従来、自動特性選別機の 測定系では同軸コネクタ先端までの校正しかできなかった力 上記方法により電子部 品を接続する端子部先端までの補正ができるようになる。  [0033] According to the above method, the first and second steps can be executed using the correction data acquisition sample having substantially the same shape and size as the electronic component. Previously, the force that could only be calibrated up to the tip of the coaxial connector in the measurement system of the automatic characteristic sorter The compensation up to the tip of the terminal to which the electronic component is connected can be performed by the above method.
[0034] 好ましい一態様は、前記実測測定系において、前記第 1の補正データ取得用試料 及び前記電子部品が、又は、前記第 1の補正データ取得用試料、前記第 2の補正デ ータ取得用試料及び前記電子部品が、シリーズ接続される。前記数式は、前記基準 測定系で電子部品を測定したときのインピーダンス Z が測定される端子 1 , 2 と、前  [0034] In a preferred aspect, in the actual measurement measurement system, the first correction data acquisition sample and the electronic component, or the first correction data acquisition sample and the second correction data acquisition are used. The sample for use and the electronic component are connected in series. The above formula is expressed in terms of terminals 1 and 2 where impedance Z is measured when an electronic component is measured by the reference measurement system, and
m m m 記実測測定系で電子部品を測定したときのインピーダンス Zが測定される端子 1 , 2 との間に接続される誤差モデルに基づいて導出される。前記端子 1 力 見たインピ 一ダンスを算出するとき、前記誤差モデルは、前記端子 1 と前記端子 1 との間にィ ンピ一ダンス Z と Zとが直列に接続され、前記インピーダンス Z と Zとの接続点とグ ランドとの間にインピーダンス Z が接続され、前記端子 2と前記端子 2 との間にイン ピーダンス Z が接続され、前記端子 2とグランドとの間にインピーダンス Z が接続さ れる。前記インピーダンス Z, Z , Z , Z , Z は、前記第] Terminals 1 and 2 where impedance Z is measured when electronic components are measured using the actual measurement system described in mmm Are derived on the basis of an error model connected between and. When calculating the impedance seen from the terminal 1 force, the error model is such that impedances Z and Z are connected in series between the terminal 1 and the terminal 1, and the impedance Z and Z An impedance Z is connected between the connection point and the ground, an impedance Z is connected between the terminal 2 and the terminal 2, and an impedance Z is connected between the terminal 2 and the ground. The impedances Z, Z, Z, Z, Z are
つの前記第 1の補正データ取得用試料のインピーダンスを測定した結果 Z , Z , Z と、前記第 2のステップにおいて、少なくとも 3つの前記第 1の補正データ取得用試 料又は前記第 2の補正データ取得用試料について、前記端子 1 のインピーダンスを 測定した結果 Z , Z , Z 、及び前記端子 2 のインピーダンスを測定した結果 Z Z , Z とを用い、次の数式ほ女 la]と、 As a result of measuring the impedance of the first correction data acquisition sample, Z, Z, Z, and in the second step, at least three of the first correction data acquisition sample or the second correction data For the sample for acquisition, using the results Z, Z, Z of the impedance of the terminal 1 and the results of measuring the impedance of the terminal 2, ZZ, Z,
la]  la]
denom二 {Zd2 Zd )Zm + (ZJ{― Zd3)Zml2 + (Zd3 denom ii (Z d2 Z d ) Z m + (Z J { ― Z d3 ) Z ml2 + (Z d3
^ll― [ 土 ^Zd2― Ζά jZd3i― Zd] ^jZd3一 ^jZmU 一 一 ^ ll― [Sat ^ Z d2 ― Ζ ά jZ d3i ― Z d] ^ jZ d3 one ^ jZ mU one
— dl )^ m l^ + (^dl Zm"Zml3 + (¾2― Zdl )ZmUZmU } ] — Dl) ^ ml ^ + (^ dl Z m "Z ml3 + (¾ 2 ― Z dl ) Z mU Z mU }]
I denom  I denom
=土
Figure imgf000009_0001
= Sat
Figure imgf000009_0001
/ denom 次の数式 [数 lb]と、  / denom The following formula [number lb]
[数 lb] [Several lb]
de om - (Zd2 - Ζ^ )ΖΜ23 + {Zd - Zd3 )Zm22 + (Ζί/3 - Zdl )Zm2X = [ 土 一 di Λ 一 ^άΐ」Zd3― Zd2 ^jZm22― Zm2l ^jZm23― ^Zm23一 I denom Zd2 ~
Figure imgf000009_0002
Xム + 一 一
de om- (Z d2 -Ζ ^) Ζ Μ23 + (Z d -Z d3 ) Z m22 + (Ζ ί / 3 -Z dl ) Z m2X = (土 一 di Λ one ^ άΐ) Z d3 ― Z d2 ^ jZ m22 ― Z m2l ^ jZ m23 ― ^ Z m23 I I denom Z d2 ~
Figure imgf000009_0002
X mu + one
I denom から得られる 16通りの Z , Z , Z , Z の糸且み合わせのうち、  Of the 16 Z, Z, Z, Z thread combinations obtained from I denom,
次の数式ほ女 2]について、 Z , Z , Z がー致する少なくとも 1つの組み合わせを用 いて、決定される。 [数 2] For the following mathematical model 2], it is determined by using at least one combination of Z, Z, and Z. [Equation 2]
Zfl = - [{(Z22 + (Z21 + Z0))Zdl + ((Z21 + Z。) + Z12)Z22 + Z12(Z21 + Z0)}Zm Z fl =-[{(Z 22 + (Z 21 + Z 0 )) Z dl + ((Z 21 + Z.) + Z 12 ) Z 22 + Z 12 (Z 21 + Z 0 )} Z m
+ {(-Z12 -ZU)Z22 + (-Z,2 -ZU)(Z2, +Z0)}Zdl + {(-Z 12 -Z U ) Z 22 + (-Z, 2 -Z U ) (Z 2 , + Z 0 )} Z dl
+ {(-Z12 -ZH)(Z21 +z。)— Z„Z12 22 -ZnZ12(Z21 +Z0) ] + {(-Z 12 -Z H ) (Z 21 + z.) — Z „Z 12 22 -Z n Z 12 (Z 21 + Z 0 )]
/[{( + (Z21 +Z0)}ZmlI +(- Zl2 -Z„)Z22 + (-Z12 -Zn)(Z21 +Z0)] / [{(+ (Z 21 + Z 0 )} Z mlI + (-Z l2 -Z „) Z 22 + (-Z 12 -Z n ) (Z 21 + Z 0 )]
Z/2 = -[{(Z22 + (Z21 + Z。 ))Zd2 + ((Z21 +Z0) + Z12 )Z22 + Z12 (Z21 + Z0 )}Zml2 Z / 2 =-[{(Z 22 + (Z 21 + Z.)) Z d2 + ((Z 21 + Z 0 ) + Z 12 ) Z 22 + Z 12 (Z 21 + Z 0 )} Z ml2
+ {(- z12 - Zn)Z22 + (- Z12 - Z, , )(Z21 + Z。 )}Zdl + {(-z 12 -Z n ) Z 22 + (-Z 12 -Z,,) (Z 21 + Z.)} Z dl
+ {(— Zj2Π Ζ21 +z,0)-Zu 12}Z22 -ZnZ12^21 +Z0) J + ((— Zj 2Π Ζ 21 + z, 0 ) -Z u 12 } Z 22 -Z n Z 12 ^ 21 + Z 0 ) J
/[{(Z22 +(Z21 +Z0)}Zml2 +(-Z12 -Zn)Z22 +(- z12ηχζ +z。)] / [{(Z 22 + ( Z 21 + Z 0)} Z ml2 + (- Z 12 -Z n) Z 22 + (- z 12 -ζ η χζ 2Ί + z).]
Z 3 = -[{(Z22 + (Z21 + Z。 ))Zrf3 + ((Z21 +Z0) + Z12 )Z22 + Zn (Z21 + z0 )}zml3 Z 3 =-[{(Z 22 + (Z 21 + Z.)) Z rf3 + ((Z 21 + Z 0 ) + Z 12 ) Z 22 + Z n (Z 21 + z 0 )} z ml3
+ {(- Z12 -ZU)Z22 + (- Z12 -Zn)(Z2l +Z0)}Zd3 + {(-Z 12 -Z U ) Z 22 + (-Z 12 -Z n ) (Z 2l + Z 0 )} Z d3
+ {(-z12 -Zn)(Z21 +Z。)- 2 22 -ZnZ12(Z21 +Z0) ] + {(-z 12 -Z n ) (Z 21 + Z.)- 2 22 -Z n Z 12 (Z 21 + Z 0 )]
/[{(Z22 +(Z21 +Z0)}Zml3 +(-Z12 -Zn)Z22 +(- Z12 -ZU)(Z21 +Z0)] / [{(Z 22 + (Z 21 + Z 0 )} Z ml3 + (-Z 12 -Z n ) Z 22 + (-Z 12 -Z U ) (Z 21 + Z 0 )]
[0035] この場合、シリーズ接続の実測測定系での測定結果につ 、て伝送路の誤差を補正 することにより、基準測定系での測定結果を推定することができる。 [0035] In this case, the measurement result in the reference measurement system can be estimated by correcting the error in the transmission path for the measurement result in the series connection actual measurement system.
[0036] 好ましい他の態様は、前記実測測定系において、前記第 1の補正データ取得用試 料及び前記電子部品が、又は、前記第 1の補正データ取得用試料、前記第 2の補正 データ取得用試料及び前記電子部品が、シャント接続される。前記数式は、前記基 準測定系で電子部品を測定したときのアドミタンス Y が測定される端子 1 , 2 と、前 m m m 記実測測定系で電子部品を測定したときのアドミタンス Yが測定される端子 1 , 2と d d d の間に接続される誤差モデルに基づいて導出される。前記端子 1 力、ら見たアドミタン m  [0036] In another preferred embodiment, in the actual measurement system, the first correction data acquisition sample and the electronic component, or the first correction data acquisition sample and the second correction data acquisition The sample for use and the electronic component are shunt connected. The above formulas are terminals 1 and 2 at which admittance Y is measured when measuring an electronic component in the reference measurement system, and terminals at which admittance Y is measured when measuring an electronic component in the above-mentioned mmm actual measurement system. Derived based on an error model connected between 1, 2 and ddd. Admittan m seen from the terminal 1 force m
スを導出するとき、前記誤差モデルは、前記端子 1 と前記端子 1との間にアドミタン m d  When the error model is derived, an admittance m d between the terminal 1 and the terminal 1
ス Y が接続され、前記端子 1 と前記アドミタンス Υ との接続点とグランドとの間にァ Y is connected, and a signal is connected between the connection point between the terminal 1 and the admittance Υ and the ground.
12 m 12 12 m 12
ドミタンス Y が接続され、前記アドミタンス Y と前記端子 1 との接続点とグランドとの  Admittance Y is connected, and the connection point between the admittance Y and the terminal 1 is connected to the ground.
11 12 d  11 12 d
間にアドミタンス Yが接続され、前記端子 2と前記端子 2 との間にアドミタンス Y が f d m 22 接続され、前記アドミタンス Y と前記端子 2 との接続点とグランドとの間にアドミタン  An admittance Y is connected between the terminals 2 and 2, and an admittance Y is connected between the terminals 2 and 2, and an admittance Y is connected between the connection point of the admittance Y and the terminal 2 and the ground.
22 m  22 m
ス Y が接続される。前記アドミタンス Y, Y , Y , Y , Y は、前記第 1のステップ Y is connected. The admittance Y, Y, Y, Y, Y is the first step
21 f 11 12 21 22 21 f 11 12 21 22
で少なくとも 3つの前記第 1の補正データ取得用試料のアドミタンスを測定した結果 Y , Υ , Y と、前記第 2のステップにおいて、少なくとも 3つの前記第 1の補正データ 取得用試料又は前記第 2の補正データ取得用試料について、前記端子 1 のアドミタ ンスを測定した結果 Υ , Υ , Y 、及び前記端子 2 のアドミタンスを測定した結 果 Y , Υ , Υ とを用い、次の数式ほ女 3a]と、 Y, Υ, Y as a result of measuring the admittance of at least three of the first correction data acquisition samples in step 2, and in the second step, at least three of the first correction data As a result of measuring the admittance of the terminal 1 for the acquisition sample or the second correction data acquisition sample, 補正, 用 い, Y, and the result of measuring the admittance of the terminal 2, Y, ,, Υ are used. And the following formula 3a]
[数 3a]  [Number 3a]
denom = {Yd2 - ) + ( - )Yml2 + ( - Yd2 ) denom = {Y d2 -) + (-) Y ml2 + (- Y d2)
Tjl =±[ 土 一】 ― 一^ Λ Μ Tjl = ± [Satichi] ― One ^ Λ Μ
~ 1
Figure imgf000011_0001
^Xdl一
~ 1
Figure imgf000011_0001
^ Xdl
I denom  I denom
YX2 =士 (】 ¾ + + )( — ll X li) Y X2 = 士 (】 ¾ + + ) (— ll X li)
I denom 次の数式 [数 3b]と、  I denom The following formula [Equation 3b]
[数 3b] denom = (Yd2 - Ydl )Ym23 + ( 一 )Ym22 + ( 一 Yd2 )Ym2i 土 一】 rfl Λ/ 一 】 [ Equation 3b] denom = (Y d2 -Y dl ) Y m23 + (1) Y m22 + (1 Y d2 ) Y m2i Sat] rfl Λ / 1]
- {( + ( - l】  -{(+ (-l)
I denom  I denom
Y22 =土 ( (Xd +(一 一 )( — X — Y 22 = Sat ((Xd + (1)) (— X —
I denom から得られる 16通りの Y , Υ , Υ , Υ の糸且み合わせのうち、  Of the 16 Y, ,, Υ, and Υ thread combinations obtained from I denom,
次の数式 [数 4]について、 For the following formula [Equation 4]
[数 4] [Equation 4]
Yfl = 2 + (721 + Γ0))¾十 ((Y21 +Υο) + Yn 22 + Άι + u Y fl = 2 + (7 21 + Γ 0 )) ¾10 ((Y 21 + Υο) + Yn 2 2 + Άι + u
+ {(- 12η22 + (-Y -YU)(Y21 +Y0)}YDL + {(- 12 -γ η) γ 22 + (-Y -Y U) (Y 21 + Y 0)} Y DL
+ -Yn)(Y2] +r0)-7n712}722 -Fliri2(721 +70) ] + -Y n ) (Y 2] + r 0 ) -7 n 7 12 } 7 22 -F li r i2 (7 21 + 7 0 )]
/[{(¾ + (F21 +Y0)}Ymn + (-Yu -Y Y22 + (- ¾ - +r0)] rf2 = - [{( +(¾+ Yo Wd2 + (( +Y0) + Yn )¾ + Yn + ^ )} 2 / [{(¾ + (F 21 + Y 0 )} Y mn + (-Y u -Y Y22 + (-¾-+ r 0 )] r f2 =-[{(+ (¾ + Yo W d2 + ( (+ Y 0 ) + Yn) ¾ + Yn + ^)} 2
十 {(— ¾ -Y )Y22 +(-Yl2
Figure imgf000012_0001
Tens {(— ¾ -Y) Y 22 + (-Y l2
Figure imgf000012_0001
+ {(- - ) + 0)-7„712}722 -YnYl2(Y +Y0) ] + {(--) + 0 ) -7 „7 12 } 7 22 -Y n Y l2 (Y + Y 0 )]
/[{(¾ +(Y2l +Y0)}Ymn + (- - + (- / [{(¾ + (Y 2l + Y 0 )} Y m n + (--+ (-
Yf, = - + (Y2l + Y0 )) + (( + ) + + Yn (Y + )} Y f , =-+ (Y 2l + Y 0 )) + ((+) + + Yn (Y +)}
+ {(-Yn - ) ¾ + (- - W21 + {(-Yn-) ¾ + (--W 21
+ {(- -7η)(7210)-Κ„712}722 -YnY12(Y2, +Υ0) ] + {(--7 η ) (7 21 + Γ 0 ) -Κ „7 12 } 7 22 -Y n Y 12 (Y 2 , + Υ 0 )]
/[{(Υ22 +(Υ21 + )} + (-¾ - 22 + (- - 21 + )] / [{(Υ 22 + ( Υ 21 +)} + (-¾ - 22 + (- - 21 +)]
Υ , Υ , Υ がー致する少なくとも 1つの組み合わせを用いて、決定される。  It is determined using at least one combination that matches Υ, Υ, Υ.
fl f2 f3  fl f2 f3
[0037] この場合、シャント接続の実測測定系での測定結果について伝送路の誤差を補正 することにより、基準測定系での測定結果を推定することができる。  [0037] In this case, the measurement result in the reference measurement system can be estimated by correcting the error in the transmission path for the measurement result in the actual measurement system for shunt connection.
[0038] なお、第 2のステップにおいて、少なくとも 3つの前記第 1の補正データ取得用試料 又は第 2の補正データ取得用試料について実測測定系でアドミタンス Υ 、Υ , Υ  [0038] In the second step, at least three of the first correction data acquisition sample or the second correction data acquisition sample are measured using an admittance ア ド, ,, Υ
mil ml2 mil ml2
, Υ 、Y , Υ を測定するとき、端子 1と端子 2との間が電気的に接続されて ml3 πι21 πι22 m23 When measuring, 、, Y, 測定, ml1 πι21 πι22 m23 is electrically connected between terminal 1 and terminal 2.
いてもよい。  May be.
[0039] 好ましい別の態様は、前記実測測定系において、前記第 1の補正データ取得用試 料及び前記電子部品が、又は、前記第 1の補正データ取得用試料、前記第 2の補正 データ取得用試料及び前記電子部品が、シリーズ接続される。前記第 3のステップは 、前記第 1のステップで用意された前記高周波特性が異なる少なくとも 3つの前記第 1の補正データ取得用試料の前記基準測定系での値付けと、前記第 2のステップで 得られた高周波特性が異なる少なくとも 3つの前記第 1の補正データ取得用試料又 は前記第 1の補正データ取得用試料と同等の高周波特性を有すると見なせる少なく とも 3つの前記第 2の補正データ取得用試料の前記実測測定系での測定値とを、ィ ンピーダンスパラメータに変換し、さらにその差動インピーダンス成分を導出するサブ ステップを含む。前記数式は、前記基準測定系で電子部品を測定したときのインピー ダンスに対して、前記実測測定系で 2つのポートによって電子部品を測定したときの インピーダンスを、 2ポート誤差モデルを介して関連付けるものであり、前記基準測定 系で電子部品を測定したときのインピーダンスが測定される 2つのポートの差動信号 が入力される 1つのポートのみを有する 1ポート誤差モデルに基づいて導出される。 [0039] In another preferred embodiment, in the actual measurement system, the first correction data acquisition sample and the electronic component, or the first correction data acquisition sample and the second correction data acquisition The sample for use and the electronic component are connected in series. The third step includes pricing in the reference measurement system of at least three samples for obtaining the first correction data having different high frequency characteristics prepared in the first step, and the second step. Acquire at least three second correction data that can be regarded as having the same high frequency characteristics as at least three of the first correction data acquisition samples or the first correction data acquisition samples that have different high frequency characteristics. A sub-step of converting a measured value of the sample for measurement in the actual measurement system into an impedance parameter and deriving a differential impedance component thereof. The mathematical formula is obtained when the electronic component is measured with two ports in the actual measurement system, compared to the impedance when the electronic component is measured in the reference measurement system. Impedance is related through a two-port error model, which has only one port to which two-port differential signals are input that measure impedance when measuring electronic components in the reference measurement system 1 Derived based on the port error model.
[0040] この場合、 2ポート誤差モデルを差動インピーダンス成分に着目して変換し、高周 波特性誤差補正には、 1ポート誤差モデルについての数式を用いる。 1ポート誤差モ デルについての数式は、高周波特性が異なる少なくとも 3つの補正データ取得用試 料の実測測定系と基準測定系とについてのデータから、符号を考慮することなく一意 に決めることができるので、補正精度が向上し、補正精度に対するノイズの影響緩和 、及び計算アルゴリズムの簡略等の効果が得られる。  [0040] In this case, the 2-port error model is converted by paying attention to the differential impedance component, and the mathematical expression for the 1-port error model is used for high-frequency characteristic error correction. The formula for the 1-port error model can be uniquely determined without considering the sign from the data of the actual measurement system and the reference measurement system of at least three correction data acquisition samples with different high-frequency characteristics. As a result, the correction accuracy is improved, and effects such as mitigation of the influence of noise on the correction accuracy and simplification of the calculation algorithm can be obtained.
[0041] 好ましいさらに別の態様は、前記実測測定系において、前記第 1の補正データ取 得用試料及び前記電子部品が、又は、前記第 1の補正データ取得用試料、前記第 2 の補正データ取得用試料及び前記電子部品が、シャント接続される。前記第 3のス テツプは、前記第 1のステップで用意された前記高周波特性が異なる少なくとも 3つ の前記第 1の補正データ取得用試料の前記基準測定系での値付けと、前記第 2のス テツプで得られた高周波特性が異なる少なくとも 3つの前記第 1の補正データ取得用 試料又は前記第 1の補正データ取得用試料と同等の高周波特性を有すると見なせ る少なくとも 3つの前記第 2の補正データ取得用試料の前記実測測定系での測定値 とを、アドミタンスパラメータに変換し、さらにその同相アドミタンス成分を導出するサ ブステップを含む。前記数式は、前記基準測定系で電子部品を測定したときのアドミ タンスに対して、前記実測測定系で 2つのポートによって電子部品を測定したときの アドミタンスを、 2ポート誤差モデルを介して関連付けるものであり、前記基準測定系 で電子部品を測定したときのアドミタンスが測定される 2つのポートの同相信号が入 力される 1つのポートのみを有する 1ポート誤差モデルに基づいて導出される。  [0041] In yet another preferred aspect, in the actual measurement system, the first correction data acquisition sample and the electronic component, or the first correction data acquisition sample and the second correction data are used. The sample for acquisition and the electronic component are shunt connected. The third step includes pricing the at least three first correction data acquisition samples prepared in the first step, which have different high-frequency characteristics, in the reference measurement system, and the second step. At least three of the second correction data acquisition samples having different high frequency characteristics obtained in the step or at least three of the second correction data acquisition samples having the same high frequency characteristics as the first correction data acquisition sample. A sub-step of converting a measured value of the sample for obtaining correction data in the actual measurement system into an admittance parameter and deriving its in-phase admittance component. The mathematical formula relates the admittance when an electronic component is measured with two ports in the actual measurement system to the admittance when the electronic component is measured with the reference measurement system through a two-port error model. The admittance when the electronic component is measured by the reference measurement system is derived based on a one-port error model having only one port to which the in-phase signal of two ports is input.
[0042] この場合、 2ポート誤差モデルを同相アドミタンス成分に着目して変換し、高周波特 性誤差補正には、 1ポート誤差モデルについての数式を用いる。 1ポート誤差モデル についての数式は、高周波特性が異なる少なくとも 3つの補正データ取得用試料の 実測測定系と基準測定系とについてのデータから、符号を考慮することなく一意に決 めることができるので、補正精度が向上し、補正精度に対するノイズの影響緩和、及 び計算アルゴリズムの簡略等の効果が得られる。 [0042] In this case, the 2-port error model is converted by focusing on the in-phase admittance component, and the mathematical expression for the 1-port error model is used for high-frequency characteristic error correction. The formula for the 1-port error model can be uniquely determined without considering the sign from the data of the actual measurement system and the reference measurement system of at least three correction data acquisition samples with different high-frequency characteristics. , Correction accuracy is improved, noise influence on correction accuracy is reduced, and And effects such as simplification of the calculation algorithm can be obtained.
[0043] また、本発明は上記電子部品の高周波特性誤差補正方法の少なくとも前記第 5の ステップに用いる電子部品の高周波特性誤差補正装置を提供する。電子部品の高 周波特性誤差補正装置は、(a)前記第 3のステップにお V、て決定された前記数式と、 前記第 4のステップにおいて得られた任意の電子部品を前記実測測定系で測定した 測定値とを記憶する記憶部と、 (b)前記記憶部に記憶された前記数式を用いて、前 記記憶部に記憶された前記測定値を補正する演算を行い、当該電子部品を前記基 準測定系で測定したならば得られるであろう当該電子部品の高周波特性の推定値を 算出する演算部とを備える。 発明の効果 The present invention also provides an electronic component high-frequency characteristic error correction apparatus used in at least the fifth step of the above-described electronic component high-frequency characteristic error correction method. The high-frequency characteristic error correction apparatus for an electronic component uses (a) the mathematical expression determined in step V in the third step and the arbitrary electronic component obtained in the fourth step in the actual measurement system. A storage unit for storing the measured values measured; (b) using the mathematical formula stored in the storage unit to perform an operation for correcting the measurement values stored in the storage unit, And an arithmetic unit that calculates an estimated value of the high-frequency characteristics of the electronic component that would be obtained if measured by the reference measurement system. The invention's effect
[0044] 本発明によれば、 2端子インピーダンス部品について、補正の対象となる測定系が 実測時と同じ状態のままで校正作業を行うことができる。その結果、これまで有効な 校正方法がなかった自動特性選別機にお V、て正確な校正を実施の上選別を実施で きるので、これまで不可能であった量産デバイスの正確な測定選別及び特性のユー ザ一保証が可能になる。  [0044] According to the present invention, it is possible to perform the calibration work for the two-terminal impedance component while the measurement system to be corrected remains in the same state as that at the time of actual measurement. As a result, the automatic characteristic sorter, which has not had an effective calibration method, can perform sorting after performing accurate calibration. The user can guarantee the characteristics.
[0045] また、従来の誤差補正技術では、誤差補正のためにコネクタから端子を外して標準 デバイスを接続する等の本来の測定にはない作業が必要となる。また、そのためには 接地端子を設けたり、短絡基準を押し当てることができる構造としたりする必要がある 。これに対して、本発明の方法では、通常の測定と同じ作業で補正のための測定を 行えばよい。また、補正のための GND端子、短絡機構は不要であり、端子部には通 常の測定ができる機能だけがあればよい。  [0045] In addition, the conventional error correction technique requires work that is not in the original measurement, such as removing a terminal from the connector and connecting a standard device for error correction. For this purpose, it is necessary to provide a grounding terminal or to have a structure capable of pressing the short-circuit standard. On the other hand, in the method of the present invention, the measurement for correction may be performed by the same operation as the normal measurement. In addition, there is no need for a GND terminal and a short-circuit mechanism for correction, and the terminal section only needs to have a function that allows normal measurement.
図面の簡単な説明  Brief Description of Drawings
[0046] [図 l] (a)測定系の説明図、(b)TRL校正の誤差モデルの回路図、(c) SOLT校正の 誤差モデルの回路図である。 (従来例)  [0046] [Fig. L] (a) An explanatory diagram of a measurement system, (b) a circuit diagram of an error model for TRL calibration, and (c) a circuit diagram of an error model for SOLT calibration. (Conventional example)
[図 2]SOLT校正の誤差要因導出法の説明図である。 (従来例)  FIG. 2 is an explanatory diagram of a method for deriving an error factor in SOLT calibration. (Conventional example)
[図 3]TRL校正の誤差要因導出法の説明図である。 (従来例)  FIG. 3 is an explanatory diagram of a TRL calibration error factor derivation method. (Conventional example)
[図 4]TRRR校正の誤差モデルの回路図である。 (従来例)  FIG. 4 is a circuit diagram of an error model for TRRR calibration. (Conventional example)
[図 5]RRRR校正の誤差モデルの回路図である。 (従来例) [図 6]TRRR校正、 RRRR校正での測定位置の説明図である。 (従来例) 園 7]シリーズ接続の測定基板の平面図である。 (従来例) FIG. 5 is a circuit diagram of an error model for RRRR calibration. (Conventional example) FIG. 6 is an explanatory diagram of measurement positions in TRRR calibration and RRRR calibration. (Conventional example) Sono 7] It is a plan view of a series-connected measurement board. (Conventional example)
園 8]シャント接続の測定基板の平面図である。 (従来例) Fig. 8 is a plan view of a measurement board for shunt connection. (Conventional example)
[図 9]測定端子部の構成を示す要部断面構成図である。 (実施例)  [Fig. 9] Fig. 9 is a cross-sectional configuration diagram of a main part showing a configuration of a measurement terminal unit. (Example)
[図 10] (a)測定系の構成図、(b)測定基板の正面図である。 (実施例 1)  [FIG. 10] (a) Configuration diagram of measurement system, (b) Front view of measurement substrate. (Example 1)
園 11]チップインダクタの測定結果を示すグラフである。 (実施例 1 ) 11] It is a graph showing the measurement result of the chip inductor. (Example 1)
園 12] (a)測定系の構成図、(b)測定基板の正面図である。 (実施例 2) (12) (a) Configuration diagram of measurement system, (b) Front view of measurement board. (Example 2)
[図 13]チップ抵抗の測定結果を示すグラフである。 (実施例 2)  FIG. 13 is a graph showing measurement results of chip resistance. (Example 2)
園 14]シリーズ接続の誤差モデルの回路図である。 (実施例 1) 14] It is a circuit diagram of an error model for series connection. (Example 1)
園 15]ポート 1側から見た等価回路の回路図である。 (実施例 1) 15] This is a circuit diagram of the equivalent circuit seen from the port 1 side. (Example 1)
園 16]ポート 1側から見た等価回路の回路図である。 (実施例 1) 16] It is a circuit diagram of an equivalent circuit seen from the port 1 side. (Example 1)
園 17]ポート 1側から見た等価回路の回路図である。 (実施例 1) 17] is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 1)
園 18]ポート 1側から見た等価回路の回路図である。 (実施例 1) 18] It is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 1)
園 19]ポート 1側から見た等価回路の回路図である。 (実施例 1) 19] It is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 1)
園 20]シャント接続の誤差モデルの回路図である。 (実施例 2) 20] It is a circuit diagram of an error model of shunt connection. (Example 2)
[図 21]ポート 1側から見た等価回路の回路図である。 (実施例 2)  FIG. 21 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 2)
園 22]ポート 1側から見た等価回路の回路図である。 (実施例 2) 22] It is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 2)
園 23]ポート 1側から見た等価回路の回路図である。 (実施例 2) Fig. 23] is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 2)
園 24]ポート 1側から見た等価回路の回路図である。 (実施例 2) G. 24] is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 2)
園 25]ポート 1側から見た等価回路の回路図である。 (実施例 2) 25] It is a circuit diagram of an equivalent circuit seen from the port 1 side. (Example 2)
園 26]2ポート回路の Zパラメータモデルを示す回路図である。 (実施例 3、 4) 園 27]図 25の T型等価回路を示す回路図である。 (実施例 3、 4) G. 26] is a circuit diagram showing a Z-parameter model of a 2-port circuit. (Examples 3 and 4) Sono 27] FIG. 26 is a circuit diagram showing the T-type equivalent circuit of FIG. (Examples 3 and 4)
[図 28]図 26の差動信号入力時の等価回路を示す回路図である。 (実施例 3、 4) 園 29]2ポート誤差モデルの Zパラメータの T型等価回路を示す回路図である。 (実施 例 3)  FIG. 28 is a circuit diagram showing an equivalent circuit at the time of differential signal input in FIG. 26. (Examples 3 and 4) Sono 29] is a circuit diagram showing a T-type equivalent circuit of the Z parameter of the 2-port error model. (Example 3)
園 30]図 28の差動信号入力時の等価回路を示す回路図である。 (実施例 3) 園 31]図 29の等価回路を示す回路図である。 (実施例 3) FIG. 30] is a circuit diagram showing an equivalent circuit at the time of differential signal input of FIG. (Example 3) Sono 31] FIG. 30 is a circuit diagram showing an equivalent circuit of FIG. (Example 3)
[図 32] π型等価回路を示す回路図である。 (実施例 4) [図 33]図 31の同相信号入力時の等価回路を示す回路図である。 (実施例 4) FIG. 32 is a circuit diagram showing a π-type equivalent circuit. (Example 4) FIG. 33 is a circuit diagram showing an equivalent circuit when an in-phase signal is input in FIG. 31. (Example 4)
[図 34]2ポート誤差モデルの Yパラメータの π型等価回路を示す回路図である。 (実 施例 4)  FIG. 34 is a circuit diagram showing a π-type equivalent circuit of the Y parameter of the 2-port error model. (Example 4)
[図 35]図 33の同相信号入力時の等価回路を示す回路図である。 (実施例 4)  FIG. 35 is a circuit diagram showing an equivalent circuit when the in-phase signal in FIG. 33 is input. (Example 4)
[図 36]図 34の等価回路を示す回路図である。 (実施例 4)  FIG. 36 is a circuit diagram showing an equivalent circuit of FIG. 34. (Example 4)
[図 37]2ポートプローブの構成図である。 (実施例 3)  FIG. 37 is a block diagram of a 2-port probe. (Example 3)
符号の説明  Explanation of symbols
[0047] 2 電子部品 [0047] 2 electronic components
20, 21 測定基板  20, 21 Measurement board
22a, 22b 伝送路  22a, 22b Transmission line
26 信号導体  26 Signal conductor
28 接地導体  28 Grounding conductor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0048] 以下、本発明の実施の形態について、図 9〜図 37を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS. 9 to 37.
[0049] まず、本発明の第 1タイプの実施の形態である電子部品の高周波特性の誤差補正 方法について、図 14〜図 25を参照しながら説明する。  First, an error correction method for high frequency characteristics of an electronic component according to a first type of embodiment of the present invention will be described with reference to FIGS.
[0050] <原理 1〉 シリーズ接続の場合の測定誤差補正の原理について、図 14〜図 19 を参照しながら説明する。  [0050] <Principle 1> The principle of measurement error correction in the case of series connection will be described with reference to FIGS.
[0051] マイクロ波以上の周波数では、通常電子部品の電気特性は散乱係数行列で表現 される力 電気特性を散乱係数行列で表現しなければならない特段の理由があるわ けではなぐこれと相互変換できるパラメータであれば、 目的に応じてより使用しやす V、パラメータを用いればょレ、。 2端子インピーダンス素子のシリーズ測定を想定した際 の誤差パラメータとして、ここではインピーダンスの T型接続回路を採用し、その誤差 モデルを図 14に示す。図中、点線で囲まれた部分が各ポートの誤差モデルであり、 誤差モデルは、基準となる測定系で被検体が測定される端子 1 , 2 と、補正の対象  [0051] At frequencies above microwaves, the electrical characteristics of electronic components are usually represented by the scattering coefficient matrix. If it is a parameter that can be used, V is easier to use depending on the purpose. As an error parameter when assuming series measurement of a two-terminal impedance element, an impedance T-type connection circuit is used here, and its error model is shown in Fig. 14. In the figure, the part enclosed by a dotted line is the error model for each port. The error model is the terminals 1 and 2 where the object is measured in the reference measurement system, and the correction target.
m m  m m
となる測定系で被検体が測定される端子 1 , 2との間に接続されている。変数 Zはィ  Is connected between terminals 1 and 2 through which the subject is measured in the measurement system. Variable Z is
d d  d d
ンピーダンスを表す。また、 DUTと表示された部分が被検体である。 2端子インピー ダンス素子のシリーズ測定であるので、被検体は 2端子インピーダンス素子としてモ デル化し、シャント容量は無視し得ると考える。 Represents impedance dance. The part displayed as DUT is the subject. Since this is a series measurement of 2-terminal impedance elements, the subject is modeled as a 2-terminal impedance element. We believe that the shunt capacity is negligible.
[0052] ポート 1から観察すればポート 2は単なる終端インピーダンスにすぎないので、図 15 の等価回路を得る。ここに、 Zはポート 2の等価インピーダンスである。  [0052] Observing from port 1, since port 2 is merely a termination impedance, the equivalent circuit of FIG. 15 is obtained. Where Z is the equivalent impedance of port 2.
2  2
[0053] 図 15を注意深く観察すれば、 Z , Z , Zは単なる直列接続である。そこで、 Z と Z  [0053] If FIG. 15 is observed carefully, Z 1, Z 2, and Z are simply a series connection. So Z and Z
13 d 2 13 をまとめて Z と表示すると、等価回路は図 16のように変形できる。  If 13 d 2 13 are collectively expressed as Z, the equivalent circuit can be transformed as shown in Fig. 16.
2 el  2 el
[0054] 図 16の誤差モデル中の未知数は Z , Z , Z の 3つであるので、補正データ取得  [0054] Since there are three unknowns Z, Z, and Z in the error model of Fig. 16, acquisition of correction data
11 12 el  11 12 el
用試料 Zを測定した際の測定値 Z を 3組取得すれば、これら未知数は決定する。具  These three unknowns can be determined by obtaining three sets of measured values Z when measuring the sample Z for use. Ingredients
d m  d m
体的には、補正データ取得用試料 3つのインピーダンス値を Z , Z , Z 、これに対  Specifically, the three impedance values for the correction data acquisition sample are Z, Z, and Z.
dl d2 d3  dl d2 d3
する測定値を Ζ , Ζ , Ζ とすると、次の数式ほ女 5a]の関係が成り立つ。  If the measured values to be taken are Ζ, Ζ, 関係, the following equation 5a] holds.
mil ml2 ml3  mil ml2 ml3
[数 5a] fflU = z +z ^el +z d 11 [ Equation 5a] f flU = z + z ^ el + zd 11
Ύ 一 )Zi2 7 1) Zi 2 7
=z +z +z 11 = z + z + z 11
= (Zel +Z,3)Z12 = (Z el + Z, 3 ) Z 12
m13 12+zel + z,3 11 m 13 12+ z el + z, 3 11
[0055] 誤差要因は、数式 [数 5a]から求めた次の数式 [数 5b]によって、計算できる。式中 の土が異なる解のうち、どちらを選択するかは後に述べる。 The error factor can be calculated by the following equation [Equation 5b] obtained from the equation [Equation 5a]. Which solution to choose from among the different soils in the equation will be described later.
[数 5b]  [Number 5b]
denom (Zd2 - Zdl)Zml3 ― Zd3)Zml2 + - 2 [ 土 一 Zd3一 Zd] -J^d3一 Zd2 一 一 denom (Z d2 -Z dl ) Z ml3 ― Z d3 ) Z ml2 + -2 [Sat 1 Z d3 1 Z d] -J ^ d3 1 Z d2 1
-{(Z - Zd2)Zm{2Zm +{Ζά - Z d3)Z mUZ m +(Zd2 -ZdX)Zm Zmn) ] -{(Z-Z d2 ) Z m {2 Z m + {Ζ ά -Z d3 ) Z mU Z m + (Z d2 -Z dX ) Z m Z mn )]
I denom  I denom
Zn -士 ( 2 - Zdl )(Z j3十 _~Zd2 -Zdl Zd3 + d2){^ m mil) m ~^/»ll + ^ mll^ mil)Z n - Judges (2 - Z dl) (Z j 3 ten _ ~ Z d2 -Z dl Z d3 + d2) {^ m mil) m ~ ^ / »ll + ^ mll ^ mil)
I denom I denom
[0056] Z は、数式 [数 5b]の Z , Z を数式 [数 5a]に代入すれば、次の数式 [数 5c]によ [0056] Z can be obtained by substituting Z and Z in Equation [5b] into Equation [5a] according to the following Equation [5c].
el 11 12  el 11 12
