JP3910786B2 - Manufacturing method of hot plate - Google Patents

Manufacturing method of hot plate Download PDF

Info

Publication number
JP3910786B2
JP3910786B2 JP2000202372A JP2000202372A JP3910786B2 JP 3910786 B2 JP3910786 B2 JP 3910786B2 JP 2000202372 A JP2000202372 A JP 2000202372A JP 2000202372 A JP2000202372 A JP 2000202372A JP 3910786 B2 JP3910786 B2 JP 3910786B2
Authority
JP
Japan
Prior art keywords
hot plate
connection terminals
heating element
predetermined
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000202372A
Other languages
Japanese (ja)
Other versions
JP2002025755A (en
Inventor
信幸 左田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2000202372A priority Critical patent/JP3910786B2/en
Publication of JP2002025755A publication Critical patent/JP2002025755A/en
Application granted granted Critical
Publication of JP3910786B2 publication Critical patent/JP3910786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,熱板の製造方法に関する。
【0002】
【従来の技術】
半導体デバイスの製造におけるフォトリソグラフィー工程においては,半導体ウエハ(以下,「ウエハ」)の表面にレジスト液を塗布した後の加熱処理(プリベーキング)や,パターンの露光を行った後の加熱処理(ポストエクスポージャーベーキング)等,種々の加熱処理が行われている。
【0003】
これらの加熱処理は,通常加熱処理装置によって行われ,この加熱処理装置には,ウェハを載置して加熱するための円盤状の熱板が設けられている。従来この熱板は,二重構造を有しており,厚みのある2つの円盤の間にヒータ等の発熱体を挟むようにして構成されていた。また,発熱体は,細幅状のものが使用され,熱板上の温度が均一になるように,熱板面内において偏り無く配置されていた。発熱体の両端部には,電力供給線等に接続される接続端子が設けられており,その接続端子は,配線周りを簡素化するために,近接して配置されていた。
【0004】
【発明が解決しようとする課題】
しかし,このように厚みのある熱板が2重構造に構成されていると,熱板全体の厚みがさらに厚くなってしまい,熱の応答性が悪くなるため,熱板温度を急速に昇降する場合に時間がかかる等の弊害が生じていた。
【0005】
そこで,熱板自体を薄くすると共に,この熱板の下面にヒータ等の発熱体のパターンを印刷し,熱板を一重にして熱板全体の厚みを薄くすることが提案される。
【0006】
ところで,発熱体の接続端子は放熱しやすいので,熱板上の接続端子の配置される部分の温度は,他の部分よりも低くなる。従来は,熱板自体が相当の厚みを有し熱容量が大きいので問題にならなかったが,上述したように熱板が薄いと2つの接続端子が接近配置している場合,その影響は無視できず,熱板の温度が局所的に著しく不均一になる。
【0007】
そこで,さらに熱板への影響を抑制するため2つの接続端子を離して配置することが考えられるが,単純に離すだけでは,その離すことによって生じた領域内の発熱体の密度が粗になり,その領域内の温度が他の領域に比べて低下することが懸念される。また,接続端子を離して配置する際に発熱体の総延長を変更してしまうと,所定時間内に熱板からウェハに与えられる総熱量が変動するため,例えば発熱体の両接続端子間に掛ける電圧等を設定し直す必要があり,発熱体の総延長を変更せずに接続端子を離隔することが望ましい。
【0008】
本発明は,かかる点から鑑みてなされたものであり,前記両接続端子をなるべく離隔しつつも,熱板温度に不均一が生じないようにヒータ等の発熱体を配置する熱板の製造方法を提供することをその目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成する参考例として,両端に電力供給部に接続される接続端子を有し,かつ枝状に分岐しない開曲線状の発熱体を有する熱板の製造方法であって,前記熱板の所定の領域に前記発熱体を配置するにあたり,前記所定領域の一側寄りの区域内に,前記2つの接続端子を位置させると共に,前記2つの接続端子を所定距離以上に離隔させ,当該離隔によって,前記所定領域の他側寄りの区域と比較して熱板に存在する発熱体が相対的に疎になる前記一側寄りの区域内に,前記熱板面内における単位面積あたりの発熱量が等しくなるように,前記他側寄りの区域に配置される発熱体の一部をはみ出させて配置する熱板の製造方法が提供される。なお,開曲線形状には,曲線のみの場合だけでなく,曲線と直線が混在している場合,直線のみの場合をも含む。また,前記熱板の所定の領域とは,少なくとも加熱時に基板が載置される領域であり,熱板の全体であってもよいし,熱板の一部であってもよい。発熱体が相対的に疎になるとは,熱板のある領域における単位面積あたりに存在する発熱体の面積(以下「密度」とする)がその他の領域に比べて小さくなることをいう。また,前記所定距離は,例えば30mm程度であることが好ましい。
【0010】
このように,比較的熱を放熱し易い2つの接続端子を所定距離以上離隔することにより,接続端子が近接して設けられている場合に引き起こされる熱板の局所的な温度低下が抑制される。また,その離隔によって,発熱体の密度が疎になった前記一側寄りの区域内に,前記熱板における単位面積あたりの発熱量が等しくなるように前記他側寄りの区域に配置される発熱体の一部をはみ出させて配置させるため,接続端子を離したことによって生じる熱板温度の不均一が修正される。また,前記他側寄りの区域内の発熱体の一部を前記一側寄りの区域内にはみ出させるため,発熱体の総延長が従来のものと同じ長さに維持される。したがって,所定時間内に発熱体全体から最終的に基板に与えられる熱量が,従来のものと同じであり,既存の電圧等の設定値をそのまま利用することができる。
【0011】
別の観点による参考例によれば,両端に電力供給部に接続される接続端子を有し,かつ枝状に分岐しない開曲線状の発熱体を有する円盤状の熱板の製造方法であって,前記熱板における複数の円弧状に区画された所定の領域に前記発熱体を各々配置するにあたり,前記各所定領域の外周寄りの区域内に,前記接続端子を位置させると共に各接続端子が等間隔となるように離隔して配置し,当該離隔によって,前記所定領域の内周寄りの区域と比較して熱板に存在する発熱体が相対的に疎になる前記外周寄りの区域内に,前記熱板面内における単位面積あたりの発熱量が等しくなるように,前記内周寄りの区域に配置される発熱体の一部をはみ出させて配置する熱板の製造方法が提供される。
【0012】
この参考例のように,熱板面内の温度の均一性を向上させることを目的として熱板を複数の円弧状に区画し,その区画された所定の領域に発熱体を各々配置し,その区画された領域毎に温度を調節する場合においても,上述した参考例と同様に,各所定領域毎に設けられた2つの接続端子を離隔することによって,それらの接続端子による前記領域内の局所的な温度低下が抑制できる。また,熱板上に設けられている各接続端子を等間隔に配置するため,熱板全面において接続端子の接近による温度低下が抑制できる。さらに当該離隔によって発熱体の密度が疎になる外周寄りの区域内に,前記内周寄りの区域内の発熱体の一部を熱板面内における単位面積あたりの発熱量が等しくなるようにはみ出させるため,その所定領域内の熱板温度の均一性が担保される。また,発熱体の総延長も変わらないため,所定時間内に基板全体に与えられる総熱量も従来と同じに維持することができる。
【0013】
上述した参考例において,前記発熱体が,周方向に沿って平行にかつ円弧状に配置された複数の円弧部を有し,前記両接続端子間に対応する最も外側の円弧部が,外周側にはみ出ているようにしてもよい。このように,熱板に,周方向に沿って平行に配置された発熱体の円弧部を設けることによって,熱板上に偏り無く発熱体が配置され,熱板面内において熱板温度を均一にすることができる。
【0014】
上記参考例において,前記発熱体のはみ出ている部分を,平面からみて略波形状にしてもよいし,矩形波状にしてもよい。このように,前記発熱体のはみ出ている部分を略波形状又は矩形波状にすることにより,前記発熱体の一部を熱板面内の単位面積あたりの発熱量が等しくなるように配置することができる。したがって,接続端子を離すことによって引き起こされる熱板温度の不均一を改善し,基板を均一に加熱することができる。また,矩形波状にする場合は,発熱体の総延長が変動しないようにはみ出させるときに,そのはみ出させる部分の形状が矩形であるため,そのはみださせる部分の寸法を容易に算出することができ,設計上好ましい。なお,略波形状には,正弦波形状や三角波形状又はZ字形形状をも含む。
