JP3909755B2 - Cooling method for resistance welding equipment - Google Patents

Cooling method for resistance welding equipment Download PDF

Info

Publication number
JP3909755B2
JP3909755B2 JP2002118919A JP2002118919A JP3909755B2 JP 3909755 B2 JP3909755 B2 JP 3909755B2 JP 2002118919 A JP2002118919 A JP 2002118919A JP 2002118919 A JP2002118919 A JP 2002118919A JP 3909755 B2 JP3909755 B2 JP 3909755B2
Authority
JP
Japan
Prior art keywords
peltier element
cooling
welding
resistance welding
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002118919A
Other languages
Japanese (ja)
Other versions
JP2003311432A (en
Inventor
大祐 樋口
保宏 小原
秀樹 松本
豊 松林
Original Assignee
Obara株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obara株式会社 filed Critical Obara株式会社
Priority to JP2002118919A priority Critical patent/JP3909755B2/en
Priority to KR1020030025024A priority patent/KR100744891B1/en
Priority to CNB031220339A priority patent/CN1311208C/en
Publication of JP2003311432A publication Critical patent/JP2003311432A/en
Application granted granted Critical
Publication of JP3909755B2 publication Critical patent/JP3909755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/36Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/003Cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect

Description

【0001】
【発明の属する技術分野】
本発明は、抵抗溶接装置における発熱部である抵抗溶接機本体や溶接制御部等の発熱箇所を冷却する抵抗溶接装置の冷却方法に関するものである。
【0002】
【従来の技術】
従来、溶接装置における発熱部である溶接機本体や溶接制御部等の発熱箇所を冷却するのには、対象の発熱部への常時水の供給による水冷或は強制空冷等が用いられることが普通に行われている。
【0003】
また、半導体装置においてペルチェ素子を用いて該半導体装置の発熱部を連続して冷却するものは例えば特開平6ー216471号公報に示すように公知である。
【0004】
【発明が解決しようとする課題】
ところで、前記従来普通に行われている溶接装置の冷却においては、
1)対象の発熱部への常時水の供給による水冷の場合には、装置全体が大きくなるばかりでなく、冷却水の漏洩防止等に過分の配慮が必要となる。
2)対象の発熱部を強制的に空冷する場合にも、装置全体が大きくなるばかりでなく、設備に過分のコストを要する。
また、ペルチェ素子を用いて通常の半導体装置の発熱部を連続して冷却する場合には、冷却時間の経過とともにペルチェ素子の冷却能率の低下により半導体装置の充分な冷却ができない。
等の問題がある。
【0005】
本発明は、従来の技術の有するこのような問題点に鑑みてなされたものであり、その目的とするところは、溶接作業の実働時間が断続的でしかも短時間であることから、特に溶接作業時における抵抗溶接機本体や溶接制御部等の発熱箇所をペルチェ素子を用いて有効に冷却するようにした抵抗溶接装置の冷却方法を提供しようとするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明における抵抗溶接装置の冷却方法は、抵抗溶接装置の発熱部近傍にペルチェ素子を配置し、抵抗溶接装置の制御回路からの抵抗溶接機側への溶接スタ―ト信号を発した後で通電電流信号を発する前に前記制御回路から制御線を介して通電し制御回路が溶接完了信号を発する時点までに前記制御線を介しての通電を修了させるようにペルチェ素子制御電流を断続的に供給して、前記抵抗溶接装置の発熱部からの熱を吸収するようにしたことを特徴とするものである。
【0007】
また、前記断続的に供給するペルチェ素子制御電流を該ペルチェ素子が具有する初期の冷却能力の増大域範囲内に収めたことを特徴とするものである。
【0008】
また、前記抵抗溶接装置における発熱部を冷却をペルチェ素子による冷却と水による冷却とを併用するようにしたことを特徴とするものである。
【0009】
【発明の実施の形態】
添付図面を参照して本発明の実施例を抵抗溶接について説明する。
図1は本発明に係る溶接装置の冷却方法を実施する等価回路図、図2は溶接電流と冷却素子への供給関連図、図3は冷却素子の状態遷移図、図4は冷却素子の吸熱面の温度変化図である。
【0010】
図1において、1は溶接装置に配置された電路制御素子,トランス,溶接機本体等で該溶接装置において溶接時に発熱する部品を総称した発熱体である。2は前記発熱体1を冷却するためのペルチェ素子であり、該ペルチェ素子2の低温側は発熱体1と直接或はヒ―トパイプ等の熱搬送体に接触して吸熱動作を行い、高温側は例えばフィン3,ファン4を介して該ペルチェ素子2で発生する熱を放熱するようになされている。そして、該ペルチェ素子2は制御線5,5を介して溶接装置の制御回路6に接続されている。また、該制御回路6には溶接作業のスタ―トから終了までの情報が記憶されており、この制御回路6からの制御線7,7によって溶接装置の全てが通常の如く制御されるようになっている。
【0011】
そして、前記制御回路6からの制御線5,7への通電の相関関係は例えば図2に示す通りであり、各溶接打点毎に制御回路6からは、先ず溶接スタ―ト信号aが制御線7を介して発せられ、抵抗溶接機は該信号aにより加圧動作に入り溶接準備を行い、溶接準備が完了した時点で制御回路6からは抵抗溶接機の電極へ電流の供給を所定時間送るようにトランス等に通電電流信号bを制御線7を介して発する。また、前記溶接スタ―ト信号aは通電電流信号bの終了後溶接部の所定の養生期間を経過した後でその信号aは消滅すると同時に制御回路6からは溶接完了信号cを発する。また、制御回路6からは、前記溶接スタ―ト信号aが発せられてから通電電流信号bが発せられるまでの間で制御線5を介してペルチェ素子2へ通電がスタ―トされ、この通電は少なくとも前記溶接完了信号cが発せられるまでに終了するようになされている。
【0012】
したがって、ペルチェ素子2は図3に示すような状態遷移をする。即ち,該ペルチェ素子2は、溶接機が溶接動作を行わない通常の状態では溶接装置に特に冷却を要するような発熱がないので常温状態或はフィン3により連続冷却によって比較的に低温に維持されている。該ペルチェ素子2は、制御回路6が溶接機側に向けて溶接スタ―ト信号aを発した後で制御線5を介して通電を受付け、制御回路6が溶接機に向けて通電電流信号bを発する前に冷却動作に入り、溶接装置の発熱体1を冷却する。そして、該ペルチェ素子2は、所定の時間通電された後前記制御線5により制御されて、制御回路6が溶接完了信号cを発する時点までに冷却動作を終了して通常の温度状態に戻る。そして該ペルチェ素子2は上述の状態変遷を繰り返す。
【0013】
以上のように、本発明においては溶接装置における溶接電流の供給に対応するペルチェ素子2制御電流を各溶接打点毎に断続的に供給して前記溶接装置の発熱部である発熱体1からの熱を吸収するようにしたものである。
【0014】
図4は、本発明に使用するペルチェ素子2の通電時における吸熱面の温度(摂氏)変化を縦軸にし、横軸の時間(秒)の経過と関連して示すものであって、縦軸の1目盛りは15度,横軸の1目盛りは10秒単位として表したものである。
【0015】
この図でわかるように、通電開始前のペルチェ素子2の吸熱面の温度は常温の約20度程度(季節及び周囲の環境等により多少変化する)であり、通電開始に伴って約10秒間程度はその温度が下がる傾向にあり、10秒経過時には約2度程度になり、その後通電を継続すると時間の経過と共に吸熱面の温度は徐々に上昇して、通電から1分後には60度程度になる。この温度上昇はペルチェ素子2の発熱面からの熱の伝達に起因するものである。
【0016】
ところで、一般に溶接装置における溶接スタ―ト信号aの指令から溶接機の通電電流信号bの指令までは数秒であり、且つ信号bによる溶接通電時間は2ないし3秒程度であるので、ペルチェ素子2への通電は、溶接スタ―ト信号aを発した後で通電電流信号bを発する前にスタ―トして溶接完了信号cを発する時点までとしても、それは10秒以内であり、この範囲は前記ペルチェ素子2の吸熱面の温度が下がる傾向にある即ち冷却能力の増大域範囲内に納まることから、ペルチェ素子2による発熱体1からの熱の有効な吸収が可能となる。
【0017】
図5は溶接制御部内に配置される電子部品であるSCR,IGBT,FET等の発熱体をペルチェ素子2で冷却するようにした概略説明図であり、SCR,IGBT,FET等10の発熱体は溶接制御部内のベ―ス11上に位置しており、該ベ―ス11にはペルチェ素子2が裏付けされている。そして該ペルチェ素子2は制御線5,5によって制御回路6に接続されている。
【0018】
したがって、溶接打点毎に発熱体10が発熱しても、ペルチェ素子2が制御回路6で溶接打点毎にタイミングよく通電されるので、この通電によりペルチェ素子2が発熱体10の発熱に伴った熱を有効に吸熱するのである。
【0019】
図6は溶接トランスから電極へ溶接電流を供給するシャントをペルチェ素子2で冷却するようにした概略説明図であり、該シャント20は溶接機本体に基部21が組み付けられており、前記溶接電流の供給によって発熱するものである。そこで、該シャント20の基部21には直接にペルチェ素子2の吸熱面が接触され、該ペルチェ素子2の発熱面にはヒ―トシンク22が形成されている。この場合にも該ペルチェ素子2は制御線5,5によって制御回路6に接続されるようになっている。
【0020】
したがって、溶接打点毎に発熱体であるシャント20が発熱しても、ペルチェ素子2が制御回路6で溶接打点毎にタイミングよく通電されるので、この通電によりペルチェ素子2がシャント20の発熱に伴った熱を有効に吸熱するのである。
【0021】
図7は溶接機本体に設けた電極30,31をペルチェ素子2で冷却するようにした概略説明図であり、電極30はその近傍の固定ア―ム32に取り付けられており、前記ペルチェ素子2は固定ア―ム32に複数個配置され、電極30と各ペルチェ素子2の吸熱面との間はヒ―トパイプ33で接続されている。また、電極31はその近傍の可動ア―ム34に取り付けられており、ペルチェ素子2は可動ア―ム34のガイドロッド35の取り付け部36に配置され、電極31とペルチェ素子2の吸熱面との間はヒ―トパイプ37で接続されている。この場合にもペルチェ素子2は制御線5,5によって制御回路6に接続されるようになっている。なお、38はペルチェ素子2の発熱面に形成されたヒ―トシンク,39は前記可動ア―ム34の駆動部である。
【0022】
したがって、溶接打点毎に発熱体である電極30,31が発熱しても、ペルチェ素子2が制御回路6で溶接打点毎にタイミングよく通電されるので、この通電によりペルチェ素子2がヒ―トパイプ33,37を介して電極30,31の発熱に伴った熱を有効に吸熱するのである。
【0023】
図8は溶接用トランス40をペルチェ素子2で冷却するようにした概略説明図であり、41は1次コイル,42は2次コイル,43は電気絶縁体,44はコア,45はモ―ルド樹脂,46はヒ―トパイプ,47はヒ―トシンクであって、トランス40の1次コイル41や2次コイル42には、これらと密着するようにヒ―トパイプ46が配列され、夫々の発熱体であるコイル41,42から発生する熱を該ヒ―トパイプ46によりトランス40の外部近傍に移動させるようになっている。
【0024】
そして、前記トランス40の上部近傍にはペルチェ素子2が配置されており、トランス40の外部のヒ―トパイプ46はペルチェ素子2の吸熱面に接続されるようになっている。
【0025】
したがって、溶接打点毎に発熱体である溶接トランス40のコイル41,42が発熱しても、ペルチェ素子2が制御回路6で溶接打点毎にタイミングよく通電されるので、この通電によりペルチェ素子2がヒ―トパイプ46を介してコイル41,42の発熱に伴った熱を有効に吸熱するのである。
【0026】
以上の実施例では、発熱体からの熱をペルチェ素子のみで吸熱するものについて説明をしたが、本発明では、発熱体からの熱をペルチェ素子による吸熱と従来の水による吸熱とを併用してもよい。
【0027】
この場合、両者による吸熱を実行することから、従来の水による冷却装置を備えた溶接装置に単にペルチェ素子による冷却装置を付加して、該ペルチェ素子への通電を本発明に係る手法により実行すればよく、これによっても発熱体からの有効な吸熱が得られる。
【0028】
【発明の効果】
本発明では、抵抗溶接装置の発熱部近傍にペルチェ素子を配置し、抵抗溶接装置の制御回路からの抵抗溶接機側への溶接スタ―ト信号を発した後で通電電流信号を発する前に前記制御回路から制御線を介して通電し制御回路が溶接完了信号を発する時点までに前記制御線を介しての通電を修了させるようにペルチェ素子制御電流を断続的に供給して、前記抵抗溶接装置の発熱部からの熱を吸収するようにしたので、小規模のペルチェ素子によって抵抗溶接装置の発熱部である発熱体からの熱の吸収を有効に吸収できるものである。
【0029】
また、前記断続的に供給するペルチェ素子制御電流を該ペルチェ素子が具有する初期の冷却能力の増大域範囲内に収めた場合には、ペルチェ素子によって抵抗溶接装置の発熱部である発熱体からの熱の吸収をより有効に吸収できるものである。
【0030】
更に、前記抵抗溶接装置における発熱部を冷却をペルチェ素子による冷却と水による冷却とを併用するようにした場合には、従来の水による冷却装置をそのまま残してペルチェ素子による冷却を併用できるので、従来の溶接機に適用できると共に抵抗溶接装置の発熱部である発熱体からの熱の吸収を有効に吸収できるものである。
【図面の簡単な説明】
【図1】図1は本発明に係る溶接装置の冷却方法を実施する等価回路図である。
【図2】図2は溶接電流と冷却素子への供給関連図である。
【図3】図3は冷却素子の状態遷移図である。
【図4】図4は冷却素子の吸熱面の温度変化図である。
【図5】図5は本発明に係る溶接制御部内に配置される電子部品の冷却のための説明図である。
【図6】図6は本発明に係る溶接機のシャントの冷却のための説明図である。
【図7】図7は本発明に係る溶接機の電極の冷却のための説明図である。
【図8】図8は本発明に係る溶接用トランスの冷却のための説明図である。
【符号の説明】
1,10,20,30,31,40 発熱体(発熱部)
2 ペルチェ素子
5 制御線
6 制御回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling method of the resistance welding apparatus for cooling a heating portion such as a resistance welding machine main body and the welding control unit is an exothermic part in the resistance welding apparatus.
[0002]
[Prior art]
Conventionally, in order to cool a heat generating part such as a welding machine main body or a welding control unit which is a heat generating part in a welding apparatus, it is common to use water cooling or forced air cooling by constantly supplying water to the target heat generating part. Has been done.
[0003]
Further, a semiconductor device that uses a Peltier element to continuously cool a heat generating portion of the semiconductor device is known, for example, as disclosed in Japanese Patent Application Laid-Open No. 6-216471.
[0004]
[Problems to be solved by the invention]
By the way, in the cooling of the welding apparatus conventionally performed normally,
1) In the case of water cooling by constantly supplying water to the target heat generating part, not only the entire apparatus becomes large, but also excessive consideration is required for preventing leakage of cooling water.
2) Even when the target heat generating part is forcibly air-cooled, not only the entire apparatus becomes large, but also the equipment has an excessive cost.
In addition, when the heat generating part of a normal semiconductor device is continuously cooled using a Peltier element, the semiconductor device cannot be sufficiently cooled due to a decrease in the cooling efficiency of the Peltier element as the cooling time elapses.
There are problems such as.
[0005]
The present invention has been made in view of such problems of the prior art, and the object of the present invention is that since the actual working time of the welding work is intermittent and short, the welding work is particularly important. It is an object of the present invention to provide a cooling method for a resistance welding apparatus that effectively cools heat generation points such as a resistance welder main body and a welding control unit using a Peltier element.
[0006]
[Means for Solving the Problems]
To achieve the above object, a method of cooling resistance welding apparatus of the present invention, the Peltier elements are arranged in the heat generating portion near the resistance welding device, the resistance welding apparatus welding static to resistance welding machine side from the control circuit - Peltier so that energization through the control line is completed by the time when the control circuit issues a welding completion signal after the control circuit issues a welding completion signal. The element control current is intermittently supplied to absorb heat from the heat generating portion of the resistance welding apparatus.
[0007]
Further, the Peltier element control current supplied intermittently is within the range of the initial cooling capacity of the Peltier element.
[0008]
Further, the heat generating portion in the resistance welding apparatus is characterized by using both Peltier element cooling and water cooling.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an equivalent circuit diagram for carrying out the cooling method of the welding apparatus according to the present invention, FIG. 2 is a diagram relating to welding current and supply to the cooling element, FIG. 3 is a state transition diagram of the cooling element, and FIG. It is a temperature change figure of a surface.
[0010]
In FIG. 1, reference numeral 1 denotes a heating element that generically refers to components that generate heat during welding in the welding apparatus, such as an electric circuit control element, a transformer, and a welding machine main body arranged in the welding apparatus. Reference numeral 2 denotes a Peltier element for cooling the heating element 1, and the low temperature side of the Peltier element 2 is in contact with the heating element 1 directly or a heat transfer body such as a heat pipe to perform an endothermic operation. For example, the heat generated in the Peltier element 2 is radiated through the fins 3 and the fans 4. The Peltier element 2 is connected to a control circuit 6 of the welding apparatus via control lines 5 and 5. The control circuit 6 stores information from the start to the end of the welding operation, and the control lines 7 and 7 from the control circuit 6 control all of the welding apparatus as usual. It has become.
[0011]
The correlation of energization to the control lines 5 and 7 from the control circuit 6 is as shown in FIG. 2, for example. First, the welding start signal a is sent from the control circuit 6 to the control line for each welding point. 7, the resistance welding machine enters into a pressurizing operation by the signal a and prepares for welding. When the welding preparation is completed, the control circuit 6 sends a current supply to the electrodes of the resistance welding machine for a predetermined time. Thus, an energization current signal b is transmitted to the transformer or the like via the control line 7. Further, the welding start signal “a” disappears after a predetermined curing period of the welded portion has elapsed after the energization current signal “b” ends, and at the same time, the control circuit 6 issues a welding completion signal “c”. The control circuit 6 starts energization to the Peltier element 2 via the control line 5 between the time when the welding start signal a is generated and the time when the energization current signal b is generated. Is completed at least before the welding completion signal c is generated.
[0012]
Therefore, the Peltier element 2 makes a state transition as shown in FIG. That is, the Peltier element 2 is maintained at a relatively low temperature by normal cooling or by the fins 3 at normal temperature because the welding apparatus does not generate heat that normally requires cooling in the normal state where the welding machine does not perform the welding operation. ing. The Peltier element 2 is energized via the control line 5 after the control circuit 6 has issued the welding start signal a toward the welding machine, and the control circuit 6 is directed toward the welding machine with the energization current signal b. The cooling operation is started before the heating element 1 is emitted to cool the heating element 1 of the welding apparatus. The Peltier element 2 is controlled by the control line 5 after being energized for a predetermined time, and finishes the cooling operation and returns to the normal temperature state by the time when the control circuit 6 issues the welding completion signal c. The Peltier element 2 repeats the above state transition.
[0013]
As described above, in the present invention, the Peltier element 2 control current corresponding to the supply of the welding current in the welding apparatus is intermittently supplied for each welding point, and the heat from the heating element 1 which is the heat generating part of the welding apparatus. Is intended to absorb.
[0014]
FIG. 4 shows the temperature (Celsius) change of the endothermic surface during energization of the Peltier element 2 used in the present invention on the vertical axis, and shows in relation to the passage of time (seconds) on the horizontal axis. The 1 scale is expressed as 15 degrees, and the 1 scale on the horizontal axis is expressed in units of 10 seconds.
[0015]
As can be seen from this figure, the temperature of the endothermic surface of the Peltier element 2 before the start of energization is about 20 degrees Celsius of room temperature (a little changes depending on the season and surrounding environment), and about 10 seconds with the start of energization. The temperature tends to decrease, and after about 10 seconds, it becomes about 2 degrees. When energization is continued thereafter, the temperature of the endothermic surface gradually increases with the passage of time, and reaches about 60 degrees after 1 minute from energization. Become. This temperature rise is caused by heat transfer from the heat generating surface of the Peltier element 2.
[0016]
By the way, since it generally takes several seconds from the command of the welding start signal a to the command of the energizing current signal b of the welding machine in the welding apparatus, and the welding energizing time by the signal b is about 2 to 3 seconds, the Peltier element 2 Even when the welding start signal a is generated and the welding current signal b is started before the welding completion signal c is generated, it is within 10 seconds. Since the temperature of the heat absorption surface of the Peltier element 2 tends to decrease, that is, it falls within the range of the cooling capacity increase, the Peltier element 2 can effectively absorb heat from the heating element 1.
[0017]
FIG. 5 is a schematic explanatory view in which heating elements such as SCR, IGBT, FET, etc., which are electronic components arranged in the welding control unit, are cooled by the Peltier element 2, and the heating elements such as SCR, IGBT, FET, etc. 10 are The base 11 is located on the base 11 in the welding control section, and the base 11 is supported by the Peltier element 2. The Peltier element 2 is connected to the control circuit 6 by control lines 5 and 5.
[0018]
Therefore, even if the heating element 10 generates heat at each welding point, the Peltier element 2 is energized with good timing at each welding point by the control circuit 6, and this energization causes the Peltier element 2 to generate heat generated by the heating element 10. Effectively absorbs heat.
[0019]
FIG. 6 is a schematic explanatory view in which a shunt for supplying a welding current from a welding transformer to an electrode is cooled by a Peltier element 2, and the shunt 20 has a base 21 assembled to a welding machine body, It generates heat when supplied. Therefore, the heat absorbing surface of the Peltier element 2 is in direct contact with the base 21 of the shunt 20, and a heat sink 22 is formed on the heat generating surface of the Peltier element 2. Also in this case, the Peltier element 2 is connected to the control circuit 6 by the control lines 5 and 5.
[0020]
Therefore, even if the shunt 20 which is a heating element generates heat at each welding hit point, the Peltier element 2 is energized with good timing for each welding hit point by the control circuit 6. It effectively absorbs the heat.
[0021]
FIG. 7 is a schematic explanatory diagram in which the electrodes 30 and 31 provided on the main body of the welding machine are cooled by the Peltier element 2, and the electrode 30 is attached to a fixed arm 32 in the vicinity thereof, and the Peltier element 2 Are arranged on a fixed arm 32, and a heat pipe 33 is connected between the electrode 30 and the heat absorbing surface of each Peltier element 2. Further, the electrode 31 is attached to a movable arm 34 in the vicinity thereof, and the Peltier element 2 is disposed on the attachment portion 36 of the guide rod 35 of the movable arm 34, and the heat absorption surface of the electrode 31 and the Peltier element 2 Are connected by a heat pipe 37. Also in this case, the Peltier element 2 is connected to the control circuit 6 by the control lines 5 and 5. Reference numeral 38 denotes a heat sink formed on the heat generating surface of the Peltier element 2, and reference numeral 39 denotes a drive unit for the movable arm 34.
[0022]
Therefore, even if the electrodes 30 and 31 that are heating elements generate heat at each welding point, the Peltier element 2 is energized with good timing at each welding point by the control circuit 6, so that the Peltier element 2 is heated by the heat pipe 33. , 37 effectively absorbs the heat accompanying the heat generation of the electrodes 30, 31.
[0023]
FIG. 8 is a schematic explanatory view in which the welding transformer 40 is cooled by the Peltier element 2, 41 is a primary coil, 42 is a secondary coil, 43 is an electrical insulator, 44 is a core, 45 is a mold. Resin, 46 is a heat pipe, 47 is a heat sink, and heat pipes 46 are arranged on the primary coil 41 and the secondary coil 42 of the transformer 40 so as to be in close contact with each other. The heat generated from the coils 41 and 42 is moved to the vicinity of the outside of the transformer 40 by the heat pipe 46.
[0024]
The Peltier element 2 is disposed in the vicinity of the upper portion of the transformer 40, and the heat pipe 46 outside the transformer 40 is connected to the heat absorbing surface of the Peltier element 2.
[0025]
Therefore, even if the coils 41 and 42 of the welding transformer 40, which is a heating element, generate heat at each welding point, the Peltier element 2 is energized with good timing at each welding point by the control circuit 6. The heat accompanying the heat generation of the coils 41 and 42 is effectively absorbed through the heat pipe 46.
[0026]
In the above embodiment, the heat absorption from the heat generating element is explained only by the Peltier element. However, in the present invention, the heat from the heat generating element is combined with the heat absorption by the Peltier element and the conventional heat absorption by water. Also good.
[0027]
In this case, since heat is absorbed by both, a cooling device using a Peltier element is simply added to a conventional welding apparatus equipped with a water cooling device, and the current supply to the Peltier element is executed by the method according to the present invention. It is sufficient to obtain effective heat absorption from the heating element.
[0028]
【The invention's effect】
In the present invention, a Peltier element is arranged in the vicinity of the heat generating portion of the resistance welding apparatus, and after the welding start signal from the control circuit of the resistance welding apparatus to the resistance welding machine side is issued, before the energization current signal is issued, The resistance welding apparatus is configured to intermittently supply a Peltier element control current so as to complete the energization through the control line until the control circuit energizes through the control line and the control circuit issues a welding completion signal. Since the heat from the heat generating part is absorbed, the heat absorption from the heat generating element which is the heat generating part of the resistance welding apparatus can be effectively absorbed by a small Peltier element.
[0029]
In addition, when the Peltier element control current to be intermittently supplied falls within the range of the initial cooling capacity of the Peltier element, the Peltier element causes a heating element that is a heat generating part of the resistance welding apparatus. It can absorb heat more effectively.
[0030]
Furthermore, when the heat generating part in the resistance welding device is cooled by using both Peltier element cooling and water cooling, the conventional water cooling device can be used as it is, so that the Peltier element cooling can be used together. It can be applied to a conventional welding machine and can effectively absorb heat absorption from a heating element which is a heating part of a resistance welding apparatus.
[Brief description of the drawings]
FIG. 1 is an equivalent circuit diagram for carrying out a cooling method for a welding apparatus according to the present invention.
FIG. 2 is a diagram related to welding current and supply to a cooling element.
FIG. 3 is a state transition diagram of a cooling element.
FIG. 4 is a temperature change diagram of an endothermic surface of a cooling element.
FIG. 5 is an explanatory diagram for cooling an electronic component disposed in a welding control unit according to the present invention.
FIG. 6 is an explanatory diagram for cooling the shunt of the welding machine according to the present invention.
FIG. 7 is an explanatory diagram for cooling electrodes of a welding machine according to the present invention.
FIG. 8 is an explanatory diagram for cooling a welding transformer according to the present invention.
[Explanation of symbols]
1, 10, 20, 30, 31, 40 Heating element (heating part)
2 Peltier element 5 Control line 6 Control circuit

Claims (3)

抵抗溶接装置における発熱部を冷却する方法において、抵抗溶接装置の発熱部近傍にペルチェ素子を配置し、抵抗溶接装置の制御回路からの抵抗溶接機側への溶接スタ―ト信号を発した後で通電電流信号を発する前に前記制御回路から制御線を介して通電し制御回路が溶接完了信号を発する時点までに前記制御線を介しての通電を修了させるようにペルチェ素子制御電流を断続的に供給して、前記抵抗溶接装置の発熱部からの熱を吸収するようにしたことを特徴とする抵抗溶接装置の冷却方法。 In a method of cooling a heat generating part in a resistance welding apparatus, a Peltier element is arranged in the vicinity of the heat generating part of the resistance welding apparatus, and a welding start signal is issued from the resistance welding apparatus control circuit to the resistance welding machine side. Before issuing the energization current signal, the Peltier element control current is intermittently applied so that the energization through the control line is completed by the time when the control circuit energizes via the control line and the control circuit issues a welding completion signal. supply to the cooling method of the resistance welding apparatus is characterized in that so as to absorb heat from the heat generating portion of the resistance welding device. 前記断続的に供給するペルチェ素子制御電流を該ペルチェ素子が具有する初期の冷却能力の増大域範囲内に収めたことを特徴とする請求項1記載の抵抗溶接装置の冷却方法。2. The method of cooling a resistance welding apparatus according to claim 1, wherein the Peltier element control current supplied intermittently is within an increase range of an initial cooling capacity of the Peltier element. 前記抵抗溶接装置における発熱部を冷却をペルチェ素子による冷却と水による冷却とを併用するようにしたことを特徴とする請求項1または請求項2記載の抵抗溶接装置の冷却方法。The cooling method for a resistance welding apparatus according to claim 1 or 2, wherein cooling of the heat generating portion in the resistance welding apparatus is performed by using both Peltier element cooling and water cooling.
JP2002118919A 2002-04-22 2002-04-22 Cooling method for resistance welding equipment Expired - Fee Related JP3909755B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002118919A JP3909755B2 (en) 2002-04-22 2002-04-22 Cooling method for resistance welding equipment
KR1020030025024A KR100744891B1 (en) 2002-04-22 2003-04-21 Method of cooling resistance welding equipment
CNB031220339A CN1311208C (en) 2002-04-22 2003-04-22 Cooling method for welding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002118919A JP3909755B2 (en) 2002-04-22 2002-04-22 Cooling method for resistance welding equipment

Publications (2)

Publication Number Publication Date
JP2003311432A JP2003311432A (en) 2003-11-05
JP3909755B2 true JP3909755B2 (en) 2007-04-25

Family

ID=29267341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002118919A Expired - Fee Related JP3909755B2 (en) 2002-04-22 2002-04-22 Cooling method for resistance welding equipment

Country Status (3)

Country Link
JP (1) JP3909755B2 (en)
KR (1) KR100744891B1 (en)
CN (1) CN1311208C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483633A (en) * 2009-09-25 2012-05-30 松下电器产业株式会社 Panasonic elec works co ltd
TWI576196B (en) * 2012-12-05 2017-04-01 Shinkawa Kk The cooling method of the joining tool cooling device and the joining tool
JP2016521639A (en) * 2013-06-17 2016-07-25 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Water-cooled single welder module and water-cooled welder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202823A3 (en) * 1985-05-17 1987-11-19 Uniroyal Limited Purification of 5-pyrimidinecarboxamides
JP2619523B2 (en) * 1989-03-20 1997-06-11 富士通株式会社 LD chip carrier fixing structure
EP1219379A3 (en) * 1996-09-11 2002-07-17 Miyachi Technos Corporation Method and apparatus for controlling resistance welding
US5867990A (en) * 1997-12-10 1999-02-09 International Business Machines Corporation Thermoelectric cooling with plural dynamic switching to isolate heat transport mechanisms
JP2001007433A (en) * 1999-06-17 2001-01-12 Sunx Ltd Laser marker
KR100360219B1 (en) * 2000-02-28 2002-11-08 배영돈 Cooling unit using peltier element

Also Published As

Publication number Publication date
KR100744891B1 (en) 2007-08-01
KR20030084638A (en) 2003-11-01
CN1311208C (en) 2007-04-18
CN1454740A (en) 2003-11-12
JP2003311432A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP3414004B2 (en) Electric vehicle battery temperature controller
US6491202B1 (en) Wire bonding apparatus and method
JP3909755B2 (en) Cooling method for resistance welding equipment
JP2007242691A (en) Bonding method and bonding device of electronic component
JP3005789B2 (en) Wire bonding equipment
JP3902095B2 (en) Cooling method for resistance welding equipment
JP4093781B2 (en) Ultrasonic head
JP2018153859A (en) Molding device
DE50304317D1 (en) Apparatus for exchanging heat
CA2474291A1 (en) Method and apparatus to adaptively cool a welding-type system
JP2001037800A (en) Ultrasonic treatment device
JP3547696B2 (en) Impulse type heat sealer
JPS6121182Y2 (en)
JPS63194930A (en) Welding device for plastic
JP4499963B2 (en) Reflow device
JP2002062339A (en) Mounting reliability evaluation testing apparatus for printed-circuit board element and method thereof, and recording medium
JPH05237624A (en) Device for heating and cooling metallic mold for casting
US3178548A (en) High frequency heating method and apparatus
JPH0572171U (en) Heat tool equipment
JP2000332050A (en) Wire bonding equipment
JP2004122203A (en) Cooling unit of robot gun having transformer
JP2021053705A (en) Molding device
JPH07176549A (en) Die bonder
JPH10202600A (en) Cut processing device for resin product and processing therewith
JP2001270745A (en) Method for joining glass, and joining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees