JP3904838B2 - Low-temperature fired porcelain and manufacturing method thereof - Google Patents

Low-temperature fired porcelain and manufacturing method thereof Download PDF

Info

Publication number
JP3904838B2
JP3904838B2 JP2001053166A JP2001053166A JP3904838B2 JP 3904838 B2 JP3904838 B2 JP 3904838B2 JP 2001053166 A JP2001053166 A JP 2001053166A JP 2001053166 A JP2001053166 A JP 2001053166A JP 3904838 B2 JP3904838 B2 JP 3904838B2
Authority
JP
Japan
Prior art keywords
porcelain
ceramic
low
temperature fired
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001053166A
Other languages
Japanese (ja)
Other versions
JP2002255636A (en
Inventor
吉健 寺師
裕美 岩地
伝 井料
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001053166A priority Critical patent/JP3904838B2/en
Publication of JP2002255636A publication Critical patent/JP2002255636A/en
Application granted granted Critical
Publication of JP3904838B2 publication Critical patent/JP3904838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子収納用パッケージや多層配線基板等の配線基板用の絶縁基板として好適であり、特に、銅や銀と同時焼成が可能であり、かつ磁器強度の高い低温焼成磁器およびその製造方法並びに該磁器を絶縁基板とする配線基板に関するものである。
【0002】
【従来技術】
従来、セラミック多層配線基板としては、アルミナ質焼結体からなる絶縁基板の表面または内部にタングステンやモリブデンなどの高融点金属からなる配線層が形成されたものが最も普及している。
【0003】
また、最近に至り、高度情報化時代を迎え、使用される周波数帯域はますます高周波化に移行しつつある。このような、高周波の信号の伝送を必要とする高周波配線基板においては、高周波信号を損失なく伝送する上で、配線層を形成する導体の抵抗が小さいこと、また絶縁基板の高周波領域での誘電損失が小さいことが要求される。
【0004】
ところが、従来のタングステン(W)や、モリブデン(Mo)などの高融点金属は導体抵抗が大きく、信号の伝搬速度が遅く、また、1GHz以上の高周波領域の信号伝搬も困難であることから、W、Moなどの金属に代えて銅、銀、金などの低抵抗金属を使用することが必要となっている。
【0005】
このような低抵抗金属からなるメタライズ配線層は、融点が低く、アルミナと同時焼成することが不可能であるため、最近では、ガラス、またはガラスとセラミックスとの複合材料からなる、いわゆるガラスセラミックス等の低温焼成磁器を絶縁基板として用いた配線基板が開発されつつある。
【0006】
低温焼成磁器は、ガラスまたは平均粒径が1μm以下の微結晶マトリックスを主として、所望により、強度向上を図る目的等から、フィラー(骨材)成分としてセラミックス粒子を分散した組織形態からなる。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の低温焼成磁器では、圧痕法等によりクラックの進展経路を観察すると、クラックの進展を抑制するはずのセラミック(フィラー)粒子が粒界破断ではなく粒内破断を起こしてしまい、結果的に磁器強度を向上することができないという問題があり、磁器の薄層化を妨げたり、絶縁基板表面に形成した配線層にピンやワイヤボンディング等の金具付けを行った場合には、磁器表面に引っ張り応力がかかって配線層が絶縁基板ごともげてしまいメタライズ強度を高めることができないという問題があった。
【0008】
したがって、本発明は、金、銀、銅を配線層を構成する導体として該導体との同時焼成が可能であるとともに、磁器強度が高い低温焼成磁器およびその製造方法並びにそれを用いた配線基板を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を鋭意検討した結果、低温焼成磁器中に含有せしめるセラミック粒子の粒径、粒子の強度を適正化することによって、磁器中に分散するセラミック粒子がクラックの進展経路をジグザグに歪ませることによって、結果的に磁器強度を向上できることを知見した。
【0010】
すなわち、本発明の低温焼成磁器は、結晶相、またはガラスおよび結晶相からなるマトリックス中に、平均粒径2.5μm以上のセラミック粒子を分散してなる磁器であって、前記結晶相がディオプサイド結晶相を含有するとともに、前記セラミック粒子の圧裂強さが2MPa以上であり、かつ前記磁器の3点曲げ強度が360MPa以上、かつ60GHzにおける誘電損失が18×10−4以下であり、前記マトリックス中の前記ガラスの含有量が前記セラミック粒子を除いた前記磁器全量に対して0〜20重量%であり、前記磁器表面に圧子によって圧痕を形成して該圧痕からクラックを直線長さで50μm以上進展させた時、該クラックの先端から前記圧痕に向かって30μmの直線長さの経路に位置する前記セラミック粒子のうち粒内破断している比率が70%以下であることを特徴とするものである。
【0011】
ここで、前記セラミック粒子の圧裂強さが2MPa以上であることが重要であり、前記平均粒径2.5μm以上のセラミック粒子がAlであることが望ましい。
【0012】
また、前記結晶相が、ディオプサイド結晶相を含有することが重要であり、前記マトリックス中の結晶相の含有量が、前記セラミック粒子を除いた前記低温焼成磁器全量に対して80重量%以上であることが望ましい。
【0013】
さらに、前記磁器は、開気孔率が1%以下であり、かつ閉気孔率が0.5〜7%であること、閉気孔の平均気孔径が6μm以下であることが望ましい。
【0014】
また、本発明の低温焼成磁器の製造方法は、ディオプサイド結晶相を析出しうるガラス粉末30〜70重量%と、平均粒径2.5μm以上で圧裂強さが2MPa以上のセラミック粉末30〜70重量%とを混合し、成形後、1050℃以下で焼成して、ディオプサイド結晶相を析出させるとともに、前記マトリックス中の前記ガラスの含有量が前記セラミック粒子を除いた前記磁器全量に対して0〜20重量%の比率とし、前記磁器の3点曲げ強度を360MPa以上、かつ60GHzにおける誘電損失を18×10 −4 以下とすることを特徴とするものである。
【0015】
ここで、前記焼成により、前記ガラスから結晶相が析出する、前記ガラスの軟化点が550〜950℃であることが望ましい。
【0016】
さらに、本発明の配線基板は、絶縁基板の表面および/または内部に、メタライズ配線層が配設されたものであって、前記絶縁基板が前記低温焼成磁器からなることを特徴とするものであ離、特に、前記メタライズ配線層が、CuまたはAgを主成分とすることが望ましい。
【0017】
【発明の実施の形態】
本発明の低温焼成磁器について、圧痕法に基づいて該磁器表面に圧子を圧入することによって、磁器表面に圧痕を刻設するとともに該圧痕の先部にクラックを進展させた時の模式図である図1に基づいて説明する。図1によれば、低温焼成磁器(以下、磁器と称す。)1は、結晶相、またはガラスおよび結晶相からなるマトリックス2中に、平均粒径2.5μm以上のセラミック粒子3を分散してなるものからなる。
【0018】
本発明によれば、磁器1の表面から圧子を圧入して圧痕4を形成し、圧痕4からクラック5を直線長さで50μm以上進展させた時、クラック5の先端から前記圧痕4に向かって30μmの直線長さの経路に位置するセラミック粒子3のうち粒内破断しているセラミック粒子3aの個数の比率が、70%以下、特に65%以下、さらに45%以下であることが大きな特徴であり、これによって、クラック5の経路を、特に粒界破断しているセラミック粒子3bによってジグザグに歪ませてクラック5の進展に必要なエネルギー量を高くすることによって、クラック5の直線的な進展長さを小さくすることができる結果、磁器1の磁器強度を向上させることができる。
【0019】
すなわち、クラック5の経路に位置するセラミック粒子3のうち、粒内破断する比率が70%より多い場合には、小さなエネルギー量で直線的なクラックが長く進展してしまう結果、磁器1の磁器強度が低下して磁器1自体の機械的信頼性が低下し、特に、磁器1を配線基板の絶縁基板として用いる場合には、配線基板に実装される半導体素子等の実装(一次実装)や配線基板のマザーボードへの実装(二次実装)の実装信頼性が低下したり、また、磁器1表面に形成する配線(メタライズ)層のメタライズ強度が低下する。
【0020】
また、本発明によれば、磁器強度を高めるために、セラミック粒子3の圧裂強さが2MPa以上、特に2.5MPa以上、さらに3MPa以上、さらには4MPa以上であることが望ましく、特にマトリックス2とのなじみの点では、セラミック粒子3が酸化物であること、さらにはアルミナを主として含有することが望ましい。
【0021】
また、セラミック粒子3としては、アルミナ以外にも、ムライト、フォルステライト、エンスタタイト、コージェライト、シリカ(クォーツ、クリストバライト、トリジマイト)、ジルコニア、チタニア、窒化ケイ素、炭化ケイ素および窒化アルミニウムの群から選ばれる少なくとも1種、特に、磁器強度を高めるとともに誘電率を低減する点で、フォルステライト、コージェライトおよびクォーツの群から選ばれる少なくとも1種が含有されていてもよい。
【0022】
さらに、磁器1の機械的強度を高める点で、マトリックス2中の前記結晶相の含有比率がセラミック粒子を除く磁器1全体に対して、80重量%以上、さらに90重量%以上、さらには95重量%以上であることが望ましく、またマトリックス2中のガラスの含有量がセラミック粒子を除く磁器1全体に対して、20重量%以下であることが重要であり、さらに10重量%以下、さらには5重量%以下とすることが望ましい。
【0023】
また、結晶相としては、磁器1の高周波帯での誘電率や熱膨張係数の調整、高周波帯での誘電損失の低減の点で、ディオプサイド結晶相を含有する。さらには、セラミック粒子3としてアルミナを用いる際には、セラミック粒子3とマトリックス2とのなじみを高くするために、ディオプサイド結晶相を主として含有することが望ましい。
【0024】
さらに、本発明によれば、磁器1の強度を高めるとともに磁器1の吸水を防止するためには、磁器1の開気孔率が1%以下であることが望ましく、かかる点では、磁器1中のセラミック粒子3の平均粒径は3〜10μm、特に3.5〜5μmであることが望ましい。また、磁器1中のセラミック粒子3の含有比率は、磁器強度を高めるとともに、磁器1の開気孔率を小さくする点で、磁器1全体に対して、30〜80重量%、特に40〜70重量%であることが望ましい。
【0025】
なお、磁器1の誘電率を低める点では、磁器1の閉気孔率を0.5〜7%とすることが望ましい。さらに、かかる閉気孔6についても、磁器1の強度を高める上では、平均閉気孔径が6μm以下、特に5μm以下、さらに3μm以下であることが望ましい。
【0026】
上記態様の磁器は、JISR−1601に基づく3点曲げ強度が360MPa以上の優れた機械的信頼性を有するものとなり、また、特に60GHzにおける誘電率が9.5以下、特に7以下、誘電損失が18×10 −4 以下と、特に配線基板の絶縁基板として高周波帯でも優れた特性を有するものとなる。
(製造方法)
次に、本発明の低温焼成磁器を製造する方法について説明する。まず、出発原料として、例えば、ガラス粉末30〜70重量%と平均粒径が2.5μm以上のセラミック粉末30〜70重量%とを混合する。ここで、上記混合粉末の望ましい混合比率は、1050℃以下の焼成によって磁器の開気孔率を1%以下に緻密化するため、磁器の機械的強度を高めるために、ガラス粉末の添加量が、特に40〜70重量%、さらに50〜60重量%、セラミック粒子の添加量が、特に30〜60重量%、さらに40〜50重量%となることが望ましい。
【0027】
ここで、本発明によれば、上記セラミック粉末の平均粒径が2.5μm以上であること、平均粒径2.5μm以上のセラミック粉末の添加量が10〜70重量%であることに加えて、セラミック粉末の圧裂強さが2MPa以上であることが重要であり、これによって、後述する1050℃以下での焼成によって作製される磁器の機械的強度を高めることができる。
【0028】
なお、本発明におけるセラミック粉末の圧裂強さとは、山本靖則,ニューセラミックス,Vol.11 No.10(1998)にて開示されるセラミック粉末の圧裂強さ測定法に基づくものであり、セラミック粉末を支持体と平面圧子との間に挟持した状態で前記平面圧子に負荷をかけてその変位量を観測することによってセラミック粉末の破壊荷重を求めることによって得られる値である。
【0029】
また、本発明において、上記セラミック粉末の圧裂強さを2MPa以上とするには、セラミック粉末を作製する際の焼成温度を調整する必要があり、例えば、アルミナの場合、粉末を作製する際の焼成温度を1300〜1600℃に調整することが重要である。すなわち、アルミナ粉末を作製する際の焼成温度が1300℃よりも低いと粉末の圧裂強さが高いα−アルミナ結晶相以外のγ−アルミナ等の他の結晶形態のアルミナ結晶相が残存してアルミナ粉末の圧裂強さが低下してしまい、逆にアルミナ粉末を作製する際の焼成温度が1600℃をえる場合には、アルミナ粉末が過焼結を起こして粉末の表面にすじ状のひび割れ等が生じたり、アルミナ粉末が粒成長することによって粒径が大きくなりすぎてこれを再度長時間粉砕することによって粉末にマイクロクラックが生じてしまう恐れがあり、粉末の圧裂強さが低下するためである。
【0030】
また、セラミック粉末の圧裂強さを高めるためには、セラミック粉末の平均粒径が10μm以下、特に8μm以下、さらに6μm以下であることが望ましい。
【0031】
一方、ガラス粉末としては、平均粒径0.1〜5μmで、例えば、SiO2、Al23およびMO(M:アルカリ土類金属元素)を含有するガラスが好適に使用できる。また、脱バインダの容易性およびガラス粉末の結晶化度を高めるためには、ガラスの軟化点が550〜950℃、特に650〜900℃、さらに700〜850℃であることが望ましい。
【0032】
そして、この混合粉末を用いてドクターブレード法やカレンダーロール法、あるいは圧延法、プレス成形法の周知の成型法により所定形状の成形体を作製した後、該成形体を500〜750℃で脱バインダ処理し、1050℃以下、特に800〜1050℃、さらに850〜950℃の酸化性雰囲気または不活性雰囲気中で焼成することにより作製することができる。
【0033】
ここで、焼成温度を上記範囲に限定した理由は、1050℃を越えると、CuやAg等の低抵抗金属との同時焼成ができないためであり、また、磁器の開気孔率を1%以下とし、磁器のマトリックス中の結晶相の含有比率を高めるためには焼成温度が800℃以上であることが望ましい。
【0034】
なお、1050℃以下での焼成で磁器を緻密化させるためには、焼成時の昇温速度を1000℃/時間以下で、かつ焼成時間を10分以上とすることが望ましく、また、磁器中の結晶相の結晶化度を高めるためには、焼成時の昇温速度を1000℃/時間以下とすることが望ましい。
【0035】
(配線基板の製造方法)
また、上記低温焼成磁器を絶縁基板として用いて配線層を具備する配線基板を作製するには、前記混合粉末に、適当な有機溶剤、溶媒を用い混合してスラリーを調製し、これを従来周知のドクターブレード法やカレンダーロール法、あるいは圧延法、プレス成形法により、シート状に成形する。そして、このシート状成形体に所望によりスルーホールを形成した後、スルーホール内に、銅、金、銀のうちの少なくとも1種を含む金属ペーストを充填する。そして、シート状成形体表面には、高周波信号が伝送可能な高周波線路パターン等に前記金属ペーストを用いてスクリーン印刷法、グラビア印刷法などによって配線層の厚みが5〜30μmとなるように、印刷塗布する。
【0036】
その後、複数のシート状成形体を位置合わせして積層圧着し、窒素ガスや窒素−酸素混合ガス等の非酸化性雰囲気中、上述した条件で焼成することにより、高周波用配線基板を作製することができる。
【0037】
なお、導体として銅等の焼成により酸化する恐れもあるものについては脱バインダ処理を水蒸気含有雰囲気等の弱酸化性雰囲気、焼成を窒素、窒素−水素あるいは窒素−不活性ガス等の非酸化性雰囲気中にて焼成する。
【0038】
そして、この配線基板の表面において、表面に形成された配線層の表面に、所望によりNiメッキ膜やCuメッキ膜を形成し、さらにこれらのメッキ膜の表面にAuメッキ膜を施した後、該適宜半導体素子等のチップ部品が搭載され配線層と信号の伝達が可能なように接続する。
【0039】
接続方法としては、配線層上に直接搭載させて接続させたり、あるいは樹脂、Ag−エポキシ、Ag−ガラス、Au−Si等の樹脂、金属、セラミックス等の厚み50μm程度の接着剤によりチップ部品を絶縁基板表面に固着し、ワイヤーボンディング、TABテープなどにより配線層と半導体素子とを接続する。なお、半導体素子としては、Si系やGa−As系等のチップ部品の実装に有効である。また、半導体素子以外にもアンテナやフィルタ、コンデンサ等の各種電子部品を実装することも可能である。
【0040】
さらに、半導体素子が搭載された配線基板表面に、絶縁基板と同種の絶縁材料や、その他の絶縁材料、あるいは放熱性が良好な金属等からなり、電磁波遮蔽性を有するキャップをガラス、樹脂、ロウ材等の接着剤により接合してもよく、これにより半導体素子を気密に封止することができる。
【0041】
(配線基板の構成)
本発明の磁器組成物を好適に使用しうる高周波用配線基板の一例である半導体素子収納用パッケージの具体的な構造とその実装構造について図2をもとに説明する。図2は、半導体収納用パッケージ、特に、接続端子がボール状端子からなるボールグリッドアレイ(BGA)型パッケージの概略断面図である。図2によれば、パッケージAは、絶縁材料からなる絶縁基板11と蓋体12によりキャビティ13が形成されており、そのキャビティ13内には、Si、Ga−As等のチップ部品14が前述の接着剤等により実装されている。
【0042】
本発明によれば、絶縁基板11が上述した低温焼成磁器からなるために、磁器強度が高く、半導体素子等の電子部品の実装に伴い、熱膨張係数差に起因して発生する熱応力によるクラックや電気的接続不良を防止し、メタライズ強度を高め、配線基板の機械的信頼性および電気的信頼性を高めることができる。
【0043】
また、絶縁基板11の表面および内部には、チップ部品14と電気的に接続された配線層15が形成されている。この配線層15は、配線抵抗を小さくするため、特に高周波信号の伝送時に導体損失を極力低減するために、Cu、Ag、Auなどの低抵抗金属、特にCuまたはAgからなることが望ましい。また、この配線層15に1GHz以上の高周波信号を伝送する場合には、高周波信号が損失なく伝送されることが必要となるため、配線層15は周知のストリップ線路、マイクロストリップ線路、コプレーナ線路、誘電体導波管線路のうちの少なくとも1種から構成される。
【0044】
さらに、図2のパッケージAにおいて、絶縁基板11の底面には、接続用電極層16が被着形成されており、パッケージA内の配線層15と接続されている。そして、接続用電極層16には、半田などのロウ材17によりボール状端子18が被着形成されている。
【0045】
また、上記パッケージAを外部回路基板Bに実装するには、図2に示すように、ポリイミド樹脂、エポキシ樹脂、フェノール樹脂などの有機樹脂を含む絶縁材料からなる絶縁基板19の表面に配線導体20が形成された外部回路基板Bに対して、ロウ材を介して実装される。具体的には、パッケージAにおける絶縁基板11の底面に取付けられているボール状端子18と、外部回路基板Bの配線導体20とを当接させてPb−Snなどの半田21によりロウ付けして実装される。また、ボール状端子18自体を溶融させて配線導体20と接続させてもよい。
【0046】
さらに、本発明によれば、磁器強度が高いことから絶縁基板11表面の配線層15のメタライズ強度を高めることができ、また、高周波帯での誘電率および誘電損失が低いことから高周波信号を低損失で良好に伝送することが可能である。また、Ga−As等のチップ部品14のロウ付けや接着剤により実装されるような表面実装型パッケージにおいて、Ga−As等のチップ部品14の絶縁基板11との熱膨張差を従来のセラミック材料よりも小さくできることから、かかる実装構造に対して、熱サイクルが印加された場合においても実装部での応力の発生を抑制することができる結果、実装構造の長期信頼性を高めることができる。なお、図2のボール状端子18に代えて柱状端子を用いる(ランドグリッドアレイ(LGA))ことも可能である。
【0047】
【実施例】
下記の組成

Figure 0003904838
からなる平均粒径2μmの4種のガラス粉末を準備した。
【0048】
上記ガラス粉末に対して、セラミック粉末の作製時の焼成温度および粉砕条件を変えて表1、2に示す平均粒径、圧裂強さのセラミック粉末(純度99%)を表1に示す比率で添加した。なお、セラミック粉末の圧裂強さは、島津微小圧縮試験機MCTMを用いて、平面圧子を用い、9.8mN〜4.9Nの微小荷重を速度7.75mN/secにて測定試料に負荷として与え圧縮変位を測定し、粉末30個の平均値を圧裂強さとして求めた。また、粉末のSEM観察からセラミック粉末の平均粒径を測定した。結果は表1に示した。
【0049】
なお、試料No.2についてはアルミナ粉末作製時の焼成温度を1100℃とし、試料No.3についてはアルミナ粉末作製時の焼成温度を1700℃としたものを用い、それ以外の試料No.1、4〜26についてはアルミナ粉末作製時の焼成温度を1500〜1600℃に調整して作製した。
【0050】
そして、この混合物に有機バインダ、可塑剤、トルエンを添加し、スラリーを調製した後、このスラリーを用いてドクターブレード法により厚さ200μmのグリーンシートを作製した。そして、このグリーンシートを10〜15枚積層し、50℃の温度で10MPaの圧力を加えて熱圧着した。得られた積層体を水蒸気含有/窒素雰囲気中、700℃で脱バインダ処理を行った後、乾燥窒素中で表1の条件で焼成し絶縁基板用磁器を得た。なお、焼成に際しては、昇温速度、降温速度を300℃/時間(h)とした。
【0051】
得られた磁器について誘電率、誘電損失を以下の方法で評価した。測定は形状、直径2〜7mm、厚み1.5〜2.5mmの形状に切り出し、60GHzにてネットワークアナライザー、シンセサイズドスイーパーを用いて誘電体円柱共振器法により行った。測定では、NRDガイド(非放射性誘電体線路)で、誘電体共振器の励起を行い、TE021、TE031モードの共振特性より、誘電率、誘電損失(tanδ)を算出した。
【0052】
また、アルキメデス法により開気孔率を測定した。さらに、焼結体中における結晶相をX線回折チャートから同定するとともに、リートベルト法によって非晶質相の含有比率を平均粒径3μm以上のセラミック粒子を除く磁器全量に対して算出した(表中、ガラス量と記載)。また、JIS−R1601に基づき、磁器の3点曲げ強度を測定した(表中、磁器強度と記載)。さらに、40〜400℃における平均熱膨張係数を測定した。また、磁器断面のSEM写真から画像解析法によってセラミック粒子の平均粒径を、また閉気孔率を画像解析法によって測定し、また、1視野にて観察される閉気孔30個以上の全面積/個数にて開気孔の平均面積Spを算出し、Sp=πr2の式から平均気孔径rを算出した。結果は表1、2に示した。
【0053】
さらに、表1の組成物を用いて、ドクターブレード法により厚み500μmのグリーンシートを作製し、このシート表面に厚み10μmのCuメタライズペーストをスクリーン印刷法を用いて塗布しメタライズ配線層を形成した。また、グリーンシートの所定箇所にスルーホールを形成しその中にもCuメタライズペーストを充填した。そして、メタライズペーストが塗布されたグリーンシートをスルーホール間で位置合わせしながら6枚積層し圧着した。この積層体を上述した焼成条件でメタライズ配線層と絶縁基板とを同時焼成し、表面にメタライズ配線層が形成された配線基板を作製した。
【0054】
得られた配線基板表面の2mm角のメタライズ配線層の表面にニッケルメッキおよび金メッキを施し、該メッキ膜上に銅リード線を半田付けした後、該リード線をメタライズ配線層と垂直に10mm/秒の速度で引っ張ってメタライズ配線層が剥がれまたは破損する引っ張り荷重(F)を測定し、メタライズ配線層の形成面積(S)との比であるF/S(MPa)をメタライズ強度として算出した。結果は表1に示した。
【0055】
また、配線基板表面の磁器部について、JISR−1607(1995)に準じて磁器表面に圧痕4つの先端からクラックをそれぞれ50μm程度の直線長さ発生させた。そして、走査型電子顕微鏡(SEM)にて、このクラックの先端から前記圧痕の先端に向かって30μmの直線長さの経路に位置するセラミック粒子の破断状態を観察し、粒内破断と粒界破断した個数を数えて、粒内破断した個数/(粒内破断+粒界破断)した個数によって粒内破断したセラミック粒子の比率を算出した。結果は表1、2に示した。
【0056】
【表1】
Figure 0003904838
【0057】
【表2】
Figure 0003904838
【0058】
表1、2の結果から明らかなように、平均粒径2.5μm以上のセラミック粒子が存在しない試料No.1では、磁器強度が低いものであった。また、圧裂強さが3MPaより低いセラミック粉末を用いた試料No.2、3では、セラミック粒子の粒内破断する比率が70%より多く、磁器強度が低いものであった。さらに、セラミック粒子の含有量が10重量%より少ない試料No.7では、セラミック粒子の粒内破断する比率が70%より多く、また、セラミック粉末の含有量が70重量%を越える試料No.13では磁器を緻密化することができず磁器強度が低いものであった。さらに、セラミック粒子の平均粒径が3μmより小さい試料No.14、15では、1050℃以下の焼成温度で磁器を緻密化することができず、セラミック粒子の粒内破断する比率が70%より多くなった。
【0059】
これに対して、圧裂強さが2MPa以上で、かつ平均粒径が3μm以上のセラミック粉末を10〜70重量%の比率で含有せしめた試料No.4〜6、〜12、16〜18では、磁器強度250MPa以上、メタライズ強度が20MPa以上で、誘電率9.5以下、誘電損失30×10−4以下の優れた特性を有するものであった。
【0060】
【発明の効果】
以上詳述した通り、本発明の低温焼成磁器によれば、低温焼成磁器中に含有せしめるセラミック粒子の粒径、粒子の強度を適正化することによって、磁器中に分散するセラミック粒子がクラックの進展経路をジグザグに歪ませることによって、結果的に磁器強度を向上でき、かつ磁器表面に配線層を形成した場合においても、該配線層のメタライズ強度を高めることができる。
【0061】
また、本発明によれば、高周波帯での誘電率および誘電損失が低いことから高周波信号を低損失で良好に伝送することが可能である。さらに、磁器の熱膨張係数を調整することが可能であることから電子部品をロウ付けや接着剤により絶縁基板表面に実装するような表面実装型パッケージにおいて、電子部品や外部回路基板と絶縁基板との熱膨張差を従来のセラミック材料よりも小さくできることから、かかる実装構造に対して、熱サイクルが印加された場合においても実装部での応力の発生を抑制することができる結果、実装構造の長期信頼性を高めることができる。
【図面の簡単な説明】
【図1】本発明の低温焼成磁器について、該磁器表面に圧痕を形成した際のクラックの進展状態を説明するための図である。
【図2】本発明の組成物を焼成した磁器を用いた高周波用配線基板の一例である半導体素子収納用パッケージの実装構造の一例を説明するための概略断面図である。
【符号の説明】
1 低温焼成磁器(磁器)
2 マトリックス
3 セラミック粒子
3a 粒内破断しているセラミック粒子
3b 粒界破断しているセラミック粒子
4 圧痕
5 クラック
6 閉気孔
A 半導体素子収納用パッケージ
B 外部回路基板
11 絶縁基板
12 蓋体
13 キャビティ
14 チップ部品
15 配線層
16 接続用電極層
17 ロウ材
18 ボール状端子
19 絶縁基板
20 配線導体
21 半田[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is suitable as an insulating substrate for a wiring board such as a package for housing semiconductor elements and a multilayer wiring board, and in particular, a low-temperature fired ceramic that can be fired simultaneously with copper and silver and has high ceramic strength, and its manufacture The present invention relates to a method and a wiring substrate using the porcelain as an insulating substrate.
[0002]
[Prior art]
Conventionally, a ceramic multilayer wiring board is most widely used in which a wiring layer made of a refractory metal such as tungsten or molybdenum is formed on or inside an insulating substrate made of an alumina sintered body.
[0003]
In recent years, with the advent of advanced information technology, the frequency band used is increasingly shifting to higher frequencies. In such a high-frequency wiring board that requires transmission of a high-frequency signal, the resistance of the conductor forming the wiring layer is small in order to transmit the high-frequency signal without loss, and the dielectric in the high-frequency region of the insulating substrate. Small loss is required.
[0004]
However, conventional refractory metals such as tungsten (W) and molybdenum (Mo) have high conductor resistance, slow signal propagation speed, and signal propagation in a high frequency region of 1 GHz or more is difficult. It is necessary to use low resistance metals such as copper, silver, and gold instead of metals such as Mo.
[0005]
Since the metallized wiring layer made of such a low resistance metal has a low melting point and cannot be co-fired with alumina, recently, so-called glass ceramics made of glass or a composite material of glass and ceramics, etc. A wiring board using a low-temperature fired ceramic as an insulating substrate is being developed.
[0006]
The low-temperature fired porcelain is mainly composed of glass or a microcrystalline matrix having an average particle diameter of 1 μm or less, and has a structure in which ceramic particles are dispersed as a filler (aggregate) component for the purpose of improving the strength as desired.
[0007]
[Problems to be solved by the invention]
However, in the conventional low-temperature fired porcelain, when the crack propagation path is observed by an indentation method or the like, the ceramic (filler) particles that should suppress the crack propagation cause intragranular fracture rather than intergranular fracture, resulting in a result. If there is a problem that the strength of the porcelain cannot be improved, and the thinning of the porcelain is hindered, or if a metal layer such as a pin or wire bonding is attached to the wiring layer formed on the surface of the insulating substrate, the surface of the porcelain There was a problem that the tensile strength was applied to the wiring layer, and the wiring layer was peeled off together with the insulating substrate, so that the metallization strength could not be increased.
[0008]
Therefore, the present invention provides a low-temperature fired porcelain having high ceramic strength, a method of manufacturing the same, and a wiring board using the same, as gold, silver and copper can be fired simultaneously as conductors constituting the wiring layer. The purpose is to provide.
[0009]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventors have optimized the particle size and strength of the ceramic particles to be contained in the low-temperature fired porcelain so that the ceramic particles dispersed in the porcelain have a crack propagation path. It was found that the porcelain strength could be improved as a result of distorting in a zigzag manner.
[0010]
  That is, the low-temperature fired ceramic according to the present invention is a ceramic in which ceramic particles having an average particle size of 2.5 μm or more are dispersed in a crystal phase or a matrix made of glass and a crystal phase, and the crystal phase is dioptric. Containing a side crystal phase,The crushing strength of the ceramic particles is 2 MPa or more, andThe three-point bending strength of the porcelain is 360 MPa or more, and the dielectric loss at 60 GHz is 18 × 10-4The content of the glass in the matrix is 0 to 20% by weight based on the total amount of the porcelain excluding the ceramic particles, and an indentation is formed on the surface of the porcelain by an indenter, and cracks are formed from the indentation. When the straight line length is increased by 50 μm or more, the ratio of intragranular fracture of the ceramic particles located in the path of the straight line length of 30 μm from the tip of the crack toward the indentation is 70% or less. It is characterized by.
[0011]
  Here, the crushing strength of the ceramic particles is 2 MPa or more.Is importantThe ceramic particles having an average particle size of 2.5 μm or more are Al.2O3It is desirable that
[0012]
  The crystal phase is a diopside crystal.PhaseIt is important to contain, and the content of the crystal phase in the matrix is desirably 80% by weight or more based on the total amount of the low-temperature fired ceramic excluding the ceramic particles.
[0013]
Further, the porcelain preferably has an open porosity of 1% or less, a closed porosity of 0.5 to 7%, and an average pore diameter of the closed pores of 6 μm or less.
[0014]
  Further, the method for producing the low-temperature fired porcelain of the present invention comprises a diopside crystal.PhasePrecipitating glass powder 30 ~70Ceramic powder with an average particle size of 2.5 μm or more and a crushing strength of 2 MPa or more.30Diopside crystal after mixing and baking at 1050 ° C. or lower.PhaseWhile precipitatingIn the matrixGlassThe content ofFor the total amount of the porcelain excluding the ceramic particles020 weight%ofratioThe three-point bending strength of the porcelain is 360 MPa or more, and the dielectric loss at 60 GHz is 18 × 10. -4 Less thanIt is characterized by that.
[0015]
  Here, the glassRuiCrystal phase precipitatesButThe softening point of the glass is desirably 550 to 950 ° C.
[0016]
Furthermore, the wiring board of the present invention is characterized in that a metallized wiring layer is disposed on the surface and / or inside of an insulating substrate, and the insulating substrate is made of the low-temperature fired ceramic. In particular, it is preferable that the metallized wiring layer has Cu or Ag as a main component.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
  FIG. 4 is a schematic view of the low-temperature fired ceramic according to the present invention when an indenter is pressed into the surface of the porcelain based on the indentation method, and an indentation is formed on the surface of the porcelain and a crack is advanced at the tip of the indentation. This will be described with reference to FIG. According to FIG. 1, low-temperature fired porcelain (hereinafter referred to as porcelain) 1 isCrystalline phase, or glass and crystalline phaseIn the matrix 2 consisting of2.5It is made by dispersing ceramic particles 3 of μm or more.
[0018]
According to the present invention, when an indenter is pressed from the surface of the porcelain 1 to form the indentation 4 and the crack 5 is advanced from the indentation 4 by 50 μm or more in a linear length, the tip of the crack 5 is directed toward the indentation 4. A major feature is that the ratio of the number of ceramic particles 3a fractured in the grains among the ceramic particles 3 positioned in the path of 30 μm linear length is 70% or less, particularly 65% or less, and further 45% or less. With this, the path of the crack 5 is distorted in a zigzag manner by the ceramic particles 3b that are particularly broken at the grain boundaries, and the amount of energy required for the development of the crack 5 is increased. As a result, the porcelain strength of the porcelain 1 can be improved.
[0019]
That is, in the ceramic particles 3 located in the path of the crack 5, when the ratio of intragranular breakage is more than 70%, the linear cracks progress for a long time with a small amount of energy. And the mechanical reliability of the porcelain 1 itself is lowered. Particularly when the porcelain 1 is used as an insulating substrate of a wiring board, mounting of semiconductor elements or the like mounted on the wiring board (primary mounting) or wiring board Mounting reliability (secondary mounting) on the mother board decreases, and the metallization strength of the wiring (metallization) layer formed on the surface of the porcelain 1 decreases.
[0020]
Further, according to the present invention, in order to increase the porcelain strength, it is desirable that the crushing strength of the ceramic particles 3 is 2 MPa or more, particularly 2.5 MPa or more, further 3 MPa or more, further 4 MPa or more. In terms of familiarity with the ceramic particles, it is desirable that the ceramic particles 3 are oxides, and further contain mainly alumina.
[0021]
In addition to alumina, the ceramic particles 3 are selected from the group of mullite, forsterite, enstatite, cordierite, silica (quartz, cristobalite, tridymite), zirconia, titania, silicon nitride, silicon carbide, and aluminum nitride. At least one, particularly at least one selected from the group of forsterite, cordierite, and quartz may be contained from the viewpoint of increasing the porcelain strength and reducing the dielectric constant.
[0022]
  Furthermore, in the point of increasing the mechanical strength of the porcelain 1,ConclusionThe content ratio of crystal phase is based on the whole porcelain 1 excluding ceramic particles, 80% by weight or more, 90% by weight or more, and 95% by weight or moreIs desirable, MaTamaThe content of glass in Tricks 2 is based on the entire porcelain 1 excluding ceramic particles20% by weight or lessIt is important to beFurther, it is desirable that the content be 10% by weight or less, and further 5% by weight or less.
[0023]
  The crystal phase is a diopside crystal in terms of adjusting the dielectric constant and thermal expansion coefficient in the high frequency band of the porcelain 1 and reducing the dielectric loss in the high frequency band.Phasecontains. Furthermore, when alumina is used as the ceramic particles 3, it is desirable to mainly contain a diopside crystal phase in order to increase the familiarity between the ceramic particles 3 and the matrix 2.
[0024]
Furthermore, according to the present invention, in order to increase the strength of the porcelain 1 and prevent water absorption of the porcelain 1, it is desirable that the open porosity of the porcelain 1 is 1% or less. The average particle size of the ceramic particles 3 is desirably 3 to 10 μm, particularly 3.5 to 5 μm. Further, the content ratio of the ceramic particles 3 in the porcelain 1 is 30 to 80% by weight, particularly 40 to 70% by weight with respect to the entire porcelain 1 in terms of increasing the porcelain strength and reducing the open porosity of the porcelain 1. % Is desirable.
[0025]
In order to reduce the dielectric constant of the porcelain 1, it is desirable that the closed porosity of the porcelain 1 is 0.5 to 7%. Further, for the closed pores 6, in order to increase the strength of the porcelain 1, it is desirable that the average closed pore diameter is 6 μm or less, particularly 5 μm or less, and further 3 μm or less.
[0026]
  The above-mentioned porcelain has a three-point bending strength based on JISR-1601.360 MPaIt has excellent mechanical reliability as described above, and has a dielectric constant of 9.5 or less, particularly 7 or less, particularly at 60 GHz.18x10 -4 In particular, the insulating substrate of the wiring board has excellent characteristics even in the high frequency band.
(Production method)
  Next, a method for producing the low-temperature fired porcelain of the present invention will be described. First, as a starting material, for example, glass powder 30 ~70Ceramic powder with weight percent and average particle size of 2.5μm or more30Mix with ~ 70 wt%. Here, a desirable mixing ratio of the above mixed powder is to densify the porcelain open porosity to 1% or less by firing at 1050 ° C. or less, and in order to increase the mechanical strength of the porcelain, In particular, it is desirable that the amount of ceramic particles added is 40 to 70% by weight, more preferably 50 to 60% by weight, especially 30 to 60% by weight, and further 40 to 50% by weight.
[0027]
Here, according to the present invention, the average particle size of the ceramic powder is 2.5 μm or more, and the addition amount of the ceramic powder having an average particle size of 2.5 μm or more is 10 to 70% by weight. It is important that the crushing strength of the ceramic powder is 2 MPa or more, and this can increase the mechanical strength of the porcelain produced by firing at 1050 ° C. or less, which will be described later.
[0028]
The crushing strength of the ceramic powder in the present invention is based on the method for measuring the crushing strength of ceramic powder disclosed in Yasunori Yamamoto, New Ceramics, Vol. 11 No. 10 (1998). It is a value obtained by obtaining the breaking load of the ceramic powder by applying a load to the planar indenter while observing the amount of displacement while holding the powder between the support and the planar indenter.
[0029]
  Further, in the present invention, in order to set the crushing strength of the ceramic powder to 2 MPa or more, it is necessary to adjust the firing temperature when producing the ceramic powder. For example, in the case of alumina, The firing temperature is 13001600It is important to adjust to ° C. That is, when the firing temperature in producing the alumina powder is lower than 1300 ° C., alumina crystal phases of other crystal forms such as γ-alumina other than α-alumina crystal phase having high powder crush strength remain. The crushing strength of alumina powder decreases, and conversely, the firing temperature when producing alumina powder is1600SuperIf the alumina powder is oversintered, the surface of the powder may cause streak-like cracks, etc., or the alumina powder may grow and become too large to be crushed again for a long time. This is because microcracks may be generated in the powder, and the crushing strength of the powder is reduced.
[0030]
Further, in order to increase the crushing strength of the ceramic powder, it is desirable that the average particle size of the ceramic powder is 10 μm or less, particularly 8 μm or less, and further 6 μm or less.
[0031]
On the other hand, the glass powder has an average particle size of 0.1 to 5 μm, for example, SiO.2, Al2OThreeAnd glass containing MO (M: alkaline earth metal element) can be preferably used. Further, in order to increase the ease of binder removal and the crystallinity of the glass powder, it is desirable that the softening point of the glass is 550 to 950 ° C, particularly 650 to 900 ° C, and more preferably 700 to 850 ° C.
[0032]
Then, a molded body having a predetermined shape is produced by using this mixed powder by a known molding method such as a doctor blade method, a calender roll method, a rolling method, or a press molding method, and then the molded body is debindered at 500 to 750 ° C. It can be produced by treating and baking in an oxidizing atmosphere or inert atmosphere at 1050 ° C. or lower, particularly 800 to 1050 ° C., and further 850 to 950 ° C.
[0033]
  Here, the reason for limiting the firing temperature to the above range is that when the firing temperature exceeds 1050 ° C., simultaneous firing with a low-resistance metal such as Cu or Ag is impossible, and the open porosity of the porcelain is set to 1% or less. In a porcelain matrixResult ofIn order to increase the content ratio of the crystal phase, the firing temperature is desirably 800 ° C. or higher.
[0034]
In order to densify the porcelain by firing at 1050 ° C. or less, it is desirable that the heating rate during firing is 1000 ° C./hour or less and the firing time is 10 minutes or more. In order to increase the crystallinity of the crystal phase, it is desirable to set the heating rate during firing to 1000 ° C./hour or less.
[0035]
(Method for manufacturing a wiring board)
Further, in order to produce a wiring board having a wiring layer using the low-temperature fired ceramic as an insulating substrate, a slurry is prepared by mixing the mixed powder with an appropriate organic solvent and solvent, and this is conventionally known. The sheet is formed by the doctor blade method, the calender roll method, the rolling method, or the press forming method. And after forming a through hole as needed in this sheet-like molded object, the metal paste containing at least 1 sort (s) of copper, gold | metal | money, and silver is filled in a through hole. Then, on the surface of the sheet-like molded body, printing is performed so that the wiring layer has a thickness of 5 to 30 μm by a screen printing method, a gravure printing method or the like using the metal paste on a high-frequency line pattern or the like capable of transmitting a high-frequency signal. Apply.
[0036]
Thereafter, a plurality of sheet-like molded bodies are aligned, laminated and pressure-bonded, and fired under the above-described conditions in a non-oxidizing atmosphere such as nitrogen gas or nitrogen-oxygen mixed gas to produce a high-frequency wiring board. Can do.
[0037]
For conductors that may be oxidized by firing copper or the like, the binder removal treatment is performed in a weakly oxidizing atmosphere such as a steam-containing atmosphere, and the firing is performed in a non-oxidizing atmosphere such as nitrogen, nitrogen-hydrogen, or nitrogen-inert gas. Bake in.
[0038]
Then, on the surface of the wiring substrate, if desired, a Ni plating film or a Cu plating film is formed on the surface of the wiring layer formed on the surface, and further, an Au plating film is applied to the surface of these plating films, A chip component such as a semiconductor element is appropriately mounted and connected to the wiring layer so that signals can be transmitted.
[0039]
As a connection method, the chip component is directly mounted on the wiring layer to be connected, or the chip component is bonded with an adhesive having a thickness of about 50 μm such as resin, Ag-epoxy, Ag-glass, Au-Si resin, metal, ceramics, or the like. Adhering to the surface of the insulating substrate, the wiring layer and the semiconductor element are connected by wire bonding, TAB tape or the like. In addition, as a semiconductor element, it is effective for mounting of chip parts, such as Si type and Ga-As type. In addition to the semiconductor elements, various electronic components such as an antenna, a filter, and a capacitor can be mounted.
[0040]
In addition, on the surface of the wiring board on which the semiconductor element is mounted, an insulating material of the same type as that of the insulating substrate, other insulating materials, or a metal having good heat dissipation, etc., and a cap having electromagnetic wave shielding properties are made of glass, resin, brazing. The semiconductor element may be hermetically sealed by bonding with an adhesive such as a material.
[0041]
(Configuration of wiring board)
A specific structure of a package for housing a semiconductor element, which is an example of a high-frequency wiring board that can suitably use the porcelain composition of the present invention, and its mounting structure will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view of a semiconductor storage package, in particular, a ball grid array (BGA) type package in which connection terminals are formed of ball-shaped terminals. According to FIG. 2, the package A has a cavity 13 formed of an insulating substrate 11 made of an insulating material and a lid 12, and a chip component 14 such as Si or Ga—As is contained in the cavity 13. It is mounted with an adhesive or the like.
[0042]
According to the present invention, since the insulating substrate 11 is composed of the above-mentioned low-temperature sintered porcelain, the strength of the porcelain is high, and cracks due to thermal stress generated due to the difference in thermal expansion coefficient due to the mounting of electronic components such as semiconductor elements. In addition, it is possible to prevent poor electrical connection, increase the metallization strength, and increase the mechanical reliability and electrical reliability of the wiring board.
[0043]
A wiring layer 15 electrically connected to the chip component 14 is formed on the surface and inside of the insulating substrate 11. The wiring layer 15 is preferably made of a low-resistance metal such as Cu, Ag, or Au, particularly Cu or Ag, in order to reduce wiring resistance, and in particular to reduce conductor loss as much as possible when transmitting a high-frequency signal. Further, when a high frequency signal of 1 GHz or more is transmitted to the wiring layer 15, the high frequency signal needs to be transmitted without loss. Therefore, the wiring layer 15 includes a well-known strip line, microstrip line, coplanar line, It is composed of at least one of dielectric waveguide lines.
[0044]
Further, in the package A of FIG. 2, a connection electrode layer 16 is deposited on the bottom surface of the insulating substrate 11 and connected to the wiring layer 15 in the package A. A ball-shaped terminal 18 is formed on the connection electrode layer 16 with a brazing material 17 such as solder.
[0045]
In order to mount the package A on the external circuit board B, as shown in FIG. 2, a wiring conductor 20 is formed on the surface of an insulating board 19 made of an insulating material containing an organic resin such as polyimide resin, epoxy resin, or phenol resin. It is mounted on the external circuit board B formed with a brazing material. Specifically, the ball terminal 18 attached to the bottom surface of the insulating substrate 11 in the package A and the wiring conductor 20 of the external circuit board B are brought into contact with each other and brazed with a solder 21 such as Pb-Sn. Implemented. Further, the ball terminal 18 itself may be melted and connected to the wiring conductor 20.
[0046]
Furthermore, according to the present invention, since the porcelain strength is high, the metallization strength of the wiring layer 15 on the surface of the insulating substrate 11 can be increased, and since the dielectric constant and dielectric loss in the high frequency band are low, the high frequency signal is reduced. It is possible to transmit with good loss. Further, in a surface-mount package that is mounted by brazing or bonding an adhesive to the chip component 14 such as Ga-As, the difference in thermal expansion between the chip component 14 such as Ga-As and the insulating substrate 11 is reduced by a conventional ceramic material. Therefore, even when a thermal cycle is applied to such a mounting structure, it is possible to suppress the generation of stress in the mounting portion, and as a result, the long-term reliability of the mounting structure can be improved. A columnar terminal (land grid array (LGA)) may be used instead of the ball-shaped terminal 18 of FIG.
[0047]
【Example】
The following composition
Figure 0003904838
Four kinds of glass powders having an average particle diameter of 2 μm were prepared.
[0048]
With respect to the glass powder, the ceramic powder (purity 99%) having the average particle diameter and the crushing strength shown in Tables 1 and 2 at different ratios shown in Table 1 by changing the firing temperature and pulverization conditions at the time of production of the ceramic powder. Added. The crushing strength of the ceramic powder was measured using a Shimadzu micro compression tester MCTM with a flat indenter and a load of 9.8 mN to 4.9 N applied to the measurement sample at a speed of 7.75 mN / sec. The applied compression displacement was measured, and the average value of 30 powders was determined as the crushing strength. Moreover, the average particle diameter of the ceramic powder was measured from SEM observation of the powder. The results are shown in Table 1.
[0049]
Sample No. For No. 2, the firing temperature during the preparation of the alumina powder was 1100 ° C. As for No. 3, a sample with a firing temperature of 1700 ° C. during the preparation of alumina powder was used. 1 and 4 to 26 were prepared by adjusting the firing temperature when preparing the alumina powder to 1500 to 1600 ° C.
[0050]
And after adding an organic binder, a plasticizer, and toluene to this mixture and preparing a slurry, the green sheet of thickness 200 micrometers was produced by the doctor blade method using this slurry. And 10-15 sheets of this green sheet were laminated | stacked, the pressure of 10 Mpa was applied at the temperature of 50 degreeC, and the thermocompression bonding was carried out. The obtained laminate was subjected to binder removal treatment at 700 ° C. in a steam-containing / nitrogen atmosphere, and then fired in dry nitrogen under the conditions shown in Table 1 to obtain an insulating substrate ceramic. In firing, the rate of temperature increase and the rate of temperature decrease were set to 300 ° C./hour (h).
[0051]
The dielectric constant and dielectric loss of the obtained porcelain were evaluated by the following methods. The measurement was cut into a shape having a shape, a diameter of 2 to 7 mm, and a thickness of 1.5 to 2.5 mm, and was performed by a dielectric cylindrical resonator method using a network analyzer and a synthesized sweeper at 60 GHz. In the measurement, the NRD guide (non-radiative dielectric line) is used to excite the dielectric resonator, and TE021, TE031The dielectric constant and dielectric loss (tan δ) were calculated from the mode resonance characteristics.
[0052]
The open porosity was measured by Archimedes method. Further, the crystal phase in the sintered body was identified from the X-ray diffraction chart, and the content ratio of the amorphous phase was calculated by the Rietveld method with respect to the total amount of porcelain excluding ceramic particles having an average particle size of 3 μm or more (Table). Medium, described as glass amount). Further, the three-point bending strength of porcelain was measured based on JIS-R1601 (described as porcelain strength in the table). Furthermore, the average thermal expansion coefficient in 40-400 degreeC was measured. In addition, the average particle diameter of ceramic particles and the closed porosity are measured by image analysis from an SEM photograph of the porcelain cross section, and the total area of 30 or more closed pores observed in one field of view / Average area S of open pores by numberpAnd calculate Sp= Πr2The average pore diameter r was calculated from the formula: The results are shown in Tables 1 and 2.
[0053]
Furthermore, a green sheet having a thickness of 500 μm was produced by the doctor blade method using the composition shown in Table 1, and a 10 μm-thick Cu metallized paste was applied to the sheet surface by a screen printing method to form a metallized wiring layer. Further, a through hole was formed at a predetermined position of the green sheet, and a Cu metallized paste was filled therein. Then, six green sheets coated with the metallized paste were stacked and pressed together while being aligned between the through holes. The laminated body was fired simultaneously with the metallized wiring layer and the insulating substrate under the above-described firing conditions, and a wiring board having a metallized wiring layer formed on the surface was produced.
[0054]
The surface of the 2 mm square metallized wiring layer on the surface of the obtained wiring board is subjected to nickel plating and gold plating, and a copper lead wire is soldered on the plating film, and then the lead wire is perpendicular to the metallized wiring layer at 10 mm / second. The tensile load (F) at which the metallized wiring layer was peeled off or damaged by pulling at a speed of was measured, and F / S (MPa), which is the ratio to the formation area (S) of the metallized wiring layer, was calculated as the metalized strength. The results are shown in Table 1.
[0055]
Moreover, about the porcelain part of the wiring board surface, according to JISR-1607 (1995), the linear length of about 50 micrometers was each generated from the tip of four indentations on the porcelain surface. Then, with a scanning electron microscope (SEM), the fracture state of the ceramic particles located in the path of a linear length of 30 μm from the crack tip to the tip of the indentation was observed, and intragranular fracture and intergranular fracture The ratio of ceramic particles fractured within the grain was calculated from the number of fractured grains / number of fractured grains / (number of fractures within grains + grain boundary fracture). The results are shown in Tables 1 and 2.
[0056]
[Table 1]
Figure 0003904838
[0057]
[Table 2]
Figure 0003904838
[0058]
  As apparent from the results of Tables 1 and 2, Sample No. in which no ceramic particles having an average particle diameter of 2.5 μm or more exist. In 1, the porcelain strength was low. Sample No. using a ceramic powder having a crushing strength lower than 3 MPa. 2,3Had a ratio of fracture within the grains of the ceramic particles of more than 70% and a low ceramic strength. Furthermore, the sample No. 1 having a ceramic particle content of less than 10% by weight. In Sample No. 7, the ratio of the intragranular fracture of the ceramic particles is more than 70%, and the content of the ceramic powder exceeds 70% by weight. In No. 13, the porcelain could not be densified and the porcelain strength was low. Further, the sample No. 1 in which the average particle size of the ceramic particles is smaller than 3 μm. In Nos. 14 and 15, the porcelain could not be densified at a firing temperature of 1050 ° C. or less, and the ratio of intragranular fracture of the ceramic particles was more than 70%.
[0059]
  On the other hand, sample No. 1 containing 10 to 70% by weight of ceramic powder having a crushing strength of 2 MPa or more and an average particle diameter of 3 μm or more. 4-6,9~ 12,16 ~18Then, the porcelain strength is 250 MPa or more, the metallization strength is 20 MPa or more, the dielectric constant is 9.5 or less, and the dielectric loss is 30 × 10.-4It had the following excellent characteristics.
[0060]
【The invention's effect】
As described above in detail, according to the low-temperature fired porcelain of the present invention, by optimizing the particle size and strength of the ceramic particles to be contained in the low-temperature fired porcelain, the ceramic particles dispersed in the ceramic are propagated by cracks. By distorting the path in a zigzag manner, the porcelain strength can be improved as a result, and even when the wiring layer is formed on the porcelain surface, the metallization strength of the wiring layer can be increased.
[0061]
  Moreover, according to the present invention,HighSince the dielectric constant and dielectric loss in the frequency band are low, it is possible to transmit a high frequency signal satisfactorily with low loss. Furthermore, since it is possible to adjust the thermal expansion coefficient of the porcelain, in the surface mount type package in which the electronic component is mounted on the surface of the insulating substrate by brazing or adhesive, the electronic component, the external circuit substrate, the insulating substrate, Since the thermal expansion difference of the conventional ceramic material can be made smaller than that of the conventional ceramic material, it is possible to suppress the generation of stress in the mounting portion even when a thermal cycle is applied to such a mounting structure. Reliability can be increased.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram for explaining a crack growth state when an indentation is formed on a surface of a low-temperature fired ceramic according to the present invention.
FIG. 2 is a schematic cross-sectional view for explaining an example of a mounting structure of a package for housing a semiconductor element, which is an example of a high-frequency wiring board using a ceramic made by firing the composition of the present invention.
[Explanation of symbols]
1 Low temperature firing porcelain (porcelain)
2 Matrix
3 Ceramic particles
3a Intra-granular ceramic particles
3b Ceramic particles with intergranular fracture
4 Indentation
5 cracks
6 closed pores
A Package for storing semiconductor elements
B External circuit board
11 Insulating substrate
12 Lid
13 cavity
14 Chip parts
15 Wiring layer
16 Electrode layer for connection
17 Wax material
18 Ball terminal
19 Insulating substrate
20 Wiring conductor
21 Solder

Claims (8)

結晶相、またはガラスおよび結晶相からなるマトリックス中に、平均粒径2.5μm以上のセラミック粒子を分散してなる磁器であって、前記結晶相がディオプサイド結晶相を含有するとともに、前記セラミック粒子の圧裂強さが2MPa以上であり、かつ前記磁器の3点曲げ強度が360MPa以上、かつ60GHzにおける誘電損失が18×10−4以下であり、前記マトリックス中の前記ガラスの含有量が前記セラミック粒子を除いた前記磁器全量に対して0〜20重量%であり、前記磁器表面に圧子によって圧痕を形成して該圧痕からクラックを直線長さで50μm以上進展させた時、該クラックの先端から前記圧痕に向かって30μmの直線長さの経路に位置する前記セラミック粒子のうち粒内破断している比率が70%以下であることを特徴とする低温焼成磁器。A porcelain in which ceramic particles having an average particle size of 2.5 μm or more are dispersed in a crystal phase or a matrix made of glass and a crystal phase, the crystal phase containing a diopside crystal phase, and the ceramic The crushing strength of the particles is 2 MPa or more, the three-point bending strength of the porcelain is 360 MPa or more, the dielectric loss at 60 GHz is 18 × 10 −4 or less, and the content of the glass in the matrix is the above It is 0 to 20% by weight based on the total amount of the porcelain excluding ceramic particles, and when the indentation is formed on the surface of the porcelain by the indenter and the crack extends from the indentation by 50 μm or more in a linear length, the tip of the crack From the ceramic particles located in the path having a linear length of 30 μm toward the indentation, the ratio of intragranular fracture is 70% or less Temperature fired porcelain characterized and. 前記平均粒径2.5μm以上のセラミック粒子がAlであることを特徴とする請求項1記載の低温焼成磁器。Claim 1 Symbol placement of low-temperature fired porcelain said average particle size 2.5μm or more ceramic particles, characterized in that is Al 2 O 3. 開気孔率が1%以下であり、かつ閉気孔率が0.5〜7%であることを特徴とする請求項1または2記載の低温焼成磁器。The low-temperature fired ceramic according to claim 1 or 2 , wherein the open porosity is 1% or less and the closed porosity is 0.5 to 7%. 閉気孔の平均気孔径が6μm以下であることを特徴とする請求項1乃至のいずれか記載の低温焼成磁器。The low-temperature fired ceramic according to any one of claims 1 to 3 , wherein the closed pores have an average pore diameter of 6 µm or less. ディオプサイド結晶相を析出しうるガラス粉末30〜70重量%と、平均粒径2.5μm以上で圧裂強さが2MPa以上のセラミック粉末30〜70重量%とを混合し、成形後、1050℃以下で焼成して、ディオプサイド結晶相を析出させるとともに、前記ガラス粉末から残存するガラスを前記セラミック粒子を除いた前記磁器全量に対して0〜20重量%の比率とし、前記磁器の3点曲げ強度を360MPa以上、かつ60GHzにおける誘電損失を18×10−4以下とすることを特徴とする低温焼成磁器の製造方法。30 to 70% by weight of a glass powder capable of precipitating a diopside crystal phase and 30 to 70% by weight of a ceramic powder having an average particle size of 2.5 μm or more and a crushing strength of 2 MPa or more are mixed, and after molding, 1050 The glass is fired at a temperature not higher than 0 ° C. to precipitate a diopside crystal phase, and the glass remaining from the glass powder is set to a ratio of 0 to 20% by weight with respect to the total amount of the porcelain excluding the ceramic particles. A method for producing a low-temperature fired ceramic, characterized in that the point bending strength is 360 MPa or more and the dielectric loss at 60 GHz is 18 × 10 −4 or less. 前記ガラス粉末の軟化点が550〜950℃であることを特徴とする請求項記載の低温焼成磁器の製造方法。The method for producing a low-temperature fired porcelain according to claim 5, wherein the glass powder has a softening point of 550 to 950 ° C. 絶縁基板の表面および/または内部に、メタライズ配線層が配設された配線基板において、前記絶縁基板が請求項1乃至のいずれか記載の低温焼成磁器からなることを特徴とする配線基板。5. A wiring board having a metallized wiring layer disposed on the surface and / or inside of the insulating board, wherein the insulating board comprises the low-temperature fired ceramic according to any one of claims 1 to 4 . 前記メタライズ配線層が、CuまたはAgを主成分とすることを特徴とする請求項記載の配線基板。The wiring board according to claim 7 , wherein the metallized wiring layer contains Cu or Ag as a main component.
JP2001053166A 2001-02-27 2001-02-27 Low-temperature fired porcelain and manufacturing method thereof Expired - Fee Related JP3904838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053166A JP3904838B2 (en) 2001-02-27 2001-02-27 Low-temperature fired porcelain and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053166A JP3904838B2 (en) 2001-02-27 2001-02-27 Low-temperature fired porcelain and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002255636A JP2002255636A (en) 2002-09-11
JP3904838B2 true JP3904838B2 (en) 2007-04-11

Family

ID=18913670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053166A Expired - Fee Related JP3904838B2 (en) 2001-02-27 2001-02-27 Low-temperature fired porcelain and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3904838B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4594021B2 (en) * 2004-09-28 2010-12-08 京セラ株式会社 Dielectric ceramic composition, method for producing the same, and wiring board
JP2007151875A (en) * 2005-12-06 2007-06-21 Ogiso:Kk Porcelain tableware
JP2012243845A (en) * 2011-05-17 2012-12-10 Tcst Tech Co Ltd High density ltcc package structure for encapsulating electronic component and high density ltcc material thereof
WO2015141100A1 (en) * 2014-03-19 2015-09-24 日本碍子株式会社 Ceramic body and method for producing same
JP6361751B2 (en) * 2017-01-19 2018-07-25 Tdk株式会社 Dielectric composition, dielectric ceramic, and multilayer composite electronic component

Also Published As

Publication number Publication date
JP2002255636A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
JP2001240470A (en) Porcelain composition for high-frequency use, porcelain for high-frequency use and method for producing porcelain for high-frequency use
JP3904838B2 (en) Low-temperature fired porcelain and manufacturing method thereof
JP3588224B2 (en) High frequency wiring board
JP3793559B2 (en) High frequency porcelain composition and high frequency porcelain
JP2003238249A (en) Glass ceramics and wiring board
JP4792167B2 (en) Porcelain, manufacturing method thereof, and high-frequency wiring board
JP3865967B2 (en) Porcelain and wiring board using the same
JP3827491B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing high frequency porcelain
JP3377898B2 (en) Low temperature firing porcelain composition
JP2005015284A (en) Low temperature-fired porcelain, its production method, and wiring board
JP3556475B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JP2005093546A (en) Wiring board and its producing method
JP2005101095A (en) Porcelain composition, porcelain, and its manufacturing method
JP3085667B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP2003073162A (en) Glass ceramic and wiring board
JP3441924B2 (en) Wiring board and its mounting structure
JP3793558B2 (en) High frequency porcelain
JP2004115290A (en) Multiple oxide sintered compact and its production process and wiring board
JP3441941B2 (en) Wiring board and its mounting structure
JP2003137657A (en) Glass ceramics and method of manufacturing the same and wiring board
JP3663335B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP2003165765A (en) Glass ceramic composition and method for making glass ceramic and method for making wiring board
JP2005179137A (en) Porcelain having excellent high frequency transmission characteristics
JP3663300B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3904838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees