JP3911518B2 - Susceptor for vapor phase growth apparatus and vapor phase growth method - Google Patents

Susceptor for vapor phase growth apparatus and vapor phase growth method Download PDF

Info

Publication number
JP3911518B2
JP3911518B2 JP10077495A JP10077495A JP3911518B2 JP 3911518 B2 JP3911518 B2 JP 3911518B2 JP 10077495 A JP10077495 A JP 10077495A JP 10077495 A JP10077495 A JP 10077495A JP 3911518 B2 JP3911518 B2 JP 3911518B2
Authority
JP
Japan
Prior art keywords
susceptor
wafer
vapor phase
phase growth
counterbore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10077495A
Other languages
Japanese (ja)
Other versions
JPH08277193A (en
Inventor
秀樹 西畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP10077495A priority Critical patent/JP3911518B2/en
Publication of JPH08277193A publication Critical patent/JPH08277193A/en
Application granted granted Critical
Publication of JP3911518B2 publication Critical patent/JP3911518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、枚葉式の気相成長装置に使用するサセプターの改良に係り、サセプターに凹部として形成したザグリ部の周端部を傾斜面となし、同部でウェーハの裏面外周部と接触支持する構成となし、サセプター上でのウェーハのスベリを防止し、サセプター表面に異常突起等がないためスリップや汚染等を低減可能にした気相成長装置用サセプターと気相成長方法に関する。
【0002】
【従来の技術】
半導体ウェーハへエピタキシャル膜を成長させるためには、一般に加熱方法やサセプターの形状の違いにより各種構造の気相成長装置が使用されている。この中で、従来は生産性の問題により円形平板上のサセプターを下側から加熱する縦型気相成長装置や、樽型のサセプターを側面のランプにより加熱するバレル型気相成長装置が多用されてきた。
【0003】
しかし、現状ではエピタキシャル膜に要求される品質が年々厳しくなり、従来の縦型やバレル型の気相成長装置では対応できなくなる傾向があり、最近は枚葉型の気相成長装置が注目されている。
一般に、横型枚葉式の気相成長装置は、図2に示すように、石英製の通路状のチャンバー1からなり、黒鉛の母材にSiCをコートした円盤状のサセプター2上に半導体ウェーハ3を載せ、サセプター2の表裏両面に配置したランプ4により加熱し、図中左端のノズル部5より各種原料ガスをチャンバー1内に導入する構造となっている。
【0004】
この円盤状のサセプターを使用してエピタキシャル成長を行う気相成長装置において、問題になるのは、ウェーハをサセプター上に搬送する際にベルヌーイチャックを使用すると約10mmの高さからウェーハをサセプター上に落とすためウェーハとサセプターの間のガスが速やかに抜けずに、ウェーハがサセプター上を滑り、ウェーハの一端がサセプターのザグリの側壁に接触するという点である。
【0005】
半導体ウェーハにエピタキシャル成長を行う場合、スリップ欠陥の発生を抑えるためには、プロセス中の半導体ウェーハの温度分布を均一にする必要がある。しかし、前述のようにウェーハがサセプター上を滑り、ウェーハがサセプターの側壁に接触したままエピタキシャル成長を行うと、接触部でウェーハ面内の温度分布が大きく変化し、スリップ発生の原因となり、半導体ウェーハの歩留が低下する。
また、ウェーハがサセプターに接触していると、エピタキシャル成長中にもウェーハ上では温度分布が不均一になるために、エピタキシャル膜の比抵抗分布が悪くなり、膜の均一性が劣化する。
【0006】
【発明が解決しようとする課題】
そこで従来は、サセプター表面には、ウェーハのスベリを防止するために、図3のAに示す如く、サセプター2のウェーハを載置するために浅い凹部となした所謂ザグリ部2aにはローレットというメッシュ状の浅い細溝が彫ってある。従って、図3のBに示す如く、サセプター表面には多数の凸部が形成され、すなわち、載置面の表面は拡大すると四角錐の頂点を削ったような形状の連続となっているため、これらの凸部とウェーハの裏面が接していることになる。
【0007】
図3のBに示す凸部の形状はここでは平坦面として図示するが、加工上の問題から凸部の先端にはバンプという異常突起が発生しやすく、この異常突起がウェーハと接触すると、スリップ発生の原因となったり、あるいはウェーハ搬送時のキズの原因となる。サセプターの表面の凸部が、バンプとは逆に欠落すると、その部分がピンホールとなりウェーハに汚染等をもたらすことになる。
ウェーハのスベリが原因のスリップ欠陥の問題を解決するために、従来はザグリ部のローレット形状の変更を行ってきたが、これではサセプター上の異常突起を防ぐことはできない。
【0008】
この発明は、横型枚葉式気相成長装置において、ウェーハを搬送する際にウェーハが滑ることがなく、サセプター表面には従来のローレットによる異常な突起が発生しないよう構成された該装置用のサセプターと気相成長方法の提供を目的とする。
【0009】
【課題を解決するための手段】
発明者は、サセプターのザグリ部にローレット加工を施することなく、ウェーハの搬送時にウェーハのスベリがないような気相成長用サセプターを目的に、ザグリ部の形状などについて種々検討した結果、サセプターに凹部として形成したザグリ部の周端部を傾斜面となし、同部でウェーハの裏面外周部と接触支持する構成とすることで、サセプター上でのウェーハのスベリを防止でき、サセプター表面には異常突起等がないため、気相成長を施した際にこれに伴うスリップや汚染等を低減できることを知見し、この発明を完成した。
【0010】
すなわち、本発明の気相成長装置用サセプターは、サセプターの表裏両面側に加熱手段を設けた枚葉式の気相成長装置に使用するサセプターにおいて、
該サセプター上面にはウェーハを載置するための凹部として形成したザグリ部が形成され、
該ザグリ部が、載置した前記ウェーハと平行な平坦面となる底面と、該底面の周囲に前記底面から角度θで上昇する逆円錐の傾斜面とされる周端部とを有するものとされ、
この周端部が、その傾斜面において載置された前記ウェーハの裏面外周側と接触して該ウェーハを接触支持するとともに、前記ウェーハ表面高さが前記サセプター上面と同一かあるいはサセプター上面より高くなる形状とされ、
該周端部でウェーハを接触支持した際ウェーハの裏面外周以外はザグリ部と接触しないとともに、
前記底面と前記ウェーハとの間隔が1〜10mm、前記周端部傾斜角θが10度〜80度、前記ウェーハ表面がサセプター上面より0〜0.5mm高くなるように設定されてなることにより上記課題を解決した。
この発明は、サセプターの表裏両面側に加熱手段を設けた枚葉式の気相成長装置に使用するサセプターにおいて、ウェーハを載置するための凹部として形成したザグリ部の周端部の形状を角度θで上昇する傾斜面とし、この傾斜面でウェーハを接触支持してウェーハの裏面外周以外はザグリ部と接触しないことを特徴とする気相成長装置用サセプターである。さらに、この発明は、サセプターの表裏両面側に加熱手段を設けた枚葉式の気相成長方法であり、ウェーハを載置するための凹部からなるザグリ部の周端部形状を角度θで上昇する傾斜面となし、この傾斜面でウェーハを接触支持してウェーハの裏面外周以外はザグリ部と接触しない構成からなるサセプターを用い、気相成長を行うことができる
また、本発明の気相成長方法は、上記のサセプターを用いて、気相成長を行うことができる。
【0011】
また、この発明は、上記の構成のサセプターにおいて、ウェーハを載置するための凹部として形成したザグリ部の底面をウェーハと平行な平坦面とするとともに、ザグリ部の周端部の形状を角度θで上昇する傾斜面とし、この傾斜面でウェーハを接触支持してウェーハの裏面外周以外はザグリ部と接触しないことにした気相成長装置用サセプターや、ザグリ部に載置されたウェーハが裏面外周側でザグリ部の終端部と接触し、ウェーハ表面高さがサセプター上面と同一かあるいはサセプター上面より高い気相成長装置用サセプターを併せて提案する。
【0012】
【作用】
図1にこの発明によるサセプター10を示すが、ザグリ部11は単なる凹部であり、従来は図3Bに示すごとく、ザグリ部2aの表面は拡大すると四角錘の頂点を削ったような形状の連続になっているのに対して、ザグリ部11のローレット加工を行わず平坦な面として、ザグリ部11の周端部12を垂直ではなく斜めに削り、ザグリ部中心側から上昇する傾斜面(角度θ)となしてある。
ウェーハ3は、この斜めのザグリ部11の周端部12にウェーハの裏面の外周あるいは側面で接触することになり、ウェーハ3裏面は外周以外はザグリ部11と接触することがない。
【0013】
従って、ウェーハ3をサセプター10上に搬送する際のウェーハ3のスベリがなくなり、このスベリによるスリップ不良の発生が低減できる。また、ウェーハのスベリがなくなることから毎回サセプター10上の同じ位置にウェーハを搬送できることになり、このサセプター10を用いて気相成長を実施すると、得られるエピタキシャル膜の品質均一性(再現性)が改善される。さらに、サセプターの表面には従来のようなローレット加工を行わないので、表面の異常な突起部や欠落はなく、これらによるスリップ欠陥、キズ、汚染等の発生を低減することができる。
【0014】
また、この発明による気相成長用サセプターは、ローレット加工を行わないため、従来のサセプターと比べると、加工コストが安く、SiCコート時の反りの発生も防止できる。
さらに、加工が容易なため従来は使用できなかったような素材(例えばSiC)を母材にしたサセプターの作製も可能になり、従来の黒鉛を母材にしたサセプターと比べ、使用限度(寿命)が長いサセプターを作製することができる。
【0015】
この発明において、図1Bに示すザグリ部11の周端部12の傾斜角は10度〜80度の間、ウェーハ3とザグリ部底面との間隔は1〜10mm、半導体ウェーハ3の表面は当該サセプター10の最上面と同じ高さか、それ以上になるように使用するウェーハ3のサイズや加熱条件等により、形状寸法などを適宜選定することが望ましい。
また、この発明において、サセプターのザグリ部は図示のザグリ部11の周端部12の形状が逆円錐の所要横断面における外周形状と相似形であるほか、あるいは、逆多角錘の所要横断面における外周形状と相似形とすることができる。
【0016】
【実施例】
実施例1
図2に示す枚葉型気相成長装置により、直径150mm、P型(100)のSi半導体ウェーハを用いて、炉の温度を上げない状態で100枚のウェーハを用い搬送テストを行い、100枚のウェーハの中で何枚のウェーハが搬送時に滑るかを観察して評価した。
この発明による気相成長用サセプターには、ザグリ部の周端部の傾斜角度が30度でウェーハとザグリ部底面との間隔が2mmで、半導体ウェーハ表面が当該サセプターの最上面より0.5mm高くなるように各部の寸法形状を決定した。
又、比較のために図3に示す従来のローレット加工のあるサセプターでの評価も行った。
【0017】
評価結果を、横軸にサセプターの条件、縦軸にはスベリが発生した割合を示した図4に示すとおり、従来は約85%のウェーハがスベリを生じていたものが、この発明のサセプターでは0%になり、ウェーハ搬送時のスベリに対する改善が確認された。
【0018】
実施例2
この発明による気相成長用サセプターを使用して、図2に示す枚葉型気相成長装置により、直径150mm、P型(100)のSi半導体ウェーハを用いて、SiHCl3をSiソースとして反応温度1150℃で、厚さ約10μmのエピタキシャル膜を成長させた。
比較のために、同じ枚葉型気相成長装置を使用して、搬送テストにおいてスベリが確認された従来のサセプタで100枚のエピタキシャル成長ウェーハを作成した。
【0019】
これら合計200枚のエピタキシャル成長ウェーハについて、スリップ欠陥の発生状況を調べた。図5にこの発明によるサセプターでのウェーハ1枚あたりのスリップ欠陥の合計長さを示し、図6には従来のサセプターでのスリップ欠陥の合計長さを示す。
これらの結果により、従来のサセプターはスリップ欠陥の長さが最大200mmであったものが、この発明のサセプターでは最大でも40mmに減少していることが分かる。
【0020】
また、これら200枚のエピタキシャル成長ウェーハについて、ウェーハ上の9点の比抵抗を測定し、その最大値と最小値からバラツキを求め、連続反応での比抵抗の再現性を評価した。
図7にこの発明によるサセプターでの比抵抗の測定結果を、図8にウェーハの搬送時にスベリが発生した従来のサセプターでの測定結果を示す。
これにより、従来は比抵抗のバラツキが±3.7〜4.9%であったのに対し、この発明のサセプターでは、バラツキは±3.1〜3.9%と改善されていることが分かる。
【0021】
【発明の効果】
この発明によるサセプターは、実施例から明らかなように、従来のサセプターと比べ、ウェーハをサセプターへ搬送する際のスベリがなく、その結果スリップ欠陥の発生を低減することができ、ウェーハのスベリが無いため、この発明のサセプターを用いて気相成長を実施して得られるエピタキシャル成長ウェーハの比抵抗のバラツキも改善できる。
また、従来のサセプタではザグリ部にロレット加工を施していたためにサセプター作製の歩留まりが悪く、その分コストが高くなっていたが、この発明のサセプターではローレット加工が無いため、加工が容易で加工コストを抑えることができる。
【0022】
この発明のサセプターは、表面は平坦であるので、異常な突起や表面の欠落等の不良はほとんど発生しないし、ウェーハの裏面は外周以外はサセプター表面に接触することが無いため、サセプターのピンホールがウェーハに転写したり、ウェーハ裏面にキズを生じるようなことがない。
さらに、従来のサセプタに比べて加工が容易であるため、例えば高純度のSiCのような、従来は、ローレット加工が複雑であったために使用できなかった材料を、サセプタの母材として使用でき、サセプタの寿命の延長やエピタキシャル膜の品質改善に効果が期待できる。
【図面の簡単な説明】
【図1】この発明によるサセプターの実施例を示す説明図であり、Aは上面説明図、Bは縦断説明図である。
【図2】横型枚葉式の気相成長装置の構成を示す説明図である。
【図3】従来のサセプターの構成を示す説明図であり、Aは上面説明図、Bは縦断説明図である。
【図4】スベリ発生率を比較するグラフである。
【図5】この発明のサセプターを使用した場合のスリップ発生状況を示すグラフである。
【図6】従来のサセプターを使用した場合のスリップ発生状況を示すグラフである。
【図7】この発明のサセプターを使用した場合のエピタキシャル成長ウェーハの比抵抗の面内分布を示すグラフである。
【図8】従来のサセプターを使用した場合のエピタキシャル成長ウェーハの比抵抗の面内分布を示すグラフである。
【符号の説明】
1 チャンバー
2,10 サセプター
2a,11 ザグリ部
3 半導体基板
4 ランプ
5 ノズル部
12 周端部
[0001]
[Industrial application fields]
The present invention relates to an improvement of a susceptor used in a single-wafer type vapor phase growth apparatus. The peripheral end portion of a counterbore portion formed as a recess in the susceptor is formed as an inclined surface, and this portion is in contact with the outer peripheral portion of the back surface of a wafer. The present invention relates to a susceptor for a vapor phase growth apparatus and a vapor phase growth method that can prevent slippage of a wafer on the susceptor and that can reduce slip and contamination because there is no abnormal protrusion on the susceptor surface.
[0002]
[Prior art]
In order to grow an epitaxial film on a semiconductor wafer, vapor phase growth apparatuses having various structures are generally used depending on the heating method and the difference in the shape of the susceptor. Conventionally, vertical vapor phase growth apparatuses that heat a susceptor on a circular flat plate from the lower side and barrel type vapor phase growth apparatuses that heat a barrel-shaped susceptor with a side lamp are frequently used due to productivity problems. I came.
[0003]
However, at present, the quality required for epitaxial films is becoming stricter year by year, and there is a tendency that conventional vertical type or barrel type vapor phase growth apparatuses cannot be used. Recently, single wafer type vapor phase growth apparatuses have been attracting attention. Yes.
In general, as shown in FIG. 2, a horizontal single wafer type vapor phase growth apparatus includes a quartz passage-shaped chamber 1 and a semiconductor wafer 3 on a disk-shaped susceptor 2 in which SiC is coated on a graphite base material. And heated by lamps 4 arranged on both front and back surfaces of the susceptor 2 to introduce various source gases into the chamber 1 from the nozzle portion 5 at the left end in the figure.
[0004]
In a vapor phase growth apparatus that performs epitaxial growth using this disk-shaped susceptor, the problem is that when a wafer is transferred onto the susceptor, a Bernoulli chuck is used to drop the wafer onto the susceptor from a height of about 10 mm. Therefore, the gas between the wafer and the susceptor does not escape quickly, the wafer slides on the susceptor, and one end of the wafer comes into contact with the counterbore side wall of the susceptor.
[0005]
When epitaxial growth is performed on a semiconductor wafer, it is necessary to make the temperature distribution of the semiconductor wafer uniform during the process in order to suppress the occurrence of slip defects. However, as described above, if the wafer slides on the susceptor and epitaxial growth is performed while the wafer is in contact with the side wall of the susceptor, the temperature distribution in the wafer surface greatly changes at the contact portion, which causes the occurrence of slipping. Yield decreases.
Further, when the wafer is in contact with the susceptor, the temperature distribution is not uniform on the wafer even during epitaxial growth, so that the specific resistance distribution of the epitaxial film is deteriorated and the uniformity of the film is deteriorated.
[0006]
[Problems to be solved by the invention]
Therefore, conventionally, in order to prevent the wafer from slipping on the surface of the susceptor, as shown in FIG. 3A, the so-called counterbore portion 2a, which is a shallow recess for placing the wafer of the susceptor 2, is a mesh called knurling. There are carved shallow narrow grooves. Therefore, as shown in FIG. 3B, a large number of convex portions are formed on the susceptor surface, that is, when the surface of the mounting surface is enlarged, it has a continuous shape such as the apex of the quadrangular pyramid. These convex portions are in contact with the back surface of the wafer.
[0007]
Although the shape of the convex portion shown in FIG. 3B is shown as a flat surface here, abnormal protrusions called bumps are likely to occur at the tip of the convex portion due to processing problems. It may be a cause of generation or a scratch during wafer transfer. If the convex portion on the surface of the susceptor is missing in the opposite direction to the bump, the portion becomes a pinhole and causes contamination or the like on the wafer.
Conventionally, the knurled shape of the counterbore portion has been changed in order to solve the problem of the slip defect caused by the slippage of the wafer, but this cannot prevent the abnormal protrusion on the susceptor.
[0008]
The present invention relates to a susceptor for a horizontal type single-wafer vapor phase growth apparatus configured so that the wafer does not slip when the wafer is transferred, and an abnormal protrusion due to a conventional knurl is not generated on the susceptor surface. And to provide a vapor phase growth method .
[0009]
[Means for Solving the Problems]
The inventor conducted various investigations on the shape of the counterbore part for the purpose of a susceptor for vapor phase growth in which the wafer is not slipped during wafer transfer without performing knurling on the counterbore part of the susceptor. The peripheral edge part of the counterbore part formed as a concave part is formed as an inclined surface, and this part is configured to contact and support the outer peripheral part of the back surface of the wafer, so that the wafer can be prevented from slipping on the susceptor, and the susceptor surface is abnormal. Since there is no protrusion or the like, the inventors have found that slip and contamination associated with vapor phase growth can be reduced, and the present invention has been completed.
[0010]
That is, the susceptor for the vapor phase growth apparatus of the present invention is a susceptor used for a single wafer type vapor phase growth apparatus in which heating means are provided on both front and back sides of the susceptor.
On the susceptor upper surface, a counterbore portion formed as a recess for placing a wafer is formed,
The counterbore part has a bottom surface that is a flat surface parallel to the mounted wafer, and a peripheral end portion that is an inclined surface of an inverted cone that rises at an angle θ from the bottom surface around the bottom surface. ,
The peripheral edge portion contacts the back outer peripheral side of the wafer placed on the inclined surface to contact and support the wafer, and the wafer surface height is the same as or higher than the susceptor upper surface. Shape and
When the wafer is contact-supported at the peripheral edge portion, it is not in contact with the counterbore portion other than the outer periphery of the back surface of the wafer,
The distance between the bottom surface and the wafer is set to 1 to 10 mm, the peripheral edge inclination angle θ is set to 10 to 80 degrees, and the wafer surface is set to be 0 to 0.5 mm higher than the susceptor top surface. Solved the problem.
This invention relates to a susceptor used in a single-wafer type vapor phase growth apparatus in which heating means are provided on both front and back sides of a susceptor, and the shape of the peripheral end portion of a counterbore portion formed as a recess for mounting a wafer is angled. A susceptor for a vapor phase growth apparatus, characterized in that the inclined surface rises at θ, the wafer is in contact with and supported by the inclined surface, and only the outer periphery of the back surface of the wafer is in contact with the counterbore part. Furthermore, the present invention is a single-wafer vapor phase growth method in which heating means are provided on both the front and back sides of the susceptor, and the peripheral end shape of the counterbore portion formed by the concave portion for placing the wafer is raised at an angle θ. Vapor phase growth can be performed using a susceptor having a configuration in which the wafer is in contact with and supported by this inclined surface, and does not contact the counterbore except for the outer periphery of the back surface of the wafer.
Moreover, the vapor phase growth method of the present invention can perform vapor phase growth using the above susceptor.
[0011]
Further, according to the present invention, in the susceptor having the above-described configuration, the bottom surface of the counterbore part formed as a recess for mounting the wafer is a flat surface parallel to the wafer, and the shape of the peripheral end part of the counterbore part is defined as an angle θ. The susceptor for vapor phase growth equipment, which is supported by the inclined surface and is not in contact with the counterbore part other than the outer periphery of the backside of the wafer, or the wafer placed on the counterbore part is contact the end of the counterbore portion on the side, the wafer surface height susceptor upper surface of the same or susceptor upper surface higher vapor phase growth apparatus for susceptor proposes together.
[0012]
[Action]
FIG. 1 shows a susceptor 10 according to the present invention. The counterbore part 11 is merely a concave part. Conventionally, as shown in FIG. 3B, when the surface of the counterbore part 2a is enlarged, the shape of the square pyramid is sharpened. On the other hand, the peripheral edge 12 of the counterbore part 11 is cut not diagonally but obliquely as a flat surface without the knurling of the counterbore part 11, and an inclined surface rising from the center side of the counterbore part (angle θ) ).
The wafer 3 comes into contact with the peripheral end portion 12 of the oblique counterbore portion 11 at the outer periphery or side surface of the back surface of the wafer, and the back surface of the wafer 3 does not contact the counterbore portion 11 except for the outer periphery.
[0013]
Therefore, the slip of the wafer 3 when the wafer 3 is transferred onto the susceptor 10 is eliminated, and the occurrence of slip failure due to the slip can be reduced. Further, since the wafer slip is eliminated, the wafer can be transferred to the same position on the susceptor 10 every time. When vapor phase growth is performed using the susceptor 10, the quality uniformity (reproducibility) of the obtained epitaxial film is obtained. Improved. Furthermore, since the knurling process is not performed on the surface of the susceptor, there are no abnormal protrusions or omissions on the surface, and the occurrence of slip defects, scratches, contamination, etc. due to these can be reduced.
[0014]
Further, since the susceptor for vapor phase growth according to the present invention does not perform knurling, the processing cost is lower than that of the conventional susceptor, and warpage during SiC coating can be prevented.
In addition, since it is easy to process, it becomes possible to produce a susceptor using a material that could not be used in the past (for example, SiC) as a base material. A long susceptor can be made.
[0015]
In the present invention, during the inclination angle of the peripheral end portion 12 is 10 to 80 degrees of the counterbore portion 11 shown in FIG. 1B, interval of the wafer 3 and the counterbore portion bottom surface 1 to 10 mm, the surface of the semiconductor wafer 3 is the It is desirable to appropriately select the shape and the like according to the size of the wafer 3 to be used, the heating conditions, and the like so that the height is equal to or higher than the uppermost surface of the susceptor 10.
Further, in the present invention, the counterbore portion of the susceptor other shape of the peripheral end portion 12 of the illustrated countersunk portion 11 is outer peripheral shape similar to the shape of the required cross-section of the inverted cone, or principal cross section at the opposite polygonal cone It can be made similar to the outer peripheral shape in FIG.
[0016]
【Example】
Example 1
Using the single wafer type vapor phase growth apparatus shown in FIG. 2, a conveyance test was performed using 100 wafers without increasing the furnace temperature, using a P-type (100) Si semiconductor wafer having a diameter of 150 mm. It was evaluated by observing how many of the wafers slip during transportation.
In the susceptor for vapor phase growth according to the present invention, the angle of inclination of the peripheral edge of the counterbore part is 30 degrees, the distance between the wafer and the bottom face of the counterbore part is 2 mm, and the surface of the semiconductor wafer is 0.5 mm higher than the uppermost surface of the susceptor. The dimension shape of each part was determined so that it might become.
For comparison, an evaluation was also conducted using a conventional susceptor with knurling as shown in FIG.
[0017]
As shown in FIG. 4 in which the horizontal axis represents the susceptor conditions and the vertical axis represents the percentage of occurrence of slip, about 85% of the wafers had slip in the past. It became 0%, and the improvement with respect to the sliding at the time of wafer conveyance was confirmed.
[0018]
Example 2
Using the susceptor for vapor phase growth according to the present invention, a reaction temperature using SiHCl 3 as a Si source by using a single-wafer type vapor phase growth apparatus shown in FIG. An epitaxial film having a thickness of about 10 μm was grown at 1150 ° C.
For comparison, using the same single wafer type vapor phase growth apparatus to prepare a hundred epitaxial growth wafer in a conventional susceptor over the slip is confirmed in the transport test.
[0019]
A total of 200 epitaxially grown wafers were examined for occurrence of slip defects. FIG. 5 shows the total length of slip defects per wafer in the susceptor according to the present invention, and FIG. 6 shows the total length of slip defects in the conventional susceptor.
From these results, it can be seen that the conventional susceptor has a slip defect length of a maximum of 200 mm, but the susceptor of the present invention is reduced to a maximum of 40 mm.
[0020]
Further, with respect to these 200 epitaxially grown wafers, 9 specific resistances on the wafer were measured, variation was obtained from the maximum value and the minimum value, and the reproducibility of the specific resistance in the continuous reaction was evaluated.
FIG. 7 shows the measurement result of the specific resistance with the susceptor according to the present invention, and FIG. 8 shows the measurement result with the conventional susceptor in which sliding occurred during the wafer transfer.
As a result, while the variation in specific resistance has been ± 3.7 to 4.9% in the past, in the susceptor of the present invention, the variation has been improved to ± 3.1 to 3.9%. I understand.
[0021]
【The invention's effect】
As is apparent from the embodiments, the susceptor according to the present invention has no slippage when the wafer is transferred to the susceptor as compared with the conventional susceptor, and as a result, it is possible to reduce the occurrence of slip defects and no wafer slippage. Therefore, it is possible to improve variation in specific resistance of an epitaxially grown wafer obtained by performing vapor phase growth using the susceptor of the present invention .
Also, the counterbore portion in the conventional susceptor over to have subjected to Loretto working poor yield of the susceptor fabricated, its is correspondingly cost was high, since there is no knurling in susceptor of the present invention, machining is easy machining Cost can be reduced.
[0022]
Since the surface of the susceptor according to the present invention is flat, defects such as abnormal protrusions and surface defects hardly occur, and the back surface of the wafer does not come into contact with the susceptor surface except the outer periphery. Does not transfer to the wafer or cause scratches on the backside of the wafer.
Furthermore, since processing in comparison with the conventional susceptor over it is easy, such as high purity SiC, conventionally, a material that could not be used for knurling is complicated, used as the base material of the susceptor over can, effect can be expected to improve the quality of the extension and the epitaxial film of the life of the susceptor over.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an embodiment of a susceptor according to the present invention, in which A is a top explanatory diagram and B is a longitudinal explanatory diagram.
FIG. 2 is an explanatory view showing a configuration of a horizontal single wafer type vapor phase growth apparatus.
FIG. 3 is an explanatory view showing a configuration of a conventional susceptor, in which A is an upper surface explanatory view and B is a longitudinal explanatory view.
FIG. 4 is a graph comparing slip occurrence rates.
FIG. 5 is a graph showing the occurrence of slip when the susceptor of the present invention is used.
FIG. 6 is a graph showing the occurrence of slip when a conventional susceptor is used.
FIG. 7 is a graph showing the in-plane distribution of specific resistance of an epitaxially grown wafer when the susceptor of the present invention is used.
FIG. 8 is a graph showing the in-plane distribution of resistivity of an epitaxially grown wafer when a conventional susceptor is used.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Chamber 2, 10 Susceptor 2a, 11 Counterbore part 3 Semiconductor substrate 4 Lamp 5 Nozzle part 12 Circumferential edge part

Claims (2)

サセプターの表裏両面側に加熱手段を設けた枚葉式の気相成長装置に使用するサセプターにおいて、
該サセプター上面にはウェーハを載置するための凹部として形成したザグリ部が形成され、
該ザグリ部が、載置した前記ウェーハと平行な平坦面となる底面と、該底面の周囲に前記底面から角度θで上昇する逆円錐の傾斜面とされる周端部とを有するものとされ、
この周端部が、その傾斜面において載置された前記ウェーハの裏面外周側と接触して該ウェーハを接触支持するとともに、前記ウェーハ表面高さが前記サセプター上面と同一かあるいはサセプター上面より高くなる形状とされ、
該周端部でウェーハを接触支持した際ウェーハの裏面外周以外はザグリ部と接触しないとともに、
前記底面と前記ウェーハとの間隔が1〜10mm、前記周端部傾斜角θが10度〜80度、前記ウェーハ表面がサセプター上面より0〜0.5mm高くなるように設定されてなることを特徴とする気相成長装置用サセプター。
In a susceptor used for a single wafer type vapor phase growth apparatus provided with heating means on both front and back sides of the susceptor,
On the susceptor upper surface, a counterbore portion formed as a recess for placing a wafer is formed,
The counterbore part has a bottom surface that is a flat surface parallel to the mounted wafer, and a peripheral end portion that is an inclined surface of an inverted cone that rises at an angle θ from the bottom surface around the bottom surface. ,
The peripheral edge portion contacts the back outer peripheral side of the wafer placed on the inclined surface to contact and support the wafer, and the wafer surface height is the same as or higher than the susceptor upper surface. Shape and
When the wafer is contact-supported at the peripheral edge portion, it is not in contact with the counterbore portion other than the outer periphery of the back surface of the wafer ,
The distance between the bottom surface and the wafer is set to 1 to 10 mm, the peripheral edge inclination angle θ is set to 10 to 80 degrees, and the wafer surface is set to be 0 to 0.5 mm higher than the susceptor top surface. A susceptor for a vapor phase growth apparatus.
請求項1記載のサセプターを用い気相成長を行うことを特徴とする気相成長方法。Vapor deposition method and performing a vapor phase growth using a susceptor according to claim 1, wherein.
JP10077495A 1995-03-31 1995-03-31 Susceptor for vapor phase growth apparatus and vapor phase growth method Expired - Fee Related JP3911518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10077495A JP3911518B2 (en) 1995-03-31 1995-03-31 Susceptor for vapor phase growth apparatus and vapor phase growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10077495A JP3911518B2 (en) 1995-03-31 1995-03-31 Susceptor for vapor phase growth apparatus and vapor phase growth method

Publications (2)

Publication Number Publication Date
JPH08277193A JPH08277193A (en) 1996-10-22
JP3911518B2 true JP3911518B2 (en) 2007-05-09

Family

ID=14282835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10077495A Expired - Fee Related JP3911518B2 (en) 1995-03-31 1995-03-31 Susceptor for vapor phase growth apparatus and vapor phase growth method

Country Status (1)

Country Link
JP (1) JP3911518B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134484A (en) * 2000-10-19 2002-05-10 Asm Japan Kk Semiconductor substrate holding device
ATE514801T1 (en) * 2003-08-01 2011-07-15 Sgl Carbon Se HOLDER FOR CARRYING WAFERS DURING SEMICONDUCTOR PRODUCTION
JP4841873B2 (en) * 2005-06-23 2011-12-21 大日本スクリーン製造株式会社 Heat treatment susceptor and heat treatment apparatus
JP5024382B2 (en) * 2007-08-03 2012-09-12 信越半導体株式会社 Susceptor and silicon epitaxial wafer manufacturing method
US20100282170A1 (en) * 2007-12-06 2010-11-11 Tsuyoshi Nishizawa Vapor phase growth susceptor and vapor phase growth apparatus
JP5465449B2 (en) * 2009-03-19 2014-04-09 大日本スクリーン製造株式会社 Heat treatment susceptor and heat treatment apparatus
JP5346982B2 (en) * 2011-04-28 2013-11-20 大日本スクリーン製造株式会社 Heat treatment equipment
CN102703883A (en) * 2012-05-25 2012-10-03 奥特斯维能源(太仓)有限公司 Plate-type PECVD (Plasma Enhanced Chemical Vapor Deposition) film-coating carrier plate
JP5343162B1 (en) * 2012-10-26 2013-11-13 エピクルー株式会社 Epitaxial growth equipment
US9799548B2 (en) * 2013-03-15 2017-10-24 Applied Materials, Inc. Susceptors for enhanced process uniformity and reduced substrate slippage
CN114097072B (en) * 2019-07-10 2023-09-15 苏州晶湛半导体有限公司 Wafer carrying disc and wafer epitaxial device
CN114072900B (en) * 2019-07-10 2023-09-15 苏州晶湛半导体有限公司 Wafer carrying disc and wafer epitaxial device

Also Published As

Publication number Publication date
JPH08277193A (en) 1996-10-22

Similar Documents

Publication Publication Date Title
JPH0758041A (en) Susceptor
US5074017A (en) Susceptor
JP3911518B2 (en) Susceptor for vapor phase growth apparatus and vapor phase growth method
EP2037485A1 (en) Fabrication apparatus and fabrication method of semiconductor device produced by heating a substrate
JP3092801B2 (en) Thin film growth equipment
JPH088198A (en) Susceptor for vapor growth apparatus
JP5446760B2 (en) Epitaxial growth method
JP5659493B2 (en) Vapor growth method
JP3004846B2 (en) Susceptor for vapor phase growth equipment
JP4599816B2 (en) Manufacturing method of silicon epitaxial wafer
US20020185053A1 (en) Method for calibrating nanotopographic measuring equipment
JP3594074B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JP2017199745A (en) Susceptor
TW201907050A (en) Carrier disk, method for manufacturing epitaxial substrate, and epitaxial substrate
JP2008091615A (en) Processed treatment substrate, its manufacturing method, and its processing method
JP3170248B2 (en) Semiconductor substrate holding device
JPH10189695A (en) Vapor growth susceptor and manufacture thereof
JP2019204912A (en) Evaluation method
JP6702485B1 (en) Wafer peripheral strain evaluation method
JP2002265295A (en) Susceptor for vapor growth and vapor growth method to use the same
JP3693470B2 (en) Manufacturing method and manufacturing apparatus for silicon wafer with protective film
KR20110087440A (en) Susceptor for manufacturing semiconductor and apparatus comprising thereof
JP6493982B2 (en) Susceptor
JP4007598B2 (en) Susceptor and manufacturing method thereof
WO2021245741A1 (en) Method for evaluating outer peripheral distortion of wafer

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees