JP3906108B2 - 光モジュール - Google Patents

光モジュール Download PDF

Info

Publication number
JP3906108B2
JP3906108B2 JP2002140569A JP2002140569A JP3906108B2 JP 3906108 B2 JP3906108 B2 JP 3906108B2 JP 2002140569 A JP2002140569 A JP 2002140569A JP 2002140569 A JP2002140569 A JP 2002140569A JP 3906108 B2 JP3906108 B2 JP 3906108B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
waveguide
mounting
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002140569A
Other languages
English (en)
Other versions
JP2003329898A (ja
Inventor
敏孝 嶋本
薫 石田
継博 是永
訓 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002140569A priority Critical patent/JP3906108B2/ja
Publication of JP2003329898A publication Critical patent/JP2003329898A/ja
Application granted granted Critical
Publication of JP3906108B2 publication Critical patent/JP3906108B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信用光モジュールに関する。
【0002】
【従来の技術】
半導体レーザを始めとする発光素子・光導波路・光ファイバー等を組み合わせて光通信に用いようとする技術は膨大に膨れ上がる通信量に伴い、研究開発が盛んとなっている。こうした中で、光に情報をのせて伝送するためには、半導体レーザ等の発光素子と光ファイバーや導波路との間を上手く光結合させる必要がある。このとき、発光素子が発する光の出射軸と光導波路とを精度良く一致させなければ、その部分で大きな光結合損失が発生してしまうという課題があった。例えば、レーザと光ファイバのコア間のアライメントに際しては、±1μm程度の精度が求められている。
【0003】
こうした位置調整の手法は発光素子を発光させながら調芯するアクティブアライメント及び発光させずに位置決めができるパッシブアライメントの2つに分類することができる。アクティブアライメントはレーザ、レンズ、光ファイバなどの部品を動作状態で、光出力をモニターしながら、その光量が最大となるように各部品の位置を調節する手法である。しかしながら、この手法は長い作業時間と工数を必要とし、量産性に劣りコストが高いという課題があった。
【0004】
こうした課題を解決する方法として、後者のパッシブアライメントが有効で、高精度な実装技術により無調整化するものである。この手法を用いることにより、低コスト・作業時間の短縮化が期待できる。従来までの実装技術としては、アライメントマーカーを用いたパッシブアライメントが多くのモジュールで用いられている。その一例として、半導体レーザと光ファイバのパッシブアライメントを取り上げる。
【0005】
基板上に発光素子を実装する際に用いるアライメントマーカー及び、光ファイバーを位置決めするための凹型溝をエッチング法などの技術を用いて同時形成しておく。このとき、アライメントマーカーの位置は発光素子を実装した際に、発光素子の光出射部分が凹型溝の位置に来るように形成しておく。その後、発光素子はアライメントマーカーを利用して位置決めを行い、光ファイバは凹型溝上にセッティングして固定することで、自動的に光学調整ができることになる。
【0006】
【発明が解決しようとする課題】
しかしながら、こうしたアライメントマーカーを用いたパッシブアライメントを半導体レーザ等の発光素子と光導波路や光ファイバ等の光導波路との結合において用いるには、依然として多くの課題が残っている。
【0007】
その課題の一つとして、発光素子における発光点のズレに起因する光結合ロスが挙げられる。パッシブアライメントを用いた発光素子と光ファイバとの軸合わせにおいて、発光素子の発光点が常に同じ位置に形成されてあれば、位置精度は実装の精度のみで決定される。しかし実際の半導体レーザ等のチップは活性層の位置、つまり発光点位置のばらつき(誤差)が存在する。例えば図2に見られるような端面放射型の半導体レーザの場合、両端面204,205を作製する際にへき開技術を用いているが、へき開後におけるチップサイズのばらつきは小さく見積もっても数μmのオーダーとなる。
【0008】
アライメントマーカーを利用して精度良くレーザチップ自体を実装したとしても、チップサイズばらつきの影響により活性層(発光点)203の位置もチップによってばらつきが生じてしまう。それに伴い、こうした半導体レーザの発光点と導波路との位置ずれに起因する光結合ロスが発生してしまい、歩留りが上がらず低コストなモジュール開発の妨げとなっている。
【0009】
発光素子端面と導波路端面間のアライメントに関しても、発光素子端面が導波路端面に接触するように位置調整を行っても良いが、発光素子及び導波路の端面保護から考えると好ましくない。このように、何らかの手法を用いて発光素子端面と導波路端面間には一定の距離をあけて実装することが必要となる。
【0010】
本発明は、このような従来の位置調整の課題を考慮し、実装時の発光点と導波路間の位置合わせが不用となる光モジュールを提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は上述の問題点を解決するために、
第1の本発明は、発光層周辺における寄生容量を除去するため前記発光層の左右両側部分に凹型溝が形成された発光素子と、導波路を形成した基板とを備え、
前記基板には前記発光素子に形成された前記凹型溝と互いに嵌まり合う凸型突起が形成されており、前記凹型溝の長さは前記発光素子のチップ全長よりも短く形成され、かつ前記凸型突起の長さは前記凹型溝の長さより長く形成され、前記凹型溝は前記導波路側の端まで延びている光モジュールである。
【0026】
【発明の実施の形態】
参考例1)
以下、発光素子の一例として端面発光型の半導体レーザ装置を取り上げ、図面を用いて説明する。
【0027】
高速直接変調を行う半導体レーザは高速変調特性を低下させる要因となる発光層(活性層)周辺における寄生容量を除去するため、一般には図2に見られるように発光層の左右両側部分において電気的絶縁の為に設けられた凹型溝201,202が切り込まれている。この凹型溝201,202は、溝を形成する部分を除きフォトレジストによりカバーし、発光素子における発光点(活性層)の位置203を基準としてフォトリソグラフィー法やエッチング法等の半導体プロセスによって作製するため、発光点〜凹型溝の距離は±1μm程度の誤差範囲で作製することができる。エッチング法はドライエッチング法でもウェットエッチング法のどちらでも構わない。
【0028】
次に、この半導体レーザを実装する基板作製について図1を用いて説明する。まず、半導体レーザ上に形成された凹型溝形状に対応する凸型突起102及び導波路用の溝108を形成するための型を作製する。今回、型材料としては石英、型の加工方法としては機械加工を用いた。前もって走査電子顕微鏡(SEM)や原子間力顕微鏡(AFM)等を利用して半導体レーザ上に形成された凹溝形状を測量しておき、型形成時においてそれと同等寸法の凹溝形状を型上に形成する。
【0029】
この型上に形成された凹溝形状が基板上に転写されると、半導体レーザ実装時に利用する凸型突起となる。本参考例では型の材料として石英を用いたが、基板となる材料を成形できる強度を持つ材料であれば、その材料を問わない。また、型の加工方法に関しても、放電加工やドライエッチング等の手法を使用しても構わない。
【0030】
こうして作製された石英型を用いたプレス成形技術により、樹脂基板101上に、半導体レーザ実装用凸型突起102及び導波路108を形成する。導波路108はプレス成形技術で導波路溝を形成し、その凹溝に樹脂を埋め込むことにより形成することができる。図2に見られるように、光導波路108が形成された基板208上に半導体レーザ上の凹型溝202に対応した凸型突起102を形成するが、この時に凸型突起206と導波路207間の距離W2が発光素子上の凹型溝202と発光点203までの距離W1と一致するように基板208を形成する必要がある。よって、凸型突起206と導波路207を一括形成することが好ましい。
【0031】
図1のように、この凸型突起102と発光素子105の凹型溝部分が一致するように実装することで、発光点104の位置と導波路108の位置ずれは発生せず、X軸方向のアライメントは不用となる。こうした凸型突起・凹型溝共に形状はV型の溝である必要はなく、凸型突起と凹型溝のペアであれば形状を問わない。また、凸型突起と凸型突起を入れ替えた場合、例えば図4のように発光素子405に凸型突起を形成し、導波路408を形成した基板401上にそれに対応した凹型402を形成しても良い。図5のように発光素子上に設けられた凸型突起502を基板上の凹型溝に合わせて実装することにより、X軸方向のアライメントを行うことができる。
【0032】
なお、本参考例では半導体レーザ実装用凸型突起102及び導波路108の形成には成形技術を用いた。成形技術による基板形成が生産性の観点から最も望ましいが、エッチング法などで形成しても構わない。また、凸型突起及び導波路が形成される基板を樹脂としたがこれに限るものでない。プレス成形が可能な熱可塑性樹脂やガラスなどが最も望ましいが、熱可塑性がない樹脂を用いても良い。この場合はドライエッチングを用いれば光導波路溝の加工が可能である。
Y軸方向については図3に見られるように、半導体レーザの凹型溝302を凸型突起301に合わせて実装し、そのまま凸型突起に合わせてスライドさせ、導波路端面部分303と接触させるまで移動させ、容易に位置決めを行うことができる。このように実装すれば、Y軸方向のアライメントは不用となる。
【0033】
このように、導波路端面に接触するように位置調整を行なっても良いが、発光素子及び導波路の端面保護の観点から考えると好ましくない。また、半導体レーザと導波路間にレンズやアイソレータ等の光学部品を挿入したい場合には、その間に間隔を必要とする。そこで、図12のように、凸型突起1201,1202の凸型突起の終端部分に、少なくとも1201,1202よりも大きな凸型突起(ストッパー)1203,1204を形成する。図13のように、基板上の凸型突起1301に発光素子1303の凹型溝1307及びストッパー端面1304に合わせて実装すれば、素子端面と導波路間の距離は大きな凸型突起の幅L4となる。この幅L4は任意の長さに形成できるため、発光素子の端面と光導波路間の距離を任意の間隔にすることができ、発光素子や受光素子の端面部分を接触しないように実装することができる。こうした実装の位置調整を行なうストッパー形成も成形技術を用いて行なえば、容易に行なうことができる。
【0034】
活性層203とチップ表面までの間にある層は結晶成長や蒸着といった膜厚精度の高い手法のみで作製されるため、±1μmの厚み精度が得られる。そこで、図1のように発光層(活性層)側を基板側に向けて実装するジャンクションダウン実装を行えば、基板から活性層までのZ方向の膜厚は一意的に決まる為、導波路108の中心部分の位置を半導体レーザの発光層の位置に合わせて形成することによりZ軸方向のアライメントも不用となる。
【0035】
このように、発光素子の高速化に向けて寄生容量を低減するために形成される凹型溝等を実装時のアライメントに使用し、それに互いに嵌合する実装用凸型突起と導波路等を成形技術により一括形成することで、実装時の発光点と導波路間の位置合わせが不用となる。発光素子と光導波路間の位置調整を自由かつ高精度に行うことができ、横方向・奥行き方向・高さ方向全ての方向に対してマーカー等を用いず容易に光結合効率の良好なパッシブアライメントを実現することができるため、光モジュールの低コスト化を図ることができる。
【0036】
なお、本参考例における凸型突起もしくは凹型溝の断面形状について、図中においてはくさび、もしくは三角形状を示しているが、これに限定されるものではなく、矩形、台形や半円形などの形状であっても良い。
【0037】
参考例2)
以下、発光素子の一例として端面発光型の半導体レーザ装置を取り上げ、図面を用いて説明する。
【0038】
参考例1においては、発光素子上に設けられた凹型溝と基板上の凸型突起を1つずつ用いて実装を行なう方法について詳述したが、より高い実装強度を得たい場合や高さ方向(Z軸)の位置調整を行ないたい場合には、図6のように発光素子605上に設けられた複数(両方)の凹型溝を用いて実装することもできる。発光素子の作製に関しては、参考例1と同様のため省略する。
【0039】
半導体レーザを実装する基板作製について図6を用いて説明する。まず、半導体レーザ上に形成された凹型溝形状に対応する凸型突起602,603及び導波路用の溝608を形成するための型を作製する。今回、型材料としては石英、型の加工方法としては機械加工を用いた。前もって走査電子顕微鏡(SEM)や原子間力顕微鏡(AFM)等を利用して半導体レーザ上に形成された凹溝形状を測量しておき、型形成時においてそれと同等寸法の凹溝形状を型上に形成する。
【0040】
この型上に形成された凹溝形状が基板上に転写されると、半導体レーザ実装時に利用する凸型突起となる。本参考例では型の材料として石英を用いたが、基板となる材料を成形できる強度を持つ材料であれば、その材料を問わない。また、型の加工方法に関しても、放電加工やドライエッチング等の手法を使用しても構わない。
【0041】
こうして作製された石英型を用いたプレス成形技術により、樹脂基板601上に半導体レーザ実装用凸型突起602,603及び導波路608を形成する。導波路608はプレス成形技術で導波路溝を形成し、その凹溝に樹脂を埋め込むことにより形成することができる。図7のように、この凹型溝701,702は発光素子における発光点(活性層)の位置703を基準としてフォトリソグラフィー法、エッチング法等の手法を用いて作製する。この時、発光素子上の凹型溝702〜発光点703までの距離W3と凹型溝701〜発光点703までの距離W4が等しくなる、つまり凹型溝701,702の中心に発光点(活性層)が来るように形成しておく。
【0042】
次に、基板(Si、ガラス、樹脂等)708上に、この凹型溝に対応した凸型突起706,707を形成する。この時、発光素子上の凹型溝702〜発光点703までの距離W3と基板上に設けられた凸型突起706〜導波路709までの距離W5(もしくは凹型溝701〜発光点703までの距離W4と凸型突起707〜導波路709までの距離W6)が等しくなるように形成する。このとき、基板上の凸型突起706〜導波路の距離W5と凸型突起707〜導波路の距離W6が等しくなる、つまり凸型突起706,707の中心部分に導波路709が来るようにすれば、図6のように凸型突起706,707と発光素子605上の凹型溝部分を一致させることにより、発光点(活性層)604の位置と導波路608の位置ずれは発生せず、この場合もX軸方向のアライメントは不用となる。よって、凸型突起602,603と導波路608を一括形成することが好ましい。ここでは基本的なW3=W4,W5=W6の例を示したが、W3=W5,W4=W6であれば、W3≠W4,W5≠W6であっても構わない。こうした凸型突起・凹型溝共に形状はV型の溝である必要はなく、凸型突起と凹型溝のペアであれば形状を問わない。
【0043】
なお、本参考例では半導体レーザ実装用凸型突起602,603及び導波路608の形成には成形技術を用いた。成形技術による基板形成が生産性の観点から最も望ましいが、エッチング法などで形成しても構わない。また、溝が形成される基板を樹脂としたがこれに限るものでない。プレス成形が可能な熱可塑性樹脂やガラスなどが最も望ましいが、熱可塑性がない樹脂を用いても良い。この場合はドライエッチングを用いれば光導波路溝の加工が可能である。Y軸方向のアライメントについては参考例1と同様のため、省略する。
【0044】
Z軸方向のアライメントについては複数の実装用凸型突起を持つため、凸型突起の高さを工夫することで半導体レーザの発光層位置を微調させることができる。基板上に形成された凸型突起の高さを発光素子に形成された凹型溝よりも高く形成する、もしくは基板上に形成された凹型溝の深さを前記発光素子に形成された凸型突起よりも浅く形成することにより、発光素子の高さを自由に設定することが可能である。
【0045】
実装時の強度を得たい場合には、図7に見られるような容量低減のため活性層両側に作りこまれた凹型溝701,702だけでなく、図8の804,807のように実装用としてその両側に別途凹型溝を形成しても良い。凹型溝は複数個であっても、フォトリソグラフィー工程及びエッチング工程により一括形成できるため、作業性や量産性が低下することはない。
【0046】
なお、本参考例における凸型突起もしくは凹型溝の断面形状について、図中においてはくさび、もしくは三角形状を示しているが、これに限定されるものではなく、矩形、台形や半円形などの形状であっても良い。
【0047】
(実施の形態
以下、発光素子の一例として端面発光型の半導体レーザ装置を取り上げ、図面を用いて説明する。
【0048】
高速直接変調を行う半導体レーザは高速変調特性を低下させる要因となる発光層(活性層)周辺における寄生容量を除去するため、一般には図9に見られるように発光層の左右両側部分において電気的絶縁の為に設けられた凹型溝902,903が切り込まれている。この凹型溝902,903は参考例1、2と異なり、図9,10に見られるように、発光素子上に形成する凹型溝1001の長さL2をチップ全長L3よりも少なくとも短くしておく必要がある(L3>L2)。
【0049】
この凹型溝は、溝を形成する部分を除きフォトレジストによりカバーし、発光素子における発光点(活性層)の位置203を基準としてフォトリソグラフィー法やエッチング法等の半導体プロセスによって作製するため、発光点〜凹型溝の距離は±1μm程度の誤差範囲で作製することができる。エッチング法はドライエッチング法でもウェットエッチング法のどちらでも構わない。
【0050】
次に、この半導体レーザを実装する基板作製については参考例1、2と同様で、図9,10に見られるようにプレス成形技術により樹脂基板上に半導体レーザ実装用凸型突起を形成する。Y軸方向のアライメントについて、導波路端面に接触するように実装をおこなうのは発光素子及び導波路の端面保護から考えると好ましくない。そこで、この凸型突起部の長さL1は半導体レーザ1003上に形成された凹型溝1001の長さL2以上とする必要がある。
【0051】
発光素子上に形成する凹型溝1001の長さL2をチップ全長L3よりも少なくとも短くし(L3>L2)、基板側の凸型突起1002の長さL1もそれに合わせて短く形成することでY軸方向の位置調整を行う。基板上の凸型突起1002と発光素子1003の凹型溝部分を一致させ、半導体レーザを導波路側にスライドさせて実装することで、素子端面と導波路間の距離はL2−L1となる。L1,L2の長さは自由に変化させることができるため、素子端面と導波路間の距離は任意に設定することが可能となる。
【0052】
なお、本発明の実施の形態における凸型突起もしくは凹型溝の断面形状について、図中においてはくさび、もしくは三角形状を示しているが、これに限定されるものではなく、矩形、台形や半円形などの形状であっても良い。
【0053】
参考例3
以下、発光素子の一例として端面発光型の半導体レーザ装置を取り上げ、図面を用いて説明する。
【0054】
発光素子や基板の作製方法に関しては、参考例1と同様の為、省略する。
【0055】
戻り光対策として、図11に見られるように導波路1103の光軸と発光素子から出射される光軸とをずらせば良いことが知られている。そこで、基板側に形成する凸型突起1101,1102を導波路1103の光軸に対して適当な角度を持って形成する。その上に沿って発光素子1106の凹型溝1107,1108を合わせるように実装することで、導波路の光軸と発光素子から出射される光軸との間に任意の角度を持たせることができる。
【0056】
一般的に、半導体レーザから出射した光が導波路端面部分において反射して半導体レーザに戻ることにより、半導体レーザの不安定動作を引き起こす。しかしながら、こうした実装を行うことで導波路から発光素子への反射戻り光を抑制することができ、半導体レーザの安定した動作を実現することができる。
【0057】
参考例4
実施の形態1、及び参考例1〜3においては端面発光型の半導体レーザを例に挙げて説明をしてきたが、面発光レーザ装置に関しても同様の手法が利用可能であるため、以下に図面を用いて説明する。
【0058】
図16に見られるように、面発光レーザにおいてレーザ光出射部分1606を基準にして、その外側に凹型溝1604,1610を形成する。この時、面発光レーザ上の凹型溝1604〜発光点1606までの距離W9と凹型溝1610〜発光点1606までの距離W10が等しくなる、つまり凹型溝1604,1610の中心に発光点が来るように形成しておく。この凹型溝は、溝を形成する部分を除きフォトレジストによりカバーし、発光素子における発光点の位置を基準としてフォトリソグラフィー法やエッチング法等の半導体プロセスによって作製するため、発光点〜凹型溝の距離は±1μm程度の誤差範囲で作製することができる。エッチング法はドライエッチング法でもウェットエッチング法のどちらでも構わない。
【0059】
次に、この半導体レーザを実装する基板作製について説明する。まず、面発光レーザ上に形成された凹型溝形状1604,1610に互いに嵌合する凸型突起1605,1611及び導波路1602を形成するための型を作製する。今回、型材料としては石英、型の加工方法としては機械加工を用いた。前以って走査電子顕微鏡(SEM)や原子間力顕微鏡(AFM)等を利用して面発光レーザ上に形成された凹溝形状を測量しておき、型形成時においてそれと同等寸法の凹溝形状を型上に形成する。
【0060】
この型上に形成された凹溝形状が基板上に転写されると、面発光レーザ実装時に利用する凸型突起となる。本参考例では型の材料として石英を用いたが、基板となる材料を成形できる強度を持つ材料であれば、その材料を問わない。また、型の加工方法に関しても、放電加工やドライエッチング等の手法を使用しても構わない。
【0061】
こうして作製された石英型を用いたプレス成形技術により、樹脂基板1609上に面発光レーザ実装用凸型突起1605,1611及び導波路1602を形成する。導波路1602はプレス成形技術で導波路溝を形成し、その凹溝に樹脂を埋め込むことにより形成することができる。光導波路1602が形成された基板(Si、ガラス、樹脂等)1609上に面発光レーザ上の凹型溝1604,1610に対応した凸型突起1605,1611を形成するが、この時に発光素子上の凹型溝1604〜発光点1606までの距離W9と基板上に設けられた凸型突起1605〜導波路1602までの距離W7(もしくは凹型溝1610〜発光点1606までの距離W10と凸型突起1611〜導波路1606までの距離W8)が等しくなるように形成する。この時、基板上の凸型突起1605〜導波路の距離W7と凸型突起1611〜導波路の距離W8が等しくなる、つまり凸型突起1605,1611の中心部分に導波路1602が来るようにすれば、図16のように凸型突起1605,1611と発光素子1601上の凹型溝部分を一致させることにより、発光点1606の位置と導波路1602の位置ずれは発生せず、この場合もX軸方向のアライメントは不用となる。よって、凸型突起1605,1611と導波路1602を一括形成することが好ましい。ここでは基本的なW7=W8,W9=W10の例を示したが、W7=W9,W8=W10であれば、W7≠W8,W9≠W10であっても構わない。こうした凸型突起・凹型溝共に形状はV型の溝である必要はなく、凸型突起と凹型溝のペアであれば形状を問わない。
【0062】
図14のように、この凸型突起1402と発光素子1406の凹型溝部分が一致するように実装することで、発光点1409の位置と導波路1403の位置ずれは発生せず、X軸方向のアライメントは不用となる。こうした凸型突起・凹型溝共に形状はV型の溝である必要はなく、凸型突起と凹型溝のペアであれば形状を問わない。
【0063】
Y軸方向のアライメントについては、レーザ実装用凸型突起形状と面発光レーザ上に形成した凹型溝形状を互いに嵌合するように構成してあれば、図15のように面発光レーザを導波路端面1506に接触する形で実装を行えばよい。しかしながら、面発光レーザの端面と導波路の端面間に距離(Y軸方向)を要する場合には、レーザ実装用凸型突起1504の凸型突起の高さを面発光レーザ上に形成した凹型溝形状1502よりも高く形成することにより、面発光レーザの端面部分における発光点と導波路間の間隔を任意に設定することが可能である。
【0064】
なお、本参考例では面発光レーザ実装用凸型突起1402及び導波路1403の形成には成形技術を用いた。成形技術による基板形成が生産性の観点から最も望ましいが、エッチング法などで形成しても構わない。また、溝が形成される基板を樹脂としたがこれに限るものでない。プレス成形が可能な熱可塑性樹脂やガラスなどが最も望ましいが、熱可塑性がない樹脂を用いても良い。この場合はドライエッチングを用いれば光導波路溝の加工が可能である。
【0065】
面発光レーザの発光点は精度良く作製することができるため、予め発光点の位置と導波路の高さが合うように基板側の導波路を形成することでZ軸方向のアライメントに関しても不用となる。
【0066】
このように、端面発光型の半導体レーザと同様にして面発光素子に関してもエッチング法等で凹型溝を作製し、それに互いに嵌合する実装用凸型突起と導波路等を成形技術により一括形成することで、実装時の発光点と導波路間の位置合わせが不用となる。面発光素子と光導波路間の位置調整を自由かつ高精度に行うことができ、横方向・奥行き方向・高さ方向全ての方向に対してマーカー等を用いず容易に光結合効率の良好なパッシブアライメントを実現することができるため、光モジュールの低コスト化を図ることができる。また、こうした発光素子と導波路間のパッシブアライメントと同様に、受光素子においても凹型溝を形成することで、導波路と受光素子間のパッシブアライメントにも使用できる。
【0067】
なお、本参考例における凸型突起もしくは凹型溝の断面形状について、図中においてはくさび、もしくは三角形状を示しているが、これに限定されるものではなく、矩形、台形や半円形などの形状であっても良い。
【0068】
参考例5
実施の形態1、及び参考例1〜4までは、発光素子と光導波路間のアライメントを取り上げて説明をしてきたが、発光素子と光ファイバ間のアライメントにも同様の手法が利用可能であるため、以下に図面を用いて説明する。
【0069】
発光素子の作製に関しては、参考例1と同様のため省略する。
【0070】
半導体レーザを実装する基板作製について図18を用いて説明する。まず、半導体レーザ上に形成された凹型溝形状に対応する凸型突起1806,1807及び光ファイバを実装するためのガイド溝1809を形成するための型を作製する。今回、型材料としては石英、型の加工方法としては機械加工を用いた。前以って走査電子顕微鏡(SEM)や原子間力顕微鏡(AFM)等を利用して半導体レーザ上に形成された凹溝形状を測量しておき、型形成時においてそれと同等寸法の凹溝形状を型上に形成する。この型上に形成された凹溝形状が基板上に転写されると、半導体レーザ実装時に利用する凸型突起となる。本参考例では型の材料として石英を用いたが、基板となる材料を成形できる強度を持つ材料であれば、その材料を問わない。また、型の加工方法に関しても、放電加工やドライエッチング等の手法を使用しても構わない。
【0071】
こうして作製された石英型を用いたプレス成形技術により、樹脂基板1808上に半導体レーザ実装用凸型突起1806,1807及びガイド溝1809を形成する。ガイド溝1809はプレス成形技術で形成し、そのガイド溝に沿って光ファイバ1808の実装を行なう。凹型溝1801,1802は発光素子における発光点(活性層)の位置1803を基準としてフォトリソグラフィー法、エッチング法等の手法を用いて作製する。このとき、発光素子上の凹型溝1802〜発光点1803までの距離W11と凹型溝1801〜発光点1803までの距離W12が等しくなる、つまり凹型溝1801,1802の中心に発光点(活性層)が来るように形成しておく。
【0072】
次に、基板(Si、ガラス、樹脂等)1808上に、この凹型溝に対応した凸型突起1806,1807を形成する。このとき、発光素子上の凹型溝1802〜発光点1803までの距離W11と凸型突起1806〜光ファイバ1808のコア部分までの距離W13(もしくは凹型溝1801〜発光点1803までの距離W12と凸型突起1807〜1806〜光ファイバ1808のコア部分までの距離W14)が等しくなるように形成する。
【0073】
このとき、凸型突起1806〜光ファイバ1808のコア部分までの距離W13と凸型突起1807〜1806〜光ファイバ1808のコア部分までの距離W14が等しくなる、つまり凸型突起1806,1807の中心部分に光ファイバ1808のコア部分が来るようにすれば、図17のように凸型突起1702,1703と発光素子1705上の凹型溝部分を一致させることにより、発光点(活性層)1704の位置と光ファイバ1708のコア部分の位置ずれは発生せず、この場合もX軸方向のアライメントは不用となる。よって、凸型突1702,1703とファイバ実装用ガイド溝1709を一括形成することが好ましい。ここでは基本的なW11=W12,W13=W14の例を示したが、W11=W13,W12=W14であれば、W11≠W12,W13≠W14であっても構わない。こうした凸型突起・凹型溝共に形状はV型の溝である必要はなく、凸型突起と凹型溝のペアであれば形状を問わない。
【0074】
なお、本参考例では半導体レーザ実装用凸型突起1702,1703及びガイド溝1709の形成には成形技術を用いた。成形技術による基板形成が生産性の観点から最も望ましいが、エッチング法などで形成しても構わない。また、溝が形成される基板を樹脂としたがこれに限るものでない。プレス成形が可能な熱可塑性樹脂やガラスなどが最も望ましいが、熱可塑性がない樹脂を用いても良い。この場合はドライエッチングを用いれば光導波路溝の加工が可能である。
【0075】
Y軸方向については図19に見られるように、半導体レーザの凹型溝1902を凸型突起1901に合わせて実装し、そのまま凸型突起に合わせてスライドさせ、ガイド溝形成部分の端面1903と接触させるまで移動させ、容易に位置決めを行うことができる。このように実装すれば、Y軸方向のアライメントは不用となる。このとき、ファイバ端面保護の為にファイバ先端と半導体レーザの端面が触れないように間隔をあけておくのが望ましい。
【0076】
Z軸方向のアライメントについては複数の実装用凸型突起を持つため、凸型突起の高さを工夫することで半導体レーザの発光層位置を微調させることができる。基板上に形成された凸型突起の高さを発光素子に形成された凹型溝よりも高く形成する、もしくは基板上に形成された凹型溝の深さを前記発光素子に形成された凸型突起よりも浅く形成することにより、発光素子の高さを自由に設定することが可能である。
【0077】
以上のように、発光素子とファイバ間の位置調整も自由かつ高精度に行うことができ、横方向・奥行き方向・高さ方向全ての方向に対してマーカー等を用いず容易に光結合効率の良好なパッシブアライメントを実現することができるため、光モジュールの低コスト化を図ることができる。
【0078】
なお、本発明の参考例における凸型突起もしくは凹型溝の断面形状について、図中においてはくさび、もしくは三角形状を示しているが、これに限定されるものではなく、矩形、台形や半円形などの形状であっても良い。
上述したように、上記構成例によれば、発光素子上において寄生容量を除去するために発光層の両側部分に設けられた凹型溝と、光導波路が形成された基板(Si、ガラス、樹脂等)上に形成した凸型突起とが互いに嵌合するように実装を行う。この時、発光素子上に形成された凹型溝と発光部分までの間隔と、基板に形成された凸型突起と導波路までの間隔を等しくしておくことで、発光点の位置と導波路のアライメントを自動的に行うことができる。この凹型溝及び凸型突起は複数個形成しても構わないし、容量低減のため活性層両側に作りこまれた凹型溝だけでなく、実装用として別途凹型溝を形成しても良い。凹型溝は複数個であっても、フォトリソグラフィー工程及びエッチング工程により一括形成できるため、作業性や量産性が低下することはない。また凹型溝と凸型突起を逆にして、発光素子上に凸型突起を形成し、基板側に凹型溝を形成する形態をとっても構わない。
また、素子端面と導波路端面間の距離に関しては、発光素子上に形成する凹型溝もしくは凸型突起の長さを素子自体の長さよりも少なくとも短く形成し、前記基板に形成された凸型突起もしくは凹型溝の長さもそれに合わせて短く形成した上に素子を実装することで、素子端面と導波路間の距離を任意に設定することができる。別の方法として、基板上に形成された凸型突起の終端部分に、少なくとも前記凸型突起よりも大きな凸型突起を形成する、もしくは前記凹型溝の終端部分に、少なくとも前記凹型溝よりも小さな凹型溝を形成する、もしくは前記基板上に形成された凸型突起もしくは凹型溝の終端部分に、前記凸型突起もしくは凹型溝とは形状の異なる凸型突起もしくは凹型溝を形成した上に素子を実装することで、素子端面と導波路間の距離はこの大きさ・形状の異なる凸型突起の幅となる。この幅は任意の長さに形成できるため、発光素子の端面と光導波路間の距離を任意の間隔にすることができる。こうした手法を用いることで、発光素子や受光素子の端面部分を接触しないように実装することができる。
また、高さ方向のアライメントに関しては、基板上に形成された凸型突起の高さを発光素子に形成された凹型溝よりも高く形成する、もしくは基板上に形成された凹型溝の深さを前記発光素子に形成された凸型突起よりも浅く形成することにより、発光素子の高さを自由に設定することができる。
このように、発光素子の高速化に向けて寄生容量を低減するために形成される凹型溝等を実装時のアライメントに使用し、それに互いに嵌合する実装用凸型突起と導波路等を成形技術により一括形成することで、実装時の発光点と導波路間の位置合わせが不用となる。発光素子と光導波路間の位置調整を自由かつ高精度に行うことができ、横方向・奥行き方向・高さ方向全ての方向に対してマーカー等を用いず容易に光結合効率の良好なパッシブアライメントを実現することができるため、光モジュールの低コスト化を図ることができる。こういったアライメント方法に加えて、基板側に形成する凸型突起を導波路の光軸に対して適当な角度を持って形成し、その上に発光素子の凹型溝を合わせるように実装することで、導波路の光軸と発光素子から出射される光軸をずらすことができ、導波路から発光素子への戻り光を抑制することもできる。
なお、端面発光型の発光素子と同様にして面発光素子に関してもエッチング法等で凹型溝もしくは凸型突起を作製しておき、導波路側にそれに互いに嵌合する凸型突起もしくは凹型溝にはめ込むことにより同様のパッシブアライメントが実現できる。また、上記に述べたような発光素子と導波路間のパッシブアライメントと同様に、受光素子においても凹型溝もしくは凸型突起を形成することで、導波路と受光素子間のパッシブアライメントにも使用できる。また、導波路部分に光ファイバーを実装するような形態に置き換えても同様の効果が得られる。
また、上述したように、発光素子の高速化に向けて寄生容量を低減するために形成される凹型溝等を実装時のアライメントに使用し、それに互いに嵌合する実装用凸型突起と導波路等を成形技術により一括形成することで、実装時の発光点と導波路間の位置合わせが 不用となる。発光素子と光導波路間の位置調整を自由かつ高精度に行うことができ、横方向・奥行き方向・高さ方向全ての方向に対してマーカー等を用いず容易に光結合効率の良好なパッシブアライメントを実現することができる。従来法と比較して短時間のフルパッシブアライメントが可能になるため、光モジュールの低コスト化を図ることができ、デバイスの量産化に大きく貢献するものである。
【0079】
【発明の効果】
本発明によれば、実装時の発光点と導波路間の位置合わせが不用となるという効果を有する。
【図面の簡単な説明】
【図1】 本発明の参考例1における実装用凸型突起付き基板への発光素子実装例を示した斜視図
【図2】 本発明の参考例1における実装用凸型突起付き基板への発光素子実装例を示した断面図
【図3】 本発明の参考例1における発光素子実装時(凸型突起上)のY軸方向位置合わせを説明する為の断面図
【図4】 本発明の参考例1における実装用凹型溝付き基板への発光素子実装例を示した斜視図
【図5】 本発明の参考例1における発光素子実装時(凹型溝上)のY軸方向位置合わせを説明する為の断面図
【図6】 本発明の参考例2における複数の実装用凸型突起付き基板への発光素子実装例を示した斜視図
【図7】 本発明の参考例2における複数の実装用凸型突起付き基板への発光素子実装例を示した断面図
【図8】 本発明の参考例2における複数の凹型溝を形成した発光素子を基板上に実装した状態の斜視概要図
【図9】 本発明の実施の形態における実装用凸型突起付き基板への発光素子実装例を示した斜視図
【図10】 本発明の実施の形態における発光素子実装時のY軸方向位置合わせを説明する為の断面図
【図11】 本発明の参考例3における導波路の光軸に対して傾けて形成した発光素子実装用凸型突起上への半導体レーザ実装例を示した斜視図
【図12】 本発明の参考例1における実装用凸型突起及びストッパー付き基板への発光素子実装例を示した斜視図
【図13】 本発明の参考例1における実装用凸型突起及びストッパー付き基板への発光素子実装例を示した断面図
【図14】 本発明の参考例4における実装用凸型突起付き基板への面発光素子実装例を示した斜視図
【図15】 本発明の参考例4における実装用凸型突起付き基板への面発光素子実装例を示した断面図
【図16】 本発明の参考例4における実装用凸型突起付き基板への面発光素子実装例を真上から見た図
【図17】 本発明の参考例5におけるファイバ実装用ガイド溝付き基板への発光素子実装例を示した斜視図
【図18】 本発明の参考例5におけるファイバ実装用ガイド溝付き基板への発光素子実装例を示した断面図
【図19】 本発明の参考例5における発光素子実装時(凸型突起上)のY軸方向位置合わせを説明する為の断面図
【符号の説明】
101,208,306,601,708,802,901,1006,1105,1207,1306 凸型突起及び導波路が形成された基板
102,206,301,602,603,706,707,902,903,1002,1101,1102,1201,1202,1301,1702,1703,1806,1807,1901・・・基板上の凸型突起
104,203,307,404,507,604,703,803,904,1211,1302,1409,1606,1704,1803,1907・・・発光層(活性層)部分
105,305,405,505,605,801,905,1003,1106,1208,1303,1705,1905・・・発光素子
108,207,304,408,504,608,709,803,908,1005,1103,1205,1305,1403,1505,1602・・・導波路
201,202,302,701,702,805,806,1001,1107,1108,1209,1210,1307,1801,1802,1902・・・発光素子上の凹型(分離)溝
204,205,704,705,1804,1805・・・発光素子の端面部分
303,503,1004,1506・・・光導波路及び基板の端面部分
401,506・・・凹型溝及び導波路が形成された基板
402,501・・・基板上の凹型溝
502・・・発光素子上の凸型突起
804,807・・・発光素子上の凹型(実装用)溝
1203,1204・・・実装時のストッパー用凸型突起
1304・・・実装時のストッパー用凸型突起の端面部分
1401,1501,1609・・・面発光素子実装用凸型突起及び導波路が形成された基板
1402,1404,1504,1605,1611・・・面発光素子実装用凸型突起
1406,1503,1601・・・面発光素子
1502,1604,1610・・・面発光素子上の凹型溝
1701,1906・・・凸型突起及びファイバ実装用ガイド溝が形成された基板
1708,1808,1904・・・光ファイバ
1709,1809・・・ファイバ実装用ガイド溝
1903・・・ガイド溝形成部分の端面

Claims (1)

  1. 発光層周辺における寄生容量を除去するため前記発光層の左右両側部分に凹型溝が形成された発光素子と、導波路を形成した基板とを備え、
    前記基板には前記発光素子に形成された前記凹型溝と互いに嵌まり合う凸型突起が形成されており、前記凹型溝の長さは前記発光素子のチップ全長よりも短く形成され、かつ前記凸型突起の長さは前記凹型溝の長さより長く形成され、前記凹型溝は前記導波路側の端まで延びている光モジュール。
JP2002140569A 2002-05-15 2002-05-15 光モジュール Expired - Fee Related JP3906108B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140569A JP3906108B2 (ja) 2002-05-15 2002-05-15 光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140569A JP3906108B2 (ja) 2002-05-15 2002-05-15 光モジュール

Publications (2)

Publication Number Publication Date
JP2003329898A JP2003329898A (ja) 2003-11-19
JP3906108B2 true JP3906108B2 (ja) 2007-04-18

Family

ID=29701417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140569A Expired - Fee Related JP3906108B2 (ja) 2002-05-15 2002-05-15 光モジュール

Country Status (1)

Country Link
JP (1) JP3906108B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281780A (ja) * 2007-05-10 2008-11-20 Nitto Denko Corp タッチパネル用レンズ付き光導波路およびそれに用いる光導波路

Also Published As

Publication number Publication date
JP2003329898A (ja) 2003-11-19

Similar Documents

Publication Publication Date Title
EP0466134B1 (en) Method for passive alignment of diode laser arrays and optical fibers
US6888989B1 (en) Photonic chip mounting in a recess for waveguide alignment and connection
US5163108A (en) Method and device for passive alignment of diode lasers and optical fibers
CN103282814B (zh) 光模块
US5548673A (en) Optical coupling device
WO2020235041A1 (ja) 導波路接続構造、導波路チップ、コネクタ、および導波路接続部品の製造方法、ならびに導波路接続方法
US12019293B2 (en) Photonic system and method for its manufacture
US6819840B2 (en) Optical transmitting/receiving module and method for manufacturing the same
CN114690310A (zh) 包括凹槽膜的边缘耦合器
JP3906108B2 (ja) 光モジュール
JP2003227904A (ja) 光学素子の製造方法および光学素子
GB2379995A (en) Optical coupling with passive alignment
US20230114532A1 (en) Alignment of photonic system components using a reference surface
US20050069261A1 (en) Optical semiconductor device and method of manufacturing same
US7957616B2 (en) Method of producing an optical connecting component, and optical connecting component
JP3426854B2 (ja) 光混成集積回路装置
JPH05249340A (ja) 光部品の結合装置
US20020176688A1 (en) Precision alignment feature using a rod with controlled diameter in a silicon V-groove array
JPH08160262A (ja) 光コネクタ
US6943421B2 (en) Optical element mounted body and optical semiconductor module using the same
US20230378716A1 (en) Optical semiconductor device
JP4802143B2 (ja) 光部品
JPH09159866A (ja) 光結合装置用基板、光結合装置およびそれらの製造方法
JP3467151B2 (ja) 光モジュール
KR100211043B1 (ko) 광소자와 광섬유와의 광결합 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees