JP6702485B1 - Wafer peripheral strain evaluation method - Google Patents

Wafer peripheral strain evaluation method Download PDF

Info

Publication number
JP6702485B1
JP6702485B1 JP2019098862A JP2019098862A JP6702485B1 JP 6702485 B1 JP6702485 B1 JP 6702485B1 JP 2019098862 A JP2019098862 A JP 2019098862A JP 2019098862 A JP2019098862 A JP 2019098862A JP 6702485 B1 JP6702485 B1 JP 6702485B1
Authority
JP
Japan
Prior art keywords
wafer
strain
polycrystalline film
outer peripheral
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019098862A
Other languages
Japanese (ja)
Other versions
JP2020194857A (en
Inventor
裕士 安藤
裕士 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2019098862A priority Critical patent/JP6702485B1/en
Application granted granted Critical
Publication of JP6702485B1 publication Critical patent/JP6702485B1/en
Publication of JP2020194857A publication Critical patent/JP2020194857A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】表面に多結晶膜が形成されたウェーハの外周歪みを高精度で評価する方法を提供することを目的とする。【解決手段】表面に多結晶膜が形成されたウェーハの外周歪みの評価方法であって、前記多結晶膜の表面を除去する前処理をし、その後、前記ウェーハの外周の裏面から赤外レーザーを入射させ、前記ウェーハを透過した後の前記赤外レーザーの偏光度から前記ウェーハの外周歪みを評価するウェーハの外周歪みの評価方法。【選択図】図2PROBLEM TO BE SOLVED: To provide a method for highly accurately evaluating the peripheral strain of a wafer having a polycrystalline film formed on its surface. A method for evaluating the outer peripheral strain of a wafer having a polycrystalline film formed on the surface thereof, wherein a pretreatment for removing the surface of the polycrystalline film is performed, and then an infrared laser is applied from the rear surface of the outer periphery of the wafer. Is evaluated and the peripheral strain of the wafer is evaluated from the polarization degree of the infrared laser after passing through the wafer. [Selection diagram] Figure 2

Description

本発明は、ウェーハ外周歪みの評価方法に関する。 The present invention relates to a method for evaluating wafer peripheral strain.

一般的に枚葉式エピタキシャルウェーハ製造装置を用いて、研磨後のウェーハ上にエピタキシャル層を成長する場合、ウェーハとサセプタの接触部にかかる熱応力などによってウェーハ外周部に歪みが生じる。この歪みの評価方法として、ウェーハの裏面から赤外レーザーを入射し、ウェーハ透過後の偏光度から歪みを検出する手法が用いられている(特許文献1)。本評価において、ウェーハに歪みがある場合入射光の偏光度は大きくなるため、その偏光度から歪みを検出できる。これまで、エピタキシャルウェーハで本測定を行う際、エピタキシャル層を成長したウェーハをそのまま測定を行っていた。 Generally, when an epitaxial layer is grown on a wafer after polishing by using a single-wafer type epitaxial wafer manufacturing apparatus, distortion occurs in the outer peripheral portion of the wafer due to thermal stress applied to the contact portion between the wafer and the susceptor. As a method of evaluating this distortion, a method of injecting an infrared laser from the back surface of the wafer and detecting the distortion from the polarization degree after passing through the wafer is used (Patent Document 1). In this evaluation, if the wafer is distorted, the degree of polarization of the incident light becomes large, so that the degree of distortion can be detected from the degree of polarization. Until now, when performing the main measurement on the epitaxial wafer, the wafer on which the epitaxial layer was grown was directly measured.

特開2012−019216号公報JP 2012-192216 A

一方、多結晶膜(Poly膜)を成長させたウェーハにおいても枚葉式エピタキシャルウェーハ製造装置を用いて成長を行うため、その成長過程においてエピタキシャルウェーハと同様の原理でウェーハの外周部に歪みが生じる。この多結晶膜を成長させたウェーハの歪み評価においてもエピタキシャルウェーハと同様の評価方法を用いたが、多結晶膜が形成されたウェーハは多結晶膜の結晶方位が不規則であることなどから、特に外周部でのノイズの影響を受けやすく、従来の測定方法の適用が困難であった。そのため、多結晶膜が形成されたウェーハの歪みの評価手法の確立を要していた。 On the other hand, since a single-wafer type epitaxial wafer manufacturing apparatus is also used to grow a wafer on which a polycrystalline film (Poly film) is grown, distortion is generated in the outer peripheral portion of the wafer according to the same principle as the epitaxial wafer during the growth process. .. The same evaluation method as the epitaxial wafer was used also in the strain evaluation of the wafer on which this polycrystalline film was grown, but the wafer on which the polycrystalline film was formed has an irregular crystal orientation of the polycrystalline film, In particular, it is difficult to apply the conventional measurement method because it is easily affected by noise in the outer peripheral portion. Therefore, it is necessary to establish a method for evaluating the strain of the wafer on which the polycrystalline film is formed.

本発明は、上記問題を解決するためになされたものであり、表面に多結晶膜が形成されたウェーハの外周歪みの高精度な評価方法を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a highly accurate evaluation method of the peripheral strain of a wafer having a polycrystalline film formed on its surface.

本発明は、上記目的を達成するためになされたものであり、表面に多結晶膜が形成されたウェーハの外周歪みの評価方法であって、前記多結晶膜の表面を除去する前処理をし、その後、前記ウェーハの外周の裏面から赤外レーザーを入射させ、前記ウェーハを透過した後の前記赤外レーザーの偏光度から前記ウェーハの外周歪みを評価するウェーハの外周歪みの評価方法を提供する。 The present invention has been made to achieve the above object, is a method of evaluating the peripheral strain of a wafer having a polycrystalline film formed on the surface, pretreatment for removing the surface of the polycrystalline film. , And then, an infrared laser is incident from the back surface of the outer circumference of the wafer, and a method for evaluating the outer circumference distortion of the wafer is provided, which evaluates the outer circumference distortion of the wafer from the polarization degree of the infrared laser after passing through the wafer. ..

このような評価方法によれば、測定時の外周部のノイズの影響を低減でき、多結晶膜が形成されたウェーハの外周歪みを正確に評価することができる。 According to such an evaluation method, it is possible to reduce the influence of noise on the outer peripheral portion during measurement, and it is possible to accurately evaluate the outer peripheral distortion of the wafer on which the polycrystalline film is formed.

このとき、前記前処理を、研磨、及び/又は、エッチングにより行うことができる。 At this time, the pretreatment can be performed by polishing and/or etching.

これにより、前記多結晶膜表面の平滑化、及び/又は、前記多結晶膜の表面膜厚の薄膜化ができ、測定時の外周部のノイズの影響を低減でき、多結晶膜が形成されたウェーハの外周歪み評価を効果的かつ高精度で実施できる。 Thereby, the surface of the polycrystalline film can be smoothed and/or the surface film thickness of the polycrystalline film can be reduced, the influence of noise in the outer peripheral portion at the time of measurement can be reduced, and the polycrystalline film is formed. Wafer peripheral strain evaluation can be performed effectively and with high accuracy.

このとき、前記前処理を、研磨により行い、表面を厚さ0.2μm以上研磨除去することとすることができる。 At this time, the pretreatment may be performed by polishing to remove the surface by polishing to a thickness of 0.2 μm or more.

研磨量を前記範囲にすることで、測定時の外周部のノイズの影響をより効果的に低減でき、多結晶膜が形成されたウェーハの外周歪み評価をより高精度で実施できる。 By setting the polishing amount within the above range, it is possible to more effectively reduce the influence of noise on the outer peripheral portion during measurement, and it is possible to perform the outer peripheral strain evaluation of the wafer on which the polycrystalline film is formed with higher accuracy.

また、前記前処理を、エッチングにより行い、表面を厚さ0.5μm以上エッチング除去することとすることができる。 Further, the pretreatment can be performed by etching to remove the surface by a thickness of 0.5 μm or more.

エッチング除去量を前記範囲にすることで、測定時の外周部のノイズの影響をより効果的に低減でき、多結晶膜が形成されたウェーハの外周歪み評価をより高精度で実施できる。 By setting the etching removal amount within the above range, it is possible to more effectively reduce the influence of noise on the outer peripheral portion during measurement, and it is possible to perform the outer peripheral strain evaluation of the wafer on which the polycrystalline film is formed with higher accuracy.

前記前処理を、気相エッチング、及び/又は、液相エッチングで行うことができる。 The pretreatment can be performed by vapor phase etching and/or liquid phase etching.

これにより、測定時の外周部のノイズの影響を低減でき、多結晶膜が形成されたウェーハの外周歪み評価を簡便に実施できる。 As a result, the influence of noise on the outer peripheral portion during measurement can be reduced, and the outer peripheral strain of the wafer on which the polycrystalline film is formed can be easily evaluated.

以上のように、本発明の、表面に多結晶膜が形成されたウェーハの外周歪みの評価方法によれば、前処理を行うことにより、測定時の外周部のノイズの影響を低減でき、多結晶膜が形成されたウェーハの外周歪み評価を高精度で実施することが可能になる。 As described above, according to the method for evaluating the outer peripheral strain of the wafer having the polycrystalline film formed on the surface of the present invention, by performing the pretreatment, it is possible to reduce the influence of the noise on the outer peripheral portion during the measurement, Peripheral strain evaluation of a wafer having a crystal film formed thereon can be performed with high accuracy.

枚葉式エピタキシャルウェーハ製造装置の概略を示す。1 shows an outline of a single wafer type epitaxial wafer manufacturing apparatus. 歪み測定装置の構成を示す。The structure of a strain measuring device is shown. ウェーハの平面図であり、測定除外領域と、測定領域とを示す。It is a top view of a wafer and shows a measurement exclusion field and a measurement field.

以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

上述のように、表面に多結晶膜が形成されたウェーハの外周歪みの評価方法において、測定時の外周部のノイズの影響を低減し、多結晶膜が形成されたウェーハの外周歪みを正確に評価する方法が求められていた。 As described above, in the evaluation method of the outer peripheral strain of the wafer on which the polycrystalline film is formed, the influence of the noise of the outer peripheral portion at the time of measurement is reduced, and the outer peripheral strain of the wafer on which the polycrystalline film is formed is accurately measured. There was a need for a way to evaluate.

本発明者らは、上記課題について鋭意検討を重ねた結果、表面に多結晶膜が形成されたウェーハの外周歪みの評価方法であって、前記多結晶膜の表面を除去する前処理をし、その後、前記ウェーハの外周の裏面から赤外レーザーを入射させ、前記ウェーハを透過した後の前記赤外レーザーの偏光度から前記ウェーハの外周歪みを評価するウェーハの外周歪みの評価方法により、外周部のノイズの影響を低減し、多結晶膜が形成されたウェーハの外周歪みを正確に評価できることを見出し、本発明を完成した。 The present inventors have made extensive studies on the above problems, a method of evaluating the peripheral strain of a wafer having a polycrystalline film formed on the surface, pretreatment for removing the surface of the polycrystalline film, Then, the infrared laser is incident from the back surface of the outer periphery of the wafer, and the outer peripheral portion of the wafer is evaluated from the peripheral distortion of the wafer from the polarization degree of the infrared laser after passing through the wafer. The present invention has been completed by finding that it is possible to reduce the influence of the noise of (1) and accurately evaluate the peripheral strain of the wafer on which the polycrystalline film is formed.

以下、図面を参照して説明する。 Hereinafter, description will be given with reference to the drawings.

本発明に係るウェーハ外周歪みの評価方法が対象とする多結晶膜が形成されたウェーハはどのような方法で製造されたものでもよい。例えば、以下に述べるエピタキシャルウェーハ製造装置を用いて製造することができる。 The wafer on which the polycrystalline film is formed, which is the object of the wafer peripheral strain evaluation method according to the present invention, may be manufactured by any method. For example, it can be manufactured using the epitaxial wafer manufacturing apparatus described below.

先ず、図1を参照して枚葉式エピタキシャルウェーハ製造装置の構成を説明する。図1のエピタキシャルウェーハ製造装置1は、シリコン単結晶基板等のウェーハWが1枚ずつ投入されて、投入された1枚のウェーハWの主表面上にシリコン単結晶膜や多結晶シリコン膜等の膜を気相成長させる装置である。詳しくは、エピタキシャルウェーハ製造装置1は、処理対象となるウェーハWが投入される反応炉2と、反応炉2内に配置されて投入されたウェーハWを水平に支持するサセプタ3と、反応炉2を囲むように配置されて反応炉2内を加熱する加熱部6とを含んで構成される。 First, the configuration of a single wafer processing epitaxial wafer manufacturing apparatus will be described with reference to FIG. In the epitaxial wafer manufacturing apparatus 1 of FIG. 1, wafers W such as silicon single crystal substrates are loaded one by one, and a silicon single crystal film, a polycrystalline silicon film, or the like is formed on the main surface of one wafer W that is input. This is a device for vapor phase growth of a film. Specifically, the epitaxial wafer manufacturing apparatus 1 includes a reaction furnace 2 into which a wafer W to be processed is charged, a susceptor 3 arranged in the reaction furnace 2 to horizontally support the charged wafer W, and a reaction furnace 2 And a heating unit 6 that is disposed so as to surround the chamber and heats the inside of the reaction furnace 2.

サセプタ3は例えば炭化ケイ素(SiC)によりコーティングされた黒鉛からなり、円盤状の形状である。サセプタ3の上面には、ウェーハWを水平に載置するための、ウェーハWの径よりも数ミリ程度大きい凹形状(平面視で円状)のポケット部3aが形成されている。ポケット部3aの深さは、ウェーハWの厚さと同程度となっている。図1の例では、ポケット部3aは、ウェーハWの外周部は接触するがそれ以外の部分は接触しないように底面が段差形状に形成されているが、ウェーハWの裏面の全部がポケット部3aの底面に接触するように形成されてもよい。サセプタ3はその中心軸回りに回転可能に設けられる。 The susceptor 3 is made of, for example, graphite coated with silicon carbide (SiC) and has a disk shape. On the upper surface of the susceptor 3, a concave (circular in plan view) pocket portion 3a for mounting the wafer W horizontally, which is larger than the diameter of the wafer W by several millimeters, is formed. The depth of the pocket portion 3a is approximately the same as the thickness of the wafer W. In the example of FIG. 1, the pocket 3a has a stepped bottom surface so that the outer peripheral portion of the wafer W is in contact but the other portions are not in contact, but the entire back surface of the wafer W is in the pocket 3a. May be formed so as to contact the bottom surface of the. The susceptor 3 is provided rotatably around its central axis.

反応炉2の一端側には、反応炉2内のウェーハWの主表面上に各種ガスを供給するためのガス供給口4が形成されている。また、反応炉2の、ガス供給口4と反対側には、ウェーハWの主表面上を通過したガスを排出するためのガス排出口5が形成されている。加熱部6は、例えば反応炉2の上下それぞれに設けられたハロゲンランプとすることができる。 A gas supply port 4 for supplying various gases onto the main surface of the wafer W in the reaction furnace 2 is formed at one end of the reaction furnace 2. Further, on the side of the reaction furnace 2 opposite to the gas supply port 4, there is formed a gas discharge port 5 for discharging the gas that has passed over the main surface of the wafer W. The heating unit 6 can be, for example, a halogen lamp provided above and below the reaction furnace 2.

次に、図2を参照して、ウェーハの外周歪みを測定する装置の構成を説明する。図2の測定装置10は、SIRD(Scanning Infrared Depolarization)を原理とした装置として構成されている。詳しくは、測定装置10は、測定対象のウェーハWの歪み測定部位に赤外レーザー31を入射させるレーザー発生部11と、赤外レーザー31が入射されたウェーハWから透過してくる光32の偏光成分(P偏光成分、S偏光成分)を検出する検出部12と、検出部12で検出した偏光成分に基づいて偏光度の変化(偏光変位量)を算出し、その偏光度の変化に基づいて歪みの位置及び歪み量の算出等の処理を行う処理部13とを備えている。 Next, with reference to FIG. 2, the configuration of an apparatus for measuring the outer peripheral strain of the wafer will be described. The measuring device 10 of FIG. 2 is configured as a device based on SIRD (Scanning Infrared Depolarization). Specifically, the measuring apparatus 10 includes a laser generator 11 that causes an infrared laser 31 to be incident on a strain measurement site of a wafer W to be measured, and polarization of light 32 that is transmitted from the wafer W on which the infrared laser 31 is incident. A detector 12 that detects a component (P-polarized component, S-polarized component), and a change in polarization degree (polarization displacement amount) is calculated based on the polarization component detected by the detector 12, and based on the change in polarization degree. And a processing unit 13 that performs processing such as calculation of a distortion position and a distortion amount.

次に、本実施形態の歪み評価の手順を説明する。先ず、歪みの評価対象のウェーハを準備する。準備するウェーハとして表面に多結晶シリコン膜を形成したウェーハを準備する。多結晶シリコン膜は例えば図1に例示する枚葉式エピタキシャルウェーハ製造装置1を用いて形成すればよい。この場合、例えばシリコン単結晶基板として構成されたウェーハWをサセプタ3のポケット部3aに載置した状態で、加熱部6によりウェーハWを所定温度に加熱しつつ、ガス供給口4から多結晶シリコン膜の原料となるガス(例えばトリクロロシラン)及びキャリアガス(例えば水素ガス)を反応炉2内に供給して、ウェーハWの表面に所定膜厚の多結晶シリコン膜を成長させる。これにより、表面に多結晶シリコン膜を有したウェーハWが得られる。 Next, the distortion evaluation procedure of this embodiment will be described. First, a wafer whose strain is to be evaluated is prepared. As a wafer to be prepared, a wafer having a polycrystalline silicon film formed on its surface is prepared. The polycrystalline silicon film may be formed using, for example, the single-wafer processing epitaxial wafer manufacturing apparatus 1 illustrated in FIG. In this case, while the wafer W configured as, for example, a silicon single crystal substrate is placed in the pocket portion 3a of the susceptor 3, the heating portion 6 heats the wafer W to a predetermined temperature while the polycrystalline silicon is supplied from the gas supply port 4. A gas (for example, trichlorosilane) as a raw material for the film and a carrier gas (for example, hydrogen gas) are supplied into the reaction furnace 2 to grow a polycrystalline silicon film having a predetermined thickness on the surface of the wafer W. As a result, a wafer W having a polycrystalline silicon film on its surface is obtained.

次に、ウェーハWの多結晶シリコン膜の表面を除去する、前処理を行う。除去の方法は限定されない。ウェーハWの多結晶シリコン膜の表面を除去することによって、測定時の外周部のノイズの影響を低減でき、ウェーハの外周歪みの評価を正確に行うことができる。 Next, a pretreatment for removing the surface of the polycrystalline silicon film of the wafer W is performed. The removal method is not limited. By removing the surface of the polycrystalline silicon film of the wafer W, it is possible to reduce the influence of noise on the outer peripheral portion during measurement, and it is possible to accurately evaluate the outer peripheral strain of the wafer.

例えば、ウェーハWの多結晶シリコン膜の表面を研磨、及び/又は、エッチングにより除去し、歪み測定を行う。歪み測定の前に研磨を行うことで、多結晶シリコン膜の表面を平滑化し、測定時の外周部のノイズの影響を低減でき、ウェーハの外周歪みの評価を正確に行うことができる。また、歪み測定の前にエッチングを行うことで、多結晶シリコン膜の表面膜厚を薄膜化し、測定時の外周部のノイズの影響を低減でき、ウェーハの外周歪みの評価を正確に行うことができる。 For example, the surface of the polycrystalline silicon film of the wafer W is removed by polishing and/or etching, and strain measurement is performed. By polishing the polycrystalline silicon film before the strain measurement, the surface of the polycrystalline silicon film can be smoothed, the influence of noise on the outer peripheral portion during measurement can be reduced, and the outer peripheral strain of the wafer can be accurately evaluated. In addition, by performing etching before strain measurement, the surface film thickness of the polycrystalline silicon film can be thinned, the influence of noise on the outer peripheral portion at the time of measurement can be reduced, and the outer peripheral strain of the wafer can be accurately evaluated. it can.

研磨により多結晶膜の表面の除去を行う場合、研磨で除去する厚さを0.2μm以上とし、エッチングにより行う場合、エッチングで除去する厚さを0.5μm以上とすることで、より効果的にノイズの影響を低減でき、評価をより正確に行うことができる。また、多結晶膜表面の除去量の上限は特に限定されないが、スループット(生産性)の観点から10μm程度とすることが好ましい。 When the surface of the polycrystalline film is removed by polishing, the thickness removed by polishing is 0.2 μm or more, and when removed by etching, the thickness removed by etching is 0.5 μm or more, which is more effective. The influence of noise can be reduced and the evaluation can be performed more accurately. The upper limit of the removal amount of the polycrystalline film surface is not particularly limited, but it is preferably about 10 μm from the viewpoint of throughput (productivity).

ここで、研磨の方法は、公知の基板研磨方法を採用することができる。また、エッチングは、気相エッチングや液相エッチングを採用することができるが、表面を除去することができれば、どのような方法で実施してもよい。例えば、気相エッチングの場合、エッチングガスとして塩化水素を使うことができ、液相エッチングの場合、エッチング液としてフッ酸や硝酸を使うことができる。 Here, as the polishing method, a known substrate polishing method can be adopted. The etching may be vapor phase etching or liquid phase etching, but any method may be used as long as the surface can be removed. For example, in the case of vapor phase etching, hydrogen chloride can be used as an etching gas, and in the case of liquid phase etching, hydrofluoric acid or nitric acid can be used as an etching solution.

歪みの測定においては、サセプタ3と接触する裏面外周部に歪みが発生しやすいので、赤外レーザー31をウェーハWの裏面外周部に入射させる。 In the strain measurement, strain is likely to occur in the outer peripheral portion of the back surface which is in contact with the susceptor 3, so the infrared laser 31 is made incident on the outer peripheral portion of the rear surface of the wafer W.

また、ウェーハWにおける歪み測定領域22(図3参照)は、ウェーハWの外周部を含む領域とし、具体的には、測定除外領域21の内周側の境界線から径方向に所定幅(例えば4mmの幅)の領域とする。歪み測定領域22は、ウェーハWの最外周20内部の円周方向に全周に亘る領域(つまりリング状の領域)としてもよいし、円周方向の一部領域としてもよい。そして、赤外レーザー31の入射位置を、歪み測定領域22内でスキャン(走査)することで、歪み測定領域22における歪み位置及び歪み量を評価する。 Further, the strain measurement region 22 (see FIG. 3) in the wafer W is a region including the outer peripheral portion of the wafer W, and specifically, a predetermined width (for example, a predetermined width in the radial direction from the boundary line on the inner peripheral side of the measurement exclusion region 21). (Width of 4 mm). The strain measurement area 22 may be a circumferentially entire area (that is, a ring-shaped area) inside the outermost circumference 20 of the wafer W, or may be a partial area in the circumferential direction. Then, the incident position of the infrared laser 31 is scanned in the strain measurement region 22 to evaluate the strain position and strain amount in the strain measurement region 22.

以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

(実施例1)
まず、表面の研磨によるウェーハ外周部の歪みの測定手法において、従来の測定対象であったエピタキシャルウェーハと多結晶膜を研磨によって除去した多結晶膜が形成されたウェーハそれぞれの外周歪み量を測定し、歪み量の一致率について調査した。
(Example 1)
First, in the method of measuring the strain of the outer peripheral portion of the wafer by polishing the surface, the amount of the outer peripheral strain of each of the epitaxial wafer and the wafer on which the polycrystalline film formed by polishing the polycrystalline film that has been removed by polishing was measured was measured. , And the coincidence rate of strain amount was investigated.

ウェーハの直径は300mmであり、エピタキシャルウェーハは枚葉式エピタキシャルウェーハ製造装置によって反応し作製した。エピタキシャルウェーハ製造装置の反応炉内のサセプタにウェーハを1枚ずつ投入し、加熱部によりウェーハを所定温度(1100℃)に加熱しつつ、ガス供給口から原料となるガス(トリクロロシラン)やキャリアガス(水素)を供給することで、投入されたウェーハの表面上に膜厚が5μmのシリコン単結晶膜を気相成長させた。一方、多結晶膜が形成されたウェーハについてもエピタキシャルウェーハと同様の装置を用いて反応するが、加熱温度が2段階になっているのが特徴である。1層目の反応は低温(900℃)で行い、2層目は高温(1100℃)で行うことで膜厚が5μmの多結晶膜を成長させた。その後、下記表1に示す除去量で、多結晶膜の表面を研磨除去する前処理を行った。 The diameter of the wafer was 300 mm, and the epitaxial wafer was prepared by reacting with a single wafer type epitaxial wafer manufacturing apparatus. Wafers are introduced one by one into a susceptor in a reaction furnace of an epitaxial wafer manufacturing apparatus, and while heating the wafers to a predetermined temperature (1100° C.) by a heating unit, a gas (trichlorosilane) or carrier gas as a raw material is supplied from a gas supply port By supplying (hydrogen), a silicon single crystal film having a film thickness of 5 μm was vapor-phase grown on the surface of the introduced wafer. On the other hand, a wafer on which a polycrystalline film is formed also reacts using an apparatus similar to an epitaxial wafer, but is characterized in that the heating temperature is in two stages. The reaction of the first layer was performed at a low temperature (900° C.), and the reaction of the second layer was performed at a high temperature (1100° C.) to grow a polycrystalline film having a thickness of 5 μm. Then, a pretreatment for polishing and removing the surface of the polycrystalline film was performed with the removal amount shown in Table 1 below.

本実施例では、エピタキシャルウェーハと多結晶膜が形成されたウェーハの歪みの一致率を比較したが、ウェーハ外周部の歪みの発生場所はサセプタ等の部材に起因しているため、反応条件の多少の違いでは発生場所は変わらないことが分かっている。そのため、エピタキシャルウェーハで歪みが発生する場所に対して、多結晶膜が形成されたウェーハでの発生場所がどれくらい一致するかを評価した。表1に多結晶膜表面の研磨除去量と歪み量の一致率の関係を示す。 In this example, the coincidence rate of strain between the epitaxial wafer and the wafer on which the polycrystalline film was formed was compared.However, since the location of the strain in the outer peripheral portion of the wafer is caused by the member such as the susceptor, the reaction conditions may vary. It is known that the difference does not change the place of occurrence. Therefore, it was evaluated how closely the locations where the strain was generated in the epitaxial wafer were the locations where the polycrystalline film was formed in the wafer. Table 1 shows the relationship between the polishing removal amount on the surface of the polycrystalline film and the matching rate of the strain amount.

外周部の歪みの測定での測定領域は、最外周の0.5mmを測定除外領域として歪み測定幅を4mmとした。測定間隔は周方向2mm、径方向1mmである。 Regarding the measurement area in the measurement of the strain in the outer peripheral portion, the strain measurement width was set to 4 mm with the outermost periphery 0.5 mm as the measurement exclusion area. The measurement interval is 2 mm in the circumferential direction and 1 mm in the radial direction.

(比較例1)
多結晶膜表面を研磨除去しなかった(除去量0μm)こと以外の条件は実施例1と同様として評価を行った。その結果、一致率は42%であり一致率が十分ではなかった。
(Comparative Example 1)
The evaluation was performed under the same conditions as in Example 1 except that the surface of the polycrystalline film was not removed by polishing (removal amount 0 μm). As a result, the agreement rate was 42%, which was not sufficient.

表1のように、研磨による多結晶膜の除去量を、0.1μm、0.2μm、0.4μm、0.8μm、1.6μm、4.0μmとしたウェーハを作製し、歪み発生量の一致率を比較した。その結果、多結晶膜表面の研磨除去量を0.1μmとすると一致率は78%となり、0.2μm以上にすることで一致率はさらに向上し、90%以上になった。多結晶膜表面の研磨除去量が0.2μm以上で一致率が90%以上となったことから、外周部のノイズが除去でき高精度に歪み量を評価可能である。 As shown in Table 1, a wafer having a removal amount of the polycrystalline film by polishing of 0.1 μm, 0.2 μm, 0.4 μm, 0.8 μm, 1.6 μm, and 4.0 μm was prepared, and The agreement rates were compared. As a result, when the polishing removal amount on the surface of the polycrystalline film was 0.1 μm, the matching rate was 78%, and when it was 0.2 μm or more, the matching rate was further improved to 90% or more. Since the polishing removal amount of the polycrystalline film surface is 0.2 μm or more and the coincidence rate is 90% or more, the noise in the outer peripheral portion can be removed and the strain amount can be evaluated with high accuracy.

以上のとおり、本発明の実施例によれば、多結晶膜が形成されたウェーハの外周歪み評価を高精度で実施できた。 As described above, according to the example of the present invention, the outer peripheral strain of the wafer on which the polycrystalline film is formed can be evaluated with high accuracy.

Figure 0006702485
Figure 0006702485

(実施例2)
気相エッチングにより多結晶膜表面の除去を行い、ウェーハ外周部の歪みの評価を行った。実施例1の多結晶膜の表面を0.8μm研磨した多結晶膜が形成されたウェーハと、多結晶膜をエッチングによって除去した多結晶膜が形成されたウェーハそれぞれの外周歪み量を測定し、歪み量の一致率について調査した。
(Example 2)
The surface of the polycrystalline film was removed by vapor phase etching, and the distortion of the outer peripheral portion of the wafer was evaluated. The amount of peripheral strain of each of the wafer having a polycrystalline film formed by polishing the surface of the polycrystalline film of Example 1 by 0.8 μm and the wafer having the polycrystalline film formed by removing the polycrystalline film by etching is measured, The coincidence rate of the amount of distortion was investigated.

多結晶膜が形成されたウェーハの作製方法は実施例1と同様であり、気相エッチングはエピタキシャルウェーハ製造装置の反応炉内での多結晶膜成長後に、上記反応炉内にエッチングガス(塩化水素)を供給することで行った。表2に多結晶膜表面の気相エッチング除去量と歪み量の一致率の関係を示す。 The method for producing a wafer on which a polycrystalline film is formed is the same as in Example 1, and the vapor phase etching is performed by etching gas (hydrogen chloride) in the reaction furnace after the polycrystalline film is grown in the reaction furnace of the epitaxial wafer manufacturing apparatus. ) Was supplied. Table 2 shows the relationship between the amount of vapor phase etching removal on the surface of the polycrystalline film and the matching rate of the amount of strain.

外周部の歪みの測定での測定領域は、実施例1と同様である。 The measurement area for measuring the strain in the outer peripheral portion is the same as that in the first embodiment.

(実施例3)
液相エッチングにより多結晶膜表面の除去を行い、ウェーハ外周部の歪みの評価を行った。実施例1の多結晶膜の表面を0.8μm研磨した多結晶膜が形成されたウェーハと、多結晶膜をエッチングによって除去した多結晶膜が形成されたウェーハそれぞれの外周歪み量を測定し、歪み量の一致率について調査した。
(Example 3)
The surface of the polycrystalline film was removed by liquid phase etching, and the strain on the outer peripheral portion of the wafer was evaluated. The amount of peripheral strain of each of the wafer having a polycrystalline film formed by polishing the surface of the polycrystalline film of Example 1 by 0.8 μm and the wafer having the polycrystalline film formed by removing the polycrystalline film by etching is measured, The coincidence rate of the amount of distortion was investigated.

多結晶膜が形成されたウェーハの作製方法は実施例1と同様であり、液相エッチングはウェーハを反応炉から取り出した後にエッチング液(フッ酸)を用いて行った。表3に多結晶膜表面の液相エッチング除去量と歪み量の一致率の関係を示す。 The method for producing the wafer on which the polycrystalline film was formed was the same as in Example 1, and the liquid phase etching was performed using an etching solution (hydrofluoric acid) after taking out the wafer from the reaction furnace. Table 3 shows the relationship between the amount of liquid phase etching removal on the surface of the polycrystalline film and the coincidence rate of the strain amount.

外周部の歪みの測定での測定領域は、実施例1と同様である。 The measurement area for measuring the strain in the outer peripheral portion is the same as that in the first embodiment.

(比較例2)
多結晶膜表面を除去しなかった(除去量0μm)こと以外の条件は実施例1と同様とした場合の一致率は45%であり一致率が十分ではなかった。
(Comparative example 2)
When the conditions were the same as in Example 1 except that the surface of the polycrystalline film was not removed (removal amount 0 μm), the matching rate was 45%, which was not sufficient.

表2のように、気相エッチングによる多結晶膜の除去量を0.2μm、0.4μm、0.5μm、1.0μm、1.5μm、3.0μmとしたウェーハを作製し、歪み発生量の一致率を比較した。その結果、多結晶膜表面のエッチング除去量を0.2μm以上とすると一致率は60%以上となり、0.5μm以上とすることで一致率はさらに向上し、90%以上となった。多結晶膜表面のエッチング除去量が0.5μm以上で一致率が90%以上となったことから、外周部のノイズが除去でき高精度に歪み量を評価可能である。 As shown in Table 2, wafers having vapor-phase-etched polycrystalline film removal amounts of 0.2 μm, 0.4 μm, 0.5 μm, 1.0 μm, 1.5 μm, and 3.0 μm were manufactured, and the strain generation amount was measured. The agreement rates of As a result, when the etching removal amount on the surface of the polycrystalline film was 0.2 μm or more, the matching rate was 60% or more, and when it was 0.5 μm or more, the matching rate was further improved to 90% or more. Since the etching removal amount on the surface of the polycrystalline film is 0.5 μm or more and the coincidence rate is 90% or more, noise on the outer peripheral portion can be removed and the strain amount can be evaluated with high accuracy.

Figure 0006702485
Figure 0006702485

表3のように、液相エッチングによる多結晶膜の除去量を0.2μm、0.4μm、0.5μm、1.0μm、1.5μm、3.0μmとしたウェーハを作製し、歪み発生量の一致率を比較した。その結果、多結晶膜表面のエッチング除去量を0.2μm以上とすると一致率は60%以上となり、0.5μm以上とすることで一致率はさらに向上し、90%以上となった。多結晶膜表面のエッチング除去量が0.5μm以上で一致率が90%以上となったことから、外周部のノイズが除去でき高精度に歪み量を評価可能である。 As shown in Table 3, the amount of distortion generated by producing a wafer in which the removal amount of the polycrystalline film by liquid phase etching was 0.2 μm, 0.4 μm, 0.5 μm, 1.0 μm, 1.5 μm, 3.0 μm The agreement rates of As a result, when the etching removal amount on the surface of the polycrystalline film was 0.2 μm or more, the matching rate was 60% or more, and when it was 0.5 μm or more, the matching rate was further improved to 90% or more. Since the etching removal amount on the surface of the polycrystalline film is 0.5 μm or more and the coincidence rate is 90% or more, noise on the outer peripheral portion can be removed and the strain amount can be evaluated with high accuracy.

Figure 0006702485
Figure 0006702485

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is merely an example, and the invention having substantially the same configuration as the technical idea described in the scope of claims of the present invention and exhibiting the same action and effect is the present invention It is included in the technical scope of.

W…ウェーハ、1…枚葉式エピタキシャルウェーハ製造装置、2…反応炉、
3…サセプタ、3a…ポケット部、4…ガス供給口、5…ガス排出口、6…加熱部、
10…測定装置、11…レーザー発生部、12…検出部、13…処理部、
20…ウェーハの最外周、21…測定除外領域(評価除外領域)、22…歪み測定領域、
31…赤外レーザー、32…透過してくる光。
W... Wafer, 1... Single wafer type epitaxial wafer manufacturing apparatus, 2... Reactor,
3... Susceptor, 3a... Pocket part, 4... Gas supply port, 5... Gas discharge port, 6... Heating part,
10... Measuring device, 11... Laser generating part, 12... Detecting part, 13... Processing part,
20... Outermost periphery of wafer, 21... Measurement exclusion area (evaluation exclusion area), 22... Strain measurement area,
31... Infrared laser, 32... Transmitted light.

Claims (5)

表面に多結晶膜が形成されたウェーハの外周歪みの評価方法であって、
前記表面に多結晶膜が形成されたウェーハとして、シリコン単結晶基板の表面に多結晶膜が形成されたウェーハを用い、
前記多結晶膜の表面を除去する前処理をし、
その後、前記ウェーハの外周の裏面から赤外レーザーを入射させ、
前記ウェーハを透過した後の前記赤外レーザーの偏光度から前記ウェーハの外周歪みを評価することを特徴とするウェーハの外周歪みの評価方法。
A method for evaluating the peripheral strain of a wafer having a polycrystalline film formed on its surface,
As the wafer having a polycrystalline film formed on the surface, a wafer having a polycrystalline film formed on the surface of a silicon single crystal substrate is used.
Pretreatment for removing the surface of the polycrystalline film,
Then, the infrared laser is incident from the back surface of the outer periphery of the wafer,
A method for evaluating peripheral distortion of a wafer, which comprises evaluating the peripheral distortion of the wafer from the degree of polarization of the infrared laser after passing through the wafer.
前記前処理を、研磨、及び/又は、エッチングにより行うことを特徴とする請求項1に記載のウェーハの外周歪みの評価方法。 The method for evaluating a peripheral strain of a wafer according to claim 1, wherein the pretreatment is performed by polishing and/or etching. 前記前処理を、研磨により行い、表面を厚さ0.2μm以上研磨除去することを特徴とする請求項2に記載のウェーハの外周歪みの評価方法。 The method for evaluating a peripheral strain of a wafer according to claim 2, wherein the pretreatment is performed by polishing to remove the surface by polishing to a thickness of 0.2 μm or more. 前記前処理を、エッチングにより行い、表面を厚さ0.5μm以上エッチング除去することを特徴とする請求項2に記載のウェーハの外周歪みの評価方法。 The method for evaluating a peripheral strain of a wafer according to claim 2, wherein the pretreatment is performed by etching to remove the surface by etching to a thickness of 0.5 μm or more. 前記前処理を、気相エッチング、及び/又は、液相エッチングで行うことを特徴とする請求項2又は4に記載のウェーハの外周歪みの評価方法。 The method for evaluating the outer peripheral strain of a wafer according to claim 2 or 4, wherein the pretreatment is performed by vapor phase etching and/or liquid phase etching.
JP2019098862A 2019-05-27 2019-05-27 Wafer peripheral strain evaluation method Active JP6702485B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019098862A JP6702485B1 (en) 2019-05-27 2019-05-27 Wafer peripheral strain evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019098862A JP6702485B1 (en) 2019-05-27 2019-05-27 Wafer peripheral strain evaluation method

Publications (2)

Publication Number Publication Date
JP6702485B1 true JP6702485B1 (en) 2020-06-03
JP2020194857A JP2020194857A (en) 2020-12-03

Family

ID=70858167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019098862A Active JP6702485B1 (en) 2019-05-27 2019-05-27 Wafer peripheral strain evaluation method

Country Status (1)

Country Link
JP (1) JP6702485B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245741A1 (en) * 2020-06-01 2021-12-09 信越半導体株式会社 Method for evaluating outer peripheral distortion of wafer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868619A (en) * 1994-08-30 1996-03-12 Japan Energy Corp Evaluation method of compound semiconductor single crystal substrate
JP2002340794A (en) * 2001-05-15 2002-11-27 Sumitomo Mitsubishi Silicon Corp Method for measuring infrared absorption of semiconductor wafer
JP2007115870A (en) * 2005-10-20 2007-05-10 Shin Etsu Handotai Co Ltd Wafer crack inspecting apparatus, crack inspecting method and wafer manufacturing method
CN108701623B (en) * 2015-11-05 2022-10-04 米朋克斯株式会社 Substrate evaluation method
JP7083699B2 (en) * 2018-05-25 2022-06-13 信越半導体株式会社 Evaluation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245741A1 (en) * 2020-06-01 2021-12-09 信越半導体株式会社 Method for evaluating outer peripheral distortion of wafer

Also Published As

Publication number Publication date
JP2020194857A (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US8021968B2 (en) Susceptor and method for manufacturing silicon epitaxial wafer
KR101516164B1 (en) Susceptor for epitaxial growth
TWI613751B (en) Susceptor assemblies for supporting wafers in a reactor apparatus
JP5445508B2 (en) Eccentricity evaluation method and epitaxial wafer manufacturing method
JP5232719B2 (en) Epitaxially coated semiconductor wafer manufacturing method
US9273414B2 (en) Epitaxial growth apparatus and epitaxial growth method
JP2017109900A (en) Epitaxial growth system, epitaxial growth method, and production method of semiconductor element
TWI258189B (en) Thermal treatment apparatus and thermal treatment method
JP6702485B1 (en) Wafer peripheral strain evaluation method
JP3004846B2 (en) Susceptor for vapor phase growth equipment
JP7083699B2 (en) Evaluation method
TWI672402B (en) Epitaxially coated semiconductor wafer of monocrystalline silicon and method for production thereof
JP6132163B2 (en) Eccentricity evaluation method and epitaxial wafer manufacturing method
JP2005056984A (en) Apparatus and method for vapor phase growth
JP3911518B2 (en) Susceptor for vapor phase growth apparatus and vapor phase growth method
JP2000355766A (en) Device and method for processing substrate
JP2013175543A (en) Single wafer type epitaxial wafer manufacturing apparatus and epitaxial wafer manufacturing method using the same
WO2021245741A1 (en) Method for evaluating outer peripheral distortion of wafer
JPWO2009060914A1 (en) Epitaxial wafer
TW202146845A (en) Method for evaluating deformation of outer periphery of wafer including a pretreatment step, a step of emitting an infrared laser from the back of the outer periphery of the wafer, and a step of evaluation based on the degree of polarization of the infrared laser transmitted through the wafer
JP2014027049A (en) Method of adjusting temperature for vapor phase growth apparatus and method of manufacturing epitaxial wafer
JP2014045007A (en) Method for evaluating contamination of vapor phase growth apparatus and method for producing silicon epitaxial wafer
WO2022153951A1 (en) Method for measuring etching amount, and measurement system therefor
JP2007123803A (en) Semiconductor wafer support member and method for evaluating same
JPH1041235A (en) Manufacturing equipment of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190820

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191209

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R150 Certificate of patent or registration of utility model

Ref document number: 6702485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250