り求められるが、誤差補正の計算、すなわち後述する数式 [数 7]には使用されない。  However, it is not used for error correction calculation, that is, Equation [7] described later.
[数 5c] ^n一  [Equation 5c] ^ n
1 = z,,+z,,- z ,, ~ dl なお、数式ほ女 5c]は、 Z ,Z の代わりに、 Z ,Z を用いても、あるいは Z ,Z mil dl ml2 d2 ml3 d3 を用いても、求めること力 Sできる。 1 = z ,, + z ,, -z, ~ dl Note that the mathematical formula 5c] can be obtained by using Z and Z instead of Z and Z, or using Z and Z mil dl ml2 d2 ml3 d3.
[0057] ポート 2から観察すれば、ポート 1は単なる終端インピーダンスにすぎないので、図 1 [0057] Observing from port 2, port 1 is just a termination impedance, so Figure 1
7の等価回路を得る。ここに、 Zは、ポート 1の等価インピーダンスである。 Obtain an equivalent circuit of 7. Where Z is the equivalent impedance of port 1.
[0058] 図 17を注意深く観察すれば、 Z , Z , Zは単なる直列接続である。そこで、 Z と Z [0058] If FIG. 17 is observed carefully, Z 1, Z 2 and Z are simply a series connection. So Z and Z
21 d 1 21 をまとめて Z と表示すると、等価回路は図 18のように変形できる。  If 21 d 1 21 are collectively expressed as Z, the equivalent circuit can be transformed as shown in Fig. 18.
1 e2  1 e2
[0059] 図 18の誤差モデル中の未知数は Z Z Z の 3つであるので、補正データ取得  [0059] Since there are three unknowns in the error model in Fig. 18, Z Z Z, correction data acquisition
21 22 e2  21 22 e2
用試料 Zを測定した際の測定値 Z を 3組取得すれば、これら未知数は決定する。  These three unknowns can be determined by obtaining three sets of measured values Z when measuring the sample Z for use.
d m  d m
[0060] 具体的には、 3つの補正データ取得用試料 (i=l, 2, 3)について、それぞれのィ ンピーダンス値を Z 、これに対する測定値を Z とすると、次の数式ほ女 6a]が成り立  [0060] Specifically, for each of the three correction data acquisition samples (i = l, 2, 3), assuming that the impedance value is Z and the measured value is Z, the following equation 6a] Is established
di m2i  di m2i
つ。  One.
[数 6a] y _ +Ζ(/ι)ん 7  [Equation 6a] y _ + Ζ (/ ι) 7
ffl21 =z +z +z 21 f fl21 = z + z + z 21
γ _ +·¾222 十 γ (Ze3 +^3)Z22 I 7 γ _ + · ¾ 2 ) 十22 tens γ (Z e3 + ^ 3 ) Z 22 I 7
w23 ~ 7 +7 +7 21 w 23 ~ 7 +7 +7 21
[0061] 3つの補正データ取得用試料 (i=l, 2, 3)についての数式ほ女 6a]から、誤差要因 である Z , Z を求めると、次の数式ほ女 6b]が求まる。式中の土が異なる解のうち、ど [0061] When the error factors Z and Z are obtained from the mathematical expression 6a] for the three correction data acquisition samples (i = l, 2, 3), the following mathematical expression 6b] is obtained. Of the solutions with different soils in the formula,
21 22  21 22
ちらを選択するかは後に述べる。  Whether to choose one will be described later.
[数 6b]  [Equation 6b]
denom (Zd2 -Zdl)Zm23 +{ZdX -Zd3)Zm22 +(Zd3 d2)^m21
Figure imgf000018_0001
denom (Z d2 -Z dl ) Z m23 + (Z dX -Z d3 ) Z m22 + (Z d3 d2 ) ^ m21
Figure imgf000018_0001
I denom
Figure imgf000018_0002
I denom
Figure imgf000018_0002
I denom  I denom
Z は、数式ほ女 6b]で求めた Z , Ζ を数式ほ女 6a]に代入すれば、次の数式ほ女 6 e2 21 22 Z can be obtained by substituting Z and た found in the mathematical formula 6b] into the mathematical formula 6a].
c]により求められる力 S、誤差補正の計算、すなわち後述する数式ほ女 7]には使用され ない。 c] The force S required by c], the error correction calculation, that is Absent.
[数 6c]  [Equation 6c]
7 一 Zm21Z12 - Ζ„Ζ12 7 1 Z m21 Z 12 -Ζ „Ζ 12
e2 ~ 711 + Z 12 - Z m21 d なお、数式 [数 6c]は、 Z Z の代わりに、 Z Z を用いても、あるいは Z Z πι21 dl πι22 d2 m23 d3 を用いても、求めること力 sできる。 e 2 ~ 711 + Z 12-Z m21 d It should be noted that the formula [Equation 6c] can be obtained by using ZZ or ZZ πι21 dl πι22 d2 m23 d3 instead of ZZ.
[0063] 以上によって Z , Z を除く誤差モデルは定まる。  [0063] The error model excluding Z and Z is determined as described above.
13 23  13 23
[0064] ところで、 Z と Z については、補正データ取得用試料をシリーズ接続するだけで [0064] By the way, for Z and Z, just connect the correction data acquisition samples in series.
13 23  13 23
は、これらのィ直を求めることができない。  Cannot find these values.
[0065] しかし、 Z と Z は直列接続の関係であるので、別個独立にその値を定める必要は  [0065] However, since Z and Z are connected in series, it is not necessary to determine their values separately.
13 23  13 23
ないので、誤差モデルを図 19のように描き直す。図中の Zは、 Z と Z の直列接続(  Since there is no error, redraw the error model as shown in Fig. 19. Z in the figure is a series connection of Z and Z (
f 13 23  f 13 23
つまり値の和)と観念できる誤差要因である。  That is, it is an error factor that can be considered as the sum of values).
[0066] 図 19の誤差モデルは、端子 1 と端子 1との間にインピーダンス Z と Zとが直列に  [0066] The error model in FIG. 19 is that impedance Z and Z are connected in series between terminal 1 and terminal 1.
m d 11 f  m d 11 f
接続され、インピーダンス Z と Zとの接続点とグランドとの間にインピーダンス Z  Impedance Z is connected between the connection point of impedance Z and Z and the ground
11 f 12 接続され、端子 2と端子 2 との間にインピーダンス Z が接続され、端子 2とグランド  11 f 12 connected, impedance Z connected between terminal 2 and terminal 2, terminal 2 and ground
d m 21 d  d m 21 d
との間にインピーダンス z が接続されている。  Impedance z is connected between
22  twenty two
[0067] 例えばポート 1から見たインピーダンスは、図 19の誤差モデルにおいてポート 2側 が無反射終端 (つまり、通常は 50 Ωが接続された状態)された状態を表していることか ら、 Zは、補正データ取得用試料の値 Zとこれを接続した際の測定値 Z の組から求 f a m めること力 sでさる。  [0067] For example, the impedance seen from port 1 represents the state in which the port 2 side is anti-reflective terminated (that is, normally connected to 50 Ω) in the error model of Fig. 19. Is the force s that can be obtained from the set of the sample value Z for correction data acquisition and the measured value Z when it is connected.
[0068] 3つの補正データ取得用試料 (i= l , 2, 3)について、補正データ取得用試料の値 Z と、これを接続した際の測定値 Z との組み合わせには 3通りあり、次の数式ほ女 7] ai mi  [0068] For the three correction data acquisition samples (i = l, 2, 3), there are three combinations of the correction data acquisition sample value Z and the measurement value Z when this is connected. Formula woman 7] ai mi
で zを計算すること力 sできる。なお、式中の Zは特性インピー  The power to calculate z with s. In the formula, Z is the characteristic impedance.
fi 0  fi 0
[数 7] If, = -[{(Z22 + (Z21 + ZQ))Zdl + ((Z21 + Z0) + Z12)Z22 + Z12(Z21 + Z0)}ZmU + {(— Z12 -ZU)Z22 + (-Z12 -ZH)(Z21 [Equation 7] If, =-[{(Z 22 + (Z 21 + Z Q )) Z dl + ((Z 21 + Z 0 ) + Z 12 ) Z 22 + Z 12 (Z 21 + Z 0 )} Z mU + { (— Z 12 -Z U ) Z 22 + (-Z 12 -Z H ) (Z 21
12 21 + 0 — ZnZ l +ZQ) \ 12 21 + 0 — ZnZ l + ZQ) \
/[{(Z22 + (Z21 +Z0)}Zmll + (-Z12 -zn)z22 +(-ζ12ηχζ210)] / [{(Z 22 + (Z 21 + Z 0 )} Z mll + (-Z 12 -z n ) z 22 + (-ζ 12η χζ 21 + ζ 0 )]
Z/2 = - [{( + (Z21 + Z0 ))Z,2 + ((Z21 +Z0) + Z,2 )Z22 + Z12 (Z21 + Z0 )}Zml2 Z / 2 =-[{(+ (Z 21 + Z 0 )) Z, 2 + ((Z 21 + Z 0 ) + Z, 2 ) Z 22 + Z 12 (Z 21 + Z 0 )} Z ml2
+ {(— Z12 -Zn)Z22 + (-Z12 -Zn)(Z21 +Z0)}Zd2 + {(— Z 12 -Z n ) Z 22 + (-Z 12 -Z n ) (Z 21 + Z 0 )} Z d2
12 ~
Figure imgf000020_0001
+ Z。 ) ]
12 ~
Figure imgf000020_0001
+ Z. )]
/[{(Z22 +(Z21 +Z0)}Zml2 +(-Z12 -Zn)Z22 +(- Z12 -Z )(Z21 +Z0)] / [{(Z 22 + (Z 21 + Z 0 )} Z ml2 + (-Z 12 -Z n ) Z 22 + (-Z 12 -Z) (Z 21 + Z 0 )]
Zブ 3 =-[{(Z22 +(Z21 +Z0))Zrf3+((Z21 +Z0) + Z12)Z22 +Z12(Z21 +Z0)}Zml3 Z Bed 3 = - [{(Z 22 + (Z 21 + Z 0)) Z rf3 + ((Z 21 + Z 0) + Z 12) Z 22 + Z 12 (Z 21 + Z 0)} Z ml3
+ {(— Z -Zn)Z22 +(- Z12 -Zn)(Z21 +z0)}z,3 + {(— Z -Z n ) Z 22 + (-Z 12 -Z n ) (Z 21 + z 0 )} z, 3
+ {{—-^12一 Ζυ)(·Ζ21 + ZnZj
Figure imgf000020_0002
+ {{—- ^ 12 一υ ) (· Ζ 21 + ZnZj
Figure imgf000020_0002
/[{(Z22 +(Z21 +Z0)}Zm +(-Z12 -Z„)Z22 +(- Z12 -Z„)(Z21 +Z0)] [0069] Zの値は 1つであるので、数式ほ女 7]で求めた Z Ζ , Ζ は、同じ値を取るべきで / [{(Z 22 + (Z 21 + Z 0 )} Z m + (-Z 12 -Z „) Z 22 + (-Z 12 -Z„) (Z 21 + Z 0 )] [0069] Z Since there is only one value, Z,, Ζ obtained in the formula 7] should have the same value.
1 fl f2 f3  1 fl f2 f3
ある力 数式 女 5b]及びほ女 6b]に示すように、 Ζ , Ζ , Ζ , Ζ には、符号の異な  As shown in the formulas 5b] and 6b], 力, Ζ, Ζ, Ζ have different signs.
12 21 21 22  12 21 21 22
る 2つの解があり、その通りの組み合わせによっては、 Ζ , Ζ , Ζ がー致しない。  There are two solutions, and depending on the combination, Ζ, な い, Ζ will not work.
fl f2 f3  fl f2 f3
[0070] そこで、次の表 1に示す 24= 16通りの組み合わせパターンのそれぞれについて、 上記数式ほ女 7]の Z Z , Z を計算し Z , Z , Z がー致する Z , Z , Z , Z の [0070] Therefore, for each of 2 4 = 16 combination patterns shown in Table 1 below, Z, Z, Z of Z, Z, Z are calculated by calculating ZZ, Z of the above-mentioned mathematical formula 7 , Z
fl f2 f3 、 fl f2 f3 12 21 21 22 組み合わせを選択することにする。 Z , Z Z がー致する組み合わせは複数存在  fl f2 f3, fl f2 f3 12 21 21 22 The combination is selected. There are multiple combinations that match Z and Z Z
fl f2 f3  fl f2 f3
するので、そのうちのいずれを用いてもよい。  Therefore, any one of them may be used.
ほ 1] 符号 z21符号 z12符号 Z22符号 1] Code z 21 code z 12 code Z22 code
/《ターン 1 + + + +  / 《Turn 1 + + + +
パターン 2 + + + ―  Pattern 2 + + + ―
パターン 3 + + 一 +  Pattern 3 + + one +
パターン 4 + + 一 ―  Pattern 4 + + 1 ―
パターン 5 + 一 + +  Pattern 5 + one + +
パターン 6 + ― + 一  Pattern 6 + ― + One
パターン 7 + 一 - +  Pattern 7 + one-+
パターン 8 + - 一 ―  Pattern 8 +-One ―
パターン 9 ― + + +  Pattern 9 ― + + +
パターン 10 - + + 一  Pattern 10-+ + one
パターン 11 一 + 一 +  Pattern 11 one + one +
パターン 12 ― + 一 一  Pattern 12-+ one
パターン 13 ― - + +  Pattern 13 ―-+ +
パターン 14 一 一 + - パターン 15 ― - ― +  Pattern 14 1 +-Pattern 15 ―-― +
パターン 16 ― 一 ― 一 [0071] なお、そもそも、 Z と Z は直列接続として Zを形成する誤差要因なのであるから、 Pattern 16 ― One ― One [0071] Since Z and Z are error factors that form Z as a series connection,
13 23 f  13 23 f
補正データ取得用試料が 2端子インピーダンス素子のシリーズ接続をするものである 限り、図 19の誤差モデルに基づいて補正を行えば、図 14に基づく補正と全く同じ結 果が得られる。  As long as the correction data acquisition sample is a series connection of two-terminal impedance elements, if the correction is performed based on the error model of FIG. 19, the same result as the correction based on FIG. 14 can be obtained.
[0072] <原理 2〉 シャント測定時の 2ポート誤差補正の原理について、図 20〜図 25を参 照しながら説明する。  <Principle 2> The principle of 2-port error correction during shunt measurement will be described with reference to FIGS.
[0073] 2端子インピーダンス素子のシャント測定を想定した際には、誤差パラメータとしてィ ンピーダンスの π型接続回路 (これも回路パラメータとしてはあまり一般的ではない) を採用することとし、この誤差モデルを図 20に示す。図中、点線で囲まれた部分が各 ポートの誤差モデルであり、誤差モデルは、基準となる測定系で被検体が測定される 端子 1 , 2 と、補正の対象となる測定系で被検体が測定される端子 1 , 2との間に m m d d  [0073] When a shunt measurement of a two-terminal impedance element is assumed, an impedance π-type connection circuit (which is not very common as a circuit parameter) is adopted as an error parameter. Figure 20 shows. In the figure, the part enclosed by the dotted line is the error model of each port. The error model is the terminals 1 and 2 where the object is measured by the reference measurement system and the object by the measurement system to be corrected. Mmdd between terminals 1 and 2
接続される。変数はアドミタンスを表す。回路モデルはシリーズ測定の場合と異なるが 、これらは相互変換可能である。また、 DUTと表示された部分が被検体である。 2端 子インピーダンス素子のシャント測定であるので、被検体は 2端子インピーダンス素 子としてモデル化し得る。  Connected. The variable represents admittance. The circuit model is different from that of series measurement, but they can be converted to each other. The part displayed as DUT is the subject. Since it is a shunt measurement of a two-terminal impedance element, the subject can be modeled as a two-terminal impedance element.
[0074] シリーズ測定の場合と同様、図中の誤差モデルのパラメータの値を、補正データ取 得用試料の測定結果から導出することが補正の目的である。やはり、補正データ取 得用試料は図に示された状態での接続のみを行うこととし、測定治具の複雑化といつ た課題を生じな!/、ようにする。  [0074] As in the case of series measurement, the purpose of correction is to derive the value of the error model parameter in the figure from the measurement result of the correction data acquisition sample. Again, the correction data acquisition sample should be connected only in the state shown in the figure, so that the measurement jig is complicated and does not cause any problems!
[0075] さて、等価回路こそ一見異なるものの、以下のように、シリーズ接続の場合とほとん ど同様の手順で誤差モデルのパラメータを決定できる。  [0075] Now, although the equivalent circuit is different at first glance, the error model parameters can be determined by almost the same procedure as in the case of series connection as follows.
[0076] まず、ポート 1から観察した際に、ポート 2は単なる終端アドミタンスにすぎないので 、図 21の等価回路を得る。ここに、 Yはポート 2の等価アドミタンスである。  First, when observing from port 1, port 2 is merely a terminal admittance, so the equivalent circuit of FIG. 21 is obtained. Where Y is the equivalent admittance of port 2.
2  2
[0077] 図 21の Y , Y, Yは並列接続の関係であるから、 Y と Yをまとめて Y と表示す  [0077] Since Y, Y, and Y in Fig. 21 are in a parallel connection relationship, Y and Y are collectively displayed as Y.
13 d 2 13 2 el ると、等価回路は図 22のように変形できる。  13 d 2 13 2 el Then, the equivalent circuit can be modified as shown in FIG.
[0078] シリーズ測定の場合と同様、図 22の誤差モデル中の未知数は 3つであるので、や はり 3つの補正データ取得用試料の測定によって、これら未知数は決定することがで きる。シリーズ測定の場合に倣って変数名を決めると、次の数式ほ女 8a]が成り立つ。 γ _ ( l + ) I γ [0078] Since the number of unknowns in the error model in Fig. 22 is three as in the case of series measurement, these unknowns can be determined by measuring three correction data acquisition samples. If the variable name is determined following the series measurement, the following mathematical formula 8a] holds. γ _ (l +) I γ
+  +
γ 、 +D 2 ! V  γ, + D 2! V
½ 「 1 2  ½ '1 2
γ _ VJel + 3 2 γ γ _ V J el + 3 2 γ
2 + 1e\ + 'di 2 + 1 e \ + 'di
[0079] 誤差要因は、数式ほ女 8a]から求めた次の数式ほ女 8b]によって計算できる。 [0079] The error factor can be calculated by the following mathematical formula 8b] obtained from the mathematical formula 8a].
[数 8b]  [Equation 8b]
denom = {Yd2 - Ydl)YmU + ( - Yd,)Ymll + ( - Yd2)Ymll denom = (Y d2 -Y dl ) Y mU + (-Y d ,) Y mll + (-Y d2 ) Y mll
)11 =土 [ 土 一】 1 一 1 H ) 11 = Sat [Satichi] 1 1 1 H
- K - ) 2 13 +、 1 - 3) m〗3 + ( - 〃 ml mu } ]  -K-) 2 13 +, 1-3) m〗 3 + (-〃 ml mu}]
I aenom  I aenom
Y12 =± ( - ) ( + (- - )^ + ) ( ml2 - ( 3 + (- 2 -rmll)rmI3+rmll^I2) Y 12 = ± (-) ( + (- -) ^ +) (ml2 - (3 + (- 2 -r mll) r mI3 + r mll ^ I2)
I denom I denom
[0080] Y は、数式 [数 8b]で求めた Υ Υ を数式 [数 8a]に代入すれば、次の数式 [数 [0080] Y can be calculated by substituting Υ Υ found in Equation [Equation 8b] into Equation [Equation 8a].
el 11 12  el 11 12
8c]により求められる力 S、誤差補正の計算、すなわち後述する数式ほ女 10]には使用 されない。  It is not used in the calculation of force S and error correction calculated by 8c], that is, the mathematical formula 10 described later.
[数 8c] γ _ γ [Equation 8c] γ _ γ
Π なお、数式 [数 8c]は、 Υ Υ の代わりに、 Υ Υ を用いても、あるいは Υ Υ  数 式 Note that the mathematical formula [Equation 8c] can be obtained by using Υ Υ instead of Υ Υ, or Υ Υ
mil dl ml2 d2 ml3 d を用いても、求めること力できる。  The power can be obtained using mil dl ml2 d2 ml3 d.
3  Three
[0081] 実は、この数式ほ女 8b]は、シリーズ測定の場合と実質的に同じ数式である。式中の 土が異なる解のうち、どちらを選択するかは後に述べる。  [0081] Actually, this mathematical expression 8b] is substantially the same mathematical expression as in the case of series measurement. Which solution to choose from among the different soils in the equation will be described later.
[0082] 次にポート 2から見た場合につ!/、て、未知数の導出を説明する。  Next, the derivation of unknowns will be described when viewed from port 2! /.
[0083] ポート 2から観察した際にはポート 2は単なる終端アドミタンスにすぎないので、図 2 3の等価回路を得る。ここに、 Yはポート 1の等価アドミタンスである。 [0083] When observing from port 2, since port 2 is merely a terminal admittance, the equivalent circuit of Fig. 23 is obtained. Where Y is the equivalent admittance of port 1.
[0084] 図 23の Υ , Υ , Yは並列接続の関係であるから、 Y と Yをまとめて Y と表示す  [0084] Since Υ, ,, and Y in Fig. 23 are connected in parallel, Y and Y are collectively displayed as Y.
23 d 1 23 1 e2 ると、等価回路は図 24のように変形できる。 23 d 1 23 1 e2 Then, the equivalent circuit can be modified as shown in FIG.
[0085] ポート 1の場合と同様に変数名を決めると、誤差要因は数式を同様に計算でき、次 の数式ほ女 9a]が成り立つ。 [0085] If the variable name is determined in the same way as for port 1, the error factor can be calculated in the same way, and the following formula 9a] holds.
9a] γ _ (' el + ^d\)^22 ._ γ 9a] γ _ ('el + ^ d \) ^ 22 ._ γ
Im21 ~ 1 v22 + ^γ 1e2 + Τγ 1 21 Im21 ~ 1 v22 + ^ γ 1 e2 + Τγ 1 21