【0015】
本発明によれば,両端に電力供給部に接続される接続端子を有し,かつ枝状に分岐しない開曲線状の発熱体を有する熱板の製造方法であって,前記熱板の所定の領域に前記発熱体を配置するにあたり,前記所定領域の一側寄りの区域内に前記2つの接続端子を位置させると共に,前記2つの接続端子を所定方向に沿って所定距離離隔させ,前記接続端子のうちの一の接続端子には,一旦前記所定方向に対して略直角方向に延伸する延伸部を介して,前記所定方向に沿って延伸する発熱体の第1の直線部を接続し,前記接続端子のうちの他の接続端子には,前記所定方向に沿って延伸する発熱体の第2の直線部を,直接,又は前記延伸部よりも短くかつ前記延伸部と平行な他の延伸部を介して接続し,前記第1の直線部と第2の直線部とは平行に配置し,前記第1の直線部における前記両接続端子間に応対する部分は,前記所定距離分に相当する長さの発熱体を,平面からみて矩形波状になるように成形して前記接続端子側に突出させて配置することを特徴とする熱板の製造方法が提供される。なお,前記第1の直線部及び第2の直線部は,完全な直線に延伸して無くてもよく,曲線に延伸していてもよい。
【0016】
本発明のように発熱体を配置するにあたり,発熱体の2つの接続端子を所定距離離隔すると,その両接続端子が近接している場合に生じる熱板の局所的な著しい温度低下が抑制できる。しかし,当該離隔によって,両接続端子の配置されている前記一側寄りの区域の発熱量が減少すると,熱板面内の温度が不均一になる。また,当該離隔によって発熱体の総延長が短縮されると,熱板全体の熱量が減少してしまう。そこで,本発明のように前記第1の直線部における両接続端子間に対応する部分は,前記所定距離分に相当する長さの発熱体を,平面からみて接続端子側に突出した矩形波状になるように配置することによって,両接続端子の配置されている前記区域の発熱量が補填され,発熱体の総延長も維持される。
【0017】
上記発明において,前記矩形波における各辺の長さが等しくなるように成形するようにしてもよい。このように矩形波における各辺の長さを等しくすると,例えば仮に直線のみで構成されている第1の直線部に前記所定距離分の発熱体を付加し,前記第1の直線部を矩形波状にする場合に,設計上,第1の直線部及び前記所定距離分の発熱体を矩形波の一辺と同じ長さの線分に区切り,それらの線分を順番を考慮することなく矩形波状に配置するだけで,矩形波を作ることができる。したがって,矩形波における各辺の長さを等しくすることは,発熱体のパターンの設計が容易になり,設計上好ましい。なお,前記各辺の長さが等しいとは,完全に各辺の長さが一致している場合のみならず,各辺に矩形波を成形できる程度の相異がある場合をも含む。
【0018】
別の観点による本発明によれば,両端に電力供給部に接続される接続端子を有し,かつ枝状に分岐しない開曲線状の発熱体を有する熱板の製造方法であって,前記熱板の所定の領域に前記発熱体を配置するにあたり,前記所定領域の一側寄りの区域内に前記2つの接続端子を位置させると共に,前記2つの接続端子を所定方向に沿って所定距離離隔させ,前記接続端子のうちの一の接続端子には,一旦前記所定方向に対して略直角方向に延伸する延伸部を介して,前記所定方向に沿って延伸する発熱体の第1の直線部を接続し,前記接続端子のうちの他の接続端子には,前記所定方向に沿って延伸する発熱体の第2の直線部を,直接,又は前記延伸部よりも短くかつ前記延伸部と平行な他の延伸部を介して接続し,前記第1の直線部における前記両接続端子間に応対する部分は,前記所定距離分に相当する長さの発熱体を,平面からみて三角波形状になるように成形し,その三角波の突出方向が前記接続端子側になるように配置することを特徴とする熱板の製造方法が提供される。
【0019】
本発明によれば,2つの接続端子を所定距離離隔し,前記第1の直線部における両接続端子間に相当する部分に,前記所定距離分に相当する長さの発熱体を付け足し,前記第1の直線部が接続端子側に突出した三角波形状になるように配置される。したがって接続端子の接近による熱板の局所的な温度低下が抑制され,当該離隔によって生じる熱板温度の不均一を改善し,さらに発熱体の総延長を維持して,所定時間内に熱板から基板に与えられる総熱量を担保することができる。
【0020】
上述した発明は,前記熱板がこの熱板の平面が複数のエリアに円弧状に区画されており,前記発熱体は,前記エリア毎に設けられるようにしてもよい。このように,本発明の熱板の製造方法は,熱板を円弧状に区分する場合にも応用され,より狭い範囲での熱板の均一性が担保され,その結果熱板全体の温度の均一性が維持される。
【0021】
【発明の実施の形態】
以下,本発明の好ましい実施の形態について説明する。本発明にかかる熱板の製造方法によって製造された熱板は,例えばウェハWの塗布現像処理において用いられる加熱処理装置に採用される。
【0022】
図1は,ウェハWの塗布現像処理に用いられる加熱処理装置1の縦断面図であり,この加熱処理装置1のケーシング1aの中央部には,ウェハWを載置し加熱する円盤状の熱板2が設けられている。
【0023】
前記熱板2は,厚みが例えば2〜10mm程度の円盤状に形成されており,その材質は,熱伝導性の優れたセラミックである例えば炭化ケイ素や窒化アルミニウムが用いられている。熱板2は,図2に示すように,その平面が中心部の円状のエリア2aとその周辺部の円弧状の例えば4分割したエリア2b,2c,2d,2eに区画されており,熱板2の裏面には,その区画されたエリア2a〜2e毎に電力によって発熱する発熱体としてのヒータ3a,3b,3c,3d,3eがそれぞれ印刷されている。各ヒータ3a〜3eには,電力供給部としてのヒータ制御装置4a,4b,4c,4d,4eがそれぞれ設けられており,各ヒータ3a〜3e毎に電力を供給するとともにその発熱量を制御し,熱板2全体の温度を均一に維持できるようになっている。なお,各ヒータ3a〜3eは,その総延長が所定の距離,例えば1〜2mになるように構成されており,各ヒータ3a〜3eから単位時間あたりに発生する発熱量が一定になるようになっている。
【0024】
ここで,各ヒータ3a〜3eについて詳しく説明すると,先ずヒータ3aはエリア2a中に環状に配置されており,そのヒータ3aを挟んでその外側には,ヒータ3aの接続端子5,6が設けられ,ヒータ3aに接続されている。その接続端子5,6はヒータ制御装置4aに接続されており,ヒータ制御装置4aが接続端子5,6間に付加される電圧を制御することによって,ヒータ3aの発熱量が制御され,熱板2のエリア2aの温度を所定の設定温度に維持できるようになっている。
【0025】
ヒータ3bは,エリア2bに枝状に分岐しない開曲線状,いわゆる一筆書き状に所定のパターンで配置されており,その両端には,ヒータ制御装置4bに接続された接続端子7,8が設けられている。そして,ヒータ3aと同様にヒータ制御装置4bによって,接続端子7,8間の電圧を制御し,エリア2b内の温度を設定温度に維持できるように構成されている。また,前記接続端子7は,エリア2bの外周部であって,エリア2bの中央付近に設けられ,接続端子8は,接続端子7と所定距離離れた位置であり,エリア2bの外周部であってエリア2bの一の側端L付近に設けられている。
【0026】
ここでヒータ3bの前記所定のパターンを接続端子7から順に説明すると,前記ヒータ3bは前記接続端子7から熱板2の外縁部に沿ってエリア2bの他の側端Rに向かってACW方向(図2中の矢印方向と逆方向)に進み,前記他の側端Rに到達する前に中心方向に曲がり,その後中心方向に進み,エリア2bの内縁部に達する前にCW方向に曲がってそのままCW方向に進み,エリア2bの一の側端Lに到達する前まで進む。そして,そこから,外周側にずれて180゜折り返し,再びACW方向に円弧状に所定距離進んで再び外周側にずれて折り返しACW方向に進む。そして,この折り返しを合計で偶数回,例えば4回繰り返した後,さらにCW方向に進み,接続端子7と接続端子8との間に対応する円弧状の区間を矩形波状に進み,接続端子8に到達するように配置される。このときの矩形波は,接続端子7,8間を所定距離離隔して設けることによってヒータ3bの密度が疎になる領域Pがその領域P以外の領域Qと熱板2面内の単位面積あたりの発熱量が等しくなるように,領域Q内のヒータ3bが両接続端子7,8側にはみ出るように配置され,領域P内においても,熱板2の温度を均一に維持できるようになっている。
【0027】
次に,前記ヒータ3bの矩形波部分の具体的な形成方法について説明する。先ず,図3(図3は,図2中の領域Pと領域Qを合わせた領域Tの拡大図である)に示すように接続端子7,8を所定距離Lだけ離して設ける。そして,接続端子8には,一旦中心方向(図3中の矢印M方向)の延伸部Aを介して,ACW方向に延伸するヒータ3bの第1の直線部Bを接続する。一方,接続端子7には,ACW方向に沿って延伸する第2の直線部Cを,延伸部Aよりも短く延伸部Aと平行な延伸部Dを介して接続する。このとき前記第1の直線部Bと第2の直線部Cは,平行に配置される。そして,第1の直線部Bにおける両接続端子7,8間に対応する部分Eに,長さL分に相当するヒータを補充し,第1の直線部Bが平面からみて接続端子7,8側に突出した矩形波状になるように配置する。こうすることにより,接続端子7,8を所定距離離隔して設け,ヒータ3bの総延長を変更させず,かつ熱板2面内において単位面積あたりの発熱量が等しくなるようにヒータパターンを形成することができる。なお,第2の直線部Cは,接続端子7からACW方向に沿って直接延伸させるようにしてもよい。
【0028】
また,エリア2c〜2eについても,エリア2bと同様にして,各エリア2c〜2e毎にヒータ3c〜3eが配置されており,各ヒータ3c〜3eの両端には,各ヒータ制御装置4b〜4eの接続された接続端子9〜14が設けられている。また,前記した接続端子7,8を含めた接続端子7〜14は,等間隔になるように設けられている。
【0029】
以上のようなヒータパターンが配置された熱板2は,図1に示すようにその外縁部が支持部材20に支持されており,この支持部材20には,熱板2の熱を外部に逃がさないように断熱材が使用されている。支持部材20は,上面が開口した略筒状の支持台21に支持されている。
【0030】
さらに,支持部材20及び支持台21との外方には,その支持部材20と支持台21とを取り囲む収容体である略筒状のサポートリング22を有している。このサポートリング22には,処理室S内に向けて例えば,不活性ガス,例えば窒素ガスを噴出する吹き出し口22aが設けられており,処理室S内をパージし,不活性ガス雰囲気にすることができる。また,サポートリング22の外方には,円筒状のケース23が設けられている。
【0031】
一方,熱板2の上側には,上下動自在な蓋体24が設けられており,蓋体24が下降したときに前記ケース23と一体となって処理室Sを形成できるようになっている。蓋体24は,中心部に向かって次第に高くなる略円錐状の形態を有し,頂上部には排気部24aが設けられている。そして,処理室S内の雰囲気は排気部24aから均一に排気されるようになっている。
【0032】
なお,熱板2の下方には,ウェハWを搬入出する際に,ウェハWを支持し,昇降させるための昇降ピン25が複数個設けられている。この昇降ピン25は,昇降駆動機構26により上下に移動自在であり,熱板2下方から熱板2を貫通し,熱板2上に突出できるように構成されている。
【0033】
以上のように構成された加熱処理装置1で行われる加熱処理は,各ヒータ制御装置4a〜4eによって,各ヒータ3a〜3eの発熱量が制御され,熱板2の表面全面の温度が設定温度,例えば90〜150℃に維持された状態で,その熱板2上にウェハWが所定時間載置されることにより行われる。
【0034】
以上の実施の形態に従って製造された熱板2では,各接続端子7〜14を所定距離離隔して設けるため,熱板2の厚みが薄い場合であっても接続端子7〜14による熱板2の極端な温度低下による温度の斑を抑制できる。したがって,熱板2の温度が熱板2面内において均一に維持され,ウェハWを均一に加熱することができる。
【0035】
また,エリア2bにおいて,接続端子7,8間を所定距離離隔して設けることによってヒータ3bの密度が疎になる領域Pに,それ以外の領域Q内のヒータ3bを,熱板2面内の単位面積あたりの発熱量が等しくなるように,両接続端子7,8側にはみ出るように配置したため,エリア2b内の温度を均一にすることができる。そして,他のエリア2c,2d,2eにおいても同様なパターンの各ヒータ3c〜3eを配置したため,熱板2全体の温度を均一にすることができ,その熱板2に載置されるウェハWを均一に加熱することができる。また,ヒータ5bの総延長に変動がないため,所定時間内に熱板2からウェハWに与えられる総熱量が従来のものと変わらない。そのため,従来のものと設定値を変更する必要がないので,設定電圧の調節等の複雑な計算を要する作業を行う必要がない。
【0036】
以上の実施の形態においては,接続端子7,8間に対応する部分Eのヒータ3bを矩形波状に配置したが,さらにその矩形波の各辺の長さが等しくなるように配置してもよい。
【0037】
このように配置する場合には,例えば図4に示すように,仮に接続端子7と接続端子8が近接して設けられている場合を想定し,第1の直線部Bと第2の直線部Dの所定距離L分に相当するヒータ3bをM方向に伸びる直線(図4の点線)によって,例えば6等分する(第1の直線部Bの区分された線分を左から(1)〜(6)とし,第2の直線部Dの区分された線分を左から(7)〜(12)とする)。このとき,6等分された各線分の長さが第1の直線部Bと第2の直線部D間の距離lにほぼ等しくなるようにする。そして,その区分された線分(1)〜(12)を,第1の直線部Bに各線分(1)〜(12)が矩形波の一辺を構成するように接続端子7及び8側に突出させて配置する。このとき,各線分(1)〜(12)の長さがほぼ等しいため,図5に示すように線分(1)〜(12)を番号順につなげて配置してもよいし,図6に示すように線分(7)〜(12)をM方向の辺として用いてもよい。このように,矩形波の各辺の長さが等しくなるように配置することにより,ヒータ3の設計段階において,上述したヒータ3の配置を従来とヒータ3の長さを変えることなく容易に行うことができる。なお,第1の直線部Bと第2の直線部Dが完全な直線の場合には,各線分(1)〜(12)の長さが完全に一致するため,より容易に設計することができる。
【0038】
また,以上の実施の形態において,接続端子7,8間に対応する部分Eのヒータ3bを矩形波状に配置したが,平面からみて他の波形形状に配置してもよい。例えば図7に示すように三角波状としたり,図8に示すように正弦波状にしてもよい。このような形状にした場合でも,単位面積あたりの発熱量が等しくなるように,例えば第1の直線部Bのヒータ3bを接続端子側にはみださせて配置することにより,熱板2面内の温度が均一になり,ウェハWを均一に加熱することができる。
【0039】
さらに,以上の実施の形態では,熱板2を複数のエリア2a〜2eに円弧状に区画し,そのエリア2a〜2e毎にヒータ3a〜3eが設けられていたが,熱板を他の形状,例えば同心円状に区画し,そのエリア毎にヒータが設けられるようにしてもよい。また,熱板が区画されず,熱板全体に単一のヒータで上述したようなパターンを配置するようにしてもよい。
【0040】
なお,以上で説明した実施の形態は,ウエハWの加熱処理装置で採用される熱板の製造方法ついてであったが,本発明は半導体ウエハ以外の基板例えばLCD基板の加熱処理装置における熱板に対しても適用が可能である。例えば,図2に示したヒータパターンを採用する場合,平面からみて方形状である熱板を,例えば相似形の方形の4つのエリアに区画し,その区画されたエリア毎にヒータ3bと同様なパターンのヒータを配置する。このとき,熱板の形状が方形であるため,ヒータ3bのような円弧状ではなく,熱板の外形に沿った直線を用いてヒータを構成する。
【0041】
【発明の効果】
発明によれば,接続端子を離隔させて,発熱体を配置したので,熱板を薄くした場合でも2以上の接続端子の接近により引き起こされる熱板の局所的で極端な温度低下が抑制される。したがって,熱板面内の温度が均一に維持されるため,基板の加熱処理が好適に行われる。また,2つの接続端子を接近することによって引き起こされる各接続端子からの放電も抑制することができるため,電気の消費量を削減し,コストダウンが図られる。
【0042】
また,発熱体の長さを変える必要がないので,例えば発熱体に印可する電圧を変更しなくとも,所定時間に熱板全体から基板に与えられる熱量が所定の値に維持され,適正な電圧を算出する等のヒータパターン変更に伴う作業が省略できる。
【図面の簡単な説明】
【図1】本実施の形態にかかる熱板の製造方法によって製造される熱板を有する加熱処理装置の縦断面の説明図である。
【図2】熱板に配置されたヒータパターンを示す説明図である。
【図3】熱板の領域T内の拡大図である。
【図4】ヒータを矩形波状に配置する場合の配置方法を説明するための図である。
【図5】ヒータを矩形波状に配置する場合の配置方法を説明するための図である。
【図6】ヒータを矩形波状に配置する場合の配置方法を説明するための図である。
【図7】領域T内におけるヒータの他の配置例を示す説明図である。
【図8】領域T内におけるヒータの他の配置例を示す説明図である。
【符号の説明】
1 加熱処理装置
2 熱板
2a〜2e エリア
3 ヒータ
4 ヒータ制御装置
5〜14 接続端子
P 領域
Q 領域
T 領域
W ウェハ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a hot plate.
[0002]
[Prior art]
In a photolithography process in the manufacture of semiconductor devices, a heat treatment (pre-baking) after applying a resist solution to the surface of a semiconductor wafer (hereinafter referred to as “wafer”), or a heat treatment (post-posting) after pattern exposure. Various heat treatments such as exposure baking are performed.
[0003]
These heat treatments are usually performed by a heat treatment apparatus, and this heat treatment apparatus is provided with a disk-shaped hot plate for placing and heating the wafer. Conventionally, this hot plate has a double structure, and is configured such that a heating element such as a heater is sandwiched between two thick discs. In addition, the heating element has a narrow width, and is arranged without deviation in the surface of the hot plate so that the temperature on the hot plate becomes uniform. At both ends of the heating element, connection terminals connected to power supply lines and the like are provided, and the connection terminals are arranged close to each other in order to simplify the periphery of the wiring.
[0004]
[Problems to be solved by the invention]
However, if the thick heat plate is configured in a double structure in this way, the thickness of the entire heat plate will be further increased and the heat responsiveness will be worsened. In some cases, it took time and so on.
[0005]
Therefore, it is proposed to reduce the thickness of the entire hot plate by thinning the hot plate itself and printing a pattern of a heating element such as a heater on the lower surface of the hot plate so as to make the hot plate a single layer.
[0006]
By the way, since the connecting terminal of the heating element easily radiates heat, the temperature of the part where the connecting terminal is arranged on the hot plate becomes lower than the other part. Conventionally, the hot plate itself has a considerable thickness and has a large heat capacity, so this has not been a problem. However, if the hot plate is thin as described above, the effect is negligible when the two connection terminals are close together. Therefore, the temperature of the hot plate becomes extremely uneven locally.
[0007]
In order to further suppress the influence on the hot plate, it is conceivable to dispose the two connection terminals apart from each other. However, simply separating them will cause the density of the heating elements in the region generated by the separation to become coarse. , There is a concern that the temperature in that region will be lower than in other regions. In addition, if the total length of the heating element is changed when the connection terminals are separated from each other, the total amount of heat given from the hot plate to the wafer within a predetermined time will fluctuate. It is necessary to reset the applied voltage, etc., and it is desirable to separate the connection terminals without changing the total extension of the heating element.
[0008]
The present invention has been made in view of the above points, and a method of manufacturing a hot plate in which a heating element such as a heater is arranged so that the hot plate temperature is not uneven while the two connection terminals are separated as much as possible. The purpose is to provide.
[0009]
[Means for Solving the Problems]
As a reference example to achieve the above purpose, A method of manufacturing a hot plate having connection terminals connected to the power supply unit at both ends and having an open-curved heating element that does not branch in a branch shape, wherein the heating element is arranged in a predetermined region of the hot plate In doing so, the two connection terminals are positioned in a region closer to one side of the predetermined region, and the two connection terminals are separated by a predetermined distance or more, and the separation causes the second connection terminal closer to the other side of the predetermined region. Compared with the area, the heating element existing in the hot plate is relatively sparse, and the heat generation amount per unit area in the hot plate surface is equal in the area near the one side. There is provided a method of manufacturing a hot plate in which a part of the heating element disposed in the area is protruded. Note that the open curve shape includes not only a curve but also a case where a curve and a straight line are mixed and a straight line only. The predetermined region of the hot plate is a region where the substrate is placed at least during heating, and may be the entire hot plate or a part of the hot plate. When the heating element is relatively sparse, it means that the area of the heating element (hereinafter referred to as “density”) existing in a certain area of the hot plate is smaller than that of the other areas. The predetermined distance is preferably about 30 mm, for example.
[0010]
In this manner, by separating the two connection terminals that are relatively easy to dissipate heat by a predetermined distance or more, a local temperature drop of the hot plate caused when the connection terminals are provided close to each other is suppressed. . Further, due to the separation, the heat generation element disposed in the area near the other side so that the heat generation amount per unit area in the heat plate becomes equal in the area near the one side where the density of the heating elements is sparse. Because the part of the body protrudes and is arranged, the unevenness of the hot plate temperature caused by releasing the connection terminal is corrected. In addition, since a part of the heating element in the area closer to the other side protrudes into the area closer to the one side, the total extension of the heating element is maintained at the same length as the conventional one. Therefore, the amount of heat finally given to the substrate from the entire heating element within a predetermined time is the same as the conventional one, and the existing set values such as voltage can be used as they are.
[0011]
Reference example from another perspective According to the present invention, there is provided a method of manufacturing a disk-shaped hot plate having connection terminals connected to the power supply unit at both ends and having an open curved heating element that does not branch into branches, In arranging each heating element in a predetermined area partitioned in an arc shape, the connection terminals are positioned in the area near the outer periphery of each predetermined area, and the connection terminals are spaced apart at equal intervals. The unit in the surface of the hot plate in the area near the outer periphery where the heating element existing in the heat plate becomes relatively sparse compared with the area near the inner periphery of the predetermined region by the separation. There is provided a method for manufacturing a hot plate in which a part of the heating element arranged in the area closer to the inner periphery is protruded so that the heat generation amount per area becomes equal.
[0012]
This reference example In order to improve the temperature uniformity in the hot plate surface, the hot plate is divided into a plurality of arcs, and the heating elements are respectively arranged in the predetermined areas. Even when adjusting the temperature for each region, Reference example Similarly to the above, by separating the two connection terminals provided for each predetermined region, a local temperature drop in the region due to the connection terminals can be suppressed. Further, since the connection terminals provided on the hot plate are arranged at equal intervals, a temperature drop due to the approach of the connection terminals on the entire hot plate can be suppressed. Further, in the area closer to the outer periphery where the density of the heating element becomes sparse due to the separation, a part of the heating element in the area closer to the inner periphery protrudes so that the heat generation amount per unit area in the hot plate surface becomes equal. Therefore, the uniformity of the hot plate temperature within the predetermined area is ensured. Further, since the total length of the heating element does not change, the total amount of heat given to the entire substrate within a predetermined time can be maintained the same as in the past.
[0013]
Reference example above The heating element has a plurality of arc portions arranged in an arc shape in parallel along the circumferential direction, and the outermost arc portion corresponding to the space between both connection terminals protrudes to the outer peripheral side. You may do it. In this way, by providing the heating plate with arc portions of the heating elements arranged in parallel along the circumferential direction, the heating elements are arranged evenly on the heating plate, and the temperature of the heating plate is made uniform within the heating plate surface. Can be.
[0014]
Reference example above , The protruding portion of the heating element may have a substantially wave shape or a rectangular wave shape when viewed from the plane. Thus, by arranging the protruding part of the heating element to have a substantially wave shape or rectangular wave shape, a part of the heating element is arranged so that the heat generation amount per unit area in the hot plate surface is equal. Can do. Therefore, the unevenness of the hot plate temperature caused by separating the connection terminals can be improved, and the substrate can be heated uniformly. In addition, in the case of a rectangular wave shape, when the total length of the heating element protrudes so as not to fluctuate, the shape of the protruding portion is rectangular, so the size of the protruding portion should be easily calculated. This is preferable in terms of design. The substantially wave shape includes a sine wave shape, a triangular wave shape, or a Z-shape.
[0015]
The present invention According to the present invention, there is provided a method of manufacturing a hot plate having connection terminals connected to the power supply unit at both ends and having an open-curved heating element that does not branch into a branch shape, the hot plate having a predetermined region in the hot plate. In disposing the heating element, the two connection terminals are located in a region closer to one side of the predetermined region, and the two connection terminals are separated by a predetermined distance along a predetermined direction, One connection terminal is connected to a first straight portion of a heating element extending along the predetermined direction through an extension portion extending in a direction substantially perpendicular to the predetermined direction. In the other connection terminal, the second straight portion of the heating element extending along the predetermined direction is directly or via another extension portion shorter than the extension portion and parallel to the extension portion. Connected and the first straight line part and the second straight line part are arranged in parallel The portion of the first linear portion that corresponds to the connection terminals is formed by forming a heating element having a length corresponding to the predetermined distance so as to have a rectangular wave shape when viewed from the plane. A method of manufacturing a hot plate is provided, wherein the hot plate is disposed so as to protrude. The first straight line portion and the second straight line portion do not have to be stretched into a complete straight line, but may be stretched into a curve.
[0016]
The present invention In arranging the heating element as described above, if the two connection terminals of the heating element are separated from each other by a predetermined distance, it is possible to suppress a significant local temperature drop of the hot plate that occurs when the two connection terminals are close to each other. However, if the amount of heat generated in the area near the one side where both connection terminals are arranged decreases due to the separation, the temperature in the hot plate becomes uneven. Further, if the total length of the heating element is shortened by the separation, the amount of heat of the entire hot plate is reduced. Therefore, The present invention As described above, the portion corresponding to the distance between the connection terminals in the first straight line portion is arranged so that the heating element having a length corresponding to the predetermined distance is in a rectangular wave shape protruding toward the connection terminal when viewed from the plane. By doing so, the amount of heat generated in the area where both connection terminals are arranged is compensated, and the total extension of the heating element is also maintained.
[0017]
The above invention In this case, the sides of the rectangular wave may be formed to have the same length. Thus, if the length of each side in the rectangular wave is made equal, for example, a heating element for the predetermined distance is added to the first straight line part which is constituted only by a straight line, and the first straight line part is formed into a rectangular wave shape. In design, the first straight portion and the heating element for the predetermined distance are divided into line segments having the same length as one side of the rectangular wave, and these line segments are formed into a rectangular wave shape without considering the order. A square wave can be created simply by positioning. Therefore, equalizing the length of each side in the rectangular wave is preferable in design because the design of the heating element pattern becomes easy. Note that the fact that the lengths of the respective sides are equal includes not only the case where the lengths of the respective sides are completely matched, but also the case where there is a difference that can form a rectangular wave on each side.
[0018]
A book from another perspective According to the invention, there is provided a method of manufacturing a hot plate having connection terminals connected to the power supply portion at both ends and having an open curved heating element that does not branch into a branch shape, and is provided in a predetermined region of the hot plate. In disposing the heating element, the two connection terminals are positioned in a region closer to one side of the predetermined region, and the two connection terminals are separated by a predetermined distance along a predetermined direction. One connecting terminal is connected to the first straight portion of the heating element extending along the predetermined direction through an extending portion extending in a direction substantially perpendicular to the predetermined direction. In the other connection terminal, the second straight portion of the heating element extending along the predetermined direction is directly or via another extension portion shorter than the extension portion and parallel to the extension portion. Connected between the two connection terminals in the first straight section The responding portion is characterized in that a heating element having a length corresponding to the predetermined distance is formed so as to have a triangular wave shape when viewed from above, and the protruding direction of the triangular wave is arranged on the connection terminal side. A method for manufacturing a hot plate is provided.
[0019]
The present invention The two connection terminals are separated from each other by a predetermined distance, and a heating element having a length corresponding to the predetermined distance is added to a portion corresponding to the distance between both connection terminals in the first linear portion. It arrange | positions so that a linear part may become the triangular wave shape which protruded in the connection terminal side. Therefore, the local temperature drop of the hot plate due to the approach of the connection terminal is suppressed, the non-uniformity of the hot plate temperature caused by the separation is improved, and further, the total extension of the heating element is maintained, and the hot plate is removed from the hot plate within a predetermined time. The total amount of heat given to the substrate can be secured.
[0020]
Invention mentioned above The heating plate may be configured such that a plane of the heating plate is partitioned into a plurality of areas in an arc shape, and the heating element is provided for each area. in this way, The present invention The hot plate manufacturing method is also applied when the hot plate is divided into arcs, ensuring the uniformity of the hot plate in a narrower range, and as a result, maintaining the temperature uniformity of the entire hot plate .
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described. The hot plate manufactured by the hot plate manufacturing method according to the present invention is employed in, for example, a heat treatment apparatus used in the coating and developing process of the wafer W.
[0022]
FIG. 1 is a vertical cross-sectional view of a heat treatment apparatus 1 used for coating and developing a wafer W, and a disk-like heat for placing and heating the wafer W at the center of a casing 1a of the heat treatment apparatus 1. A plate 2 is provided.
[0023]
The hot plate 2 is formed in a disk shape having a thickness of about 2 to 10 mm, for example, and the material thereof is ceramic having excellent thermal conductivity such as silicon carbide or aluminum nitride. As shown in FIG. 2, the heat plate 2 is divided into a circular area 2a at the center and an arc-shaped area 2b, 2c, 2d, 2e, for example, which is divided into four parts. On the back surface of the plate 2, heaters 3a, 3b, 3c, 3d, and 3e are printed as heating elements that generate heat by electric power in each of the divided areas 2a to 2e. Each of the heaters 3a to 3e is provided with a heater control device 4a, 4b, 4c, 4d and 4e as an electric power supply unit, which supplies electric power to each of the heaters 3a to 3e and controls its heat generation amount. The temperature of the entire hot plate 2 can be maintained uniformly. In addition, each heater 3a-3e is comprised so that the total extension may become predetermined distance, for example, 1-2 m, and the emitted-heat amount generate | occur | produced per unit time from each heater 3a-3e becomes constant. It has become.
[0024]
Here, the heaters 3a to 3e will be described in detail. First, the heater 3a is annularly arranged in the area 2a, and connecting terminals 5 and 6 of the heater 3a are provided outside the heater 3a. , Connected to the heater 3a. The connection terminals 5 and 6 are connected to the heater control device 4a. When the heater control device 4a controls the voltage applied between the connection terminals 5 and 6, the amount of heat generated by the heater 3a is controlled. The temperature of the second area 2a can be maintained at a predetermined set temperature.
[0025]
The heater 3b is arranged in a predetermined pattern in an open curve shape that is not branched into a branch shape in the area 2b, that is, a so-called one-stroke shape, and connection terminals 7 and 8 connected to the heater control device 4b are provided at both ends thereof. It has been. As with the heater 3a, the voltage between the connection terminals 7 and 8 is controlled by the heater control device 4b so that the temperature in the area 2b can be maintained at the set temperature. The connection terminal 7 is provided at the outer periphery of the area 2b and in the vicinity of the center of the area 2b, and the connection terminal 8 is located at a predetermined distance from the connection terminal 7 and is the outer periphery of the area 2b. And is provided near one side end L of the area 2b.
[0026]
Here, the predetermined pattern of the heater 3b will be described in order from the connection terminal 7. The heater 3b extends from the connection terminal 7 along the outer edge of the hot plate 2 toward the other side edge R of the area 2b in the ACW direction ( 2 in the direction opposite to the arrow direction in FIG. 2, bend in the center direction before reaching the other side end R, and then proceed in the center direction and bend in the CW direction before reaching the inner edge of the area 2 b. Proceed in the CW direction and before reaching one side edge L of the area 2b. And from there, it shifts to the outer peripheral side and turns back 180 °, advances again in a circular arc shape in the ACW direction, shifts again to the outer peripheral side, and goes back to ACW direction. Then, this folding is repeated an even number of times, for example, four times, and then proceeds in the CW direction, and the corresponding arc-shaped section between the connection terminal 7 and the connection terminal 8 proceeds in a rectangular wave shape. Arranged to reach. In this case, the rectangular wave has a region P in which the density of the heater 3b is sparse by providing the connection terminals 7 and 8 apart from each other by a region Q other than the region P and a unit area in the surface of the heat plate 2. The heaters 3b in the region Q are arranged so as to protrude to both the connection terminals 7 and 8 side so that the heat generation amounts of the heating plates 2 are equal to each other. Yes.
[0027]
Next, a specific method for forming the rectangular wave portion of the heater 3b will be described. First, as shown in FIG. 3 (FIG. 3 is an enlarged view of the region T in which the region P and the region Q in FIG. 2 are combined), the connection terminals 7 and 8 are provided apart by a predetermined distance L. Then, the first linear portion B of the heater 3b extending in the ACW direction is connected to the connection terminal 8 once through the extending portion A in the center direction (the direction of arrow M in FIG. 3). On the other hand, a second straight line portion C extending along the ACW direction is connected to the connection terminal 7 via an extending portion D that is shorter than the extending portion A and parallel to the extending portion A. At this time, the first straight part B and the second straight part C are arranged in parallel. Then, a heater corresponding to the length L is replenished in a portion E corresponding to the space between the connection terminals 7 and 8 in the first linear portion B, and the first linear portion B is connected to the connection terminals 7 and 8 as viewed from the plane. It arrange | positions so that it may become the rectangular wave shape protruded to the side. In this way, the connection terminals 7 and 8 are provided at a predetermined distance, the heater pattern is formed so that the total extension of the heater 3b is not changed, and the heat generation amount per unit area is equal in the surface of the hot plate 2. can do. Note that the second straight line portion C may be extended directly from the connection terminal 7 along the ACW direction.
[0028]
Similarly to the area 2b, the heaters 3c to 3e are arranged for the areas 2c to 2e, and the heater control devices 4b to 4e are provided at both ends of the heaters 3c to 3e. Connection terminals 9 to 14 connected to each other are provided. Further, the connection terminals 7 to 14 including the connection terminals 7 and 8 are provided at equal intervals.
[0029]
As shown in FIG. 1, the outer edge of the hot plate 2 on which the heater pattern as described above is arranged is supported by a support member 20, and the heat of the hot plate 2 is released to the support member 20 to the outside. Insulation is used so that there is no. The support member 20 is supported by a substantially cylindrical support base 21 whose upper surface is open.
[0030]
Further, outside the support member 20 and the support base 21, a substantially cylindrical support ring 22, which is a container that surrounds the support member 20 and the support base 21, is provided. The support ring 22 is provided with, for example, a blow-out port 22a for injecting an inert gas, for example, nitrogen gas, into the processing chamber S, and the inside of the processing chamber S is purged to make an inert gas atmosphere. Can do. A cylindrical case 23 is provided outside the support ring 22.
[0031]
On the other hand, on the upper side of the hot plate 2, a lid 24 that can move up and down is provided so that the processing chamber S can be formed integrally with the case 23 when the lid 24 is lowered. . The lid body 24 has a substantially conical shape that gradually increases toward the center, and an exhaust part 24a is provided at the top. The atmosphere in the processing chamber S is uniformly exhausted from the exhaust part 24a.
[0032]
A plurality of elevating pins 25 are provided below the hot plate 2 to support and elevate the wafer W when the wafer W is loaded and unloaded. The elevating pins 25 are movable up and down by an elevating drive mechanism 26 and are configured to penetrate the hot plate 2 from below the hot plate 2 and protrude onto the hot plate 2.
[0033]
In the heat treatment performed in the heat treatment apparatus 1 configured as described above, the heat generation amounts of the heaters 3a to 3e are controlled by the heater control devices 4a to 4e, and the temperature of the entire surface of the hot plate 2 is set to the set temperature. For example, the wafer W is placed on the hot plate 2 for a predetermined time while being maintained at 90 to 150 ° C.
[0034]
In the hot plate 2 manufactured according to the above embodiment, since the connection terminals 7 to 14 are provided at a predetermined distance, the hot plate 2 by the connection terminals 7 to 14 is provided even when the thickness of the hot plate 2 is thin. It is possible to suppress temperature spots due to extreme temperature drop. Therefore, the temperature of the hot plate 2 is maintained uniformly in the surface of the hot plate 2 and the wafer W can be heated uniformly.
[0035]
In addition, in the area 2b, the connection terminals 7 and 8 are provided at a predetermined distance from each other, and the heater 3b in the other area Q is placed in the area P where the density of the heater 3b is sparse. Since it arrange | positions so that it may protrude from both the connection terminals 7 and 8 side so that the emitted-heat amount per unit area may become equal, the temperature in the area 2b can be made uniform. Since the heaters 3c to 3e having the same pattern are arranged in the other areas 2c, 2d, and 2e, the temperature of the entire hot plate 2 can be made uniform, and the wafer W placed on the hot plate 2 can be made uniform. Can be heated uniformly. Further, since there is no change in the total extension of the heater 5b, the total amount of heat given from the hot plate 2 to the wafer W within a predetermined time is not different from the conventional one. For this reason, there is no need to change the set value from the conventional one, so that it is not necessary to perform a complicated operation such as adjustment of the set voltage.
[0036]
In the above embodiment, the heater 3b of the portion E corresponding to the connection terminals 7 and 8 is arranged in a rectangular wave shape, but may be arranged so that the lengths of the sides of the rectangular wave are equal. .
[0037]
In such an arrangement, for example, as shown in FIG. 4, assuming that the connection terminal 7 and the connection terminal 8 are provided close to each other, the first straight line portion B and the second straight line portion are assumed. The heater 3b corresponding to a predetermined distance L of D is divided into, for example, six equal parts by a straight line (dotted line in FIG. 4) extending in the M direction (the divided line segment of the first straight line portion B from the left (1) to (6), and the divided line segments of the second straight line portion D are (7) to (12) from the left). At this time, the length of each line segment divided into six is set to be substantially equal to the distance l between the first straight line portion B and the second straight line portion D. Then, the divided line segments (1) to (12) are connected to the connection terminals 7 and 8 side so that each line segment (1) to (12) forms one side of the rectangular wave in the first straight line portion B. Place it protruding. At this time, since the lengths of the line segments (1) to (12) are substantially equal, the line segments (1) to (12) may be connected in the order of numbers as shown in FIG. As shown, line segments (7) to (12) may be used as sides in the M direction. In this way, by arranging the sides of the rectangular wave to have the same length, the above-described arrangement of the heater 3 can be easily performed without changing the length of the heater 3 in the design stage of the heater 3. be able to. In addition, when the 1st straight line part B and the 2nd straight line part D are perfect straight lines, since the length of each line segment (1)-(12) completely corresponds, it can design more easily. it can.
[0038]
Further, in the above embodiment, the heater 3b of the portion E corresponding to between the connection terminals 7 and 8 is arranged in a rectangular wave shape, but may be arranged in another waveform shape as viewed from the plane. For example, a triangular wave shape as shown in FIG. 7 or a sine wave shape as shown in FIG. Even in such a shape, for example, by arranging the heater 3b of the first straight portion B so as to protrude from the connection terminal side so that the heat generation amount per unit area becomes equal, The temperature inside becomes uniform, and the wafer W can be heated uniformly.
[0039]
Further, in the above embodiment, the hot plate 2 is divided into a plurality of areas 2a to 2e in an arc shape, and the heaters 3a to 3e are provided for each of the areas 2a to 2e. , For example, it may be divided into concentric circles, and a heater may be provided for each area. Further, the above-described pattern may be arranged with a single heater on the entire hot plate without partitioning the hot plate.
[0040]
Although the embodiment described above relates to a method of manufacturing a hot plate used in a heat treatment apparatus for wafer W, the present invention is a heat plate in a heat treatment apparatus for a substrate other than a semiconductor wafer, for example, an LCD substrate. It is possible to apply to. For example, when the heater pattern shown in FIG. 2 is adopted, a hot plate that is square when viewed from above is divided into, for example, four similar rectangular areas, and each divided area is similar to the heater 3b. Place the pattern heater. At this time, since the shape of the hot plate is square, the heater is configured using a straight line along the outer shape of the hot plate, not the arc shape like the heater 3b.
[0041]
【The invention's effect】
Book According to the invention, since the heating element is arranged with the connection terminals separated from each other, even when the heat plate is thinned, the local and extreme temperature drop of the heat plate caused by the approach of two or more connection terminals is suppressed. . Therefore, since the temperature in the hot plate surface is kept uniform, the heat treatment of the substrate is suitably performed. Moreover, since the discharge from each connection terminal caused by approaching the two connection terminals can be suppressed, electricity consumption can be reduced and the cost can be reduced.
[0042]
In addition, since it is not necessary to change the length of the heating element, for example, even if the voltage applied to the heating element is not changed, the amount of heat applied to the substrate from the entire hot plate at a predetermined time is maintained at a predetermined value, and an appropriate voltage is maintained. It is possible to omit work associated with changing the heater pattern, such as calculating.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a longitudinal section of a heat treatment apparatus having a hot plate manufactured by a hot plate manufacturing method according to the present embodiment.
FIG. 2 is an explanatory diagram showing a heater pattern arranged on a hot plate.
FIG. 3 is an enlarged view in a region T of a hot plate.
FIG. 4 is a diagram for explaining an arrangement method when heaters are arranged in a rectangular wave shape.
FIG. 5 is a diagram for explaining an arrangement method when heaters are arranged in a rectangular wave shape;
FIG. 6 is a diagram for explaining an arrangement method when heaters are arranged in a rectangular wave shape.
FIG. 7 is an explanatory diagram showing another arrangement example of heaters in a region T.
FIG. 8 is an explanatory diagram showing another arrangement example of heaters in a region T.
[Explanation of symbols]
1 Heat treatment equipment
2 Hot plate
2a-2e area
3 Heater
4 Heater control device
5-14 Connection terminal
P region
Q area
T region
W wafer

Claims (4)

両端に電力供給部に接続される接続端子を有し,かつ枝状に分岐しない開曲線状の発熱体を有する熱板の製造方法であって,A method of manufacturing a hot plate having a connection terminal connected to the power supply unit at both ends and an open-curved heating element that does not branch into branches,
前記熱板の所定の領域に前記発熱体を配置するにあたり,  In arranging the heating element in a predetermined area of the hot plate,
前記所定領域の一側寄りの区域内に前記2つの接続端子を位置させると共に,前記2つの接続端子を所定方向に沿って所定距離離隔させ,  The two connection terminals are located in a region closer to one side of the predetermined region, and the two connection terminals are separated by a predetermined distance along a predetermined direction,
前記接続端子のうちの一の接続端子には,一旦前記所定方向に対して略直角方向に延伸する延伸部を介して,前記所定方向に沿って延伸する発熱体の第1の直線部を接続し,  One of the connection terminals is connected to the first straight portion of the heating element extending along the predetermined direction through an extending portion extending in a direction substantially perpendicular to the predetermined direction. And
前記接続端子のうちの他の接続端子には,前記所定方向に沿って延伸する発熱体の第2の直線部を,直接,又は前記延伸部よりも短くかつ前記延伸部と平行な他の延伸部を介して接続し,  In the other connection terminals of the connection terminals, the second straight part of the heating element extending along the predetermined direction is directly or other extension that is shorter than the extension part and parallel to the extension part. Connected through
前記第1の直線部と第2の直線部とは平行に配置し,  The first straight part and the second straight part are arranged in parallel,
前記第1の直線部における前記両接続端子間に応対する部分は,前記所定距離分に相当する長さの発熱体を,平面からみて矩形波状になるように成形して前記接続端子側に突出させて配置することを特徴とする,熱板の製造方法。  The portion of the first linear portion that corresponds between the connection terminals is formed by forming a heating element having a length corresponding to the predetermined distance so as to have a rectangular wave shape when seen from the plane, and projecting toward the connection terminal side. A method for manufacturing a hot plate, characterized in that the heat plate is arranged.
前記矩形波における各辺の長さが等しくなるように成形したことを特徴とする,請求項1に記載の熱板の製造方法。  2. The method for manufacturing a hot plate according to claim 1, wherein the sides of the rectangular wave are formed to have the same length. 両端に電力供給部に接続される接続端子を有し,かつ枝状に分岐しない開曲線状の発熱体を有する熱板の製造方法であって,A method of manufacturing a hot plate having a connection terminal connected to the power supply unit at both ends and an open-curved heating element that does not branch into branches,
前記熱板の所定の領域に前記発熱体を配置するにあたり,  In arranging the heating element in a predetermined area of the hot plate,
前記所定領域の一側寄りの区域内に前記2つの接続端子を位置させると共に,前記2つの接続端子を所定方向に沿って所定距離離隔させ,  The two connection terminals are located in a region closer to one side of the predetermined region, and the two connection terminals are separated by a predetermined distance along a predetermined direction,
前記接続端子のうちの一の接続端子には,一旦前記所定方向に対して略直角方向に延伸する延伸部を介して,前記所定方向に沿って延伸する発熱体の第1の直線部を接続し,  One of the connection terminals is connected to the first straight portion of the heating element extending along the predetermined direction through an extending portion extending in a direction substantially perpendicular to the predetermined direction. And
前記接続端子のうちの他の接続端子には,前記所定方向に沿って延伸する発熱体の第2の直線部を,直接,又は前記延伸部よりも短くかつ前記延伸部と平行な他の延伸部を介して接続し,  In the other connection terminals of the connection terminals, the second straight part of the heating element extending along the predetermined direction is directly or other extension that is shorter than the extension part and parallel to the extension part. Connected through
前記第1の直線部における前記両接続端子間に応対する部分は,前記所定距離分に相当する長さの発熱体を,平面からみて三角波形状になるように成形し,その三角波の突出方向が前記接続端子側になるように配置することを特徴とする,熱板の製造方法。  The portion of the first linear portion that corresponds between the connection terminals is formed by forming a heating element having a length corresponding to the predetermined distance so as to have a triangular wave shape when viewed from the plane, and the protruding direction of the triangular wave is A method of manufacturing a hot plate, wherein the hot plate is arranged so as to be on the connection terminal side.
前記熱板は,この熱板の平面が複数のエリアに円弧状に区画されており,  The hot plate has a flat surface of the hot plate divided into a plurality of areas in an arc shape,
前記発熱体は,前記エリア毎に設けられていることを特徴とする,請求項1,2又は3のいずれかに記載の熱板の製造方法。  4. The method of manufacturing a hot plate according to claim 1, wherein the heating element is provided for each area.
JP2000202372A 2000-07-04 2000-07-04 Manufacturing method of hot plate Expired - Fee Related JP3910786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000202372A JP3910786B2 (en) 2000-07-04 2000-07-04 Manufacturing method of hot plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000202372A JP3910786B2 (en) 2000-07-04 2000-07-04 Manufacturing method of hot plate

Publications (2)

Publication Number Publication Date
JP2002025755A JP2002025755A (en) 2002-01-25
JP3910786B2 true JP3910786B2 (en) 2007-04-25

Family

ID=18699905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000202372A Expired - Fee Related JP3910786B2 (en) 2000-07-04 2000-07-04 Manufacturing method of hot plate

Country Status (1)

Country Link
JP (1) JP3910786B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325902B2 (en) * 2002-03-20 2009-09-02 京セラ株式会社 Wafer heating device
JP5834905B2 (en) * 2011-12-27 2015-12-24 富士通株式会社 Heating apparatus and heating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4185194B2 (en) * 1997-07-31 2008-11-26 コバレントマテリアル株式会社 Carbon heater
JP3657090B2 (en) * 1997-08-21 2005-06-08 信越化学工業株式会社 Heating body and semiconductor manufacturing apparatus using the same

Also Published As

Publication number Publication date
JP2002025755A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
US6392205B1 (en) Disc heater and temperature control apparatus
US6753508B2 (en) Heating apparatus and heating method
KR102648118B1 (en) wafer support
WO2018163935A1 (en) Wafer support base
KR101929278B1 (en) Electrostatic chuck
JP2003515949A (en) Single wafer annealing oven
US7150628B2 (en) Single-wafer type heat treatment apparatus for semiconductor processing system
JP3910786B2 (en) Manufacturing method of hot plate
JP2002540610A (en) Combined heater with plate with jagged ceramic foil and gas assist
JP2008288451A (en) Method for manufacturing semiconductor device
JP2002124479A (en) Method of manufacturing substrate processor and semiconductor device
WO2020153086A1 (en) Ceramic heater
JP3990099B2 (en) Hot plate manufacturing method and hot plate
JPH06151322A (en) Heating device for thin-film manufacturing apparatus
JP2020126770A (en) Ceramic heater
JP2001196650A (en) Thermoelectric converting module
US5756964A (en) Thermal processing apparatus
JP3785650B2 (en) Single wafer heat treatment system
JP4021140B2 (en) Heat treatment device
JPH10229114A (en) Substrate heating device
JP6840349B2 (en) heater
US20240203779A1 (en) Electrostatic chuck heater and film deposition apparatus
KR20200004499A (en) Electrostatic chuck having heater and method of manufacturing the same
JP2002231623A (en) Cooling device and substrate processing device
JPH036018A (en) Lamp annealing apparatus for semiconductor device manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees