JP3905097B2 - Manufacturing method of rare earth sintered magnet - Google Patents

Manufacturing method of rare earth sintered magnet Download PDF

Info

Publication number
JP3905097B2
JP3905097B2 JP2004167947A JP2004167947A JP3905097B2 JP 3905097 B2 JP3905097 B2 JP 3905097B2 JP 2004167947 A JP2004167947 A JP 2004167947A JP 2004167947 A JP2004167947 A JP 2004167947A JP 3905097 B2 JP3905097 B2 JP 3905097B2
Authority
JP
Japan
Prior art keywords
processing
molded body
rare earth
oil
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004167947A
Other languages
Japanese (ja)
Other versions
JP2004323978A (en
Inventor
研介 佐々木
司 三家本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP2004167947A priority Critical patent/JP3905097B2/en
Publication of JP2004323978A publication Critical patent/JP2004323978A/en
Application granted granted Critical
Publication of JP3905097B2 publication Critical patent/JP3905097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

本発明は希土類焼結磁石の製造方法に関するものである。   The present invention relates to a method for producing a rare earth sintered magnet.

希土類焼結磁石用微粉を磁場中で加圧成形し、得られた成形体を焼結して得られる希土類焼結磁石ではダイヤモンドまたはCBN砥石を用いる研削加工が一般的に行われている。加工能力が小さい研削加工が行われる理由は焼結後の希土類磁石が硬脆な難加工材料であり研削以外の加工が適用困難なことにある。
加工能力を向上させる方法のひとつとして焼結前の成形体を所望の寸法、形状に加工した後に焼結を行ういわゆるグリーン加工があるが、希土類焼結磁石用の成形体は雰囲気中の酸素と反応して磁気特性の低下を生じる。また加工時に発生する切粉も同様に酸素と反応し、最悪の場合発熱、発火が起きる。
対策として、特許文献1にあるように、加工を窒素ガス等の不活性ガス雰囲気中で行う方法が開示されている。
特開昭53−899号公報
A rare earth sintered magnet obtained by press-molding fine powder for a rare earth sintered magnet in a magnetic field and sintering the obtained compact is generally ground using a diamond or CBN grindstone. The reason why grinding processing with low processing capability is performed is that the sintered rare earth magnet is a hard and brittle hard-to-work material and it is difficult to apply processing other than grinding.
One of the methods for improving the processing capability is so-called green processing in which the green body before sintering is processed into a desired size and shape, followed by sintering, but the green body for rare earth sintered magnets contains oxygen in the atmosphere. Reacts to cause deterioration of magnetic properties. Similarly, chips generated during processing react with oxygen, and in the worst case, heat generation and ignition occur.
As a countermeasure, as disclosed in Patent Document 1, a method of performing processing in an inert gas atmosphere such as nitrogen gas is disclosed.
JP-A-53-899

しかしながら、先に述べた窒素ガス等の不活性ガス雰囲気中で成形体の酸化を防止しながら加工を行う方法は以下に述べる問題点を持っている。
まず不活性ガス雰囲気を保つために加工対象の成形体、成形体の保持機構および加工工具を全て密閉容器内に収納する必要から装置が大型化、複雑化すること。さらにこの密閉容器への成形体の搬入、加工後の搬出の都度不活性ガス雰囲気を維持するためのガス置換作業が必要なことが挙げられる。
加えて、加工液を使用しない乾式加工であるため切粉による工具の目づまりが生じ加工能力が低下する。また切粉の排出が困難であるため頻繁に加工を中断し前述のガス置換作業を行う必要がある。
従って本発明が解決しようとする課題は、成形体と酸素との反応による磁気特性の低下を防止しながら加工能力の向上が可能な希土類焼結磁石の製造方法を提供することである。
However, the above-described method for performing processing while preventing the molded body from being oxidized in an inert gas atmosphere such as nitrogen gas has the following problems.
First, in order to maintain an inert gas atmosphere, it is necessary to store all of the molded object to be processed, the holding mechanism of the molded object, and the processing tool in a sealed container, and the apparatus becomes larger and complicated. Furthermore, it is mentioned that a gas replacement operation is required to maintain an inert gas atmosphere each time the molded body is carried into the sealed container and taken out after processing.
In addition, since it is a dry process that does not use a machining fluid, clogging of the tool due to chips occurs and the machining capability is reduced. Moreover, since it is difficult to discharge chips, it is necessary to frequently interrupt the processing and perform the above-described gas replacement operation.
Therefore, the problem to be solved by the present invention is to provide a method for producing a rare earth sintered magnet capable of improving the processing capability while preventing the deterioration of magnetic properties due to the reaction between the compact and oxygen.

本発明の希土類焼結磁石の製造方法は、R−Fe−B系(RはYを含む希土類元素のうちの1種または2種以上である)焼結磁石用粉末と、常温での動粘度が10cSt以下及び分留点が400℃以下である鉱物油または合成油とからなる混合物を形成し、前記混合物を成形し、得られた成形体を前記油中に浸漬して加工した後、当該加工後の成形体を前記油中から取り出して脱油し、焼結することを特徴とする The method for producing a rare earth sintered magnet according to the present invention comprises: R-Fe-B-based (R is one or more of Y-containing rare earth elements) sintered magnet powder and kinematic viscosity at room temperature. Is formed of a mineral oil or a synthetic oil having a fractional distillation point of 400 ° C. or less, and the mixture is molded, and the resulting molded body is immersed in the oil and processed. The processed compact is taken out from the oil, deoiled and sintered .

本発明によれば、成形体と酸素との反応による磁気特性の低下を防止しながら加工能力の向上が可能な希土類焼結磁石の製造方法の提供が可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the manufacturing method of the rare earth sintered magnet which can improve a processing capability, preventing the fall of the magnetic characteristic by reaction with a molded object and oxygen.

本発明の製造方法の優れた点は、成形体と酸素との反応による磁気特性の低下を防止しながら、先に述べた不活性ガス雰囲気中での加工を行う装置に比べて格段に装置の簡素化が可能になること、成形体の搬入および加工後の搬出の都度行う不活性ガス雰囲気中でのガス置換作業が不要なことである。   The superior point of the production method of the present invention is that the apparatus is remarkably different from the apparatus that performs the processing in the inert gas atmosphere described above while preventing the deterioration of the magnetic properties due to the reaction between the molded body and oxygen. Simplification is possible, and a gas replacement operation in an inert gas atmosphere that is performed each time the molded body is carried in and carried out after processing is unnecessary.

本発明の実施例について図1に基づいて説明する。 An embodiment of the present invention will be described with reference to FIG.

(実施例)
まず、本実施例での成形体の作製方法は次の通りである。重量百分率でNd27.5%,Pr2.5%,Dy1.0%,B1.0%,Nb0.6%,Co4.0%,Al0.2%,Ga0.1%,残部Feの組成を有するNd−Fe−B系焼結磁石用粗粉を窒素気流中で微粉砕し、この微粉砕機の微粉排出口に分留点が200〜300℃、常温での動粘度が2.0cStの鉱物油[出光興産製、商品名:MCオイルP02]を満たした容器を設置し、窒素ガス雰囲気中で排出された微粉を直接上記の鉱物油中に回収し、原料混合物とした。この原料混合物の微粉重量比率は70%であった。またこの微粉の平均粒径は4.0μmであった。
金型キャビティに8kOeの磁場を印加、保持し、原料混合物をキャビティ内に10kgf/cmの圧力で加圧充填した後、1ton/cmの成形圧力で圧密し成形体3を得た。
(Example)
First, a method for producing a molded body in this example is as follows. Nd having a composition of Nd 27.5% by weight, Pr 2.5%, Dy 1.0%, B 1.0%, Nb 0.6%, Co 4.0%, Al 0.2%, Ga 0.1% and the balance Fe. -Fe-B based coarse magnet powder is finely pulverized in a nitrogen stream, and a mineral oil having a fractional distillation point of 200 to 300 ° C. and a kinematic viscosity at room temperature of 2.0 cSt at the fine powder discharge port of the fine pulverizer A container filled with [Product name: MC Oil P02, manufactured by Idemitsu Kosan Co., Ltd.] was installed, and the fine powder discharged in a nitrogen gas atmosphere was directly collected in the above mineral oil to obtain a raw material mixture. The fine powder weight ratio of this raw material mixture was 70%. The average particle size of this fine powder was 4.0 μm.
A magnetic field of 8 kOe was applied and held in the mold cavity, and the raw material mixture was pressurized and filled into the cavity at a pressure of 10 kgf / cm 2 , and then compacted at a molding pressure of 1 ton / cm 2 to obtain a molded body 3.

加工槽1には成形体3を搭載した移動テーブル6と加工刃4および主軸5の一端が収納されている。移動テーブル6は加工槽1に固定されたスライド軸7で保持され駆動軸8により加工刃4の回転方向に直線運動可能な構造とした。
加工槽1の底部には循環ポンプ10によって切粉を含んだ加工液2を切粉回収装置12に導く配管11が設けられている。また成形体3と移動テーブル6の間には加工刃4と成形体3の位置関係を調整するスペーサ9を設けた。
加工槽1には加工液2として鉱物油[出光興産製、商品名:MCオイルP02]を加工刃4がすべて加工液2中に没するまで満たした。
本実施例では切断加工を行ったので加工刃4には外周部に切り込みのある直径200mm、刃厚0.8mmのメタルソーを採用した。主軸5の回転数は200〜500rpmの範囲で調整したため加工刃の周速は125〜315m/分となる。
The processing tank 1 houses a moving table 6 on which a molded body 3 is mounted, a processing blade 4 and one end of a main shaft 5. The moving table 6 is held by a slide shaft 7 fixed to the processing tank 1 and has a structure capable of linear movement in the rotational direction of the processing blade 4 by a drive shaft 8.
A piping 11 is provided at the bottom of the processing tank 1 to guide the machining fluid 2 containing chips to the chip collection device 12 by a circulation pump 10. A spacer 9 for adjusting the positional relationship between the machining blade 4 and the molded body 3 is provided between the molded body 3 and the moving table 6.
The processing tank 1 was filled with the mineral oil [made by Idemitsu Kosan Co., Ltd., trade name: MC oil P02] as the processing liquid 2 until the processing blades 4 were all immersed in the processing liquid 2.
In the present embodiment, since cutting was performed, a metal saw having a diameter of 200 mm and a blade thickness of 0.8 mm with a cut at the outer peripheral portion was adopted as the processing blade 4. Since the rotation speed of the main shaft 5 is adjusted in the range of 200 to 500 rpm, the peripheral speed of the machining blade is 125 to 315 m / min.

上記構成による加工動作は次の通りである。加工に先立ち移動テーブル6を駆動軸8により加工液2の液面より上に引き上げた。この位置で成形体3をスペーサ9に固定しこれを移動テーブル6に組み付けた。加工刃4が所定の回転に達した後移動テーブル6を駆動軸8により下方に押し下げることで成形体3は加工刃4に接触し切断される。スペーサ9には逃がし溝が設けてあり加工刃4とスペーサ9は接触しないよう考慮した。切断によって発生する切粉は加工槽1底部に沈降するが配管11を介して循環ポンプ10により加工液2とともに切粉回収装置12に移送される。切粉を除去された加工液2は再び加工槽1にもどされる。本実施例では成形体3に切粉が堆積するのを防止するため成形体3は上下方向に移動するよう考慮した。
切断が完了すると移動テーブル6を再び加工液2の液面上に引上げ、加工の終わった成形体3を取り外した。
The machining operation by the above configuration is as follows. Prior to processing, the moving table 6 was pulled up above the surface of the processing liquid 2 by the drive shaft 8. The molded body 3 was fixed to the spacer 9 at this position and assembled to the moving table 6. After the processing blade 4 reaches a predetermined rotation, the movable table 6 is pushed down by the drive shaft 8 so that the molded body 3 comes into contact with the processing blade 4 and is cut. The spacer 9 is provided with a relief groove so that the machining blade 4 and the spacer 9 are not in contact with each other. The chips generated by cutting settle at the bottom of the processing tank 1 but are transferred to the chip collection device 12 together with the processing liquid 2 by the circulation pump 10 through the pipe 11. The machining fluid 2 from which the chips have been removed is returned to the machining tank 1 again. In this embodiment, in order to prevent chips from accumulating on the molded body 3, the molded body 3 is considered to move in the vertical direction.
When the cutting was completed, the moving table 6 was again pulled up on the liquid surface of the machining liquid 2 and the molded body 3 after the machining was removed.

通常焼結体の同様な切断加工はやはりダイヤモンド砥石を用いて行われ、その場合の加工速度は毎分2〜5mm程度であるにもかかわらず、本実施例では毎分10〜30mmの加工が可能であった。   Usually, the same cutting process of the sintered body is also performed using a diamond grindstone. In this case, the processing speed is about 2 to 5 mm / min. It was possible.

加工後の成形体には鉱物油または合成油が残存しているためそのまま通常の焼結を行うと、残存していた油が加熱時に蒸発して焼結炉内を汚染するとともに、一部は分解して焼結体内に残存する。このために焼結体の残存炭素量が増加して焼結体密度が低下し、残留磁束密度と最大エネルギー積が低下する。これを防ぐため加工後の成形体は脱油処理を行ってから焼結する必要がある。
加工後の成形体に5×10−2Torrの圧力下で、200℃×2時間の脱油処理を施し、その後同じ圧力で1070℃までを15℃/分の昇温速度で昇温し、3時間保持して焼結した。焼結体はAr雰囲気中で900℃×1時間と620℃×1時間の熱処理を各一回施した。
Mineral oil or synthetic oil remains in the molded body after processing, so if normal sintering is performed as it is, the remaining oil will evaporate during heating and contaminate the inside of the sintering furnace, and partly Decomposes and remains in the sintered body. For this reason, the residual carbon amount of the sintered body increases, the sintered body density decreases, and the residual magnetic flux density and the maximum energy product decrease. In order to prevent this, it is necessary to sinter the molded body after processing after deoiling.
The molded body after processing was subjected to deoiling treatment at 200 ° C. for 2 hours under a pressure of 5 × 10 −2 Torr, and then heated up to 1070 ° C. at the same pressure at a heating rate of 15 ° C./min. Sintered by holding for 3 hours. The sintered body was heat-treated at 900 ° C. × 1 hour and 620 ° C. × 1 hour once in an Ar atmosphere.

この試料の磁気特性、酸素量、炭素量および密度を測定したところ,磁気特性は残留磁束密度13.1kG,保磁力13.9kOe,最大エネルギー積41.0MGOe、また酸素量1800ppm,炭素量0.05重量%、密度7.57g/ccであり磁気特性の低下は見られなかった。   When the magnetic properties, oxygen content, carbon content and density of this sample were measured, the magnetic properties were a residual magnetic flux density of 13.1 kG, a coercive force of 13.9 kOe, a maximum energy product of 41.0 MGOe, an oxygen content of 1800 ppm, and a carbon content of 0.1. It was 05% by weight and the density was 7.57 g / cc, and no deterioration in magnetic properties was observed.

(参考例)
重量百分率でNd27.5%,Pr2.5%,Dy1.0%,B1.0%,Nb1.0%,Co2.0%,Al0.2%,残部Feの組成を有するNd−Fe−B系焼結磁石用粗粉を窒素気流中で微粉砕を行い、平均粒径が3.9μmの微粉とした。
この微粉を金型キャビティに投入し、配向磁場強度10kOe、成形圧力1.0ton/cmの条件で加圧成形して成形体とした。この成形体を鉱物油[出光興産製、商品名:MCオイルP02]に浸漬した後、実施例と同じ装置、条件で加工した。
加工後の成形体は5×10−2Torrの圧力下で、室温から500℃まで毎分5℃の昇温速度で昇温する脱油処理を施し、その後同じ圧力で1100℃までを30℃/分の昇温速度で昇温し、2時間保持して焼結した。焼結体はAr雰囲気中で900℃×1時間と600℃×1時間の熱処理を各一回施した。
(Reference example)
Nd-Fe-B system having a composition of Nd 27.5%, Pr 2.5%, Dy 1.0%, B 1.0%, Nb 1.0%, Co 2.0%, Al 0.2%, balance Fe in weight percentage The coarse powder for a sintered magnet was finely pulverized in a nitrogen stream to obtain a fine powder having an average particle size of 3.9 μm.
This fine powder was put into a mold cavity, and pressure-molded under conditions of an orientation magnetic field strength of 10 kOe and a molding pressure of 1.0 ton / cm 2 to obtain a molded body. This molded body was immersed in mineral oil [trade name: MC oil P02, manufactured by Idemitsu Kosan Co., Ltd.] and then processed under the same apparatus and conditions as in the examples .
The molded body after processing is subjected to a deoiling treatment in which the temperature is increased from room temperature to 500 ° C. at a temperature increase rate of 5 ° C. under a pressure of 5 × 10 −2 Torr. The temperature was increased at a rate of temperature increase / minute, held for 2 hours, and sintered. The sintered body was heat-treated at 900 ° C. × 1 hour and 600 ° C. × 1 hour once in an Ar atmosphere.

この試料の磁気特性、酸素量、炭素量および密度を測定したところ,磁気特性は残留磁束密度12.2kG,保磁力14.5kOe,最大エネルギー積34.7MGOe、また酸素量4750ppm,炭素量0.06重量%、密度7.55g/ccであり、実施例のものに比べて磁気特性は低く、酸素量は高いことがわかる。 When the magnetic properties, oxygen content, carbon content and density of this sample were measured, the magnetic properties were a residual magnetic flux density of 12.2 kG, a coercive force of 14.5 kOe, a maximum energy product of 34.7 MGOe, an oxygen content of 4750 ppm, and a carbon content of 0.1. It is 06% by weight and the density is 7.55 g / cc, indicating that the magnetic properties are lower and the oxygen content is higher than those of the examples.

本発明で使用する鉱物油、合成油はその種類が特定されるものではないが、常温での動粘度が10cStを越えると粘性の増大によって微粉相互の結合力が強まって磁場中湿式成形時の微粉の配向性に悪影響を与える。このため鉱物油、合成油の常温での動粘度は10cSt以下であることが好ましい。また鉱物油、合成油の分留点が400℃を越えると焼結時の脱油が困難となり、焼結体内の残留炭素量が多くなって磁気特性の低下をもたらす。従って鉱物油、合成油の分留点は400℃以下でなくてはならない The types of mineral oil and synthetic oil used in the present invention are not specified. However, when the kinematic viscosity at room temperature exceeds 10 cSt, the binding force between the fine powders increases due to the increase in viscosity, and during wet forming in a magnetic field. This will adversely affect the fine powder orientation. For this reason, it is preferable that the kinematic viscosity at normal temperature of mineral oil and synthetic oil is 10 cSt or less. Further, if the fractional distillation point of mineral oil or synthetic oil exceeds 400 ° C., deoiling during sintering becomes difficult, and the amount of residual carbon in the sintered body increases, resulting in deterioration of magnetic properties. Therefore, the fractional distillation point of mineral oil and synthetic oil must be 400 ° C. or lower .

脱油処理は0.1Torr以下の減圧下で成形体を100〜500℃の温度範囲に30分以上保持することによって行う。なお保持温度は100〜500℃の範囲であれば一点である必要はなく、二点以上であってもよい。また0.1Torr以下の減圧下で室温から500℃までの昇温速度を10℃/分以下とすることによっても脱油を行うことができる。   The deoiling treatment is performed by holding the compact in a temperature range of 100 to 500 ° C. for 30 minutes or more under a reduced pressure of 0.1 Torr or less. The holding temperature need not be one point as long as it is in the range of 100 to 500 ° C., and may be two or more points. Deoiling can also be performed by setting the rate of temperature increase from room temperature to 500 ° C. under a reduced pressure of 0.1 Torr or less to 10 ° C./min or less.

焼結体にはその組成に対応した条件の熱処理を行い製品とするが、必要に応じて熱処理後に追加工を行い、寸法精度の高い製品とすることもある。また焼結体に熱処理を施した後に追加工を行ってもよい。 The sintered body is subjected to heat treatment under conditions corresponding to its composition to obtain a product, but if necessary, additional processing may be performed after the heat treatment to obtain a product with high dimensional accuracy. Further, additional processing may be performed after heat treatment of the sintered body.

本発明に係る成形体の加工装置の全体図である。1 is an overall view of a molded body processing apparatus according to the present invention.

符号の説明Explanation of symbols

1 加工層
2 加工液
3 成形体
4 加工刃
5 主軸
6 移動テーブル
7 スライド軸
8 駆動軸
9 スペーサ
10 循環ポンプ
11 配管
12 切粉回収装置

DESCRIPTION OF SYMBOLS 1 Processing layer 2 Processing liquid 3 Molded body 4 Processing blade 5 Spindle 6 Moving table 7 Slide shaft 8 Drive shaft 9 Spacer 10 Circulation pump 11 Piping 12 Chip collection device

Claims (1)

R−Fe−B系(RはYを含む希土類元素のうちの1種または2種以上である)焼結磁石用粉末と、常温での動粘度が10cSt以下及び分留点が400℃以下である鉱物油または合成油とからなる混合物を形成し、前記混合物を成形し、得られた成形体を前記油中に浸漬して加工した後、当該加工後の成形体を前記油中から取り出して脱油し、焼結することを特徴とする希土類焼結磁石の製造方法。 R-Fe-B system (R is one or more of Y-containing rare earth elements) sintered magnet powder , kinematic viscosity at room temperature is 10 cSt or less, and fractional point is 400 ° C or less After forming a mixture comprising a certain mineral oil or synthetic oil , molding the mixture, and processing the obtained molded body by immersing it in the oil, taking out the processed molded body from the oil A method for producing a rare earth sintered magnet, comprising deoiling and sintering.
JP2004167947A 2004-06-07 2004-06-07 Manufacturing method of rare earth sintered magnet Expired - Lifetime JP3905097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167947A JP3905097B2 (en) 2004-06-07 2004-06-07 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167947A JP3905097B2 (en) 2004-06-07 2004-06-07 Manufacturing method of rare earth sintered magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32053494A Division JPH08181028A (en) 1994-12-22 1994-12-22 Method and apparatus for processing rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JP2004323978A JP2004323978A (en) 2004-11-18
JP3905097B2 true JP3905097B2 (en) 2007-04-18

Family

ID=33509293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167947A Expired - Lifetime JP3905097B2 (en) 2004-06-07 2004-06-07 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP3905097B2 (en)

Also Published As

Publication number Publication date
JP2004323978A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
WO2011068169A1 (en) Powder for magnet
CN104112559A (en) R-t-b based sintered magnet
JP4543940B2 (en) Method for producing RTB-based sintered magnet
JP2022054683A (en) Method for producing r-t-b-based sintered magnet
JP2022054684A (en) Method for producing r-t-b-based sintered magnet
JPH1064746A (en) Method of manufacturing r-fe-b sintered magnet having thin thickness
EP2884506B1 (en) Method for producing rare-earth sintered magnet and molding device
JP3905097B2 (en) Manufacturing method of rare earth sintered magnet
EP2884505B1 (en) Method for producing rare-earth sintered magnet and molding device
JPH08181028A (en) Method and apparatus for processing rare earth permanent magnet
JP7468058B2 (en) Manufacturing method of RTB based sintered magnet
EP2869319B1 (en) Method for producing rare earth sintered magnets
JPH07272914A (en) Sintered magnet, and its manufacture
CN111968817B (en) Preparation method of annular neodymium-iron-boron magnet
JPH1022155A (en) Manufacture of rare-earth permanent magnet and rare-earth permanent magnet
JP2004207578A (en) Working method of molding
JP2005268668A (en) Manufacturing method and apparatus of rare earth sintered magnet
US10388440B2 (en) R-T-B based sintered magnet
JP4591748B2 (en) Manufacturing method and manufacturing apparatus of rare earth sintered magnet
JP2007196307A (en) Grinder, grinding method and method of manufacturing rare earth sintered magnet
JPH0888133A (en) Manufacture of rare earth element magnet
JPH07201545A (en) Sintered magnet and its manufacture thereof
JPH0869908A (en) Manufacture of rare-earth permanent magnet
JP4753024B2 (en) Raw material alloy for RTB-based sintered magnet, RTB-based sintered magnet, and manufacturing method thereof
JP7439614B2 (en) Manufacturing method of RTB based sintered magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

EXPY Cancellation because of completion of term