γ _ + ) . γ  γ _ +).
Im22 ~ γ + + 21 Im22 ~ γ + + 21
22 「 1 ί 2 22 `` 1 ί 2
_ ( 1 +rd3)r22 _ ( 1 + r d3 ) r 22
J22 「 J el 卞 " * </3 J 22 "J el 卞" * </ 3
[0086] 誤差要因は、数式ほ女 9a]から求めた次の数式ほ女 9b]によって計算できる。 The error factor can be calculated by the following mathematical formula 9b] obtained from the mathematical formula 9a].
[数 9b] denom = {Yd2 - Ydl)Ym23 + (Yd - Yd3)Yml2 + ( - Yd2)Ym21 [ Equation 9b] denom = (Y d2 -Y dl ) Y m23 + (Y d -Y d3 ) Y ml2 + (-Y d2 ) Y m21
^21 ~[土 Λ/ 2 - 1 】 - 1 - - 1 - m23 ^ 21 ~ [Sat Λ / 2-1]-1--1-m23
- {( - 2)】w22^n23 + ( 1 - ) 21 23 + ( - ) 2 m2 ]  -{(-2)] w22 ^ n23 + (1-) 21 23 + (-) 2 m2]
I denom  I denom
Y22
Figure imgf000023_0001
Y 22
Figure imgf000023_0001
I denom  I denom
[0087] Y は、数式 [数 9b]で求めた Y , Y を数式 [数 9a]に代入すれば、次の [数 9c] e2 11 22 [0087] Y can be obtained by substituting Y and Y obtained by the formula [Equation 9b] into the formula [Equation 9a].
により求められるが、誤差補正の計算、すなわち後述する数式ほ女 10]には使用され ない。  However, it is not used in the error correction calculation, that is, the mathematical formula 10 described later.
[数 9c]  [Equation 9c]
V V - V V  V V-V V
γ _ 1 m21 J12 -Ί1-Ί2 γ なお、数式 [数 9c]は、 Y ,Υ の代わりに、 Υ ,Υ を用いても、あるいは Υ ,Υ πι21 dl πι22 d2 m23 d を用いても、求めること力 sできる。 γ _ 1 m21 J 12 -Ί1-Ί2 γ Note that the equation [Equation 9c] uses Y, に instead of Y, Υ, or Υ, ι πι21 dl πι22 d2 m23 d, The power to seek s.
3  Three
[0088] 以上の手順でまだ得られていない誤差要因である Y , Y は、補正データ取得用  [0088] Y and Y, which are error factors that have not yet been obtained by the above procedure, are used for obtaining correction data.
13 23  13 23
試料をシャント接続するだけでは求めることが不可能である力 並列接続の関係であ るので、別個独立にその値を定める必要はないので、誤差モデルを図 25のように描 き直す。図中の Yは、 Y と Υ の並列接続(つまり値の和)と観念できる誤差要因で Since it is a force-parallel connection relationship that cannot be obtained simply by connecting the sample to the shunt, it is not necessary to set the values separately, so the error model is drawn as shown in Fig. 25. Revisit. Y in the figure is an error factor that can be thought of as parallel connection of Y and Υ (that is, the sum of values).
f 13 23  f 13 23
ある。  is there.
[0089] 図 25の誤差モデルは、端子 1 と端子 1との間にアドミタンス Y が接続され、端子 1  [0089] In the error model of FIG. 25, admittance Y is connected between terminal 1 and terminal 1, and terminal 1
m d 12  m d 12
とアドミタンス Y との接続点とグランドとの間にアドミタンス Υ が接続され、アドミタン m 12 11  Admittance Y is connected between the connection point of admittance Y and ground and admittance m 12 11
ス Y と端子 1との接続点とグランドとの間にアドミタンス Yが接続され、端子 2と端子  The admittance Y is connected between the connection point between the terminal Y and the terminal 1 and the ground, and the terminal 2 and the terminal
12 d f d  12 d f d
2 との間にアドミタンス Y が接続され、アドミタンス Υ と端子 2 との接続点とグランド m 22 22 m  2 is connected to admittance Y, and the connection point between admittance Υ and terminal 2 and ground m 22 22 m
との間にアドミタンス γ が接続されている。  Is connected to admittance γ.
21  twenty one
[0090] 例えばポート 1から見たインピーダンスは、図 23の誤差モデルにおいてポート 2側 が無反射終端 (つまり、通常は 50 Ωが接続された状態)された状態を表していることか ら、 Υは、補正データ取得用試料の値 Υとこれを接続した際の測定値 Υ の組から求 f d m めること力 sできる。この点でもシリーズ測定の場合と同様であり、次の数式数式ほ女 10 ]-CYを計算すること力 sできる。なお、式中の Yは特性アドミタンスを示す。  [0090] For example, the impedance viewed from port 1 represents the state in which the port 2 side is anti-reflective terminated (that is, normally connected to 50 Ω) in the error model of Fig. 23. Can be obtained from the set of the correction data acquisition sample value Υ and the measurement value 際 when it is connected. This is also the same as in the case of series measurement, and it is possible to calculate the following mathematical formula [10] -CY. Y in the formula indicates the characteristic admittance.
γ =-[{(¾ +(721 +Y0wdl +((r2, +YQ)+YU)Y22 + „ + {(-¾-r11)(721+70)-^1¾}r22-711¾(721 + r0) ] γ =-[{(¾ + (7 21 + Y 0 w dl + ((r 2 , + Y Q ) + Y U ) Y 22 + „+ {(-¾-r 11 ) (7 21 +7 0 ) -^ 1 ¾} r 22 -7 11 ¾ (7 21 + r 0 )]
/[{(¾+(¾ + )} + (- - 22 + (-Y -YnW +Yo)] γί2 =也 2 + σ2, + Υο )) + ( +γ0)+ yl2 )¾ + (^2, + )} 2 / [{(¾ + (¾ +)} + (- - 22 + (-Y -YnW + Yo)] γ ί2 = ya 2 + σ 2, + Υο) ) + (+ γ 0) + y l2) ¾ + (^ 2, +)} 2
+ {(- -YU)Y22 + (-Y12 -7n)(721+r0)}rrf2 + {(--Y U ) Y 22 + (-Y 12 -7 n ) (7 21 + r 0 )} r rf2
+ {(- - ) + 0)-7UF12}¾ -YuYniYn +^o) ] + {(--) + 0 ) -7 U F 12 } ¾ -YuYniYn + ^ o)]
/[{(¾ 2 + (-¾— ) ¾ + (- H21 + )] / [{(¾ 2 + (-¾—) ¾ + (-H 21 +)]
Yf3 = -[{( 22 + (721 + Y0 )) + (( 210) + Υη22十 Yi2 (Y21 + Υα )}7ml3 Y f3 =-[{( 22 + (7 21 + Y 0 )) + (( 21 + Γ 0 ) + Υ η ) Υ 22 tens Y i2 (Y 21 + Υ α )} 7 ml3
+ {(- Γ12 -Y )Yn +{-Yn -7U)(721 +Y0)}Yd3 + {(-Γ 12 -Y) Y n + (-Y n -7 U ) (7 21 + Y 0 )} Y d3
+ {(-Yn - , )(¾ +Yo)- YuYn ¾ +^ο) ]  + {(-Yn-,) (¾ + Yo)-YuYn ¾ + ^ ο)]
/[{(¾ +(Y2l +Ya }Ymu - 22 +(~Υη H + ] / [{(¾ + (Y 2l + Y a } Y m u-22 + (~ Υ η H +]
[0091] Ζの値は 1つであるので、数式ほ女 10]で求めた Υ 、Υ , Υ は、同じ値を取るべき [0091] Since there is only one value of Υ, Υ, Υ, and 求 め obtained in Equation 10 should have the same value
f fl f2 f3  f fl f2 f3
である力 S、数式ほ女 8b]及びほ女 9b]に示すように、 Y , Υ , Υ , Υ には、符号の  Y, Υ, Υ, Υ are given by the sign as shown in force S, formula woman 8b] and woman 9b]
12 12 21 22  12 12 21 22
異なる 2つの解があり、その組み合わせによっては、 Υ , Υ , Υ がー致しない。  There are two different solutions, and depending on the combination, Υ, Υ, Υ will not work.
fl f2 f3  fl f2 f3
[0092] そこで、次の表 2に示す 24= 16通りの組み合わせパターンのそれぞれについて、 上記数式ほ女 10]の Y , Y , Y を計算し Y , Y , Y がー致する Y , Y , Y , Y の組み合わせを選択することにする。 Υ Υ , Υ がー致する組み合わせは複[0092] Therefore, for each of the 2 4 = 16 combinations shown in Table 2 below, Y, Y, Y of the above formula 10 is calculated, and Y, Y, Y matches Y, Y , Y, Let's choose the combination of Y.組 み 合 わ せ Υ, Υ matches more than one combination
22 fl f2 f3 22 fl f2 f3
数存在するので、そのうちのいずれを用いてもよい。  Since there are several, any of them may be used.
[表 2] [Table 2]
Figure imgf000025_0001
Figure imgf000025_0001
[0093] Y と Y は並列接続して Yを形成する誤差要因であるから、補正データ取得用試 [0093] Y and Y are error factors that form Y by connecting them in parallel.
13 23 f  13 23 f
料が 2端子インピーダンス素子のシャント接続をするものである限り、図 25の誤差モ デルに基づいて補正を行えば、図 20基づく補正と全く同じ結果が得られる。  As long as the material is a shunt connection of a two-terminal impedance element, if the correction is performed based on the error model in FIG. 25, the same result as the correction based on FIG. 20 can be obtained.
[0094] 次に、実施例について、図 10〜図 13を参照しながら説明する。  Next, examples will be described with reference to FIGS. 10 to 13.
[0095] <実施例 1 > シリーズ接続の場合について、図 10及び図 1 1を参照しながら説明 する。シリーズ接続とは、測定機の 2つのポート間に被測定物接続する方法である。  <Example 1> A case of series connection will be described with reference to FIG. 10 and FIG. Series connection is a method of connecting a device under test between two ports of a measuring machine.
[0096] 補正の対象となる測定系では、図 10 (a)の全体構成図及び (b)の測定基板 20の 正面図に示すように、被検体である電子部品 2が、測定基板 20の上面に形成された 伝送路 22a 22b間のスリット 22xをまたぐように配置され、伝送路 22a 22b間に直 列に接続される。測定基板 20の上面及び下面の伝送路 22a, 22b ; 24の両端に SM Aコネクタ 56 66がはんだ付けされており、ネットワークアナライザ 70と同軸ケーブル 58, 68を介して接続されている。ネットワークアナライザ 70には Agilent社製ネットヮ ークアナライザ 8753Dを用レ、、測定基板 20は、特性インピーダンス 50 Ωで設計され ている。測定基板 20の長さ Lは 50mm、幅 Wは 30mmである。  [0096] In the measurement system to be corrected, as shown in the overall configuration diagram of Fig. 10 (a) and the front view of the measurement board 20 in (b), the electronic component 2 as the subject is placed on the measurement board 20. It is arranged so as to straddle the slit 22x between the transmission lines 22a and 22b formed on the upper surface, and is connected in series between the transmission lines 22a and 22b. SMA connectors 56 66 are soldered to both ends of the transmission lines 22a, 22b; 24 on the upper and lower surfaces of the measurement board 20, and are connected to the network analyzer 70 via coaxial cables 58, 68. The network analyzer 70 uses an Agilent network analyzer 8753D, and the measurement board 20 is designed with a characteristic impedance of 50 Ω. The measurement board 20 has a length L of 50 mm and a width W of 30 mm.
[0097] 基準となる測定系では、 Agilent社製インピーダンスアナライザ 4291に、 Agilent 社製測定治具 16192Aを取り付けて、測定を行う。 [0098] 被検体である電子部品 2は、 1.0mm X 0.5mmサイズの 56nHのチップインダクタ である。 In the reference measurement system, measurement is performed with an Agilent measurement jig 16192A attached to an Agilent impedance analyzer 4291. [0098] The electronic component 2 that is the subject is a 56 nH chip inductor of 1.0 mm X 0.5 mm size.
[0099] 測定及び補正の作業を順に説明する。  [0099] Measurement and correction operations will be described in order.
[0100] (1) 3つの補正データ取得用試料を準備する。 3つの補正データ取得用試料には、  [0100] (1) Prepare three correction data acquisition samples. The three correction data acquisition samples include
2·2 Ω、 51 Ω、 510 Ωの抵抗を使用した。  Resistors of 2.2 Ω, 51 Ω, and 510 Ω were used.
[0101] (2)補正データ取得用試料のインピーダンス Ζ , Ζ , Ζ を、基準測定系で測定す [0101] (2) Measure the impedance Ζ, Ζ, の of the sample for acquiring correction data using the reference measurement system.
dl d2 d3  dl d2 d3
る。なお、測定ポイント数、掃引周波数範囲は基準測定機、実際に用いるネットワーク アナライザで統一しておく必要がある。  The Note that the number of measurement points and the sweep frequency range must be standardized by the reference measuring instrument and the network analyzer actually used.
[0102] (3)実際に測定に用いる測定機 (8753D)において、同軸ケーブル先端までの伝送 路の校正を行う。この校正は、一般的に行っている SOLT校正でよい。 [0102] (3) Calibrate the transmission line to the end of the coaxial cable in the measuring instrument (8753D) actually used for measurement. This calibration can be performed by a generally performed SOLT calibration.
[0103] (4)補正データ取得用試料のインピーダンスを実際に測定に用いる測定機 (8753[0103] (4) Measuring instrument (8753) that actually uses the impedance of the correction data acquisition sample for measurement
D)で測定する。その際、基準測定機と同じ測定ポイント数、掃引周波数範囲で Z , mi l z , z 及び z , z , z を取得する。 Measure in D). At that time, Z, mi z, z and z, z, z are acquired in the same number of measurement points and sweep frequency range as the reference measuring machine.
ml2 ml3 m21 m22 m23  ml2 ml3 m21 m22 m23
[0104] (5)基準測定機 (4291)、実際に測定に用いる測定機 (8753D)での測定データか ら補正係数を、上述したく原理 1〉に基づいて、パソコンで計算する。ここまでが、測 定系の補正の手順となる。  [0104] (5) The correction coefficient is calculated from the measurement data of the reference measuring instrument (4291) and the measuring instrument (8753D) actually used for measurement on a personal computer based on the principle 1> described above. The procedure up to this point is the measurement system correction procedure.
[0105] (6)実際に測定に用いる測定機 (8753D)で、チップインダクタを測定する。 [6] (6) Measure the chip inductor with the measuring instrument (8753D) that is actually used for the measurement.
[0106] (7)測定データと補正データとを用いて、補正された測定 をパソコンによって計 算する。 [0106] (7) Using the measurement data and correction data, the corrected measurement is calculated by a personal computer.
[0107] 以上の手順により測定、補正処理を行った結果、基準測定機での測定結果と、ネッ トワークアナライザの測定 がー致した。  [0107] As a result of performing the measurement and correction process according to the above procedure, the measurement result of the reference measuring instrument and the measurement of the network analyzer matched.
[0108] 図 11に、 1005サイズのチップインダクタ(52nH)について、測定、補正処理を行つ た結果のグラフを示す。図 11(a)は、基準値、補正前の測定値及び補正後の測定値 のグラフである。「基準値」は、基準測定機での測定値である。「補正前」は、実際に 測定に用いる測定機での測定結果そのものであり、補正してレ、なレ、測定値である。「 補正後」は、実際に測定に用いる測定機での測定値を補正した値 (基準測定機で測 定した場合の測定値の推定値)である。図 1 l(b— 1)は「補正前」の測定値のグラフ、 図 1 l(b— 2)は「補正後」の測定値のグラフ、図 11(c)は「基準値」のグラフである。 [0109] 図 11(a)に示されたように、「基準値」と「補正後」とは、図では区別できないくらいに よく一致しているが、「補正前」は「基準値」から大きくずれている。つまり、補正を行わ ない場合、基準測定機での測定値と大きく外れた測定値しか得られないが、補正を 行うことで、基準測定機での測定値と極めて近レ、測定値を得ること力 Sできる。 FIG. 11 is a graph showing the results of measurement and correction processing performed on a 1005 size chip inductor (52 nH). Figure 11 (a) is a graph of the reference value, the measurement value before correction, and the measurement value after correction. The “reference value” is a value measured with a reference measuring machine. “Before correction” is the measurement result itself with the measuring instrument that is actually used for measurement, and is corrected, measured, and measured value. “After correction” is a value obtained by correcting the measured value of the measuring instrument actually used for measurement (estimated value of the measured value when measured with the reference measuring instrument). Fig. 1 l (b-1) is a graph of measured values before correction, Fig. 1 l (b-2) is a graph of measured values after correction, and Fig. 11 (c) is a graph of reference values. It is. [0109] As shown in Fig. 11 (a), "reference value" and "after correction" agree well enough that they cannot be distinguished in the figure, but "before correction" is different from "reference value". There is a big shift. In other words, if correction is not performed, only measurement values that are significantly different from those measured with the reference measurement device can be obtained, but by performing correction, measurement values that are very close to the measurement values obtained with the reference measurement device can be obtained. Power S can be.
[0110] く実施例 2〉 シャント接続の場合について、図 12及び図 13を参照しながら説明 する。シャント接続とは、測定機の 1つのポートとグランドの間に被測定物を接続する 方法である。  <Embodiment 2> A case of shunt connection will be described with reference to FIG. 12 and FIG. Shunt connection is a method of connecting a device under test between one port of the measuring instrument and the ground.
[0111] 補正の対象となる測定系では、図 12 (a)の全体構成図及び (b)の測定の正面図に 示すように、被検体である電子部品 2が、測定基板 21の上面に形成された信号導体 24と接地導体 25との間に接続される。測定基板 21は信号導体 24及び接地導体 25 の両端に SMAコネクタ 56, 66がはんだ付けされており、ネットワークアナライザ 70と 同軸ケーブル 58, 68を介して接続されている。ネットワークアナライザ 70には Agilen t社製ネットワークアナライザ 8753Dを用い、測定基板 20は、特性インピーダンス 50 Ωで設計されている。測定基板 20の長さ Lは 50mm、幅 Wは 30mmである。  [0111] In the measurement system to be corrected, the electronic component 2 that is the subject is placed on the upper surface of the measurement substrate 21, as shown in the overall configuration diagram of FIG. It is connected between the formed signal conductor 24 and the ground conductor 25. The measurement board 21 has SMA connectors 56 and 66 soldered to both ends of the signal conductor 24 and the ground conductor 25, and is connected to the network analyzer 70 via coaxial cables 58 and 68. A network analyzer 8753D manufactured by Agilent is used as the network analyzer 70, and the measurement board 20 is designed with a characteristic impedance of 50Ω. The measurement board 20 has a length L of 50 mm and a width W of 30 mm.
[0112] 基準となる測定系は、 Agilent社製インピーダンスアナライザ 4291に、 Agilent社 製測定治具 16192Aを取り付けて、測定を行う。  [0112] The reference measurement system is the Agilent impedance analyzer 4291 attached to the Agilent measurement jig 16192A and measured.
[0113] 被検体である電子部品 2は、 l.Omm X 0.5mmサイズの 50 Ωのチップ抵抗である。  [0113] The electronic component 2 which is the subject is a 50 Ω chip resistor of l.Omm × 0.5mm size.
[0114] 次に、測定及び補正の作業を順に説明する。  Next, the measurement and correction operations will be described in order.
[0115] (1) 3つの補正データ取得用試料を準備する。 2·2 Ω、 51 Ω、 510 Ωの抵抗を使用 した。  [0115] (1) Prepare three correction data acquisition samples. Resistors of 2 · 2 Ω, 51 Ω, and 510 Ω were used.
[0116] (2)補正データ取得用試料のアドミタンス Υ , Υ , Υ を基準測定機で測定する。  [0116] (2) Measure admittance Υ, Υ, Υ of the sample for acquiring correction data using a reference measuring instrument.
dl d2 d3  dl d2 d3
なお、測定ポイント数、掃引周波数範囲は基準測定機、実際に用いるネットワークァ ナライザで統一しておく必要がある。  Note that the number of measurement points and the sweep frequency range must be standardized for the reference measuring instrument and the network analyzer used.
[0117] (3)実際に測定に用いる測定機 (8753D)において、同軸ケーブル先端までの伝送 路の校正を行う。この校正は、一般的に行っている SOLT校正でよい。 [0117] (3) Calibrate the transmission line to the end of the coaxial cable in the measuring instrument (8753D) actually used for measurement. This calibration can be performed by a generally performed SOLT calibration.
[0118] (4)補正データ取得用試料のアドミタンスを実際に測定に用いる測定機 (8753D) で測定する。その際、基準測定機と同じ測定ポイント数、掃引周波数範囲で Y , Y mi l[0118] (4) Measure the admittance of the correction data acquisition sample with the measuring instrument (8753D) that is actually used for the measurement. At that time, Y, Y mi l in the same number of measurement points and sweep frequency range as the reference measuring machine
, Y 及び Y , Y , Y を取得する。 [0119] (5)基準測定機 (4291)、実際に測定に用いる測定機 (8753D)での測定データか ら補正係数を、上述したく原理 2〉に基づいて、パソコンで計算する。ここまでが、補 正の手順となる。 , Y and Y, Y, Y are obtained. [0119] (5) The correction coefficient is calculated from the measurement data of the reference measuring instrument (4291) and the measuring instrument (8753D) actually used for measurement on a personal computer based on the principle 2> described above. The procedure up to this point is the correction procedure.
[0120] (6)実際に測定に用いる測定機 (8753D)で、チップ抵抗を測定する。  [6] (6) Measure the chip resistance with a measuring instrument (8753D) that is actually used for measurement.
[0121] (7)測定データと補正データを用いて、補正された測定 をパソコンによって計算 する。  [0121] (7) Using the measurement data and correction data, calculate the corrected measurement using a personal computer.
[0122] 以上の手順により測定、補正処理を行った結果、基準測定機での測定結果と、ネッ トワークアナライザの測定 がー致した。  [0122] As a result of performing the measurement and correction process according to the above procedure, the measurement result of the reference measuring instrument and the measurement of the network analyzer matched.
[0123] 図 13に、 1005サイズのチップ抵抗(50 Ω )について、測定、補正処理を行った結 果のグラフに示す。図 13(a)は、基準値、補正前の測定値及び補正後の測定値のグ ラフである。「基準値」は、基準測定機での測定値である。「補正前」は、実際に測定 に用いる測定機での測定結果そのものであり、補正していない測定値である。「補正 後」は、実際に測定に用いる測定機での測定値を補正した値 (基準測定機で測定し た場合の測定値の推定値)である。図 13(b— 1)は「補正前」の測定値のグラフ、図 13 (b— 2)は「補正後」の測定値のグラフ、図 13(c)は「基準値」のグラフである。  FIG. 13 is a graph showing the results of measurement and correction processing performed on a 1005 chip resistance (50 Ω). Figure 13 (a) is a graph of the reference value, the measurement value before correction, and the measurement value after correction. The “reference value” is a value measured with a reference measuring machine. “Before correction” is the measurement result of the measuring instrument that is actually used for measurement, and is the measurement value that has not been corrected. “After correction” is a value obtained by correcting the measured value of the measuring instrument actually used for the measurement (estimated value of the measured value when measured with the reference measuring instrument). Fig. 13 (b-1) is a graph of measured values before correction, Fig. 13 (b-2) is a graph of measured values after correction, and Fig. 13 (c) is a graph of reference values. .
[0124] 図 13(a)に示されたように、「基準値」と「補正後」とは、図では区別できないくらいに よく一致しているが、「補正前」は「基準値」から大きくずれている。つまり、補正を行わ ない場合には、基準測定機での測定値と大きく外れた測定値しか得られないが、補 正を行うことで、基準測定機での測定値と極めて近レ、測定値を得ること力 Sできる。  [0124] As shown in Fig. 13 (a), "reference value" and "after correction" match well enough to be indistinguishable from the figure, but "before correction" is different from "reference value". There is a big shift. In other words, if correction is not performed, only measurement values that are significantly different from the measurement values obtained with the reference measurement device can be obtained. You can get the power S.
[0125] 以上に説明した本発明の第 1タイプの実施の形態では、 2端子インピーダンス素子 を測定治具やプローブに対しシリーズ接続やシャント接続し測定する 2ポート測定系 において、各ポートの電気特性を T形(図 14)、及び π形(図 20)等価回路で表し、 通常可逆回路では 6つの誤差でモデル化されるところを 5つの誤差に簡略化する。そ うすることで、測定治具やプローブの誤差を導出する際、インピーダンスアナライザで 値付けされた 3つの 2端子インピーダンス素子(以下、標準試料)を用いて、シリーズ 接続では標準試料を接地することなしに、シャント接続では信号線を切断することな しに、 5つの誤差の値を導出することができる。  [0125] In the first type embodiment of the present invention described above, in a two-port measurement system in which a two-terminal impedance element is connected in series or shunted to a measurement jig or probe, the electrical characteristics of each port are measured. Is represented by a T-type (Fig. 14) and π-type (Fig. 20) equivalent circuit, which is usually modeled with six errors in a reversible circuit, but is simplified to five errors. By doing so, when deriving the error of the measurement jig or probe, three standard two-terminal impedance elements (hereinafter referred to as standard samples) are used, and the standard sample is grounded in series connection. Without the shunt connection, five error values can be derived without cutting the signal line.
[0126] 上記誤差モデルを用いた場合、 3つの標準試料の測定値から導出される測定治具 やプローブの各誤差のうち、 4つは符号の異なる 2つの解が存在することになる。その ため、どの 4つの誤差の符号の組み合わせが正しいのかは、符号の各組み合わせの 場合において残り 1つの誤差が 3つの標準試料それぞれから導出される 3つの値が 同じになることを確認、していくことで決定される。 [0126] When the above error model is used, a measurement jig derived from the measured values of three standard samples Of each error of the probe, four have two solutions with different signs. Therefore, to confirm which four error sign combinations are correct, confirm that the three values derived from each of the three standard samples are the same for the remaining one error in each sign combination. It is decided by going.
[0127] しかし、 3つの標準試料の測定バラツキや測定器のトレースノイズなどによって完全 に一致することはなぐどの符号の組み合わせが正しいのか全ての周波数で優劣の 判断は、どの符号の組み合わせがより一致するのかで行うしかない。そのため、測定 バラツキやノイズの影響で誤った符号の組み合わせを選択し、補正精度が確保でき なレ、周波数も存在してしまうことがあり得る。  [0127] However, it is difficult to determine which combination of codes is correct due to measurement variations of the three standard samples and trace noise of the measuring instrument. There is no choice but to do it. For this reason, incorrect code combinations may be selected due to measurement variations and noise, and there may be errors and frequencies that cannot ensure correction accuracy.
[0128] 次に、本発明の第 2タイプの実施の形態である電子部品の高周波特性の誤差補正 方法について、図 26〜図 37を参照しながら説明する。  Next, an error correction method for high frequency characteristics of an electronic component according to a second type of embodiment of the present invention will be described with reference to FIGS. 26 to 37. FIG.
[0129] 本発明の第 2タイプの実施の形態では、 2ポート誤差モデルと等価な 1ポート誤差モ デルを用いることにより、本発明の第 1タイプの実施の形態のような符号の組み合わ せの選択が不要となる。そのため、誤差補正パラメータの導出精度、及び測定誤差 の補正精度が向上する。以下、詳細に説明する。  [0129] In the second type embodiment of the present invention, by using a one-port error model equivalent to the two-port error model, the combination of codes as in the first type embodiment of the present invention can be realized. No selection is required. This improves the accuracy of deriving error correction parameters and the accuracy of measurement error correction. Details will be described below.
[0130] <バランス変換 1ポート誤差モデル〉 まず、本発明の第 2タイプの実施の形態で 用いるバランス変換 1ポート誤差モデルについて説明する。バランス変換 1ポート誤 差モデルは、以下のように、 2ポート誤差モデルをバランス変換することにより得られ  <Balance Conversion 1-Port Error Model> First, the balance conversion 1-port error model used in the second type of embodiment of the present invention will be described. Balance conversion The 1-port error model is obtained by performing the balance conversion on the 2-port error model as follows.
[0131] 図 26に、 2ポート回路を Zパラメータで表したモデルの回路図を示す。図 26の関係 を行列式で表すと次の数式ほ女 11]となる。 FIG. 26 shows a circuit diagram of a model in which a 2-port circuit is represented by Z parameters. The relationship shown in Fig. 26 can be expressed as a determinant as shown in the following equation 11].
[数 11]  [Equation 11]
(νΛ ( ίΙτλヽ ノ
Figure imgf000029_0001
V 2 J
(νΛ (ίΙτ λヽ ノ
Figure imgf000029_0001
V 2 J
[0132] 入力値を V = (V +V ) /2、 I = (I +1 ) /2と置き換え、出力値を V = (V—V [0132] Replace the input value with V = (V + V) / 2, I = (I +1) / 2, and change the output value to V = (V—V
C 1 2 C 1 2 d 1 2 C 1 2 C 1 2 d 1 2
) /2、 I = (I -I ) /2と置き換えるバランス変換を行うことによって、 Zパラメータは、 d 1 2 ) / 2, I = (I -I) By performing a balance transformation that replaces / 2, the Z parameter is d 1 2
次の数式ほ女 12]のように変換される。 (νΛ (zcc ^、 ヽ It is converted as follows: (νΛ (z cc ^, ヽ
Figure imgf000030_0001
Figure imgf000030_0001
[0133] Yパラメータ)についても、バランス変換を行うと次の数 [0133] For the Y parameter, the following number
Figure imgf000030_0002
Figure imgf000030_0002
+ 1  + 1
J 21 ャ1 ΎΙ ,J 21 1
Figure imgf000030_0003
Figure imgf000030_0003
[0134] 通常の受動回路では可逆定理が成立するので、 Zパラメータであれば Z =Z 、Y [0134] Since the reversible theorem holds in ordinary passive circuits, Z = Z, Y if Z parameters
12 21 パラメータであれば Υ =Υ となる。そこから、 Ζパラメータ及び Υパラメータは、 Τ及  12 21 If the parameter, then Υ = Υ. From there, the Ζ parameter and the Υ parameter are
12 21  12 21
び π型の等価回路の形に表すことができる。  And a π-type equivalent circuit.
[0135] 図 26、数式ほ女 11]に示した Ζパラメータを Τ型等価回路に変換すると、図 27の回 路図のようになる。図 27を差動信号入力時の等価回路に変形すると、図 28の回路 図となり、 Τ型等価回路におけるポート 1、 2の直歹 IJインピーダンス成分 (Ζ — Ζ ) + [0135] When the の parameter shown in Fig. 26, Equation Woman 11] is converted into a 等 価 -type equivalent circuit, the circuit diagram in Fig. 27 is obtained. Fig. 27 is transformed into an equivalent circuit for differential signal input, resulting in the circuit diagram of Fig. 28. The direct IJ impedance component (Ζ — Ζ) + of ports 1 and 2 in the vertical equivalent circuit +
11 12 11 12
(Ζ Ζ )カ、数式ほ女 12]における Ζ であることが分かる。 (Ζ Ζ), it can be seen that it is に お け る in the mathematical formula 12].
22 12 dd  22 12 dd
[0136] これを利用することにより、 2端子インピーダンス素子がシリーズ接続である場合、補 正モデルは次のようになる。  By utilizing this, when the two-terminal impedance element is connected in series, the correction model is as follows.
[0137] 図 29は、測定治具を用いて 2端子インピーダンス素子をシリーズ接続し測定した場 合における 2ポート誤差モデルを、 T型等価回路を用いて示す回路図である。 2ポー ト誤差モデルは、点線で囲まれた部分であり、基準測定系で電子部品を測定したとき 。一ダンス Zと、実測測定系で電子部品を測定したときのインピーダンスが測 定される 2つのポート(Portl、 Port2)との間に接続されている。 [0137] FIG. 29 is a circuit diagram showing a two-port error model using a T-type equivalent circuit when two-terminal impedance elements are connected in series using a measurement jig. The 2-port error model is the part enclosed by the dotted line, and when measuring electronic components with the reference measurement system. Impedance Z and impedance when measuring electronic components with the actual measurement system. It is connected between two specified ports (Portl, Port2).
[0138] 図 28の場合と同様に、図 29の回路を差動信号入力時の等価回路に変形すると、 図 30に示す回路図となる。 As in the case of FIG. 28, when the circuit of FIG. 29 is transformed into an equivalent circuit when a differential signal is input, the circuit diagram shown in FIG. 30 is obtained.
[0139] 図 30の回路におけるポート 1、 2間の直列インピーダンスを求めると、次の数式ほ女 [0139] The series impedance between ports 1 and 2 in the circuit of Fig. 30 is calculated as follows:
14]となる。  14].
[数 14]  [Equation 14]
Z' = Ze - Ze + " e - Ze ' (Zg22 - Zei2 + ζ - Ze^ + d ) x (Ze12 + Ze^ ) Z '= Ze-Ze + "e-Ze' ( Zg 22- Ze i2 + ζ -Ze ^ + d ) x (Ze 12 + Ze ^)
[0140] この数式ほ女 14]は、測定治具を用いて 2端子インピーダンス素子をシリーズ接続し 測定した Zパラメータの差動インピーダンス成分 Zt と等価である。すなわち、数式 [ [0140] This mathematical model 14] is equivalent to the differential impedance component Zt of the Z parameter measured by connecting two-terminal impedance elements in series using a measurement jig. That is, the formula [
dd  dd
数 14]は、基準測定系で電子部品を測定したときのインピーダンス Zに対して、実測  Equation 14] is an actual measurement for impedance Z when an electronic component is measured with a reference measurement system.
d  d
測定系で 2つのポートによって電子部品を測定したときのインピーダンスを、 2ポート 誤差モデルを介して関連付ける。また、数式ほ女 14]は、図 30の回路が図 31に示す 回路と等価であることを示してレ、る。  Associate the impedance when measuring electronic components with two ports in the measurement system via a two-port error model. Equation 14] shows that the circuit of FIG. 30 is equivalent to the circuit shown in FIG.
[0141] 図 31において回路中におけるインピーダンス成分はまとめられ 3つとなり、測定治 具の誤差を T型等価回路で表した 1ポート誤差モデルと同じとなる。このことは、シリ ーズ接続の場合、以下の(1)〜(4)の手順で、測定 ·補正を実施することで DUTのィ ンピーダンスが導出できることを示して!/、る。  [0141] In Fig. 31, the impedance components in the circuit are combined into three, which is the same as the one-port error model in which the error of the measurement tool is represented by a T-type equivalent circuit. This indicates that the impedance of the DUT can be derived by performing measurement and correction in the following steps (1) to (4) in the case of series connection!
[0142] (1)特性 (インピーダンス)が値付けされている 3つの補正試料 (チップ抵抗など)、 又はこれら 3つの補正試料と同等の高周波特性を有すると見なせる 3つの補正試料 について、測定治具を用いて Zパラメータを測定する。測定には、ネットワークやイン ピーダンスアナライザを用いる。  [0142] (1) Measurement jigs for three correction samples (chip resistance, etc.) whose characteristics (impedance) are priced, or three correction samples that can be considered to have high frequency characteristics equivalent to these three correction samples Use to measure the Z parameter. A network or impedance analyzer is used for the measurement.
[0143] (2) Zパラメータのバランス変換を行い、その差動インピーダンス成分 Z を取り出す  [0143] (2) Perform Z parameter balance conversion and extract the differential impedance component Z
dd dd
Yes
[0144] (3)差動インピーダンス成分の等価回路である図 30の回路のようにまとめられた、 測定治具の 3つの誤差成分を、 3つの補正試料を測定した際の Z と「3つの補正試  [0144] (3) The three error components of the measurement jig, summarized as the circuit in Fig. 30, which is an equivalent circuit of the differential impedance component, are the Z when the three correction samples are measured and the "three Correction test
dd  dd
料の値付けされた特性 (インピーダンス)」から算出する。  Calculated from the priced characteristics (impedance) of the material.
[0145] (4) DUTを測定した際の Z から、「(3)の手順にて導出した 3つの誤差成分を除去 することにより」、 DUTのインピーダンス Zを算出する。 [0145] (4) Remove the three error components derived in the procedure of (3) from Z when measuring the DUT. By doing this, calculate the impedance Z of the DUT.
[0146] なお、図 29の測定治具の誤差 Zパラメータを図 31のようにまとめることで、それぞれ の値は独立には求まらないが、補正実施にはなんら問題はない。  Note that the error Z parameters of the measurement jig of FIG. 29 are summarized as shown in FIG. 31, so that each value cannot be obtained independently, but there is no problem in performing the correction.
[0147] 2端子インピーダンス素子がシャント接続される場合、補正モデルは次のようになる[0147] When a two-terminal impedance element is shunt-connected, the correction model is as follows
Yes
[0148] 2端子インピーダンス素子のシャント接続に対しては、 Yパラメータを π型等価回路 に変換し、同相アドミタンス成分を用いることで、シリーズ接続と同様に 1ポート補正の モデノレとして极うこと力できる。  [0148] For shunt connection of two-terminal impedance elements, by converting the Y parameter to a π-type equivalent circuit and using an in-phase admittance component, it can be used as a model for 1-port correction as in series connection. .
[0149] 図 32の回路図に、 Υパラメータを用いた π型等価回路の回路図を表す。図 32を同 相信号入力時の等価回路に変形すると、図 33の回路図に示すように、 π型等価回 路におけるポート 1、 2の並列アドミタンス成分が数式ほ女 13]における Υ であることが 分かる。  [0149] The circuit diagram of Fig. 32 shows a circuit diagram of a π-type equivalent circuit using the Υ parameter. If Fig. 32 is transformed into an equivalent circuit when a common-mode signal is input, the parallel admittance component of ports 1 and 2 in the π-type equivalent circuit is Υ in Equation 13] as shown in the circuit diagram of Fig. 33. I understand.
[0150] 次に、シリーズ接続と同じように、図 34の回路図に、測定治具を用いて 2端子インピ 一ダンス素子をシャント接続し測定した場合における 2ポート誤差モデルを、 π型等 価回路を用いて示す。 2ポート誤差モデルは、点線で囲まれた部分であり、基準測定 系で電子部品を測定したときのアドミタンス Υと、実測測定系で電子部品を測定した ときのアドミタンスが測定される 2つのポート(Portl、 Port2)との間に接続される。先 ほどと同じように、図 34の回路を同相信号入力時の等価回路に変形すると、図 35の 回路図となる。  [0150] Next, as with the series connection, the 2-port error model in the case where a 2-terminal impedance element is shunt-connected to the circuit diagram of Fig. 34 using a measurement jig is measured as a π-type equivalent. This is shown using a circuit. The 2-port error model is the part enclosed by the dotted line. Two ports (the admittance と き when measuring electronic components with the reference measurement system and the admittance when measuring electronic components with the actual measurement system) Portl and Port2). As before, if the circuit in Fig. 34 is transformed into an equivalent circuit when an in-phase signal is input, the circuit diagram in Fig. 35 is obtained.
[0151] 図 35の回路におけるポート 1、 2間の並列インピーダンスを求めると次の数式ほ女 15 ]となる。  [0151] When the parallel impedance between ports 1 and 2 in the circuit of FIG. 35 is obtained, the following mathematical formula 15] is obtained.
[数 15]  [Equation 15]
Ytd ά = Yen - Ye12 + Ye^ - YeM + ^—— ^—— -—— - ~― ~―——― d Ye22 - Yel2 + Ye33 - YeM + Yd + Ye12 + Ye34 Yt d ά = Ye n -Ye 12 + Ye ^ -Ye M + ^ —— ^ —— -——-~ — ~ ———— d Ye 22 -Ye l2 + Ye 33 -Ye M + Y d + Ye 12 + Ye 34
[0152] 数式ほ女 15]は、測定治具を用いて 2端子インピーダンス素子をシャント接続し測定 した Yパラメータの同相アドミタンス成分 Yt と等価である。すなわち、数式ほ女 15]は[0152] Equation 15 is equivalent to the in-phase admittance component Yt of the Y parameter measured by shunting a two-terminal impedance element using a measurement jig. In other words, the mathematical formula 15]
、基準測定系で電子部品を測定したときのアドミタンス Yに対して、実測測定系で 2 つのポートによって電子部品を測定したときのアドミタンスを、 2ポート誤差モデルを 介して関連付ける。また、数式ほ女 15]は、図 34の回路が図 35に示す回路と等価で あることを示している。 Admittance when measuring electronic components with two ports in the actual measurement system versus admittance Y when measuring electronic components with the reference measurement system, and a 2-port error model Associate through. Equation [15] shows that the circuit of FIG. 34 is equivalent to the circuit shown in FIG.
[0153] 図 35において回路中におけるアドミタンス成分はまとめられ 3つとなり、測定治具の 誤差を π型等価回路で表した 1ポート誤差モデルと同じとなる。このことは、シリーズ 接続の Τ型等価回路と同様に、測定治具を用いて測定した Υパラメータのバランス変 換を行った上で、その同相アドミタンス成分に対して 1ポート補正を実施することで、 DUTのアドミタンスが導出できることを示して!/、る。  In FIG. 35, there are three admittance components in the circuit, which is the same as the one-port error model in which the error of the measurement jig is represented by a π-type equivalent circuit. This is because, as with the series-connected vertical type equivalent circuit, the balance conversion of the vertical parameter measured using the measurement jig is performed, and then 1-port correction is performed for the common-mode admittance component. Demonstrate that DUT admittance can be derived! /
[0154] <実施例 3〉 実測測定系において 2端子インピーダンス素子がシリーズ接続され る場合の測定誤差補正手順について、説明する。  <Example 3> A measurement error correction procedure when a two-terminal impedance element is connected in series in an actual measurement system will be described.
[0155] 予め、 3種類の 2端子 2ポートデバイス (適当なチップ抵抗、デバイス自体等を使用 できる)を、インピーダンスアナライザやネットワークアナライザでは TRL校正法や RR RR校正法によって値付けしておく(以下、標準 2ポートデバイスという)。これは、机上 で行っておくべき手順である。この値付けは、基準測定系での値付けである。  [0155] Three types of two-terminal two-port devices (appropriate chip resistors, devices themselves, etc. can be used) are priced by the TRL calibration method and the RR RR calibration method for impedance analyzers and network analyzers (hereinafter referred to as the following) Standard 2-port device). This is a procedure that should be done on the desk. This pricing is a pricing in the reference measurement system.
[0156] 次 V、で、実測測定系の 2つのポートに前記標準 2ポート試料又は前記標準 2ポート 試料と同等の高周波特性を有すると見なせる試料を接続し、その Sパラメータを測定 する。  [0156] Next V, connect the standard 2-port sample or a sample that can be regarded as having high-frequency characteristics equivalent to the standard 2-port sample to the two ports of the actual measurement system, and measure the S parameter.
[0157] 次いで、上記 Sパラメータ測定結果を、次の数式ほ女 16]を用いて差動 Ζパラメータ に変換する。この数式ほ女 16]は、前述した数式ほ女 14]の右辺の Ζパラメータを Sパラ メータに変換することにより導出される。  [0157] Next, the above S-parameter measurement result is converted into a differential Ζ parameter using the following equation 16). This mathematical model 16] is derived by converting the Ζ parameter on the right side of the mathematical model 14] described above into an S parameter.
[数 16] _ 2 X 0 X
Figure imgf000033_0001
-
[Equation 16] _ 2 X 0 X
Figure imgf000033_0001
-
^ Π + SM11 + SM11 x SMll - SMU x SM12 - 1 ^ Π + S M11 + S M11 x S Mll - S MU x S M12 - 1
ここで、 S :実測 2ポート測定系における Sパラメータ測定結果  Where, S: Actual S-parameter measurement result in 2-port measurement system
M  M
Z :変換された差動 Zパラメータ  Z: Converted differential Z parameter
dd  dd
z :測定系の特性インピーダンス  z: Characteristic impedance of measurement system
0  0
[0158] 次!/、で、標準 2ポート試料の値付けされた値と、変換された差動 Zパラメータとの関 係を、 1ポート誤差モデルを用いて表す。 1ポート誤差モデルは、図 31の代わりに、 反射係数に変換し表して関係をモデル化しても問題はない。 [0158] Next! /, Represents the relationship between the priced value of the standard 2-port sample and the converted differential Z parameter using the 1-port error model. The 1-port error model is There is no problem even if the relationship is modeled by converting to a reflection coefficient.
[0159] 次いで、 3つの標準 2ポート試料の値付けされたインピーダンス値と、変換された差 動 Zパラメータとの関係から、 1ポート誤差モデルの誤差パラメータを計算する。図 31 の 1ポート誤差モデルを用いる場合には、誤差パラメータとして図 31に示された 3つ の未知数、すなわち、 Ze — Ze +Ze — Ze 、 Ze — Ze +Ze — Ze [0159] Next, the error parameter of the 1-port error model is calculated from the relationship between the impedance values determined for the three standard 2-port samples and the converted differential Z parameter. When using the one-port error model shown in Figure 31, the three unknowns shown in Figure 31 as error parameters, namely Ze — Ze + Ze — Ze and Ze — Ze + Ze — Ze.
11 12 44 34 22 12 33 34、 Ze +  11 12 44 34 22 12 33 34, Ze +
12 12
Ze を計算する。 Calculate Ze.
34  34
[0160] 次いで、計算した誤差パラメータの値を使う 1ポート誤差モデルを用いて、他の 2端 子 2ポートデバイスを実測測定系で測定した値を補正し、他の 2端子 2ポートデバイス の真値 (すなわち、基準測定系で測定したならば得られるであろう測定値の推定値) を得る。  [0160] Next, using the 1-port error model that uses the calculated error parameter values, the values measured by the actual measurement system for the other 2-terminal 2-port devices are corrected, and the true values of the other 2-terminal 2-port devices are corrected. Obtain a value (ie, an estimate of the measurement that would be obtained if measured with a reference measurement system).
[0161] 以上のように、実測 2ポート測定系に対しバランス変換を用いて、標準 2ポート試料 の値付けされた値との関係を 1ポート誤差モデルに置き換えることにより、一意に誤差 ノ ラメータが導出される。  [0161] As described above, by using balance conversion for the measured 2-port measurement system and replacing the relationship with the priced value of the standard 2-port sample with the 1-port error model, the error parameter is uniquely determined. Derived.
[0162] 本手法によれば、 AAA補正法(実施例 1)のように誤差パラメータが一意に決まら なレ、と!/、う問題が生じな!/、ので、誤差パラメータ導出過程への測定バラツキや測定器 のトレースノイズなどの影響が緩和される。 [0162] According to this method, as in the AAA correction method (Example 1), the error parameter is not uniquely determined, and no problem arises. The effects of variations and measuring instrument trace noise are alleviated.
[0163] そのため、 AAA補正法(実施例 1)より、誤差パラメータの導出精度、及び補正精 度が向上する。  [0163] Therefore, the error parameter derivation accuracy and the correction accuracy are improved by the AAA correction method (Example 1).
[0164] <実施例 4〉 実測測定系において 2端子インピーダンス素子がシャント接続され る場合の測定誤差補正手順について、説明する。  <Example 4> A measurement error correction procedure when a two-terminal impedance element is shunt-connected in an actual measurement system will be described.
[0165] まず、 3種類の 2端子 2ポートデバイス (適当なチップ抵抗、デバイス自体等を使用で きる)をインピーダンスアナライザやネットワークアナライザでは TRL校正法や RRRR 校正法によって値付けしておく(以下、標準 2ポートデバイスという)。これは、机上で 行っておくべき手順である。この値付けは、基準測定系での値付けである。  [0165] First, three types of two-terminal two-port devices (appropriate chip resistors, devices themselves, etc.) can be priced by the TRL calibration method or RRRR calibration method for impedance analyzers and network analyzers (hereinafter referred to as the following) Standard 2-port device). This is the procedure that should be done on the desk. This pricing is a pricing in the reference measurement system.
[0166] 次いで、 2ポート実測測定系にて、前記標準 2ポート試料を接続し、その Sパラメ一 タを測定する。  [0166] Next, the standard 2-port sample is connected in the 2-port actual measurement system, and the S parameter is measured.
[0167] 次いで、上記 Sパラメータ測定結果を、次の数式ほ女 17]を用いて同相 Yパラメータ に変換する。この数式ほ女 17]は、前述した数式ほ女 15]の右辺の Yパラメータを Sパ ラメータに変換することにより導出される。 [0167] Next, the S parameter measurement result is converted into an in-phase Y parameter using the following mathematical model 17]. This mathematical model 17] uses the S parameter for the Y parameter on the right side of the mathematical model 15] described above. Derived by converting to a parameter.
Figure imgf000035_0001
ここで、 SM :実測 2ポート測定系における Sパラメータ測定結果
Figure imgf000035_0001
Where SM: Actual S-parameter measurement result in 2-port measurement system
Y :変換された同相 Yパラメータ  Y: converted in-phase Y parameter
cc  cc
z :測定系の特性インピーダンス  z: Characteristic impedance of measurement system
0  0
[0168] 標準 2ポート試料の値付けされた値と、変換された同相 Yパラメータの関係を、 1ポ ート誤差モデルを用いて表す。 1ポート誤差モデルは、図 36の代わりに、反射係数に 変換し表して関係をモデル化しても問題はない。  [0168] The relationship between the priced value of the standard 2-port sample and the converted in-phase Y parameter is expressed using a 1-port error model. The one-port error model can be converted into a reflection coefficient instead of the one shown in Fig. 36, and the relationship can be modeled.
[0169] 次いで、 3つの標準 2ポート試料の値付けされたアドミタンス値と、変換された同相 Y パラメータとの関係から、 1ポート誤差モデルの誤差パラメータを計算する。図 36の 1 ポート誤差モデルを用いる場合には、誤差パラメータとして図 36に示された 3つの未 知数、すなわち、 Ye +Ye 、Ye — Ye +Ye Ye 、 Ye — Ye +Ye Y  [0169] Next, the error parameter of the 1-port error model is calculated from the relationship between the admittance values of the three standard 2-port samples and the converted in-phase Y parameter. When using the one-port error model in Figure 36, the three unknowns shown in Figure 36 as error parameters: Ye + Ye, Ye — Ye + Ye Ye, Ye — Ye + Ye Y
12 34 11 12 44 34 22 12 33 e を計算する。  12 34 11 12 44 34 22 12 33 e is calculated.
44  44
[0170] 次いで、計算した誤差パラメータの値を使う 1ポート誤差モデルを用いて、他の 2端 子 2ポートデバイスを実測測定系で測定した値を補正し、他の 2端子 2ポートデバイス の真値 (すなわち、基準測定系で測定したならば得られるであろう測定値の推定値) を得る。  [0170] Next, using the 1-port error model that uses the calculated error parameter values, the values measured by the actual measurement system for the other 2-terminal 2-port devices are corrected, and the true values of the other 2-terminal 2-port devices are corrected. Obtain a value (ie, an estimate of the measurement that would be obtained if measured with a reference measurement system).
[0171] 以上のように、実測 2ポート測定系に対しバランス変換を用いて、標準 2ポート試料 の値付けされた値との関係を 1ポート誤差モデルに置き換えることにより、一意に誤差 パラメータが導出される。  [0171] As described above, the error parameters are uniquely derived by replacing the relationship with the priced values of the standard 2-port sample with the 1-port error model using balance conversion for the actual 2-port measurement system. Is done.
[0172] 本手法によれば、 AAA補正法(実施例 2)のように誤差パラメータが一意に決まら なレ、と!/、う問題が生じな!/、ので、誤差パラメータ導出過程への測定バラツキや測定器 のトレースノイズなどの影響が緩和される。  [0172] According to this method, the error parameter is not uniquely determined as in the AAA correction method (Example 2), and no problem arises. The effects of variations and measuring instrument trace noise are alleviated.
[0173] そのため、 AAA補正法(実施例 2)より、誤差パラメータの導出精度、及び補正精 度が向上する。 [0174] <具体例〉 図 37の構成図に、測定に使用した 2ポートプローブの構造を示す。そ の他の実験条件は以下の通り。接続方法は、シリーズ接続である。 [0173] Therefore, the error parameter derivation accuracy and the correction accuracy are improved by the AAA correction method (Example 2). <Specific example> The configuration diagram of Fig. 37 shows the structure of the 2-port probe used for the measurement. Other experimental conditions are as follows. The connection method is series connection.
[DUT] 補正精度確認用 1608サイズチップ抵抗 2種類(100 Ω、 392 Ω )  [DUT] Correction type confirmation 1608 size chip resistor 2 types (100 Ω, 392 Ω)
[測定器] Ε8364Β (Agilent Technologies社)  [Measuring instrument] Ε8364 (Agilent Technologies)
[測定周波数] 50MHz〜; 1. 8GHz  [Measurement frequency] 50MHz ~; 1. 8GHz
[測定点数] 801点  [Measurement points] 801 points
[中間周波数] 300Hz  [Intermediate frequency] 300Hz
[補正試料] インピーダンスアナライザ 4291 A (Agilent Technologies社)で値付けさ れた 1608サイズ抵抗 3種類(1.2 Ω、 47 Ω、 560 Ω )  [Correction sample] 3 types of 1608 size resistors (1.2 Ω, 47 Ω, 560 Ω) priced by impedance analyzer 4291 A (Agilent Technologies)
[0175] チップ抵抗(100 Ω、 392 Ω )を、図 31の 1ポート誤差モデルを用いる実施例 3の手 法及び AAA補正(実施例 1)にて補正した結果を、次の表 3に示す。 [0175] Table 3 shows the results of correcting the chip resistance (100 Ω, 392 Ω) using the method of Example 3 and the AAA correction (Example 1) using the 1-port error model in Fig. 31. .
[表 3] 補正誤差の比較
Figure imgf000036_0001
[Table 3] Comparison of correction errors
Figure imgf000036_0001
[0176] 表 3には、補正誤差の平均と 3 σを示している。最も補正誤差が少ない値に『*』を 付しているいる力 392 Ωのレジスタンスの平均値を除いて、全て本手法の補正誤差 が最も少ない値を示している。また AAA補正法おいて、ポート 1の測定値 S とポート [0176] Table 3 shows the average correction error and 3σ. Except for the average value of the resistance of 392 Ω, which is marked with “*” to the value with the smallest correction error, all values show the values with the smallest correction error. Also, in AAA correction method, measured value S of port 1 and port
11  11
2の測定値 S 力 求めたそれぞれの補正値において、その補正誤差の平均値に違  Measured value of 2 S force Each of the calculated correction values differs from the average value of the correction errors.
22  twenty two
いがあるのも読み取ることができる。したがって、表 3から、 AAA補正法(実施例 1)よ り実施例 3の手法の方がより精度よく補正できることが分かる。  It is possible to read even if there is. Therefore, Table 3 shows that the method of Example 3 can be corrected more accurately than the AAA correction method (Example 1).
[0177] <まとめ〉 以上に説明した誤差補正方法を用いると、 2端子インピーダンス部品 について、補正の対象となる測定系が実測時と同じ状態のままで、校正作業を行うこ とができる。そのため、実質的に量産デバイス自体又は量産デバイスと略同じ寸法- 形状の試料しか測定端子部に接続できな V、自動特性選別機につ!/、ても、測定系の 誤差補正を行うことができる。 [0178] なお、本発明は、上記した実施の形態に限定されるものではなぐ種々の変更を加 えて実施することが可能である。 <Summary> By using the error correction method described above, it is possible to perform the calibration work for the two-terminal impedance component while the measurement system to be corrected remains in the same state as at the time of actual measurement. For this reason, it is possible to perform error correction of the measurement system even if the mass production device itself or a sample with approximately the same size and shape as the mass production device can be connected to the measurement terminal V it can. [0178] It should be noted that the present invention is not limited to the above-described embodiment, and can be implemented with various modifications.
[0179] 例えば、本発明は、測定基板を用いる測定系に限らず、測定ピンを用いる測定系 などにも適用することができる。 For example, the present invention can be applied not only to a measurement system using a measurement substrate but also to a measurement system using a measurement pin.

Claims

請求の範囲 The scope of the claims
[1] 2端子インピーダンス部品である電子部品を実測測定系で測定した結果から、当該 電子部品を基準測定系で測定したならば得られるであろう当該電子部品の高周波特 性の推定値を算出する、電子部品の高周波特性誤差補正方法であって、  [1] From the results of measuring an electronic component, which is a two-terminal impedance component, using an actual measurement system, calculate an estimate of the high-frequency characteristics of the electronic component that would be obtained if the electronic component was measured using a reference measurement system. An electronic component high frequency characteristic error correction method comprising:
前記基準測定系で値付けされて!/、る、高周波特性の異なる少なくとも 3つの第 1の 補正データ取得用試料を用意する第 1のステップと、  First step of preparing at least three first correction data acquisition samples that are priced in the reference measurement system and have different high-frequency characteristics;
少なくとも 3つの前記第 1の補正データ取得用試料、又は前記第 1の補正データ取 得用試料と同等の高周波特性を有すると見なせる少なくとも 3つの第 2の補正データ 取得用試料を、前記実測測定系で測定する第 2のステップと、  At least three of the first correction data acquisition samples or at least three second correction data acquisition samples that can be regarded as having the same high-frequency characteristics as the first correction data acquisition sample A second step to measure with
前記第 1のステップで用意された前記第 1の補正データ取得用試料の前記基準測 定系での値付けデータと前記第 2のステップにおいて前記実測測定系で測定された 前記第 1の補正データ取得用試料又は前記第 2の補正データ取得用試料の測定デ ータとから、前記実測測定系で測定した測定値と前記基準測定系で測定した測定値 とを、伝送路の誤差補正係数を用いて関連付ける数式を決定する第 3のステップと、 任意の電子部品を前記実測測定系で測定する第 4のステップと、  Pricing data in the reference measurement system of the first correction data acquisition sample prepared in the first step and the first correction data measured in the actual measurement system in the second step From the measurement data of the acquisition sample or the second correction data acquisition sample, the measurement value measured by the actual measurement system and the measurement value measured by the reference measurement system are used as the error correction coefficient of the transmission path. A third step of determining a mathematical expression to be used, a fourth step of measuring an arbitrary electronic component with the actual measurement system,
前記第 4のステップで得られた測定結果に基づ!/、て、前記第 3のステップで決定し た前記数式を用いて、当該電子部品を前記基準測定系で測定したならば得られるで あろう当該電子部品の高周波特性の推定値を算出する第 5のステップと、 を備えることを特徴とする、電子部品の高周波特性誤差補正方法。  Based on the measurement result obtained in the fourth step, it can be obtained if the electronic component is measured by the reference measurement system using the mathematical formula determined in the third step. A fifth step of calculating an estimated value of the high-frequency characteristic of the electronic component, and a method for correcting the high-frequency characteristic error of the electronic component, comprising:
[2] 前記実測測定系において、前記第 1の補正データ取得用試料及び前記電子部品 、又は、前記第 1の補正データ取得用試料、前記第 2の補正データ取得用試料及 び前記電子部品が、シリーズ接続され、 [2] In the actual measurement system, the first correction data acquisition sample and the electronic component, or the first correction data acquisition sample, the second correction data acquisition sample, and the electronic component are Connected, series,
前記数式は、前記基準測定系で電子部品を測定したときのインピーダンス Z が測 m 定される端子 1 , 2 と、前記実測測定系で電子部品を測定したときのインピーダンス m m  The mathematical formula is expressed in terms of terminals 1 and 2 where impedance Z is measured when an electronic component is measured in the reference measurement system, and impedance m m when the electronic component is measured in the actual measurement system.
Zが測定される端子 1 , 2との間に接続される誤差モデルに基づいて導出され、 d d d  Derived based on an error model connected between terminals 1 and 2 where Z is measured, d d d
前記端子 1 力も見たインピーダンスを算出するとき、前記誤差モデルは、前記端子 m  When calculating the impedance of the terminal 1 force, the error model is the terminal m
1 と前記端子 1 との間にインピーダンス z と zとが直列に接続され、前記インピーダ m d 11 f  Impedances z and z are connected in series between 1 and the terminal 1, and the impeder m d 11 f
ンス Z と Zとの接続点とグランドとの間にインピーダンス Z が接続され、前記端子 2 と前記端子 2 との間にインピーダンス Z が接続され、前記端子 2とグランドとの間 Impedance Z is connected between the connection point of the resistors Z and Z and the ground, and the terminal 2 Is connected between the terminal 2 and the ground.
21  twenty one
インピーダンス ζ が接続され、 Impedance ζ is connected,
22  twenty two
前記インピーダンス Ζ Ζ Ζ Ζ Ζ は、  The impedance Ζ Ζ Ζ Ζ Ζ is
f 11 12 21 22  f 11 12 21 22
前記第 1のステップで少なくとも 3つの前記第 1の補正データ取得用試料のインピー ダンスを測定した結果 Z , Z , Z と、  As a result of measuring the impedance of at least three of the first correction data acquisition samples in the first step, Z 1, Z 2, and Z,
dl d2 d3  dl d2 d3
前記第 2のステップにおいて、少なくとも 3つの前記第 1の補正データ取得用試料 又は前記第 2の補正データ取得用試料について、前記端子 1 のインピーダンスを測  In the second step, the impedance of the terminal 1 is measured for at least three of the first correction data acquisition sample or the second correction data acquisition sample.
m  m
定した結果 Z , Z , Z 、及び前記端子 2 のインピーダンスを測定した結果 Z Measurement result Z 1, Z 2, Z 3 and impedance of the terminal 2
mil ml2 ml3 m m21 mil ml2 ml3 m m21
, z z とを用い、 , z z and
m22 m23  m22 m23
次の数式 [数 la]と、  The following formula [number la]
[数 la] [Number la]
denom (Zd2 - Zd)ZmU + (Zdl Zd3)Zml2 + (Zd3 Zd2)Zm denom (Z d2 -Z d ) Z mU + (Z dl Z d3 ) Z ml2 + (Z d3 Z d2 ) Z m
― [― [
Figure imgf000039_0001
Figure imgf000039_0001
/ denom  / denom
I denom 次の数式 [数 lb]と、 I denom The following formula [number lb]
[数 lb] [Several lb]
denom = (Zd2 -Zdl)Zm23 + {Zd -Zd )Zmn +(Z^3 -Zd2)Zm2l L 士 一 A 一 "\/Z 一 Zm2i denom = (Z d2 -Z dl) Z m23 + {Z d -Z d) Z mn + (Z ^ 3 -Z d2) Z m2l L mechanic one A one "\ / Z one Z m2 i
2)Z Zd3)Zm2lZm23 J One 2) ZZ d3) Z m2l Z m23 J
I denom I denom から得られる 16通りの Z Z Z Z の糸且み合わせのうち、  Of the 16 Z Z Z Z stitches obtained from I denom I denom,
11 12 21 22  11 12 21 22
次の数式 [数 2]について、  For the following formula [Equation 2]
[数 2] Zfl = - [{(Z22 + (Z21 + Z0))Zdl + ((Z21 + Z + Z12)Z22 + Z12(Z21 + Z0)}Zm [Equation 2] Z fl =-[{(Z 22 + (Z 21 + Z 0 )) Z dl + ((Z 21 + Z + Z 12 ) Z 22 + Z 12 (Z 21 + Z 0 )} Z m
+ {(-Z12 -Zn)Z22 + (-Z12 -ZU)(Z2, +Ζ0)}ΖΛ + {(-Z 12 -Z n ) Z 22 + (-Z 12 -Z U ) (Z 2 , + Ζ 0 )} Ζ Λ
ZU)(Z210)-ΖΠ^Ι222 UZ12 Z U ) (Z 21 + Ζ 0 ) -Ζ Π ^ Ι2 } Ζ 22 U Z 12
/[{( +(Z21 +Z0)}Zmll +(— Zl2 -Z„)Z22 +(-Z12-Zn)(Z21 +Z0)] / [{(+ (Z 21 + Z 0 )} Z mll + (— Z l2 -Z „) Z 22 + (-Z 12 -Z n ) (Z 21 + Z 0 )]
Z/2 = -[{(Z22 + (Z21 + Z0 ))Zd2 + ((Z21 +Z0) + Z12 )Z22 + Z12 (Z21 + Z0 )}Zml2 Z / 2 =-[{(Z 22 + (Z 21 + Z 0 )) Z d2 + ((Z 21 + Z 0 ) + Z 12 ) Z 22 + Z 12 (Z 21 + Z 0 )} Z ml2
+ {(—Z12 -ZU)Z22 + (-Z12 -Zn)(Z21 +Z0)}Zd2 + {(—Z 12 -Z U ) Z 22 + (-Z 12 -Z n ) (Z 21 + Z 0 )} Z d2
+ {(— Z12— Zu) Z0)— ,uZn Z22一 ZUZ12(Z21 + Z0) J + ((— Z 12 — Z u ) Z 0 ) —, u Z n Z 22 1 Z U Z 12 (Z 21 + Z 0 ) J
/[{(Z22 + (Z21+Z0)}Zml2 +(-Z12 -Zn)Z22 + (-z12
Figure imgf000040_0001
+Ζο)] z 3 =一 [{( + (Z21 + Z0 ))Zrf3 + ((Z21 +Z0) + Z12 )Z22 +Z12(Z21 + Z0 )}Zml3
/ [{(Z 22 + (Z 21 + Z 0 )} Z ml2 + (-Z 12 -Z n ) Z 22 + (-z 12
Figure imgf000040_0001
+ Ζο)] z 3 = 1 [{(+ (Z 21 + Z 0 )) Z rf3 + ((Z 21 + Z 0 ) + Z 12 ) Z 22 + Z 12 (Z 21 + Z 0 )} Z ml3
+ {(- Z,2 -Zn)Z22 + (-z12πχζ21 +Z0)}Zrf3 + {(-Z, 2 -Z n ) Z 22 + (-z 12π χζ 21 + Z 0 )} Z rf3
+ {(-Z12 - Z, , )(Z21 + Z0 ) - , ! Z12 }Z22 -Z,,Z12(Z21 +Z0) ] + {(-Z 12 -Z,,) (Z 21 + Z 0 )-,! Z 12 } Z 22 -Z ,, Z 12 (Z 21 + Z 0 )]
/[{(Z22 +(Z21 +Z Zml3 +(-Z12 -Zn)Z22 + (-Z12 -Z„)(Z21+20)] / [{(Z 22 + (Z 21 + ZZ ml3 + (-Z 12 -Z n ) Z 22 + (-Z 12 -Z „) (Z 21 +2 0 )]
Z , Z , Z がー致する少なくとも 1つの組み合わせを用いて、決定されることを特徴 fl f2 f3 Fl f2 f3 is determined using at least one combination of Z, Z, and Z
とする、請求項 1に記載の電子部品の高周波特性誤差補正方法。 The method of correcting a high-frequency characteristic error of an electronic component according to claim 1.
前記実測測定系において、前記第 1の補正データ取得用試料及び前記電子部品 が、又は、前記第 1の補正データ取得用試料、前記第 2の補正データ取得用試料及 び前記電子部品が、シャント接続され、  In the actual measurement system, the first correction data acquisition sample and the electronic component, or the first correction data acquisition sample, the second correction data acquisition sample, and the electronic component are shunts. Connected,
前記数式は、前記基準測定系で電子部品を測定したときのアドミタンス Y が測定さ  In the above formula, the admittance Y when an electronic component is measured by the reference measurement system is measured.
m  m
れる端子 1 2 と、前記実測測定系で電子部品を測定したときのアドミタンス Yが測 And the admittance Y when the electronic component is measured by the actual measurement system.
m m d 定される端子 1 2との間に接続される誤差モデルに基づいて導出され、  m m d is derived on the basis of an error model connected to the determined terminal 1 2,
d d  d d
前記端子 1 から見たアドミタンスを導出するとき、前記誤差モデルは、前記端子 1 と前記端子 1 との間にアドミタンス Y が接続され、前記端子 1 と前記アドミタンス Y  When the admittance viewed from the terminal 1 is derived, the error model is such that the admittance Y is connected between the terminal 1 and the terminal 1, and the terminal 1 and the admittance Y
d 12 m 12 との接続点とグランドとの間にアドミタンス Y が接続され、前記アドミタンス Υ と前記  d Admittance Y is connected between the connection point of 12 m 12 and the ground, and the admittance Υ and the admittance 前 記
11 12 端子 1との接続点とグランドとの間にアドミタンス Υが接続され、前記端子 2と前記端 d f d  11 12 Admittance Υ is connected between the connection point of terminal 1 and the ground, and the terminal 2 and the end d f d
子 2 との間にアドミタンス Y が接続され、前記アドミタンス Υ と前記端子 2 との接続 m 22 22 m An admittance Y is connected to the child 2, and the connection between the admittance Υ and the terminal 2 m 22 22 m
点とグランドとの間にアドミタンス Y が接続され、 An admittance Y is connected between the point and ground,
21  twenty one
前記アドミタンス Υ Υ Υ Υ Υ は、  The admittance Υ Υ Υ Υ Υ
f 11 12 21 22  f 11 12 21 22
前記第 1のステップで少なくとも 3つの前記第 1の補正データ取得用試料のアドミタ ンスを測定した結果 Y , Y , Y と、 前記第 2のステップにおいて、少なくとも 3つの前記第 1の補正データ取得用試料 又は前記第 2の補正データ取得用試料について、前記端子 1 のアドミタンスを測定 Y, Y, Y as a result of measuring the admittance of at least three of the first correction data acquisition samples in the first step; In the second step, the admittance of the terminal 1 is measured for at least three of the first correction data acquisition sample or the second correction data acquisition sample.
m  m
した結果 Υ , Υ , Y 、及び前記端子 2 のアドミタンスを測定した結果 Υ , Y As a result of measuring the admittance of 端子, Υ, Y and the terminal 2 Υ, Y
mil ml 2 ml3 m m21 mil ml 2 ml3 m m21
, Y とを用い、 , Y and
ni2 m 23 ni2 m 23
次の数式 [数 3a]と、  The following formula [Equation 3a]
[数 3a] [Number 3a]
denom = (Yd2 - )YmU + ( - Yd3 )Yml2 + ( - Yd2 )YmU denom = (Y d2 -) Y mU + (- Y d3) Y ml2 + (- Y d2) Y mU
Jll =土 土 】rfl V 一】 Λ ^mll sf J ll = Soil Soil】 rfl V i】 Λ ^ mll sf
Figure imgf000041_0001
Figure imgf000041_0001
I denom  I denom
Yn
Figure imgf000041_0002
Yn
Figure imgf000041_0002
I denom 次の数式ほ女 3b]と、  I denom The following formula woman 3b]
[数 3b] denom = (Ydl― Ydl)Ym23 + ( - Yd3)Ym22 + ( 一 Yd2)Ym2l sj ノ [ Equation 3b] denom = (Y dl ― Y dl ) Y m23 + (-Y d3 ) Y m22 + (one Y d2 ) Y m2l sj
- {( ~
Figure imgf000041_0003
+ ( - )
-{(~
Figure imgf000041_0003
+ (-)
I aenom  I aenom
Y22 =±V^2 - ( 十 (- 十 ) ( ,) ( (-Y 22 = ± V ^ 2- (Ten (-Ten) (,) ((-
/ denom から得られる 16通りの Υ , Υ , Υ , Y の組み合わせのうち、 Of the 16 combinations of,, Υ, Υ, Y obtained from / denom,
11 12 21 22  11 12 21 22
次の数式ほ女 4]について、  For the following formula 4
[数 4] rfl = 2 + (Y21 + Γ0))¾十 ((γ210)+ γη22 + Άι + u [Equation 4] r fl = 2 + (Y 21 + Γ 0 )) ¾10 ((γ 21 + γ 0 ) + γ η ) γ 2 2 + Άι + u
+ {(- 12η22 + (-Y -YU)(Y21 +Y0)}YDL + {(- 12 -γ η) γ 22 + (-Y -Y U) (Y 21 + Y 0)} Y DL
+ -Yn)(Y2] +r0)-7N712}722 -FlirI2(721 +70) ] + -Y n ) (Y 2] + r 0 ) -7 N 7 12 } 7 22 -F li r I2 (7 21 + 7 0 )]
/[{(¾ + (F21 +Y0)}Ymn + (-Yu -Y Y22 + (- ¾ - +r0)] rf2 = - [{( +(¾+ Yo Wd2 + (( +Y0) + Yn )¾ + Yn + ^ )} 2 / [{(¾ + (F 21 + Y 0 )} Y mn + (-Y u -Y Y22 + (-¾-+ r 0 )] r f2 =-[{(+ (¾ + Yo W d2 + ( (+ Y 0 ) + Yn) ¾ + Yn + ^)} 2
十 {(— ¾ -Y )Y22 +(-Yl2
Figure imgf000042_0001
Tens {(— ¾ -Y) Y 22 + (-Y l2
Figure imgf000042_0001
+ {(- - ) + 0)-7„712}722 -YnYl2(Y +Y0) ] + {(--) + 0 ) -7 „7 12 } 7 22 -Y n Y l2 (Y + Y 0 )]
/[{(¾ +(Y2l +Y0)}Ymn + (- - + (- / [{(¾ + (Y 2l + Y 0 )} Y m n + (--+ (-
Yf, = - + (Y2l + Y0 )) + (( + ) + + Yn (Y + )} Y f , =-+ (Y 2l + Y 0 )) + ((+) + + Yn (Y +)}
+ {(-Yn - ) ¾ + (- - W21 + {(-Yn-) ¾ + (--W 21
+ {(- -7Η)(7210)-Κ„712}722 -YnY12(Y2, +Υ0) ] + {(- -7 Η) ( 7 21 + Γ 0) -Κ "7 12} 7 22 -Y n Y 12 (Y 2, + Υ 0)]
/[{(Υ22 +(Υ21 + )} + (-¾ - 22 + (- - 21 + )] / [{(Υ 22 + ( Υ 21 +)} + (-¾ - 22 + (- - 21 +)]
Υ , Υ , Υ がー致する少なくとも 1つの組み合わせを用いて、決定されることを特徴 fl f2 f3  Fl f2 f3 is determined using at least one combination of Υ, 致, and Υ
とする、請求項 1に記載の電子部品の高周波特性誤差補正方法。 The method of correcting a high-frequency characteristic error of an electronic component according to claim 1.
前記実測測定系において、前記第 1の補正データ取得用試料及び前記電子部品 が、又は、前記第 1の補正データ取得用試料、前記第 2の補正データ取得用試料及 び前記電子部品が、シリーズ接続され、  In the actual measurement system, the first correction data acquisition sample and the electronic component, or the first correction data acquisition sample, the second correction data acquisition sample, and the electronic component are a series. Connected,
前記第 3のステップは、前記第 1のステップで用意された前記高周波特性が異なる 少なくとも 3つの前記第 1の補正データ取得用試料の前記基準測定系での値付けと 、前記第 2のステップで得られた高周波特性が異なる少なくとも 3つの前記第 1の補 正データ取得用試料又は前記第 1の補正データ取得用試料と同等の高周波特性を 有すると見なせる少なくとも 3つの前記第 2の補正データ取得用試料の前記実測測 定系での測定値とを、インピーダンスパラメータに変換し、さらにその差動インピーダ ンス成分を導出するサブステップを含み、  In the second step, the high-frequency characteristics prepared in the first step are different from each other, and at least three of the first correction data acquisition samples are priced in the reference measurement system, and in the second step For obtaining at least three second correction data that can be regarded as having at least three samples for obtaining the first correction data having different high-frequency characteristics or having the same high-frequency characteristics as the first correction data obtaining sample. A sub-step of converting a measured value of the sample in the actual measurement system into an impedance parameter and deriving a differential impedance component thereof;
前記数式は、前記基準測定系で電子部品を測定したときのインピーダンスに対して 、前記実測測定系で 2つのポートによって電子部品を測定したときのインピーダンス を、 2ポート誤差モデルを介して関連付けるものであり、前記基準測定系で電子部品 を測定したときのインピーダンスが測定される 2つのポートの差動信号が入力される 1 つのポートのみを有する 1ポート誤差モデルに基づいて導出されることを特徴とする、 請求項 1に記載の電子部品の高周波特性誤差補正方法。 The mathematical expression relates the impedance when an electronic component is measured by the actual measurement system to the impedance when the electronic component is measured by the reference measurement system, via a two-port error model. Yes, the impedance measured when measuring the electronic components with the reference measurement system is derived based on a one-port error model that has only one port to which two-port differential signals are input. The method of correcting a high-frequency characteristic error of an electronic component according to claim 1.
[5] 前記実測測定系において、前記第 1の補正データ取得用試料及び前記電子部品 、又は、前記第 1の補正データ取得用試料、前記第 2の補正データ取得用試料及 び前記電子部品が、シャント接続され、 [5] In the actual measurement system, the first correction data acquisition sample and the electronic component, or the first correction data acquisition sample, the second correction data acquisition sample, and the electronic component are Shunt connected,
前記第 3のステップは、前記第 1のステップで用意された前記高周波特性が異なる 少なくとも 3つの前記第 1の補正データ取得用試料の前記基準測定系での値付けと 、前記第 2のステップで得られた高周波特性が異なる少なくとも 3つの前記第 1の補 正データ取得用試料又は前記第 1の補正データ取得用試料と同等の高周波特性を 有すると見なせる少なくとも 3つの前記第 2の補正データ取得用試料の前記実測測 定系での測定値とを、アドミタンスパラメータに変換し、さらにその同相アドミタンス成 分を導出するサブステップを含み、  In the second step, the high-frequency characteristics prepared in the first step are different from each other, and at least three of the first correction data acquisition samples are priced in the reference measurement system, and in the second step For obtaining at least three second correction data that can be regarded as having at least three samples for obtaining the first correction data having different high-frequency characteristics or having the same high-frequency characteristics as the first correction data obtaining sample. A sub-step of converting the measured value of the sample in the actual measurement system into an admittance parameter and deriving its in-phase admittance component;
前記数式は、前記基準測定系で電子部品を測定したときのアドミタンスに対して、 前記実測測定系で 2つのポートによって電子部品を測定したときのアドミタンスを、 2 ポート誤差モデルを介して関連付けるものであり、前記基準測定系で電子部品を測 定したときのアドミタンスが測定される 2つのポートの同相信号が入力される 1つのポ ートのみを有する 1ポート誤差モデルに基づいて導出されることを特徴とする、請求 項 1に記載の電子部品の高周波特性誤差補正方法。  The mathematical expression relates the admittance when the electronic component is measured with two ports in the actual measurement system to the admittance when the electronic component is measured with the reference measurement system through the two-port error model. Yes, admittance is measured when electronic components are measured with the reference measurement system. The in-phase signal of two ports is derived based on a one-port error model that has only one port. The method for correcting a high-frequency characteristic error of an electronic component according to claim 1, wherein:
[6] 請求項 1乃至 5のいずれか一つに記載の電子部品の高周波特性誤差補正方法の 少なくとも前記第 5のステップに用いる電子部品の高周波特性誤差補装置であって、 前記第 3のステップにお!/、て決定された前記数式と、前記第 4のステップにお!/、て 得られた任意の電子部品を前記実測測定系で測定した測定値とを記憶する記憶部 と、 [6] The electronic component high-frequency characteristic error correction apparatus used in at least the fifth step of the electronic component high-frequency characteristic error correction method according to any one of claims 1 to 5, wherein the third step A storage unit for storing the mathematical formula determined in the above step and a measured value obtained by measuring the arbitrary electronic component obtained in the fourth step by the actual measurement system;
前記記憶部に記憶された前記数式を用 V、て、前記記憶部に記憶された前記測定 値を補正する演算を行い、当該電子部品を前記基準測定系で測定したならば得ら れるであろう当該電子部品の高周波特性の推定値を算出する演算部と、  It can be obtained by performing calculation for correcting the measurement value stored in the storage unit using the mathematical formula stored in the storage unit and measuring the electronic component in the reference measurement system. An arithmetic unit for calculating an estimated value of the high frequency characteristics of the solder electronic component;
を備えたことを特徴とする、電子部品の高周波特性誤差補正装置。  An electronic component high-frequency characteristic error correction device comprising:
PCT/JP2007/073110 2006-11-30 2007-11-29 Electronic part high-frequency characteristic error correction method and device WO2008066137A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112007002891.2T DE112007002891B4 (en) 2006-11-30 2007-11-29 Method and apparatus for correcting a high frequency characteristic error of electronic components
CN2007800440531A CN101542299B (en) 2006-11-30 2007-11-29 Electronic part high-frequency characteristic error correction method and device
JP2008547039A JP5126065B2 (en) 2006-11-30 2007-11-29 Method and apparatus for correcting high frequency characteristic error of electronic component
US12/474,389 US8423868B2 (en) 2006-11-30 2009-05-29 Method for correcting high-frequency characteristic error of electronic component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006324975 2006-11-30
JP2006-324975 2006-11-30
PCT/JP2007/067378 WO2008065791A1 (en) 2006-11-30 2007-09-06 High frequency characteristics error correction method of electronic component
JPPCT/JP2007/067378 2007-09-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067378 Continuation WO2008065791A1 (en) 2006-11-30 2007-09-06 High frequency characteristics error correction method of electronic component

Publications (1)

Publication Number Publication Date
WO2008066137A1 true WO2008066137A1 (en) 2008-06-05

Family

ID=39467924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073110 WO2008066137A1 (en) 2006-11-30 2007-11-29 Electronic part high-frequency characteristic error correction method and device

Country Status (1)

Country Link
WO (1) WO2008066137A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082808A (en) * 1996-08-01 1998-03-31 Hewlett Packard Co <Hp> Correcting method for transmission measuring error
JP2003240827A (en) * 2001-12-10 2003-08-27 Murata Mfg Co Ltd Method for correcting measurement error, method for determining quality of electronic component, and instrument for measuring characteristic of electronic component
JP2004512504A (en) * 2000-09-18 2004-04-22 アジレント・テクノロジーズ・インク Method and apparatus for linear identification of multi-terminal unbalanced or balanced devices
WO2005101033A1 (en) * 2004-03-31 2005-10-27 Murata Manufacturing Co., Ltd. Method and device for measuring high-frequency electric characteristic of an electronic part and method for calibrating a high-frequency electric characteristic measurement device
WO2006030547A1 (en) * 2004-09-16 2006-03-23 Murata Manufacturing Co., Ltd. Method for correcting measurement error and device for measuring characteristic of electronic component
WO2006090550A1 (en) * 2005-02-22 2006-08-31 Murata Manufacturing Co., Ltd. Method for measuring dielectric constant of transmission line material and method for measuring electric characteristic of electronic component using the dielectric constant measuring method
JP2006242799A (en) * 2005-03-04 2006-09-14 Murata Mfg Co Ltd Method for correcting measurement error, and device for measuring characteristics of electronic component
JP2006300928A (en) * 2005-03-22 2006-11-02 Murata Mfg Co Ltd Sample for corrected data acquisition, measured error correction method, electronic component characteristic measuring device
JP2007285890A (en) * 2006-04-17 2007-11-01 Agilent Technol Inc Recalibration method for network analyzer, and network analyzer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082808A (en) * 1996-08-01 1998-03-31 Hewlett Packard Co <Hp> Correcting method for transmission measuring error
JP2004512504A (en) * 2000-09-18 2004-04-22 アジレント・テクノロジーズ・インク Method and apparatus for linear identification of multi-terminal unbalanced or balanced devices
JP2003240827A (en) * 2001-12-10 2003-08-27 Murata Mfg Co Ltd Method for correcting measurement error, method for determining quality of electronic component, and instrument for measuring characteristic of electronic component
WO2005101033A1 (en) * 2004-03-31 2005-10-27 Murata Manufacturing Co., Ltd. Method and device for measuring high-frequency electric characteristic of an electronic part and method for calibrating a high-frequency electric characteristic measurement device
WO2006030547A1 (en) * 2004-09-16 2006-03-23 Murata Manufacturing Co., Ltd. Method for correcting measurement error and device for measuring characteristic of electronic component
WO2006090550A1 (en) * 2005-02-22 2006-08-31 Murata Manufacturing Co., Ltd. Method for measuring dielectric constant of transmission line material and method for measuring electric characteristic of electronic component using the dielectric constant measuring method
JP2006242799A (en) * 2005-03-04 2006-09-14 Murata Mfg Co Ltd Method for correcting measurement error, and device for measuring characteristics of electronic component
JP2006300928A (en) * 2005-03-22 2006-11-02 Murata Mfg Co Ltd Sample for corrected data acquisition, measured error correction method, electronic component characteristic measuring device
JP2007285890A (en) * 2006-04-17 2007-11-01 Agilent Technol Inc Recalibration method for network analyzer, and network analyzer

Similar Documents

Publication Publication Date Title
JP5483131B2 (en) Correction method for high frequency characteristics error of electronic parts
US7439748B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
JP4650487B2 (en) Method for measuring dielectric constant of transmission line material and method for measuring electrical characteristics of electronic component using this dielectric constant measuring method
US7405576B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
WO2005111635A1 (en) Method and apparatus for measuring electric circuit parameter
US7375534B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
JP6055215B2 (en) Impedance measuring method and measuring apparatus
JP3558080B2 (en) Method of correcting measurement error, method of determining quality of electronic component, and electronic component characteristic measuring device
US7769555B2 (en) Method for calibration of a vectorial network analyzer
JP2006317156A (en) Vector network analyzer, its calibration method, calculator and substrate for standard
JP3912427B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus
WO2008066137A1 (en) Electronic part high-frequency characteristic error correction method and device
JP4743208B2 (en) Method for measuring electrical characteristics of electronic components
US20060181293A1 (en) Low impedance test fixture for impedance measurements
JP2008014781A (en) Method for network analyzer calibration and network analyzer
JP3912429B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus
JP4670549B2 (en) Measurement error correction method
US7042232B1 (en) Cable and substrate compensating custom resistor
WO2005093437A1 (en) Electric characteristic measurement method and electric characteristic measurement device
KR100461597B1 (en) Method for correcting measurement error of high frequency
Wetterlin Using Test Fixtures for Measurements With Scotty’s Modular Spectrum Analyzer (MSA)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780044053.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008547039

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120070028912

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112007002891

Country of ref document: DE

Date of ref document: 20091029

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07832810

Country of ref document: EP

Kind code of ref document: A1