JP3912382B2 - Electronic device casing and heat conduction path member used therefor - Google Patents

Electronic device casing and heat conduction path member used therefor Download PDF

Info

Publication number
JP3912382B2
JP3912382B2 JP2004013794A JP2004013794A JP3912382B2 JP 3912382 B2 JP3912382 B2 JP 3912382B2 JP 2004013794 A JP2004013794 A JP 2004013794A JP 2004013794 A JP2004013794 A JP 2004013794A JP 3912382 B2 JP3912382 B2 JP 3912382B2
Authority
JP
Japan
Prior art keywords
heat
conduction path
heat conduction
housing
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004013794A
Other languages
Japanese (ja)
Other versions
JP2004179675A (en
Inventor
浩一 木村
昭一 宮原
耕太 西井
元信 河原田
勝英 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004013794A priority Critical patent/JP3912382B2/en
Publication of JP2004179675A publication Critical patent/JP2004179675A/en
Application granted granted Critical
Publication of JP3912382B2 publication Critical patent/JP3912382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、電子機器筐体及びそれに用いる熱伝導パス部材に係り、とくにその放熱構造に関する。近年、ノート型パソコン(以下、パソコンと略記する)に代表される携帯型電子機器は、小型化、軽量化、高性能化の要求が高まるに伴って、筐体容積が小さくなってきている。また、プリント配線板上の単位面積当たりに搭載される電子部品の数が増加し、その電子部品の発熱量も増大している。例えば高速のMPU(Microprocesser Unit)やCPU(Central Processing Unit)は省電力型でさえ6.5Wを超えるものが使用されるようになって筐体内部の発熱量はさらに増大傾向にある。このためパソコンなどにおいて、筐体内部で発生する熱を効率的に筐体外へ放熱し、電子機器の信頼性や安定した動作を確保することが強く要望されている。   The present invention relates to an electronic device casing and a heat conduction path member used therefor, and more particularly to a heat dissipation structure thereof. In recent years, portable electronic devices typified by notebook personal computers (hereinafter abbreviated as personal computers) have become smaller in housing volume as demands for smaller size, lighter weight, and higher performance have increased. In addition, the number of electronic components mounted per unit area on the printed wiring board is increasing, and the amount of heat generated by the electronic components is also increasing. For example, high-speed MPUs (Microprocessor Units) and CPUs (Central Processing Units), even those that are power-saving, are used in excess of 6.5 W, and the amount of heat generated inside the housing tends to increase further. For this reason, in a personal computer or the like, there is a strong demand for ensuring the reliability and stable operation of electronic devices by efficiently radiating the heat generated inside the housing to the outside of the housing.

パソコン筐体は、図19及び図20に示すように本体部筐体1と表示部筐体2とに分かれ、本体部筐体1及び表示部筐体2は回動可能なヒンジ部3で接続されている。   The personal computer housing is divided into a main body housing 1 and a display housing 2 as shown in FIGS. 19 and 20, and the main body housing 1 and the display housing 2 are connected by a rotatable hinge 3. Has been.

表示部筐体2は、ヒンジ部3を中心に回動して本体部筐体1に対し開閉する構造で、非使用時には閉じられ、使用時には任意の角度に開かれ保持される。   The display unit housing 2 has a structure that pivots about the hinge unit 3 to open and close the main unit housing 1 and is closed when not in use, and is opened and held at an arbitrary angle when in use.

本体部筐体1は、高発熱体である高速のMPUなどの電子部品を搭載したメイン配線板4、サブ配線板5、HDD(Hard Disk Drive)6、PCMCIAカード(Personal Computer Memory Card Interface Association)7、電池8及びこれらの上を覆うキーボード9(図19は図示略、図20参照)などを配設し、他方の表示部筐体2は主に表示パネル〔液晶ディスプレイ,Liquid Crystal Display(LCD)〕11を搭載して構成されている。   The main body housing 1 includes a main wiring board 4, a sub wiring board 5, an HDD (Hard Disk Drive) 6, and a PCMCIA card (Personal Computer Memory Card Interface Association) on which electronic components such as a high-speed MPU that is a high heating element are mounted. 7, a battery 8 and a keyboard 9 (not shown in FIG. 19, not shown in FIG. 20) are disposed. The other display unit housing 2 is mainly composed of a display panel [LCD, Liquid Crystal Display (LCD). ]] 11 is mounted.

このような構成のパソコンで発熱が課題とされているのは、発熱量の大きな本体部筐体である。本体部筐体の内部で発生する熱の放熱手段としては、図19に示したMPUなどの高発熱体の上に設けたヒートスプレッダ(熱拡散板)10がある。またこの他、空冷ファン、放熱フィン、ヒートシンク、ヒートパイプ、ソフトによるクロックパルス数の減少などがある。   In the personal computer having such a configuration, the problem of heat generation is the main body housing that generates a large amount of heat. As a means for radiating heat generated inside the main body casing, there is a heat spreader (heat diffusing plate) 10 provided on a high heating element such as an MPU shown in FIG. In addition, there are an air cooling fan, a heat radiating fin, a heat sink, a heat pipe, and a decrease in the number of clock pulses by software.

なお、ヒートパイプは、パイプの一端(高温部)が加熱されると、内部に減圧封入された熱媒体が気化されてガス通路を他端(低温部)へ移動し、他端を冷却して液化され、還流通路を毛細管現象により高温部へ還流循環して高温部の熱を低温部へ移動(輸送)するものである。   In addition, when one end (high temperature part) of the pipe is heated, the heat medium enclosed in the vacuum is vaporized, the heat pipe moves to the other end (low temperature part), and the other end is cooled. It is liquefied and recirculates and circulates in the reflux passage to the high temperature portion by capillary action to move (transport) the heat of the high temperature portion to the low temperature portion.

これらの中、強制対流を発生させて冷却する空冷ファンは、最も有効な冷却手段の一つで多用されている。また、放熱フィンは、この強制対流下や自然対流下で最も放熱効果が大きいため、筐体外部に露出させたものもある。   Among these, an air cooling fan that generates forced convection and cools it is frequently used as one of the most effective cooling means. Further, since the heat radiation fin has the greatest heat radiation effect under the forced convection and the natural convection, some of the heat radiation fins are exposed outside the casing.

あるいは、特開平8−162576号公報、特開平9−6481号公報、特開平10−39955号公報などは、ヒートパイプとヒートシンクを組み合わせて使用し、本体部筐体の内部全体に熱を拡散させて放熱する構造や、本体部筐体の内部で発生する熱を受熱板やヒートパイプを連結したヒンジ部に導き、さらにこのヒンジ部に連結した表示部筐体の放熱板に移動し、表示部筐体から熱放散する構造などが開示されている。
特開平8−162576号公報 特開平9−6481号公報 特開平10−39955号公報
Alternatively, JP-A-8-162576, JP-A-9-6481, JP-A-10-39955, etc. use a combination of a heat pipe and a heat sink to diffuse heat throughout the interior of the main body housing. The structure that dissipates heat and the heat generated inside the main unit case are guided to the hinge part connected to the heat receiving plate and heat pipe, and then moved to the heat sink of the display part case connected to this hinge part. A structure that dissipates heat from the housing is disclosed.
JP-A-8-162576 JP-A-9-6481 JP 10-39955 A

しかしながら、このような上記放熱構造によれば、空冷ファンによる場合、電子機器筐体の小型、薄型化あるいは電子部品の高密度実装化により筐体内部の空気の対流が悪くなり、空気の流出入路や空冷ファンの実装スペースの確保が難しい。   However, according to such a heat dissipation structure, when an air cooling fan is used, the convection of the air inside the housing deteriorates due to the downsizing and thinning of the electronic device housing or the high-density mounting of electronic components, and the inflow and outflow of air. It is difficult to secure mounting space for roads and air cooling fans.

また、外部に露出した放熱フィンは、意匠上の外観を悪くするとか、あまり高温のそれに手が触れたりすると、低温やけどの恐れがあるという問題がある。   Further, the heat radiation fin exposed to the outside has a problem that there is a risk of low-temperature burns if the appearance of the design is deteriorated or if the hand is touched by a too high temperature.

また、筐体内部で熱拡散して放熱する場合は、逆にHDDやPCMCIAカードなどの低発熱の部品の温度を上昇させてしまうという問題がある。   In addition, when heat is diffused and heat is dissipated inside the housing, there is a problem that the temperature of a low heat-generating component such as an HDD or a PCMCIA card is raised.

また、パソコン筐体の表面から放熱する場合に、その表面温度は或る程度高い方が放熱効果の点で好ましいが、筐体表面温度が45゜Cを超えると、低温やけどの恐れがあるという問題がある。   In addition, when heat is radiated from the surface of the PC housing, it is preferable that the surface temperature is somewhat high in terms of heat dissipation effect, but if the surface temperature of the housing exceeds 45 ° C, there is a risk of low temperature burns. There's a problem.

我々は、既に特開平7−124995号公報の「電子機器筐体の製造方法」において、アルミニウムなどの金属基板をベースに樹脂を溶融接着して、軽量かつ高強度で放熱性のよい電子機器筐体を製造するインモールド法を開示している。   In the “Method for manufacturing an electronic device casing” disclosed in Japanese Patent Application Laid-Open No. 7-124995, an electronic device casing is lightweight, high-strength, and excellent in heat dissipation by melting and bonding a resin based on a metal substrate such as aluminum. An in-mold method for producing a body is disclosed.

そこで、このインモールド法を応用することにより、パソコン筐体を例にして、本体部筐体内の高発熱体と表示部筐体の放熱部とを直接接続した熱伝導経路を備える電子機器筐体及びヒートパイプを結合した高熱伝導性のヒンジ部を備える電子機器筐体を提案する。   Therefore, by applying this in-mold method, taking a personal computer housing as an example, an electronic device housing having a heat conduction path in which a high heating element in the main body housing and a heat radiation portion of the display housing are directly connected And the electronic device housing | casing provided with the hinge part with the high heat conductivity which combined the heat pipe is proposed.

更にまた、別体で製作する高熱伝導を行う熱伝導パス部材及びそれを用いて本体部筐体内の高発熱体と表示部筐体の放熱部とを接続した電子機器筐体を提案する。   Furthermore, a heat conduction path member that conducts high heat conduction that is manufactured separately and an electronic device housing in which a high heating element in the main body housing and a heat radiating portion of the display housing are connected using the heat conduction path member are proposed.

上記問題点に鑑み、発熱量の大きな本体部筐体の内部の熱を発熱量の小さな表示部筐体の放熱部へ表示部筐体の開閉に支障なく移動し、自然対流により外部に熱放散する電子機器筐体及びそれに用いる熱伝導パス部材を提供することを目的とする。   In view of the above problems, the heat inside the main unit housing with a large calorific value is transferred to the heat radiating part of the display unit housing with a small calorific value without any trouble in opening and closing the display unit housing, and heat is dissipated to the outside by natural convection. It is an object of the present invention to provide an electronic device casing and a heat conduction path member used therefor.

請求項1における熱伝導パス部材は、面方向に異方性を有するグラファイトシートの複数の端部を発熱、熱伝導または放熱を行う部材との接続部とし、前記グラファイトシートの片面または両面に絶縁シートを介在させて巻回した巻回部を有して構成する。 The heat conduction path member according to claim 1, wherein a plurality of ends of the graphite sheet having anisotropy in the plane direction are connected to a member that generates heat, conducts heat, or dissipates, and is insulated on one or both sides of the graphite sheet. It has a winding part wound with a sheet interposed.

これにより、熱伝導パス部材は、グラファイトシートを巻いて積層し、その厚さが実質的に大きくなっているため、熱抵抗が小さくなり効果的に熱伝導できる。 Accordingly, the heat conduction path member is laminated by winding a graphite sheet, since the thickness becomes substantially large, thermal resistance Ru can effectively heat conduction decreases.

また、巻回部を中心に繰り返し湾曲させるため、湾曲によって生じる曲げ応力は巻回部全体に分散されて繰り返し湾曲による疲労を軽減して長寿命化できる。   Further, since the bending portion is repeatedly bent around the winding portion, the bending stress generated by the bending is dispersed throughout the winding portion, reducing fatigue due to repeated bending and extending the life.

また、請求項記載の熱伝導パス部材においては、さらに前記熱伝導パス部材の巻回部は円柱形または円筒形の巻心に巻くことにより、とくに複数枚のグラファイトシートを巻く場合に、巻径寸法が精度よく抑られて、巻いた後の形状くずれを防止できる。 Further, in the heat conduction path member according to claim 2, the winding portion of the heat conduction path member is wound around a cylindrical or cylindrical core, particularly when a plurality of graphite sheets are wound. The diameter dimension is suppressed with high accuracy, and it is possible to prevent deformation of the shape after winding.

更に、円筒形の巻心(パイプ)を用いる場合は、その中空孔に配線を通すなどして空間を有効に利用できる。   Furthermore, when a cylindrical winding core (pipe) is used, the space can be effectively used by passing a wire through the hollow hole.

また、請求項記載の電子機器筐体においては、発熱体を有する第1の筐体と、該第1の筐体の発熱体の熱を外部に熱放散する放熱部を有する第2の筐体とで構成され、前記第2の筐体が第1の筐体に対しヒンジ部により開閉される電子機器筐体において、前記第1の筐体の発熱体と前記第2の筐体の放熱部とが請求項または請求項記載の熱伝導パス部材の接続部で接続されるとともに、前記巻回部はその巻回軸心が前記ヒンジ部の回動中心に略一致するように配設されて構成する。 According to a third aspect of the present invention, in the electronic device casing, the first casing having a heating element and the second casing having a heat dissipating part for radiating the heat of the heating element of the first casing to the outside. And an electronic device housing in which the second housing is opened and closed by a hinge portion with respect to the first housing, and heat dissipation of the first housing and heat dissipation of the second housing with parts and are connected at a joint according to claim 1 or claim 2, wherein the heat conducting path member, the winding unit distribution such that the winding axis is substantially coincident with the rotation center of the hinge portion Installed and configured.

これにより、熱伝導パス部材は、グラファイトシートを巻いて積層し、その厚さを実質的に大きくして熱抵抗を小さくしているため、従来の、第2の筐体の放熱部と一体成形した熱伝導パス部及び受熱部と同程度に効果的に熱伝導できる。   As a result, the heat conduction path member is formed by winding a graphite sheet and laminating it, and substantially increasing its thickness to reduce the thermal resistance. Therefore, the heat conduction path member is integrally formed with the heat radiating portion of the conventional second casing. The heat conduction path portion and the heat receiving portion can conduct heat as effectively as possible.

また、熱伝導パス部材は、巻回部の軸心をヒンジ部の回動中心に略一致させているため、巻回部は第2の筐体の開閉に伴って巻径が繰り返し拡縮変位して曲げ応力が巻回部全体に分散される。そのため、第2の筐体の開閉に伴う熱伝導パス部材の疲労が軽減されて長寿命化できる。   In addition, since the heat conduction path member has the axial center of the winding portion substantially coincident with the rotation center of the hinge portion, the winding diameter of the winding portion repeatedly expands and contracts as the second casing is opened and closed. Thus, the bending stress is dispersed throughout the winding part. Therefore, fatigue of the heat conduction path member accompanying opening and closing of the second housing is reduced, and the life can be extended.

伝導パス部材は、グラファイトシートを巻いた巻回部を備えて熱伝導断面積を増しているため、この熱伝導パス部材を使用して本体部筐体の発熱体と表示部筐体の放熱部とを別体で接続しても従来の放熱部と一体成形した熱伝導パス部と同程度に効果的に熱伝導でき、本体部筐体内部のMPUなどの高発熱体に対して大きな冷却効果が得られ、その温度上昇を少なくすることができる。 Since the heat conduction path member has a winding part wound with a graphite sheet to increase the heat conduction cross-sectional area, the heat conduction path member is used to dissipate heat from the heating element of the main body case and the display case. Even if it is connected to a separate unit, it can conduct heat as effectively as a heat conduction path unit that is integrally formed with a conventional heat radiation unit, and greatly cools high heating elements such as MPU inside the main unit housing An effect is acquired and the temperature rise can be decreased.

また、熱伝導パス部材の巻回部は、表示部筐体の開閉に伴う繰り返し湾曲による曲げ応力を分散して疲労が軽減されるため、熱伝導パス部材が長寿命化されて表示部筐体の開閉回数を大幅に改善できるといった産業上極めて有用な効果を発揮する。   In addition, the winding portion of the heat conduction path member disperses bending stress due to repetitive bending accompanying opening and closing of the display unit housing, thereby reducing fatigue. It exhibits an extremely useful effect in the industry that the number of times of opening and closing can be greatly improved.

以下、図面に示した各実施例に基づいて本発明の要旨を詳細に説明する。なお、従来の図19及び図20と同じ構成部品には同一符号を付し、その説明を省略する。     Hereinafter, the gist of the present invention will be described in detail based on each embodiment shown in the drawings. The same components as those in FIGS. 19 and 20 are denoted by the same reference numerals, and the description thereof is omitted.

先ず、第1の実施例のパソコン筐体の放熱構造について説明する。   First, the heat dissipation structure of the personal computer casing of the first embodiment will be described.

パソコン筐体は、先の図19に示したと同様に、MPUなどを搭載したプリント配線板、HDD、PCMCIAカード、電池、キーボードなどを組み込んだ本体部筐体と、主にLCDを搭載した表示部筐体とで構成され、本体部筐体と表示部筐体とをヒンジ部で開閉可能に結合する。なお、この場合のヒンジ部は、ピンとピン孔が係合して回動する周知の一般のヒンジ構造である。   As shown in FIG. 19, the personal computer housing is a main body housing incorporating a printed wiring board, an HDD, a PCMCIA card, a battery, a keyboard and the like on which an MPU is mounted, and a display portion on which an LCD is mainly mounted. It is comprised with a housing | casing, and couple | bonds a main-body part housing | casing and a display part housing | casing so that opening and closing is possible by a hinge part. In this case, the hinge portion is a well-known general hinge structure in which a pin and a pin hole are engaged and rotated.

パソコン筐体の放熱構造は、発熱量の大きな本体部筐体の内部の熱を発熱量の小さな表示部筐体へ移動し効率的に放熱するため、本体部筐体に内設された高発熱体と表示部筐体の放熱部とを結ぶ熱伝導経路を一体化する。   The heat dissipating structure of the PC case moves the heat inside the main unit case with a large amount of heat generation to the display unit case with a small amount of heat generation and efficiently dissipates it. The heat conduction path connecting the body and the heat radiating part of the display unit housing is integrated.

それにより、熱伝導経路の熱抵抗は小さくなって、本体部筐体の内部で発生する熱は、熱伝導経路を通って表示部筐体の放熱部に直接、効率よく伝導されて拡散し、放熱部全体から自然対流により外部に熱放散される。   Thereby, the thermal resistance of the heat conduction path is reduced, and the heat generated inside the main body housing is efficiently conducted and diffused directly to the heat radiating portion of the display housing through the heat conduction path, Heat is dissipated to the outside by natural convection from the entire heat dissipation part.

図1に示すように、底の浅い箱型の表示部筐体20は、表示部筐体20の底部の大部分を構成する放熱部21と、この放熱部21の一端から舌片状に延在させた熱伝導パス部22と、熱伝導パス部22から更に延在させて本体部筐体24内で発生する熱を受熱(集熱)して熱伝導パス部22に熱伝導する受熱部23とで一体で備える。   As shown in FIG. 1, a box-shaped display unit housing 20 having a shallow bottom extends from a heat radiating unit 21 constituting most of the bottom of the display unit housing 20 to one end of the heat radiating unit 21 in a tongue shape. And the heat receiving path portion that extends further from the heat conduction path portion 22 and receives heat (collected heat) generated in the main body housing 24 to conduct heat to the heat conduction path portion 22. 23 and a single unit.

放熱部21は、熱伝導パス部22を通って移動した熱を受熱して広く拡散し、外部に自然対流により熱放散する。そのため、放熱部21は、できるだけ広い面積にして放熱効果を大きくする。   The heat dissipating part 21 receives the heat moved through the heat conduction path part 22 and diffuses it widely, and dissipates heat to the outside by natural convection. Therefore, the heat radiation part 21 is made as wide as possible to increase the heat radiation effect.

熱伝導パス部22は、表示部筐体20と本体部筐体24とに跨がって表示部筐体20の開閉にしたがって2つ折り状に湾曲し易くし(図6の符号22参照)、受熱部23からの熱を表示部筐体20の放熱部21へ直接伝導する。   The heat conduction path portion 22 extends over the display unit casing 20 and the main unit casing 24 and is easily bent in a double-fold shape according to the opening and closing of the display unit casing 20 (see reference numeral 22 in FIG. 6). The heat from the heat receiving unit 23 is directly conducted to the heat radiating unit 21 of the display unit housing 20.

受熱部23は、本体部筐体24に内設された発熱体に密着して取り付けられた高熱伝導性の金属、例えばアルミニウムで製作されたヒートスプレッダ(図19の符号10参照)上にねじ止めなどにより固定し、本体部筐体の内部で発生する熱、主としてMPUなどの高発熱体の発生する熱を受熱する。なお、ヒートスプレッダとの接触面は、熱伝導をよくするためにサーマルコンパウンドを塗布する。   The heat receiving portion 23 is screwed on a heat spreader (see reference numeral 10 in FIG. 19) made of a highly heat conductive metal, for example, aluminum, which is attached in close contact with a heating element provided in the main body housing 24. To receive heat generated inside the main body casing, mainly heat generated by a high heating element such as MPU. The contact surface with the heat spreader is coated with a thermal compound in order to improve heat conduction.

つぎに、表示部筐体の製造方法について説明する。   Next, a method for manufacturing the display housing will be described.

図2に示すように、表示部筐体20の放熱部21は、高熱伝導性の金属基板25を基材(心材)とし、その裏面の周縁部Xの範囲を樹脂26で被覆し、更にその外周を四角枠形に立ち上げた側枠27と図示しないヒンジ取付部及び必要に応じて備えるねじ孔用ボスや補強リブなどとを同じ樹脂26で一体射出成形して形成する。この金属基板25面は、樹脂26で被覆した周縁部Xを除いて外部に露出する。   As shown in FIG. 2, the heat radiating portion 21 of the display unit housing 20 has a high thermal conductivity metal substrate 25 as a base material (core material), and covers the range of the peripheral edge X on the back surface with a resin 26. A side frame 27 whose outer periphery is raised in a square frame shape, a hinge mounting portion (not shown), and a screw hole boss and a reinforcing rib provided as necessary are integrally formed by injection molding with the same resin 26. The surface of the metal substrate 25 is exposed to the outside except for the peripheral edge portion X covered with the resin 26.

さらに、この放熱部21は、本体部筐体との熱伝導経路を一体で形成するために、基材である金属基板25の一部を図1に示した本体部筐体24の高発熱体の方に延在して熱伝導パス部22及び受熱部23を形成する。   Further, in order to integrally form a heat conduction path with the main body casing, the heat radiating section 21 is a high heating element of the main body casing 24 shown in FIG. The heat conduction path portion 22 and the heat receiving portion 23 are formed so as to extend in the direction.

図3及び図4のそれぞれの(a),(b) 図は、表示部筐体の射出成形工程を示す。   FIGS. 3A and 3B show the injection molding process of the display unit casing.

熱伝導及び放熱は、主として基材である金属基板により行われるので、金属基板の材料としては、銅(熱伝導率400W/mK)を用いると効果的である。また、銅より熱伝導率は劣るがアルミニウム(熱伝導率230W/mK)を用いると、表示部筐体を強化できる。   Since heat conduction and heat dissipation are mainly performed by a metal substrate as a base material, it is effective to use copper (thermal conductivity 400 W / mK) as the material of the metal substrate. Further, although the thermal conductivity is inferior to copper, the display unit housing can be strengthened by using aluminum (thermal conductivity 230 W / mK).

銅の場合には厚さを0.1〜0.3mmにし、アルミニウムの場合には厚さを0.1〜0.6mm程度にする。本実施例では、厚さ0.2mmの銅を用いる。なお、銅は銅合金、アルミニウムはアルミニウム合金でもよく、以下の銅、アルミニウムはそれらの合金も含むものとする。   In the case of copper, the thickness is 0.1 to 0.3 mm, and in the case of aluminum, the thickness is about 0.1 to 0.6 mm. In this embodiment, copper having a thickness of 0.2 mm is used. In addition, copper may be a copper alloy and aluminum may be an aluminum alloy, and the following copper and aluminum include those alloys.

図3の(a)図において、基材となる金属基板25は、脱脂、洗浄した後、成形時の溶融樹脂を接着するため、裏面(紙面側)の周縁部にニトリルゴム系の接着剤28をスクリーン印刷またはスプレーにて20μmの厚さで均一に塗布し、つぎに図1に示した放熱部21、熱伝導パス部22及び受熱部23を形成する形状にプレス加工などにより姿抜きする。   In FIG. 3 (a), the metal substrate 25 serving as a base material is degreased and washed, and then adheres the molten resin at the time of molding. Is uniformly applied in a thickness of 20 μm by screen printing or spraying, and then is removed by press working or the like into a shape for forming the heat radiating part 21, the heat conduction path part 22 and the heat receiving part 23 shown in FIG.

また、金属基板25は、つぎの射出成形工程において成形用金型に位置決めするための位置決め用孔29を穿設する。なお、金属基板は先に姿抜きした後、接着剤を塗布する逆順でもよい。   Further, the metal substrate 25 is provided with a positioning hole 29 for positioning in the molding die in the next injection molding process. It should be noted that the metal substrate may be reversed so that the adhesive is applied after the metal substrate is first removed.

図3の(b)図において、金属基板25を成形用金型30に位置決めセットする。   In FIG. 3 (b), the metal substrate 25 is positioned and set on the molding die 30.

ここで使用する成形用金型30は、下金型30aと上金型30bとで構成する。下金型30aは、金属基板25の位置決め用孔29と対応する位置に穿設したガイド孔31にスライド可能な段付きの固定ピン32を備え、固定ピン32の小径部に挿入されたコイルばね33により樹脂26の進入方向とは反対方向に付勢される。その付勢力は、樹脂26の注入圧力により押し戻される程度に設計される。   The molding die 30 used here includes a lower die 30a and an upper die 30b. The lower mold 30a includes a fixed pin 32 having a step slidable in a guide hole 31 formed at a position corresponding to the positioning hole 29 of the metal substrate 25, and a coil spring inserted into a small diameter portion of the fixed pin 32. 33 is urged in the direction opposite to the direction in which the resin 26 enters. The urging force is designed to be pushed back by the injection pressure of the resin 26.

下金型30aと対になる上金型30bは、固定ピン32の同心上に樹脂26を注入するランナ34を備える。また、樹脂26の注入圧力によって押し戻される固定ピン32を受け止めるストッパ35を備え、下金型30aと上金型30bとを型締めすることによってキャビティ36が形成される。   The upper mold 30 b that is paired with the lower mold 30 a includes a runner 34 that injects the resin 26 concentrically with the fixing pin 32. Further, a stopper 35 for receiving the fixing pin 32 pushed back by the injection pressure of the resin 26 is provided, and the cavity 36 is formed by clamping the lower mold 30a and the upper mold 30b.

なお、放熱部から延出された図示しない熱伝導パス部及び受熱部は、樹脂を同時に被覆成形しない構成の場合、当然に成形用金型から外部に出される。   In addition, naturally the heat conduction path | pass part and heat receiving part which are not illustrated extended from the thermal radiation part are taken out outside from the metal mold | die for shaping | molding in the structure which does not carry out resin molding simultaneously.

樹脂26は、熱可塑性で、例えばABS−PC(アクリロニトリル・ブタジエン・スチレン)樹脂〔CF(Carbon Fiber)を20重量%充填〕を使用する。射出成形条件は、樹脂溶融温度240°C、射出圧力600kgf/cm2 、射出時間1.5秒間である。   The resin 26 is thermoplastic and uses, for example, ABS-PC (acrylonitrile butadiene styrene) resin (20% by weight of CF (Carbon Fiber) filled). The injection molding conditions are a resin melting temperature of 240 DEG C., an injection pressure of 600 kgf / cm @ 2, and an injection time of 1.5 seconds.

図4の(a)図において、樹脂26がランナ34から注入されると、固定ピン32は樹脂26の注入圧力により押し戻されてストッパ35に衝接する。このとき、固定ピン32の上端面は、金属基板25の表面に一致するように予め、設計される。   In FIG. 4A, when the resin 26 is injected from the runner 34, the fixing pin 32 is pushed back by the injection pressure of the resin 26 and comes into contact with the stopper 35. At this time, the upper end surface of the fixing pin 32 is designed in advance so as to coincide with the surface of the metal substrate 25.

樹脂26がキャビティ36内に充満すると、位置決め用孔29はその樹脂26によって塞がれることとなる。そのため、固定ピン用孔29を塞ぐ手段及び工程は必要がなく成形が容易となり、成形用金型の構造を簡素化できる。   When the resin 26 fills the cavity 36, the positioning hole 29 is blocked by the resin 26. Therefore, there is no need for means and process for closing the fixing pin hole 29, the molding becomes easy, and the structure of the molding die can be simplified.

図4の(b)図において、表示部筐体20は、樹脂26を冷却硬化させた後、成形用金型を開いて図示しないノックアウトピンにより離型して取り出す。これらの工程により完成された表示部筐体20は、放熱部21から延出した図示されない金属基板でなる熱伝導パス部及び受熱部を一体で備えている。   4B, after the resin 26 is cooled and hardened, the display unit housing 20 is opened by using a knockout pin (not shown) and taken out. The display unit housing 20 completed by these steps is integrally provided with a heat conduction path unit and a heat receiving unit made of a metal substrate (not shown) extending from the heat radiation unit 21.

このようにして製作された表示部筐体の放熱効果を評価するため、図5及び図6に示すように、表示部筐体20を本体部筐体24にヒンジ部37で結合してパソコンに組み上げ、パソコンを動作させて温度測定を行った。   In order to evaluate the heat dissipation effect of the display unit case manufactured in this way, as shown in FIGS. 5 and 6, the display unit case 20 is coupled to the main unit case 24 with a hinge portion 37 to be connected to a personal computer. The temperature was measured by assembling and operating a personal computer.

なお、パソコンの動作中の消費電力は、プリント配線板8.9W(MPUの5W分を含む)、電源2.8W、HDD2.5W、PCMCIA1.5Wで、それぞれが相当する熱を発生する。   Note that the power consumption during the operation of the personal computer is 8.9 W (including 5 W of MPU), power supply 2.8 W, HDD 2.5 W, and PCMCIA 1.5 W, each generating corresponding heat.

そして、放熱効果を比較するため、比較例1を試作する。   And in order to compare the heat dissipation effect, a comparative example 1 is prototyped.

図7に示すように、この比較例1の表示部筐体40は、放熱部41を受熱部及び熱伝導パス部とは一体で製作せずに、別体で製作したものを接続した構造とする。即ち、放熱部41は、熱伝導パス部42及び受熱部43を切り離した形状で、第1の実施例と同じインモールド法により製作する。   As shown in FIG. 7, the display unit housing 40 of this comparative example 1 has a structure in which the heat radiating part 41 is not manufactured integrally with the heat receiving part and the heat conduction path part, but is manufactured separately. To do. That is, the heat radiating part 41 has a shape in which the heat conduction path part 42 and the heat receiving part 43 are separated, and is manufactured by the same in-mold method as in the first embodiment.

熱伝導パス部42及び受熱部43の方は、別体の金属基板、厚さ0.2mmの銅で製作し、端部を放熱部41の縁端の金属面に重ねてスチレンゴム系の接着剤で接着する。   The heat conduction path portion 42 and the heat receiving portion 43 are made of separate metal substrates and copper having a thickness of 0.2 mm, and the end portion is overlapped with the metal surface of the edge of the heat radiating portion 41 to adhere styrene rubber. Glue with the agent.

この表示部筐体40を、第1の実施例と同じ本体部筐体24にヒンジ部37で結合してパソコンに組み上げ、受熱部43を第1の実施例と同じようにヒートスプレッダに固着する。そうして、パソコンの動作中の温度を測定した。   The display housing 40 is coupled to the same main body housing 24 as the first embodiment by a hinge portion 37 and assembled to a personal computer, and the heat receiving portion 43 is fixed to the heat spreader as in the first embodiment. Thus, the temperature during operation of the personal computer was measured.

その結果、第1の実施例は、比較例1と比べてMPUの温度が5°C低下し、表示部筐体の放熱部の表面温度は最も高い熱流入部の近辺で35°Cを下回り、パソコン筐体表面の温度基準である45°C以下を達成できた。   As a result, in the first example, the temperature of the MPU decreased by 5 ° C compared to the comparative example 1, and the surface temperature of the heat radiating portion of the display unit housing was below 35 ° C in the vicinity of the highest heat inflow portion. It was possible to achieve a temperature reference of 45 ° C. or lower, which is the temperature reference for the surface of the personal computer casing.

比較例1は、熱伝導パス部が放熱部と接着剤で接着・接続されているために熱抵抗が第1の実施例より大きくなったもので、熱伝導経路を継ぎ目なく一体化した第1の実施例の放熱構造の方が、比較例1より熱伝導効率が優れていることが確認された。もちろん、比較例1でも放熱部の表面温度は熱流入部の近辺で40°Cを下回り、温度基準45°C以下を満足しているため、十分に実用できることは言うまでもない。   In Comparative Example 1, the heat conduction path portion is bonded and connected to the heat radiation portion with an adhesive, so that the thermal resistance is larger than that of the first embodiment, and the heat conduction path is seamlessly integrated. It was confirmed that the heat-dissipating structure of Example 1 had better heat conduction efficiency than Comparative Example 1. Of course, even in Comparative Example 1, the surface temperature of the heat radiating portion is below 40 ° C. in the vicinity of the heat inflow portion and satisfies the temperature reference of 45 ° C. or less.

また、この第1の実施例での金属基板は、厚さ0.2mmの銅でなく、厚さ0.4mmのアルミニウムに代えてもほぼ同等の放熱効果が得られ、しかも表示部筐体として十分な機械的強度を確保できることも追認された。   Further, the metal substrate in the first embodiment is not copper having a thickness of 0.2 mm, but an equivalent heat dissipation effect can be obtained even if it is replaced by aluminum having a thickness of 0.4 mm. It was confirmed that sufficient mechanical strength could be secured.

また、放熱部、熱伝導パス部及び受熱部の金属基板は、放熱部の外気側表面及び受熱部のヒートスプレッダとの接続面を除く表裏面、あるいは受熱部のヒートスプレッダとの接続面だけを除く表裏面に0.2mmの樹脂を被覆し、受熱部の金属面を直接、ヒートスプレッダに接続する場合でも第1の実施例とほぼ同等の作用、効果があることが確認された。   In addition, the metal substrate of the heat radiating part, the heat conduction path part and the heat receiving part is a table excluding the front and back surfaces excluding the surface of the heat radiating part on the outside air side and the connecting surface with the heat spreader of the heat receiving part, or the surface excluding only the connecting surface with the heat spreader of the heat receiving part. Even when 0.2 mm of resin was coated on the back surface and the metal surface of the heat receiving part was directly connected to the heat spreader, it was confirmed that there were almost the same operations and effects as in the first example.

つぎに、第2の実施例を説明する。   Next, a second embodiment will be described.

図示を省略するが、この第2の実施例の表示部筐体は、第1の実施例の金属基板の代わりに基材として厚さ0.1mmのグラファイトシートを使用し、第1の実施例と同様にインモールド法により表示部筐体を製作する。   Although not shown, the display unit housing of the second embodiment uses a graphite sheet having a thickness of 0.1 mm as a base material instead of the metal substrate of the first embodiment, and the first embodiment The display unit casing is manufactured by the in-mold method in the same manner as described above.

なお、グラファイトシートは、放熱部、熱伝導パス部及び受熱部の内面全面と熱伝導パス部の反対面とを厚さ0.2mmの樹脂で被覆し、とくに縁端部が裂けるのを防止する。また、受熱部は、グラファイトシートのヒートスプレッダと接触する面に樹脂を被覆せず、グラファイトシート面をヒートスプレッダに直接固着する。   The graphite sheet covers the entire inner surface of the heat dissipating part, the heat conduction path part and the heat receiving part and the opposite surface of the heat conduction path part with a resin having a thickness of 0.2 mm, and in particular prevents the edge part from tearing. . Further, the heat receiving portion does not cover the surface of the graphite sheet that contacts the heat spreader with resin, and directly adheres the graphite sheet surface to the heat spreader.

この表示部筐体を使用したパソコンの動作中の温度を測定した。その結果、比較例1と比べて、MPUの温度は7°C低下し、表示部筐体の放熱部の表面温度は35°Cを下回った。   The temperature during operation of the personal computer using this display unit casing was measured. As a result, compared with the comparative example 1, the temperature of MPU fell by 7 degreeC and the surface temperature of the thermal radiation part of the display part housing | casing was less than 35 degreeC.

これは、グラファイトシートの面方向の熱伝導率が600W/mK、厚さ方向の熱伝導率が5W/mKで、熱伝導率において異方性があって銅やアルミニウムよりも優れているためである。   This is because the thermal conductivity in the plane direction of the graphite sheet is 600 W / mK, the thermal conductivity in the thickness direction is 5 W / mK, and there is anisotropy in thermal conductivity, which is superior to copper and aluminum. is there.

このような面方向の異方性を利用して、異方性方向を熱伝導方向に略一致させることにより、熱伝導方向の熱抵抗を小さくできるため、本体部筐体の内部のMPUなどの高発熱体が発生する熱を熱伝導経路に沿って受熱部から熱伝導パス部を通って放熱部へと効果的に熱伝導できる。   Utilizing such anisotropy in the plane direction, by making the anisotropy direction substantially coincide with the heat conduction direction, the thermal resistance in the heat conduction direction can be reduced. The heat generated by the high heating element can be effectively conducted along the heat conduction path from the heat receiving part to the heat radiating part through the heat conduction path part.

なお、ヒートスプレッダから受熱部への熱伝導は、グラファイトシートの厚さが0.1mmと薄いため、グラファイトシートの厚さ方向の熱伝導よりヒートスプレッダ面に直接接触したグラファイトシートの面方向を主にして行われる。   The heat conduction from the heat spreader to the heat receiving part is mainly in the surface direction of the graphite sheet in direct contact with the heat spreader surface rather than the heat conduction in the thickness direction of the graphite sheet because the thickness of the graphite sheet is as thin as 0.1 mm. Done.

また、熱伝導パス部のグラファイトシートは両面を樹脂で被覆し、グラファイトシート自体の厚さ方向の熱伝導率が小さいため、熱伝導パス部の近辺にある他の部品に対する熱影響が少なくなり、熱伝導パス部の下方に配設されたプリント配線板の温度は第1の実施例と比べ、約3°Cほど低下した。   Also, the graphite sheet of the heat conduction path part is coated with resin on both sides, and the thermal conductivity in the thickness direction of the graphite sheet itself is small, so the thermal effect on other parts in the vicinity of the heat conduction path part is reduced, The temperature of the printed wiring board disposed below the heat conduction path portion was reduced by about 3 ° C. as compared to the first example.

つぎに、第3の実施例を説明する。   Next, a third embodiment will be described.

図8の(a),(b)図に示すように、表示部筐体50は、第1の実施例とは熱伝導パス部52のみが異なる。即ち、放熱部51から延出した金属基板で構成する受熱部53は、第1の実施例と同じように金属基板(銅)のままとし、熱伝導パス部52だけが、同図の(b)図に示すように、金属基板である厚さ0.2mmの銅(または厚さ0.4mmのアルミニウム)の両面に、インモールド時とは別工程で厚さ50μmのPETシート56(Polyethylene Terephthalete Sheet)を接着する。   As shown in FIGS. 8A and 8B, the display unit housing 50 is different from the first embodiment only in the heat conduction path unit 52. FIG. That is, the heat receiving portion 53 constituted by the metal substrate extending from the heat radiating portion 51 remains the metal substrate (copper) as in the first embodiment, and only the heat conduction path portion 52 is shown in FIG. ) As shown in the figure, a PET sheet 56 (Polyethylene Terephthalete) having a thickness of 50 μm is formed on both sides of a 0.2 mm thick copper (or aluminum having a thickness of 0.4 mm), which is a metal substrate, in a separate process from the in-mold process. Adhere Sheet.

この表示部筐体50を同図の(a)図に示すように、パソコンに組み込み、動作中の温度を測定した。   As shown in FIG. 5A, the display unit housing 50 was incorporated in a personal computer, and the temperature during operation was measured.

その結果、比較例1と比べて、MPUの温度が7°C低下し、表示部筐体の放熱部の表面温度が35°Cを下回り、第2の実施例の基材がグラファイトシートの場合と同程度の放熱効果が得られた。   As a result, the temperature of the MPU is 7 ° C lower than that of the comparative example 1, the surface temperature of the heat radiating portion of the display unit housing is lower than 35 ° C, and the base material of the second embodiment is a graphite sheet. The same heat dissipation effect was obtained.

また、この第3の実施例では、熱伝導パス部である金属基板の両面がPETシートが接着されているため、第2の実施例と同じように熱伝導パス部の下方のプリント配線板や電子部品に対する熱影響が軽減され、プリント配線板の温度が第1の実施例と比べ、約3°Cほど低下した。   Moreover, in this 3rd Example, since the PET sheet | seat is adhere | attached on both surfaces of the metal substrate which is a heat conductive path part, the printed wiring board under the heat conductive path part and the same as 2nd Example The influence of heat on the electronic components was reduced, and the temperature of the printed wiring board decreased by about 3 ° C. compared to the first example.

つぎに、第4の実施例を説明する。   Next, a fourth embodiment will be described.

図6に示したように熱伝導パス部22は、表示部筐体20と本体部筐体24とに跨がって配設されているため、表示部筐体20の開閉にしたがって繰り返し湾曲される。   As shown in FIG. 6, the heat conduction path unit 22 is disposed across the display unit housing 20 and the main unit housing 24, and is therefore repeatedly bent as the display unit housing 20 is opened and closed. The

そのため、つぎのように表示部筐体の繰り返し開閉評価を行った。   Therefore, repeated opening / closing evaluation of the display housing was performed as follows.

図示を省略するが、熱伝導パス部が厚さ0.2mmの銅板を基材にした場合と、厚さ0.1mmのグラファイトシートの両面に絶縁シート、例えば厚さ0.1mmのポリエチレンテレフタレート(PET)シートを接着した場合とで繰り返し湾曲試験を行った。   Although not shown in the figure, when a copper plate having a thickness of 0.2 mm is used as a base material for the heat conduction path portion, an insulating sheet such as polyethylene terephthalate having a thickness of 0.1 mm (for example, 0.1 mm thick) A curvature test was repeatedly performed when the PET sheet was adhered.

その結果、PETシートを両面に接着したグラファイトシートの場合は、表示部筐体の繰り返し開閉回数が銅基材の場合と比べて、2割ほど改善され、1万回以上の開閉に耐えることが確認できた。   As a result, in the case of a graphite sheet in which a PET sheet is bonded to both surfaces, the number of repeated opening and closing of the display unit housing is improved by about 20% compared to the case of a copper base material, and it can withstand 10,000 times or more of opening and closing. It could be confirmed.

つぎに、表示部筐体の静荷重強度と放熱性を評価するための第5の実施例を説明する。   Next, a fifth embodiment for evaluating the static load strength and heat dissipation of the display unit housing will be described.

図9に示すように、表示部筐体60は、第1の金属基板65である厚さ0.4mmのアルミニウム(板)を基材にして放熱部61をインモールド法により射出成形し、第1の金属基板65は延出して図示しない熱伝導パス部と受熱部とを一体形成する点では第1の実施例と同様である。   As shown in FIG. 9, the display unit housing 60 is formed by injection-molding the heat radiating unit 61 by an in-mold method using 0.4 mm-thick aluminum (plate) as the first metal substrate 65 as a base material. The first metal substrate 65 is the same as that of the first embodiment in that a heat conduction path portion (not shown) and a heat receiving portion (not shown) are integrally formed.

但し、この第5の実施例ではとくに、放熱部61の基材である第1の金属基板65の内面に被覆された厚さ0.2mmの樹脂66の上に第2の金属基板67の厚さ0.1mmの銅をエポキシ樹脂系の接着剤で接着した構造とし、第1の金属基板65の表面を外気面とする点が異なる。   However, in the fifth embodiment, in particular, the thickness of the second metal substrate 67 on the resin 66 having a thickness of 0.2 mm coated on the inner surface of the first metal substrate 65 which is the base material of the heat radiating portion 61. The difference is that a 0.1 mm-thick copper is bonded with an epoxy resin adhesive, and the surface of the first metal substrate 65 is the outside air surface.

比較例2として、図示を省略するが、内面に銅を接着しない表示部筐体を製作し、静荷重強度を比較した。測定は、表示部筐体の長辺両端部を支持し、中央部に上から折り曲げ荷重を加えていき、そのときの中央部の撓み寸法で比較する。   As Comparative Example 2, although not shown in the drawings, a display unit housing that does not adhere copper to the inner surface was manufactured, and the static load strength was compared. The measurement is performed by supporting both ends of the long side of the display unit casing, applying a bending load from above to the center, and comparing the bending dimensions of the center at that time.

その結果、内面に厚さ0.2mmの銅を接着した表示部筐体は、比較例2の銅を接着していない表示部筐体と比べて、撓み量が1/3以下になり、銅によって十分な補強効果が得られることが判明した。   As a result, the display unit case having 0.2 mm thick copper bonded to the inner surface has a deflection amount of 1/3 or less compared to the display unit case of Comparative Example 2 in which copper is not bonded. It has been found that a sufficient reinforcing effect can be obtained.

また、温度測定では、比較例2と比べて、MPUの温度が10°C低下し、表示部筐体の表面温度は35°Cを下回った。   Further, in the temperature measurement, the temperature of the MPU decreased by 10 ° C. as compared with Comparative Example 2, and the surface temperature of the display unit casing was lower than 35 ° C.

つぎに、第6の実施例を説明する。   Next, a sixth embodiment will be described.

図10に示すように、表示部筐体70は、第1,第2の金属基板75,76である厚さ0.4mmのアルミニウムを、平均直径0.2mmのスペーサを兼ねる球状の金属粒子77aを混ぜたエポキシ系の接着剤77で接着してほぼ0.2mmの空気層78を有する空間を形成したものを基材とし、第1の金属基板75を外気面側にして第1の実施例と同様にインモールド法により製作する。この場合、熱伝導パス部及び受熱部は、図示を省略するが内側の第2の金属基板76だけが放熱部71から延出されて一体形成される。   As shown in FIG. 10, the display unit housing 70 includes spherical metal particles 77 a that serve as spacers having an average diameter of 0.2 mm using aluminum having a thickness of 0.4 mm that is the first and second metal substrates 75 and 76. First embodiment with the first metal substrate 75 as the outside surface side, with a base having a space having an air layer 78 of approximately 0.2 mm bonded with an epoxy adhesive 77 mixed with It is manufactured by the in-mold method as well. In this case, the heat conduction path portion and the heat receiving portion are integrally formed by extending only the inner second metal substrate 76 from the heat radiating portion 71 although not shown.

なお、空気層78は、第1の金属基板75の接着面に接着剤を予め、所定寸法の間隔と帯幅とで一方向に塗布した後、第2の金属基板76を圧着して形成される。また、射出成形時の空気抜き孔79が、内側となる第2の金属基板76の適切な位置に設けられている。   The air layer 78 is formed by applying an adhesive in one direction with a predetermined distance and a band width in advance to the bonding surface of the first metal substrate 75 and then pressing the second metal substrate 76. The Further, an air vent hole 79 at the time of injection molding is provided at an appropriate position of the second metal substrate 76 that is inside.

この表示部筐体をパソコンに組み込んで、動作中の温度を測定した。放熱部に空気層を設けたことにより、熱伝導パス部から伝導された熱は、放熱部の全面に一層拡散されることとなり、表示部筐体の表面温度は32°Cを下回った。   This display housing was incorporated into a personal computer, and the temperature during operation was measured. By providing the air layer in the heat radiating portion, the heat conducted from the heat conduction path portion is further diffused over the entire surface of the heat radiating portion, and the surface temperature of the display unit housing is below 32 ° C.

つぎに、第7の実施例を説明する。   Next, a seventh embodiment will be described.

図11に示すように、表示部筐体80は、それぞれが厚さ0.4mmと0.2mmの第1,第2の金属基板85,86であるアルミニウムと銅を約0.5mmの空間を有して重ね、この空間に厚さ0.2mmのアルミニウム製の金属網87を入れて形成したものを基材とし、第1の金属基板85を外気面側にして第1の実施例と同様にインモールド法により製作する。なお、金属網87は銅でもよい。   As shown in FIG. 11, the display unit casing 80 has a space of about 0.5 mm for aluminum and copper, which are first and second metal substrates 85 and 86 having thicknesses of 0.4 mm and 0.2 mm, respectively. In the same manner as in the first embodiment, the substrate is formed by putting a metal net 87 made of aluminum having a thickness of 0.2 mm in this space and using the first metal substrate 85 as the outside surface side. It is manufactured by the in-mold method. The metal net 87 may be copper.

この場合、図示を省略するが、熱伝導パス部及び受熱部は、内側の第2の金属基板86だけが放熱部81から延出されて一体形成される。また、図11のように、射出成形時の空気抜き孔89が、内側の第2の金属基板86の適切な位置に設けられている。   In this case, although illustration is omitted, the heat conduction path portion and the heat receiving portion are integrally formed by extending only the inner second metal substrate 86 from the heat radiating portion 81. Further, as shown in FIG. 11, an air vent hole 89 at the time of injection molding is provided at an appropriate position of the inner second metal substrate 86.

そして更に、成形後、金属網87の隙間空間に、空気抜き孔89から冷却液88として純水あるいはフロン134aまたは142bを内部容積の10%を封入する。   Further, after forming, 10% of the internal volume of pure water or Freon 134a or 142b is sealed in the gap space of the metal net 87 as the cooling liquid 88 from the air vent hole 89.

この表示部筐体をパソコンに組み込んで、動作中の温度を測定した。空間に入れた冷却液が温度上昇によって空間内を対流し冷却されることによって熱の対流が発生することにより、MPUの温度が12°C低下し、表示部筐体の表面温度は35°Cを下回り、さらに放熱部表面の温度分布が均一化した。   This display housing was incorporated into a personal computer, and the temperature during operation was measured. The cooling liquid put in the space convects in the space due to the temperature rise and is cooled to generate heat convection, so that the temperature of the MPU is reduced by 12 ° C. and the surface temperature of the display unit housing is 35 ° C. The temperature distribution on the surface of the heat dissipating part was made uniform.

ところで、上記説明の各実施例は、本体部筐体の内部で発生する熱を直接、熱伝導経路を通して表示部筐体の放熱部に伝導し外部に熱放散したが、以下に本体部筐体から表示部筐体の放熱部への熱伝導経路を、熱を移動中継可能な回動手段に代えたパソコンの放熱構造について説明する。   By the way, in each of the embodiments described above, the heat generated inside the main body casing is directly conducted to the heat radiating portion of the display section casing through the heat conduction path and is dissipated to the outside. A heat dissipation structure for a personal computer will be described in which the heat conduction path from the display unit housing to the heat dissipation unit is replaced with a rotating means capable of moving and relaying heat.

先ず、第8の実施例について説明する。   First, an eighth embodiment will be described.

図12は、一実施例の回動手段を含む放熱構造を示す平面図、図13は、図12における回動手段の組立側断面図である。   FIG. 12 is a plan view showing a heat dissipation structure including the rotating means of one embodiment, and FIG. 13 is an assembled side sectional view of the rotating means in FIG.

図示するように、本体部筐体24と表示部筐体40は、回動可能な左右2個のヒンジ部37と回動手段90とで結合する。本発明の回動手段90は右側で、左側のヒンジ部37は周知の一般のヒンジ構造でその説明を省略する。   As shown in the figure, the main body housing 24 and the display housing 40 are coupled by two pivotable hinge portions 37 and a pivoting means 90. The rotation means 90 of the present invention is on the right side, and the left hinge portion 37 is a well-known general hinge structure, and its description is omitted.

本発明の回動手段90は、その両側に外径約4mmの第1,第2のヒートパイプ91,92を接続する。ここで用いるヒートパイプは、例えば古河電気工業株式会社製の市販品で、前述のように一端の高温部から他端の低温部へ熱を移動(輸送)することができる。   The rotating means 90 of the present invention connects first and second heat pipes 91 and 92 having an outer diameter of about 4 mm to both sides thereof. The heat pipe used here is, for example, a commercial product manufactured by Furukawa Electric Co., Ltd., and can transfer (transport) heat from the high temperature part at one end to the low temperature part at the other end as described above.

第1のヒートパイプ91は、高温部を本体部筐体24に内設されたMPUなどの高発熱体に固着されたヒートスプレッダ10(図19参照)に密着させて固定するとともに、中間部をヒートスプレッダ10を介して高発熱体に無理な力が加わらないように、また軸心を兼ねるため図示しない締付け具を用いて本体部筐体の適切な位置に堅固に固定する。その反対側の低温部は、回動手段90の回動側を構成する回動体93の軸心に挿入して中心軸を兼ねる。   The first heat pipe 91 has a high-temperature portion fixed in close contact with a heat spreader 10 (see FIG. 19) fixed to a high heating element such as an MPU installed in the main body housing 24, and an intermediate portion is fixed to the heat spreader. In order to prevent an excessive force from being applied to the high heating element 10 and to serve as an axial center, a fastener (not shown) is firmly fixed to an appropriate position of the main body housing. The low temperature part on the opposite side is inserted into the axial center of the rotating body 93 constituting the rotating side of the rotating means 90 and also serves as the central axis.

第2のヒートパイプ92は、第1のヒートパイプ91を軸心にして回動する回動体93にその高温部を挿入する。その反対側の低温部は、表示部筐体40の放熱部41(図7に示した別体で形成の熱伝導パス部42及び受熱部43が付属されていないもの)に密着させて図示しない締付け具を用いて堅固に固定する。   The second heat pipe 92 is inserted into the rotating body 93 that rotates about the first heat pipe 91 as an axis. The low-temperature part on the opposite side is not shown in close contact with the heat radiating part 41 of the display unit housing 40 (without the heat conduction path part 42 and the heat receiving part 43 formed separately as shown in FIG. 7). Secure with fasteners.

つぎに、回動手段の構造を詳細に説明する。   Next, the structure of the rotating means will be described in detail.

図13に示すように、回動手段90は、高熱伝導性の回動体93と軸受94とで構成する。   As shown in FIG. 13, the turning means 90 is composed of a highly heat-conductive turning body 93 and a bearing 94.

回動体93は、外径約20mm、長さ約40mmの円柱状で、内径10mmの中空孔93aを軸心に開け、中空孔93aの底面の中心に第1のヒートパイプ91の低温部に形成された円錐体状の尖端部91aを支持するための錐揉み孔93bと、後端部に第2のヒートパイプ92の高温部を固着する挿入孔93dを備える。   The rotating body 93 has a cylindrical shape with an outer diameter of about 20 mm and a length of about 40 mm, and has a hollow hole 93a with an inner diameter of 10 mm formed in the center, and is formed in the low temperature portion of the first heat pipe 91 at the center of the bottom surface of the hollow hole 93a. A conical hole 93b for supporting the conical pointed portion 91a and an insertion hole 93d for fixing the high temperature portion of the second heat pipe 92 to the rear end portion are provided.

軸受94は、対角寸法が20mmの六角形の頭部を有する六角ボルトの形状をしており、第1のヒートパイプ91の低温部を挿通して回動可能に軸支する軸孔94aを軸心に備え、おねじ部94bを中空孔93aに設けためねじ部93cにねじ込んで固定する。   The bearing 94 has a hexagonal bolt shape having a hexagonal head having a diagonal dimension of 20 mm, and has a shaft hole 94 a that is pivotally supported by being inserted through the low temperature portion of the first heat pipe 91. In preparation for the shaft center, the male screw portion 94b is screwed into the screw portion 93c to be fixed in the hollow hole 93a.

回動体93の錐揉み孔93bは、軸孔94aに軸支された第1のヒートパイプ91の低温部の尖端部91aをセンタリングして支持するとともに回動摩擦抵抗を小さくする。   The concavity hole 93b of the rotating body 93 supports the pointed portion 91a of the low temperature portion of the first heat pipe 91 pivotally supported by the shaft hole 94a so as to be centered and reduces the rotational frictional resistance.

回動体93及び軸受94は、高熱伝導性金属、例えば銅やアルミニウムなどを用いた場合、回動手段90の熱抵抗は何れも8°C/W以下で、MPUの温度を4°Cほど低下できた。   When the rotating body 93 and the bearing 94 are made of a highly thermally conductive metal such as copper or aluminum, the rotating unit 90 has a thermal resistance of 8 ° C / W or less, and the temperature of the MPU decreases by about 4 ° C. did it.

また更に、回動手段90の熱抵抗を下げるため、回動体93の中空孔93aに挿入される第1のヒートパイプ91の低温部に高熱伝導性金属、例えば銅やアルミニウム製の複数(図は4枚を例示)の円板状のフィン95を嵌着する。このフィン95は、例えば外径9mm、厚さ1mmとする。   Furthermore, in order to lower the thermal resistance of the rotating means 90, a plurality of high heat conductive metals such as copper and aluminum (the figure is shown) are formed in the low temperature portion of the first heat pipe 91 inserted into the hollow hole 93a of the rotating body 93. The disc-like fins 95 (four examples) are fitted. For example, the fin 95 has an outer diameter of 9 mm and a thickness of 1 mm.

このように、フィン95を追加することにより、回動手段90の熱抵抗は5°C/W以下になり、MPUの温度を6°Cほど低下できた。   Thus, by adding the fin 95, the thermal resistance of the rotation means 90 became 5 degrees C / W or less, and the temperature of MPU could be reduced about 6 degrees C.

また更に、回動体93の中空孔93a内の熱伝導を促進するため、中空孔93a内に熱伝導性流体96として流動性のよいシリコングリースを封入する。なお、熱伝導性流体96の漏れを防止するため、軸受94の軸孔94aの内面に環溝を設け、Oリング97を挿着する。   Furthermore, in order to promote heat conduction in the hollow hole 93a of the rotating body 93, silicon fluid having good fluidity is sealed in the hollow hole 93a as the heat conductive fluid 96. In order to prevent leakage of the heat conductive fluid 96, an annular groove is provided on the inner surface of the shaft hole 94a of the bearing 94, and an O-ring 97 is inserted.

このように、中空孔93a内に熱伝導性流体(シリコングリース)96を追加封入することにより、回動手段90の熱抵抗は1°C/W以下になり、MPUの温度を10°Cほど低下できた。   Thus, by additionally enclosing the heat conductive fluid (silicone grease) 96 in the hollow hole 93a, the thermal resistance of the rotating means 90 becomes 1 ° C / W or less, and the temperature of the MPU is about 10 ° C. I was able to decrease.

あるいは、シリコングリースを液体金属98のインジウム−ガリウムに代えることにより、回動手段90の熱抵抗は1°C/W以下になり、MPUの温度を13°Cほど低下できた。   Alternatively, by replacing the silicon grease with indium-gallium as the liquid metal 98, the thermal resistance of the rotating means 90 was 1 ° C./W or less, and the temperature of the MPU could be reduced by 13 ° C.

このように構成された回動手段は、表示部筐体に固設した第2のヒートパイプの高温部を回動体に結合・固定しているため、表示部筐体は第1のヒートパイプの低温部を中心軸として回動開閉できる。   Since the rotating means configured in this manner is coupled to and fixed to the rotating body of the high temperature part of the second heat pipe fixed to the display unit casing, the display unit casing is connected to the first heat pipe. It can be opened and closed with the low temperature part as the central axis.

また、本体部筐体に内設された高発熱体の熱を第1のヒートパイプによって回動手段へ移動し、第1のヒートパイプの低温部から放熱フィン及び熱伝導性流体を介して高熱伝導性の回動体へ効率よく熱伝導する。   Further, the heat of the high heating element provided in the main body housing is moved to the rotating means by the first heat pipe, and the high heat is transferred from the low temperature portion of the first heat pipe through the heat radiation fin and the heat conductive fluid. Conducts heat efficiently to the conductive rotating body.

さらに、回動体に移動した熱は、第2のヒートパイプを移動して表示部筐体の放熱部へ伝導されて拡散し、放熱部の広い放熱面から外部に自然対流により熱放散するため、高発熱体及び本体部筐体の内部の温度上昇を抑えることができる。   Furthermore, since the heat that has moved to the rotating body moves through the second heat pipe and is conducted and diffused to the heat radiating part of the display unit housing, heat is dissipated by natural convection from the wide heat radiating surface of the heat radiating part to the outside. Temperature rises inside the high heat generator and the main body housing can be suppressed.

つぎに、前述したように熱伝導パス部は、表示部筐体と本体部筐体とに跨がって配設されているため、表示部筐体の開閉にしたがって繰り返し湾曲されるため、熱伝導パス部が繰り返し湾曲により疲労するため表示部筐体の開閉回数にある程度限度がある。これを改善するため、熱伝導パス部と受熱部とを一緒にした別体の熱伝導パス部材を製作した。   Next, as described above, the heat conduction path section is disposed across the display section casing and the main body section casing, and is therefore repeatedly bent as the display section casing is opened and closed. Since the conduction path portion is fatigued due to repeated bending, there is a certain limit in the number of times the display unit housing can be opened and closed. In order to improve this, a separate heat conduction path member in which the heat conduction path portion and the heat receiving portion are combined was manufactured.

図14は、熱伝導パス部材の第1の実施例の斜視図で、図15は、図14の展開図で、図15の(a)図は平面図、(b)図はそのD−D断面図である。   14 is a perspective view of the first embodiment of the heat conduction path member, FIG. 15 is a development view of FIG. 14, FIG. 15A is a plan view, and FIG. It is sectional drawing.

図14及び図15に示す第1の実施例の熱伝導パス部材12、即ち12−1は、1枚の長方形のグラファイトシート12aの一端部を中心から切り割いてそれぞれを外部に接続するための接続部12a−1〔図15の(a)図の斜線部分参照〕とし、この接続部12a−1の外部(相手側)との接続面を除く片面に絶縁シート12bを接着剤12cで接着して貼り合わせ、この貼り合わせ部分を渦巻き筒状に複数回巻いた巻回部13を備えて構成する。   The heat conduction path member 12 of the first embodiment shown in FIGS. 14 and 15, that is, 12-1, cuts one end portion of one rectangular graphite sheet 12 a from the center and connects each to the outside. The connecting portion 12a-1 (see the hatched portion in FIG. 15A) is used, and the insulating sheet 12b is bonded to one side of the connecting portion 12a-1 excluding the connecting surface with the outside (the other side) with an adhesive 12c. And a winding portion 13 in which the bonded portion is wound in a spiral tube shape a plurality of times.

なお、図14及び図15に示す絶縁シート12bをグラファイトシート12aの片面に貼り合わせているが、両面がよい。また、必ずしも絶縁シート12bを貼り合わせずに重ねて巻いてもよいが、巻くときの作業性やグラファイトシートを補強する上で貼り合わせが望ましい。   In addition, although the insulating sheet 12b shown in FIG.14 and FIG.15 is bonded together on the single side | surface of the graphite sheet 12a, both surfaces are good. In addition, the insulating sheet 12b may be overlapped and wound without being bonded, but it is preferable to bond the insulating sheet 12b in order to reinforce the workability and the graphite sheet.

このグラファイトシート12aは、例えば厚さが10μmで熱伝導に対し面方向の異方性を有し、その異方性方向を熱伝導する方向、即ち巻き方向に一致させる。   The graphite sheet 12a has, for example, a thickness of 10 μm and has anisotropy in the plane direction with respect to heat conduction.

絶縁シート12bは、例えば厚さが10μm(この程度の厚さは巻き易い)のポリエチレンテレフタレートシートまたはポリイミドシートを用い、かつその幅はグラファイトシートの幅より大きくして耳端部から例えば、0.5mm程度はみ出させ、耳端部を保護する。接着剤12cは、ホットメルト接着剤またはスチレン系接着剤を用いる。   As the insulating sheet 12b, for example, a polyethylene terephthalate sheet or a polyimide sheet having a thickness of 10 μm (this thickness is easy to wind) is used, and the width is larger than the width of the graphite sheet. It protrudes about 5mm and protects the ear end. As the adhesive 12c, a hot melt adhesive or a styrene adhesive is used.

このように、熱伝導パス部材は、グラファイトシート(絶縁シートを含む)を渦巻き筒状に複数回巻いて積層することにより、その厚さを実質的に厚くしているため、熱伝導断面積を拡大できて熱抵抗を小さくできる。   As described above, the heat conduction path member has a thickness substantially increased by laminating a graphite sheet (including an insulating sheet) by winding it in a spiral tube shape a plurality of times. It can be expanded to reduce thermal resistance.

さらに、従来同様にグラファイトシートの異方性方向を熱伝導する方向(巻き方向)に一致させているため、熱伝導方向の熱抵抗はより小さくなって熱伝導パス部材は一方の接続部から他方の接続部へ効果的に熱伝導できる。   Furthermore, since the anisotropic direction of the graphite sheet is made to coincide with the heat conducting direction (winding direction) as in the prior art, the thermal resistance in the heat conducting direction becomes smaller, and the heat conducting path member is moved from one connecting portion to the other. It is possible to effectively conduct heat to the connection part.

また、熱伝導パス部材を、巻回部を中心に繰り返し湾曲させる場合、湾曲によって生じる曲げ応力を巻回部全体に分散して熱伝導パス部材を長寿命化できる。   In addition, when the heat conduction path member is repeatedly bent around the winding part, the bending stress generated by the bending can be dispersed throughout the winding part, thereby extending the life of the heat conduction path member.

また、グラファイトシートは絶縁シートを貼り合わせることにより補強されてさらに湾曲による疲労を軽減できる。   Further, the graphite sheet is reinforced by bonding an insulating sheet, and fatigue due to bending can be further reduced.

さらに、貼り合わせる絶縁シートの幅をグラファイトシートの幅より大きくしてグラファイトシートの耳端部を保護しているため、耳端部から発生する亀裂による破損も防止できる。   Further, since the insulating sheet to be bonded has a width larger than that of the graphite sheet to protect the ear end portion of the graphite sheet, damage due to cracks generated from the ear end portion can also be prevented.

つぎの図16は、熱伝導パス部材の第2の実施例の斜視図である。   FIG. 16 is a perspective view of the second embodiment of the heat conduction path member.

この第2の実施例の熱伝導パス部材12、即ち12−2は、複数枚(図は3枚を示す)のグラファイトシート12aを用いることと、巻回部13が円柱形の巻心14または円筒形の巻心15〔図は円筒形の巻心(パイプ)を示す〕に巻かれている点が第1の実施例の熱伝導パス部材12−1と異なり、外部との接続部12a−1及び絶縁シート12bの貼り合わせは第1の実施例の熱伝導パス部材12−1と同様である。   The heat conduction path member 12 of this second embodiment, i.e., 12-2, uses a plurality (three are shown) of graphite sheets 12a, and the winding portion 13 is a cylindrical core 14 or Unlike the heat conduction path member 12-1 of the first embodiment, the connection portion 12 a-to the outside differs from the heat conduction path member 12-1 of the first embodiment in that it is wound around a cylindrical winding core 15 (the figure shows a cylindrical winding core (pipe)). 1 and the insulating sheet 12b are bonded together in the same manner as the heat conduction path member 12-1 of the first embodiment.

なお、複数枚のグラファイトシート12aは、互いに接着により貼り合わせてもよく(ホットメルト接着剤またはスチレン系接着剤による)、貼り合わせずに重ね合わせてもよい。   Note that the plurality of graphite sheets 12a may be bonded together (by a hot melt adhesive or a styrene adhesive), or may be stacked without bonding.

円柱形または円筒形の巻心14,15の材料は、ポリエチレン、ポリエチレンテレフタレート、ポリイミドなどの樹脂材を用い、電気的絶縁と断熱を確保する。なお、巻心14,15の外径寸法は約5mm、円筒形の巻心(パイプ)15の場合の中空孔径寸法は配線が挿通可能な約4mm程度にする。   The material of the columnar or cylindrical cores 14 and 15 uses a resin material such as polyethylene, polyethylene terephthalate, polyimide, and ensures electrical insulation and heat insulation. The outer diameter of the cores 14 and 15 is about 5 mm, and the diameter of the hollow hole in the case of the cylindrical core (pipe) 15 is about 4 mm through which wiring can be inserted.

グラファイトシートは巻心の利用で円筒形に巻き易くなり、とくに複数枚のグラファイトシートは巻き易くなって巻径寸法が精度よく抑られて、巻いた後の形状くずれを防止できる。勿論、第1の実施例の熱伝導パス部材においても巻心を利用してもよい。   The graphite sheet can be easily wound into a cylindrical shape by using a winding core, and in particular, a plurality of graphite sheets can be easily wound and the winding diameter dimension can be accurately suppressed, thereby preventing the shape from being deformed after being wound. Of course, the core may also be used in the heat conduction path member of the first embodiment.

また、円筒形の巻心(パイプ)を用いた場合は、巻心の中空孔に配線などを通して省スペース化できる。   In addition, when a cylindrical winding core (pipe) is used, space can be saved through wiring or the like in the hollow hole of the winding core.

つぎに、上記熱伝導パス部材の一使用例を、図17に示す図16を組み込んだパソコン筐体の平面図及び図18に示す図17のE−E側断面図を用いて説明する。なお、図19及び図20の従来のパソコン筐体と同じ構成部品には同一符号を付し、その説明を省略する。   Next, an example of the use of the heat conduction path member will be described with reference to a plan view of a personal computer housing incorporating FIG. 16 shown in FIG. 17 and a cross-sectional side view taken along line EE of FIG. 17 shown in FIG. In addition, the same code | symbol is attached | subjected to the same component as the conventional personal computer housing | casing of FIG.19 and FIG.20, and the description is abbreviate | omitted.

熱伝導パス部材12の巻回部13から延出した一方の接続部12a−1は、本体部筐体24内で最も大きな発熱量をもつ発熱体24a(図18参照)、即ちMPUの上面に接触させて、発生する熱を受熱(集熱)する高熱伝導性金属板(例えば、アルミニウム板またはその合金板など)でなるヒートスプレッダ10に例えば、押さえ板16aで押さえてねじ止めする。   One connecting portion 12a-1 extending from the winding portion 13 of the heat conduction path member 12 is formed on the heating element 24a (see FIG. 18) having the largest heat generation amount in the main body casing 24, that is, on the upper surface of the MPU. The heat spreader 10 made of a highly thermally conductive metal plate (for example, an aluminum plate or an alloy plate thereof) that receives and collects (collects) the generated heat is pressed with a pressing plate 16a and screwed.

他方の接続部12a−1は、表示部筐体100と共に高熱伝導性金属板(例えばアルミニウム板またはその合金板など)を基材にしてインモールド法により一体成形された放熱部101(図1の熱伝導パス部22及び受熱部23のない形状のもの)の一端に押さえ板16bでねじ止め(またはねじ止めできない基材の場合、銅箔接着テープで接着)により接続する。なお、接続面にはサーマルコンパウンドを塗布しておくとよい。   The other connecting portion 12a-1 is a heat radiating portion 101 (in FIG. 1) integrally formed by an in-mold method using a high thermal conductivity metal plate (for example, an aluminum plate or an alloy plate thereof) together with the display unit casing 100 as a base material. It is connected to one end of the heat conduction path portion 22 and the heat receiving portion 23) by screwing with the pressing plate 16b (or by bonding with a copper foil adhesive tape in the case of a base material that cannot be screwed). In addition, it is good to apply | coat a thermal compound to a connection surface.

そのとき、熱伝導パス部材12の巻回部13の巻回軸心は、ヒンジ部37の回動中心に略一致するように配置する。   At that time, the winding axis of the winding part 13 of the heat conduction path member 12 is arranged so as to substantially coincide with the rotation center of the hinge part 37.

これにより、表示部筐体の開閉に伴う巻回部の渦巻き状の巻径が拡縮変位して曲げ応力を巻回部全体に分散されるため、表示部筐体の開閉に伴う熱伝導パス部材の疲労を軽減する。   As a result, the spiral winding diameter of the winding part accompanying opening and closing of the display unit casing expands and contracts and the bending stress is distributed over the entire winding part, so that the heat conduction path member accompanying opening and closing of the display unit casing Reduce fatigue.

つぎに、このパソコンの筐体の放熱効果を評価するため、パソコンを実際に動作させて温度測定を行った。なお、パソコンの動作中の消費電力は、プリント配線板8.9W(MPUの5W分を含む)、電源2.8W、HDD2.5W、PCMCIA1.5Wで、それぞれの電力に相当する熱を発生する。   Next, in order to evaluate the heat dissipation effect of the case of this personal computer, the temperature was measured by actually operating the personal computer. In addition, the power consumption during the operation of the personal computer generates heat corresponding to each power with a printed wiring board 8.9 W (including 5 W of MPU), power supply 2.8 W, HDD 2.5 W, and PCMCIA 1.5 W. .

そして、放熱効果を比較するため、前述した従来の放熱部と一体成形の熱伝導パス部を備えたパソコンを比較例として同様に動作させ温度測定を行った。   In order to compare the heat radiation effect, a temperature measurement was performed by operating the personal computer provided with the above-described conventional heat radiation portion and the integrally formed heat conduction path portion as a comparative example.

その結果、本発明の熱伝導パス部材で接続した場合は、比較例に比べてMPUの温度が10°C低下し、表示部筐体の表面温度は40°Cを下回り、パソコン筐体表面の温度基準である45°C以下を達成でき、比較例に劣らない十分な放熱効果が確認できた。   As a result, when connected by the heat conduction path member of the present invention, the temperature of the MPU is reduced by 10 ° C. compared to the comparative example, the surface temperature of the display unit case is lower than 40 ° C. A temperature reference of 45 ° C. or lower could be achieved, and a sufficient heat dissipation effect comparable to that of the comparative example could be confirmed.

また、熱伝導パス部材の絶縁シートであるポリエチレンシートの幅をグラファイトシートの幅より大きくして、グラファイトシートの耳端部を絶縁シートで保護しているため、耳端部に亀裂が生じにくくなる。   In addition, since the width of the polyethylene sheet, which is the insulating sheet of the heat conduction path member, is larger than the width of the graphite sheet, and the ear end portion of the graphite sheet is protected by the insulating sheet, the ear end portion is less likely to crack. .

表示部筐体の繰り返し開閉評価によれば、熱伝導パス部材は表示部筐体の少なくとも2万回の開閉に耐えられることが確認できた。   According to the repeated opening / closing evaluation of the display unit casing, it was confirmed that the heat conduction path member can withstand at least 20,000 times of opening / closing of the display unit casing.

つぎに、図示はしないが、巻回部を円柱状の巻心(素材はポリイミド樹脂)に巻いた熱伝導パス部材を同様にパソコンに組み込み、動作試験を行った。   Next, although not shown in the figure, a heat conduction path member in which a winding portion is wound around a cylindrical core (a material is polyimide resin) is similarly incorporated into a personal computer, and an operation test was performed.

その結果、前記比較例に比べてMPUの温度が15°C低下し、表示部筐体の表面温度は40°Cを下回り、パソコン筐体表面の温度基準である45°C以下を達成でき、巻心を用いても放熱効果が低下しないことが確認された。   As a result, the temperature of the MPU is reduced by 15 ° C. compared to the comparative example, the surface temperature of the display unit housing is lower than 40 ° C., and the temperature reference of 45 ° C. or less, which is the temperature standard of the PC housing surface, can be achieved. It was confirmed that the heat dissipation effect did not decrease even when the winding core was used.

また、巻回部を巻心に巻いたことにより、グラファイトシートの巻き形状のくずれを防止でき、巻回部の内径寸法を精度よく確保できた。   Moreover, by winding the winding part around the winding core, it was possible to prevent the winding shape of the graphite sheet from being broken, and to ensure the inner diameter dimension of the winding part with high accuracy.

また、巻回部を円筒状の巻心(パイプ)に巻いた熱伝導パス部材でも同程度の放熱効果が得られた。   Further, the same heat radiation effect was obtained even with a heat conduction path member in which the winding portion was wound around a cylindrical winding core (pipe).

さらに、円筒形の巻心の中空孔に配線を通すことができるため、パソコン筐体の内部空間が有効利用されて省スペース化できる。   Furthermore, since the wiring can be passed through the hollow hole of the cylindrical winding core, the internal space of the personal computer housing can be used effectively and space can be saved.

なお、表示部筐体の放熱部と共にインモールド法により一体製作する熱伝導パス部及び受熱部に比べて、図14及び図16の熱伝導パス部材は別体(単体)で製作するので巻回部を設けることは容易となる。   Note that the heat conduction path member shown in FIGS. 14 and 16 is manufactured as a separate body (single unit) compared to the heat conduction path part and the heat receiving part that are integrally manufactured by the in-mold method together with the heat radiating part of the display unit casing. It becomes easy to provide the part.

発熱量の大きな本体部筐体の内部の熱を発熱量の小さな表示部筐体の放熱部へ表示部筐体の開閉に支障なく移動し、自然対流により外部に熱放散する電子機器筐体及びそれに用いる熱伝導パス部材を提供できる。   An electronic device housing that moves the heat inside the main body housing with a large calorific value to the heat radiating section of the display housing with a small calorific value without any trouble in opening and closing the display housing, and dissipates heat by natural convection to the outside A heat conduction path member used therefor can be provided.

本発明による第1の実施例の平面図Plan view of the first embodiment according to the present invention. 図1に示す放熱部のB−B断面図BB sectional view of the heat dissipation part shown in FIG. 図1の第2の筐体の製造工程を示す図The figure which shows the manufacturing process of the 2nd housing | casing of FIG. 図3に続く製造工程を示す図The figure which shows the manufacturing process following FIG. 図1をパソコンに組み込んだ平面図Top view of Fig. 1 built into a personal computer 図5のC−C側断面図CC sectional view of FIG. 図1との比較例1を示す平面図The top view which shows the comparative example 1 with FIG. 本発明による第3の実施例の平面図及び熱伝導パス部の断面図The top view of 3rd Example by this invention, and sectional drawing of a heat conduction path part 本発明による第5の実施例の放熱部の部分断面図Partial sectional view of the heat dissipation part of the fifth embodiment according to the present invention. 本発明による第6の実施例の放熱部の部分断面図Partial sectional view of the heat dissipation part of the sixth embodiment according to the present invention 本発明による第7の実施例の放熱部の部分断面図Partial sectional view of the heat dissipation part of the seventh embodiment according to the present invention 本発明による一実施例の回動手段を含む放熱構造を示す平面図The top view which shows the thermal radiation structure containing the rotation means of one Example by this invention 図12における回動手段の組立側断面図FIG. 12 is an assembled side sectional view of the rotating means in FIG. 本発明による熱伝導パス部材の第1の実施例の斜視図1 is a perspective view of a first embodiment of a heat conducting path member according to the present invention. FIG. 図14の展開図FIG. 14 development view 本発明による熱伝導パス部材の第2の実施例の斜視図The perspective view of the 2nd Example of the heat conduction path member by this invention 図16を組み込んだパソコン筐体の平面図Plan view of a PC housing incorporating FIG. 図17のE−E側断面図EE side sectional view of FIG. 従来技術によるノート型パソコンを示す平面図Plan view showing a conventional notebook computer 図19のA−A側断面図AA sectional side view of FIG.

符号の説明Explanation of symbols

10:ヒートスプレッダ
11:表示パネル
12,12−1,12−2:熱伝導パス部材
12a:グラファイトシート
12a−1:接続部
12b:絶縁シート
12c:接着剤
13:巻回部
14:円柱形の巻心
15:円筒形の巻心(パイプ)
16a,16b:押さえ板
20,40,50,60,70,80,100:第2の筐体(表示部筐体)
21,41,51,61,71,81,101:放熱部
22,42,52:熱伝導パス部
23,43,53:受熱部
24:第1の筐体(本体部筐体)
24a:発熱体
25:金属基板
26:樹脂
27:側枠
28:接着剤
29:位置決め用孔
30:成形用金型
30a:下金型
30b:上金型
31:ガイド孔
32:固定ピン
33:コイルばね
34:ランナ
35:ストッパ
36:キャビティ
37:ヒンジ部
56:PETシート
65,75,85:第1の金属基板
66:樹脂
67,76,86:第2の金属基板
77:接着剤
77a:金属粒子
78:空気層
79:空気抜き孔
87:金属網
88:冷却液
89:空気抜き孔
90:回動手段
91:第1のヒートパイプ
91a:尖端部
92:第2のヒートパイプ
93:回動体
93a:中空孔
93b:錐揉み孔
93c:めねじ部
93d:挿入孔
94:軸受
94a:軸孔
94b:おねじ部
95:フィン
96:熱伝導性流体
97:Oリング
98:液体金属
10: Heat spreader 11: Display panel 12, 12-1, 12-2: Thermal conduction path member 12a: Graphite sheet 12a-1: Connection part 12b: Insulating sheet 12c: Adhesive 13: Winding part 14: Cylindrical winding Core 15: Cylindrical winding core (pipe)
16a, 16b: pressure plate 20, 40, 50, 60, 70, 80, 100: second housing (display housing)
21, 41, 51, 61, 71, 81, 101: heat radiation part 22, 42, 52: heat conduction path part 23, 43, 53: heat receiving part 24: first housing (main body housing)
24a: Heating element 25: Metal substrate 26: Resin 27: Side frame 28: Adhesive 29: Positioning hole 30: Mold for molding 30a: Lower mold 30b: Upper mold 31: Guide hole 32: Fixing pin 33: Coil spring 34: Runner 35: Stopper 36: Cavity 37: Hinge portion 56: PET sheet 65, 75, 85: First metal substrate 66: Resin 67, 76, 86: Second metal substrate 77: Adhesive 77a: Metal particles 78: Air layer 79: Air vent hole 87: Metal net 88: Coolant
89: Air venting hole 90: Rotating means 91: First heat pipe 91a: Pointed portion 92: Second heat pipe 93: Rotating body 93a: Hollow hole 93b: Conical hole 93c: Female thread portion 93d: Insertion hole 94 : Bearing 94a: Shaft hole 94b: Male thread portion 95: Fin 96: Thermally conductive fluid 97: O-ring 98: Liquid metal

Claims (3)

面方向に異方性を有するグラファイトシートの複数の端部を発熱、熱伝導または放熱を行う部材との接続部とし、前記グラファイトシートの片面または両面に絶縁シートを介在させて巻回した巻回部を有してなることを特徴とする熱伝導パス部材。Winding in which a plurality of ends of a graphite sheet having anisotropy in the plane direction are connected to a member that generates heat, conducts heat or dissipates, and an insulating sheet is interposed on one or both sides of the graphite sheet. The heat conduction path member characterized by having a part. 前記巻回部は、円柱形または円筒形の巻心に巻くことを特徴とする請求項1記載の熱伝導パス部材。2. The heat conduction path member according to claim 1, wherein the winding portion is wound around a columnar or cylindrical core. 発熱体を有する第1の筐体と、該第1の筐体の発熱体の熱を外部に熱放散する放熱部を有する第2の筐体とで構成され、前記第2の筐体が第1の筐体に対しヒンジ部により開閉される電子機器筐体において、A first casing having a heating element; and a second casing having a heat radiating portion for radiating heat of the heating element of the first casing to the outside. In an electronic device housing that is opened and closed by a hinge portion with respect to one housing,
前記第1の筐体の発熱体と前記第2の筐体の放熱部とが請求項1または請求項2記載の熱伝導パス部材の接続部で接続されるとともに、前記巻回部はその巻回軸心が前記ヒンジ部の回動中心に略一致するように配設されてなることを特徴とする電子機器筐体。The heating element of the first casing and the heat radiating section of the second casing are connected by the connection portion of the heat conduction path member according to claim 1 or 2, and the winding section is wound around the winding section. An electronic device casing, wherein the rotation axis is disposed so as to substantially coincide with the rotation center of the hinge portion.
JP2004013794A 1998-12-10 2004-01-22 Electronic device casing and heat conduction path member used therefor Expired - Fee Related JP3912382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004013794A JP3912382B2 (en) 1998-12-10 2004-01-22 Electronic device casing and heat conduction path member used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP35147998 1998-12-10
JP2004013794A JP3912382B2 (en) 1998-12-10 2004-01-22 Electronic device casing and heat conduction path member used therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12856799A Division JP3533987B2 (en) 1998-12-10 1999-05-10 Electronic device housing and heat conduction path member used therefor

Publications (2)

Publication Number Publication Date
JP2004179675A JP2004179675A (en) 2004-06-24
JP3912382B2 true JP3912382B2 (en) 2007-05-09

Family

ID=32715372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013794A Expired - Fee Related JP3912382B2 (en) 1998-12-10 2004-01-22 Electronic device casing and heat conduction path member used therefor

Country Status (1)

Country Link
JP (1) JP3912382B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7292441B2 (en) * 2003-11-25 2007-11-06 Advanced Energy Technology Inc. Thermal solution for portable electronic devices
JP4749046B2 (en) * 2005-06-13 2011-08-17 株式会社リコー Fixing device, image forming apparatus
JP4730180B2 (en) * 2006-04-07 2011-07-20 パナソニック株式会社 Cooling system
JP2009216343A (en) * 2008-03-12 2009-09-24 Furukawa Electric Co Ltd:The Heat transfer hinge device and cooling apparatus
US10646315B2 (en) 2008-12-30 2020-05-12 Ultradent Products, Inc. Dental curing light having unibody design that acts as a heat sink
CN103096691B (en) 2012-06-25 2015-04-29 北京中石伟业科技无锡有限公司 Graphite film heat conductor
JP2021012590A (en) * 2019-07-08 2021-02-04 レノボ・シンガポール・プライベート・リミテッド Thermal module and electronic device

Also Published As

Publication number Publication date
JP2004179675A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US8210241B2 (en) Heat sink fan
US6507488B1 (en) Formed hinges with heat pipes
JP5610284B2 (en) Heat dissipation structure
JP3533987B2 (en) Electronic device housing and heat conduction path member used therefor
US20100142154A1 (en) Thermally Dissipative Enclosure Having Shock Absorbing Properties
WO2018076646A1 (en) Cooling device and manufacturing method therefor
US20040216306A1 (en) Heat sink, manufacturing method thereof, and electronic apparatus having the heat sink
JPH08222671A (en) Cooler for circuit module
JP2008541490A (en) Thermal lamination module
JP3912382B2 (en) Electronic device casing and heat conduction path member used therefor
CN112212591B (en) Device comprising a housing with a heat-dissipating structure and housing for a device
CN109152273A (en) Electronic device
JP2006053914A (en) Electronic device
CN106681461A (en) Heat dissipation structure of electronic product
JP2001085585A (en) Cooling fan fixing device
JPH10303582A (en) Cooing device of circuit module and portable information equipment mounting circuit module
JP4730180B2 (en) Cooling system
JPH1195871A (en) Heat radiation structure of electronic equipment
JP2020061482A (en) Heat dissipation structure
JP3709868B2 (en) Cooling system for electronic equipment
JP2006332148A (en) Cooler
JP4549659B2 (en) Heat sink, housing and cooling fan, and electronic device having heat sink
JPH09115279A (en) Magnetic disk device and electronic device mounting the same
CN220894853U (en) Solid state disk, mainboard and computer
CN205987655U (en) Combined heat radiator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees