JP3903462B2 - 貯湯式給湯機 - Google Patents
貯湯式給湯機 Download PDFInfo
- Publication number
- JP3903462B2 JP3903462B2 JP2002131248A JP2002131248A JP3903462B2 JP 3903462 B2 JP3903462 B2 JP 3903462B2 JP 2002131248 A JP2002131248 A JP 2002131248A JP 2002131248 A JP2002131248 A JP 2002131248A JP 3903462 B2 JP3903462 B2 JP 3903462B2
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- temperature
- water
- valve
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
【発明の属する技術分野】
本発明は、冷媒の凝縮熱を利用したヒートポンプ式給湯機等の貯湯式給湯機に関する。詳述すれば、貯湯槽を備えた貯湯式給湯機における配管内の水の凍結防止に関する。
【0002】
【従来の技術】
従来、ヒートポンプ式給湯機等の貯湯式給湯機では、循環ポンプを使用して貯湯槽内の水を強制的にヒートポンプ、コジェネ、燃料電池などの熱源との間で循環させ、給湯用の温水を生成して貯湯槽内に貯湯する。
【0003】
そして、上記貯湯式給湯機では、例えば冬季等に外気温度が低下すると、貯湯槽と熱源との間に接続された循環用の配管内の水が凍結し、給湯ができなくなる虞があった。また、配管内の水が凍結すると、凍結時の膨張により配管が破れたり、又は配管に亀裂が入ったりして、水漏れが発生する虞があり、この水漏れのために水の循環が不十分になり、熱源などの機器が故障する原因となっていた。
【0004】
【発明が解決しようとする課題】
上記貯湯式給湯機の配管内での凍結を予防するために、外気温度が低下したときにヒートポンプユニットなどの熱源を運転し、前記配管に温水を循環させた場合には、凍結予防のための熱源の運転に電力を消費するため、年間のエネルギー消費効率であるCOPが低下するという問題が発生する。また、電力使用量が増加し、使用者の電力料金負担が増加するという問題が発生する。
【0005】
特に、貯湯式給湯機では、電力料金が安い夜間(例えば、午後11時から午前7時まで)の間に熱源を運転し、貯湯槽内の水を加熱して温度を上昇させて貯湯しておき、貯湯槽内の温水を電力料金が高い夜間以外の昼間に使用することで、使用者が負担する電力料金を抑えている。
【0006】
しかしながら、昼間に配管の凍結防止のために、上記のように熱源を運転すると、電力料金が高い昼間の電力を消費することになり、使用者の電力料金の負担が大幅に増加するという問題が発生する。
【0007】
また、凍結防止のための熱源の運転を極力避けるために、外気温度が低下したときに貯湯槽内の湯を配管に供給すると配管内で温度低下した水が貯湯槽の上部に戻ったときに貯湯槽内に貯留している高温水と低温水との温度層のバランスが崩れ、貯湯槽内の温水が全体的に均一化され、高温水を供給することができなくなるという問題が発生する。
【0008】
そこで本発明は、貯湯式給湯機の電力消費の上昇を極力抑えつつ、配管の凍結を予防し、また貯湯槽内の温度層を維持できるようにすることを目的とする。
【0009】
【課題を解決するための手段】
このため第1の発明は、循環ポンプにより水を貯湯槽と加熱用熱源との間を循環させると共に前記貯湯槽から出湯可能とする給湯回路とを備えた貯湯式給湯機において、外気温度を検出する温度検出器と、前記循環ポンプを運転開始させる設定温度を格納した記憶手段と、前記温度検出器の検出温度が前記記憶手段に記憶されている前記設定温度まで低下したときには前記循環ポンプの運転を開始させると共に、時刻によって前記加熱用熱源の運転により温水を循環させて凍結予防するか、前記貯湯槽内の水を循環させて凍結予防するかを決定する制御手段とを備えたことを特徴とする。
【0010】
また第2の発明は、前記循環ポンプを運転し、前記貯湯槽内の上部の高温水を使用して凍結予防するときには、前記貯湯槽内の上部から供給され前記配管内を循環した戻り水を前記貯湯槽の中間層に戻す戻し配管を備えたことを特徴とする。
【0011】
【発明の実施の形態】
本発明の第1の実施の形態を図を参照して、以下説明する。図1は本発明が適用される貯湯式給湯機としてのヒートポンプ給湯機の回路説明図で、このヒートポンプ給湯機は圧縮機1にて圧縮された冷媒と水とを加熱用熱交換器により熱交換させる冷媒回路を備えた熱源としてのヒートポンプユニット100と、ヒートポンプユニット100にて温度上昇した高温水を貯留する貯湯槽などを備えた貯湯槽ユニット200と、循環ポンプにより水を貯湯槽と前記加熱用熱交換器との間を循環させると共に前記貯湯槽から出湯可能とする給湯回路300とを主要構成としている。
【0012】
前記ヒートポンプユニット100に設けられた冷媒回路は、冷媒を吸入圧縮し高温高圧にする圧縮機1、冷媒と水とを熱交換させる加熱用の冷媒対水熱交換器2、電動式の膨張弁3、外気と冷媒との熱交換を行う室外側熱交換器としての蒸発器4、アキュムレータ5等を有している。
【0013】
前記貯湯槽ユニット200は、台所で操作される台所リモコン(リモートコントローラ)7及びふろ場で操作されるふろリモコン(リモートコントローラ)8が接続された制御基板9及びお湯を貯湯する貯湯槽10を備え、制御基板9にはヒートポンプ給湯機を制御する制御手段としてマイクロコンピュータ(以下「マイコン」という)40等が搭載される。尚、台所リモコン7及びふろリモコン8には時刻表示装置等が設けられている。
【0014】
前記給湯回路300は、前記貯湯槽10に水道水を供給する逆止弁付き水道減圧弁11、貯湯槽10からお湯を取出す出湯管12、水道減圧弁11の出口側から出湯管12に接続された混合弁13に至るバイパス管14、出湯管12から分岐して浴槽31ヘ至るお湯張り管15、お湯張り管15に接続された流量調整弁16、前記混合弁13より上流側の出湯管12に接続される圧力逃がし弁17、貯湯槽10の下端部と前記冷媒対水熱交換器2の入口側との間に接続された往き管18、この往き管18の途中に接続されて貯湯槽10から前記冷媒対水熱交換器2に水を供給するための循環ポンプ19、冷媒対水熱交換器2の出口側と貯湯槽10の上端部との間に接続された第1の戻り管23、この第1の戻り管23の途中に接続された流量調整手段としての流量調整弁24、第1の戻り管23の途中から分岐して貯湯槽10の下部10aに至る第2の戻り管35、この第2の戻り管35の途中に接続された開閉弁(以下、「第1の戻り弁」という)36を配管接続して構成されている。
【0015】
また、冷媒対水熱交換器2の入口側及び出口側にはそれぞれ外気温度センサとしての温度センサ(以下、「入口温度センサ」という)28及び温度センサ(以下、「出口温度センサ」という)29が設けられ、更に貯湯槽ユニット200内の第1の戻り管23の途中には外気温度センサとしての温度センサ(以下、「貯湯槽入口温度センサ」という)30が設けられている。
【0016】
次に、図2の制御ブロック図に基づいて説明する。貯湯槽ユニット200側の制御基板9に設けられたマイコン40は、図示しないタイマを備え、本ヒートポンプ給湯機の貯湯槽ユニット200に係る動作を統括制御するCPU(セントラル・プロセッシング・ユニット)41、各種データを記憶する記憶装置としてのRAM(ランダム・アクセス・メモリ)42、給湯動作及び凍結防止運転の動作に係るプログラムを格納するROM(リ−ド・オンリー・メモリ)43、時を計時する時計44から構成されている。そして、ROM43には図3に示したテーブルのような、貯湯槽10内の例えば深夜電力を使用して深夜に沸き上げるときの最大貯湯量である最大沸上量、沸き増しを開始する最低貯湯量及び沸き増しを停止する貯湯量である沸き増し終了の貯湯量が沸き上げ(沸き増し)制御のモードとしてモード1からモード7まで格納され、またこれらのモードを貯湯量の変化に基づいて変更するプログラム及び凍結予防運転に係るプログラムが設定されている。そして、CPU41は前記RAM42に記憶されたデータに基づき、前記ROM43に格納されたプログラム及び上記モードに従い、本ヒートポンプ給湯機の給湯に係る動作及び凍結予防運転に係る動作を統括制御する。そして、通常は貯湯槽10内の容量全てを所定の温度に沸き上げるようにマイコン40は給湯機を制御する。
【0017】
また、台所リモコンCPU7aがマイコン40に信号線にて接続され、台所リモコンCPU7aには浴槽31への給湯時にお湯張りの量を設定するための沸き上げ量設定スイッチ7b及び上記モードを切り替えるためのモード切替スイッチ7cが接続されている。
【0018】
また、ヒートポンプユニット100側のマイコン50は、ヒートポンプユニット100に係る動作を統括制御するCPU51、各種データを記憶する記憶装置としてのRAM52、ヒートポンプユニット100の動作に係るプログラムを格納するROM53から構成されている。そして、圧縮機1、膨張弁3、入口温度センサ28、出口温度センサ29及び貯湯槽入口温度センサ30がマイコン50に信号線にて接続されている。
【0019】
マイコン40とマイコン50とは信号線54にて接続され、入口温度センサ28、出口温度センサ29及び貯湯槽入口温度センサ30の検出温度はマイコン50及び信号線54を介してマイコン40に送信され、RAM42に随時記憶される。また、RAM42には、後述する低温水の循環による凍結予防運転を開始するときの第1の設定温度(例えば5℃)及びこの凍結予防運転を終了するときの第2の設定温度(例えば10℃)、夜間時刻の例えば午後11時から午前7時まで(以下、「ナイトタイム」という)の時間帯、昼間時刻の例えば午前7時から午後11時まで(以下、「デイタイム」という)の時間帯が記憶されている。
【0020】
そして、前記貯湯槽10の容量が、例えば370リットルであり、貯湯槽10には、湯温検出センサTS1、TS2、TS3、TS4、TS5、TS6及びTS7が貯湯槽10の下部から上部まで上下間隔を存して設けられ、本給湯機がその沸き上げ可能温度が55℃までのため、前記各センサの検出湯温が55℃以上の場合には貯湯槽10内の上端からその位置までは貯湯されており残湯ありと判断する。このとき、検出センサTS1の配置箇所は残湯量が350リットル、TS2が同じく300リットル、TS3が250リットル、TS4が200リットル、TS5が150リットル、TS6が100リットル、TS7が50リットルの位置である。
【0021】
ここで、貯湯槽入口温度センサ30による外気温度(例えば25℃)、ヒートポンプの能力(例えば5.0kW)、沸き上げ温度(例えば75℃)、給水温度センサ55により検出された逆止弁付き水道減圧弁11を介して貯湯槽10に供給する水道水の給水温度(例えば20℃)、湯温検出センサTS3の検出温度(例えば63℃)、湯温検出センサTS1及びTS2の検出温度(例えば50℃)等のデータは、前記マイコン40のRAM42に格納され、これらのデータに基づいてマイコン40が貯湯槽10内の貯湯量を判断する。
【0022】
即ち、初めに7個の湯温検出センサの中から沸き上げ湯温55℃を2個の検出センサ間に含む検出センサの組み合わせをマイコン40が探索し、55℃より高い温度を検出している検出センサの検出温度をThi、その残湯量をLhiとし、低い温度を検出している検出センサの検出温度をTlo、その残湯量をLloとして、55℃に到達している前記貯湯槽10内の貯湯量(残湯量)Lzを、Lz=(Thi−55)/(Thi−Tlo)×(Llo−Lhi)+Lhiからマイコン40が算出する。
【0023】
従って、55℃に到達している残湯量Lzは(63−55)/(63−50)×(300−250)+250から約286リットルであると、マイコン40は判断する。
【0024】
次に循環流量(1分間当りの沸き上げ量)を、ヒートポンプによる1分間当りの加熱量を沸き上げ温度から水温を引いた温度で割り算して算出するが、具体的には循環流量=(ヒートポンプ能力P×860(Kcal)/60(分間)/(沸き上げ温度Tp−(外気温度Tt×0.8+3))からマイコン40が算出する。即ち、所定能力が一定に出る給水温度(冷媒対水熱交換器2に入る水温)は、外気温度値を用いて、各種性能試験で得られた換算式より算出している。
【0025】
従って、循環流量は、(5×860/60/(75−(25×0.8+3)から約1.38リットル/分と、マイコン40は判断する。即ち、ヒートポンプの特性上(特に冷媒がCO2の場合)、沸き上げ温度を固定で、給水温度(冷媒対水熱交換器2に入る水温)が上昇すると圧縮機1の周波数を一定に保っていても徐々に加熱能力が低下し、また水温の上昇と能力の低下のカーブは完全にはリニアにはならないため、本給湯機で圧縮機1の保護も含め、入口水温に合わせて圧縮機1の周波数を段階的に下げる動作を行い、結果的に入口水温が変動しても同じ外気温度条件なら略一定の循環流量を維持する運転を行なうように制御することとなる。
【0026】
以上のようにマイコン40により、貯湯槽10内の貯湯量が判断されると共に、沸き上げ時(沸き増し時)の循環量が算出される。
【0027】
以下、ヒートポンプ給湯機からの給湯時の制御について説明する。図4の(a)に示したような貯湯槽10内の貯湯状態(ハッチングされた部分が全体の容量の内の貯湯量を表す。)から給湯され、湯が使用された時には、貯湯槽10に水が一杯になるように逆止弁付き水道減圧弁11から水が給水される。湯が使用され貯湯量が次第に少なくなり(b)に示した貯湯状態になる。更に、給湯され貯湯量が少なくなり(c)に示したように最低貯湯量(例えばモード4の場合においては150リットル)より少なくなり、検出センサTS6の検出温度が貯湯状態と判断する温度である55℃より低下すると、マイコン40は貯湯量が検出センサの位置より少なくなったと判断し、ヒートポンプユニット100側のマイコン50に運転信号を出力し、ヒートポンプ給湯機に沸き増し運転を開始させる。
【0028】
即ち、圧縮機1が運転を開始し、圧縮機1で圧縮されて高温になった冷媒が冷媒対水熱交換器2に供給される。そして、循環ポンプ19が起動されて貯湯槽10の下部10aの水が冷媒対水熱交換器2に給水されて、冷媒と水との熱交換が開始される。これにより、冷媒は熱を失って凝縮し、また水は冷媒の凝縮熱により温度が上昇して、高温水すなわち湯となって貯湯槽10に戻る。
【0029】
このとき、出口温度センサ29の検出温度に基づいてマイコン40が動作し、第1の戻り弁36を閉じた状態にて流量調整弁24の開度を制御することにより、ほぼ設定温度(例えば85℃)まで温度上昇した湯が第1の戻り管23から貯湯槽10の上部へ供給される。これにより貯湯槽10内の上層は湯で下層は水となり、時間の経過と共にお湯の層と水の層とが混じることなく、湯の層が増え水の層が少なくなる。そして、通常の運転状態(モード7のときに相当)では、最終的に貯湯槽10が湯で満たされるが、例えば沸き上げ制御のモードがモード4の場合には、図4の(c)に示したように貯湯量が設定された沸き増し終了の量である200リットルまで上昇し、検出センサTS5の検出温度が55℃以上になると、CPU41が動作しマイコン40が循環ポンプ19へ停止信号を出力すると共に、マイコン50を介して圧縮機1へ停止信号を出力し、沸き増し運転が終了する。
【0030】
上記のように沸き増し運転時には図3に示した沸き上げ制御のモードに従い、沸き増し運転が制御されるが、以下、沸き上げ制御のモードを変更するときの制御について、図5のフローチャートに基づいて説明する。
【0031】
まず、沸き上げ制御のモード(運転モード)が手動か自動かが判断され、手動の場合には、前記沸き上げ量設定スイッチ7bの操作に基づいて、沸き上げ制御のモードがモード1乃至3までの間にて設定される。即ち、沸き上げ量を例えば多い、中間、少ない場合の3段階に分け、多い場合にはモード3、中間の場合にはモード2、少ない場合にはモード1が設定され、その後、沸き上げ運転時には設定されたモードに従ってヒートポンプ給湯機の運転が制御される。
【0032】
沸き上げ制御のモード(運転モード)が自動の場合には、例えばヒートポンプ給湯機への電源投入時に標準モードである沸き上げ制御のモード3が自動的に設定される。このため、貯湯槽10からの給湯により貯湯量が減少し、検出センサTS6の検出温度が55℃より低くなり、貯湯量が100リットルをより少なくなったとマイコン40が判断する(判断A)。この判断に伴いマイコン40に設けられた図示しないタイマが動作を開始する。そして、その後、貯湯量が50リットル以下にならず、即ち検出センサTS7が55℃以上の温度を検出し続けた場合には、沸き上げ制御のモード3がタイマに予め設定されている所定時間(例えば3日間)維持される。
【0033】
尚、所定時間が経過する前に貯湯量が減少し、検出センサTS7の検出温度が55℃より低くなった場合には、貯湯量が50リットルより少なくなったとマイコン40が判断し(判断B)、沸き上げ制御のモードを一ランク上のモード、即ち、モード番号の大きいモードであるモード4へ移行する。このため、沸き増し開始の最低貯湯量が100リットルから150リットルへ増加し、かつ沸き増し運転の終了貯湯量が150リットルから200リットルに増加する。
【0034】
また、検出センサTS6の検出温度に基づいて貯湯槽10に100リットル以上の貯湯量があるとマイコン40が判断した(判断C)場合には、図示しないタイマが動作する。そして、100リットル以上の貯湯量が予め設定されていた所定期間(例えば3日間)維持された場合には、タイマがカウントアップし、マイコン40が動作し、一ランク下のモード、即ち、モード番号が小さいモードであるモード2へ移行する。この結果、最大沸上量が370リットルから300リットルへ減少する。
【0035】
各沸き上げ制御のモードにおいて、上記モード3と同様の判断が行われ、例えばモード5においては、100リットル以上の貯湯量が所定期間維持された場合には、タイマがカウントアップし、マイコン40が動作し、一ランク下のモード、即ち、モード番号が小さいモードであるモード4へ移行する。この結果、沸き増し開始の最低貯湯量が200リットルから150リットルへ減少し、かつ沸き増し運転の終了貯湯量が250リットルから200リットルに減少する。同様に、モード4からモード7においては、100リットル以上の貯湯量が所定期間維持された場合には、タイマがカウントアップし、マイコン40が動作し、一ランク下のモード、即ち、モード番号が小さいモードであるモードへ移行する。この結果、沸き増し開始の最低貯湯量と沸き増し運転の終了貯湯量との双方が50リットルずつ減少する。
【0036】
この結果、給湯量が多いとき、即ち使用負荷が多いときにはモード番号を大きい方へ移行させ、負荷に適切に対応することが可能であることはもちろん、給湯量が少なく使用負荷が少ないときには、モード番号を小さい方へ移行させ、深夜の最大沸上量を減少させ、また、沸き増し開始の最低貯湯量と沸き増し運転の終了貯湯量との双方を減少させることにより、1つの貯湯槽10の容量で使用負荷に対応した幅広い運転、即ち、貯湯量或いは沸き増し量の制御が可能であり、放熱よる熱ロスを極力少なくし、ヒートポンプ給湯機の運転効率、即ち湯の供給効率が向上する。
【0037】
次に、上記のように給湯運転が制御されるヒートポンプ給湯機の冬季などの凍結防止運転についての第1の実施形態について説明する。
【0038】
ヒートポンプユニット100の運転が停止しているときに外気温度が低下し、時計44により計時されたデイタイムの時刻に入口温度センサ28、出口温度センサ29或いは貯湯槽入口温度センサ30のいずれかの検出温度が第1の設定温度(例えば5℃)になると、マイコン40が動作し、第1の戻り弁36を開き、流量調整弁24を閉じ、循環ポンプ19を運転する。
【0039】
循環ポンプ19の運転により、貯湯槽10の下部10aに貯留している低温層の低温水が、循環ポンプ19、往き管18、ヒートポンプユニット100の冷媒対水熱交換器2、第1の戻り管23、第2の戻り管35及び第1の戻り弁36を介して貯湯槽10の下部10aと循環し、往き管18及び第1の戻り管23の特にヒートポンプユニット100と貯湯槽ユニット200との間に位置している部分の凍結を予防する。
【0040】
また、上記のように低温水を循環しているとき、往き管18、第1の戻り管23及び第2の戻り管35を流れた低温水は貯湯槽10の上部10bの高温水の層及び中間部10cの中間温水の層に戻されることなく下部10aに戻されるため、戻った低温水により貯湯槽10内の上部10bの高温水の層及び中間部10cの中間温水の層に影響を与えることを回避でき、層崩れを防止することができる。
【0041】
更に、上記凍結予防運転により、貯湯槽10の下部10aの水温が低下するが、ヒートポンプユニット100の運転時には、ヒートポンプユニット100に流入する水の温度が低いほど冷媒対水熱交換器2での熱交換効率を向上することができる。
【0042】
そして、上記凍結予防運転により往き管18及び第1の戻り管23などの循環路の温度が上昇し、入口温度センサ28、出口温度センサ29及び貯湯槽入口温度センサ30の検出温度が全て第2の設定温度(例えば10℃)になると、マイコン40が動作して第1の戻り弁36を閉じると共に流量調整弁24を開放状態にし、更に循環ポンプ19の運転を停止する。この結果、貯湯槽10からの低温水の循環が停止し、凍結予防運転は終了し、凍結予防運転による消費電力の増加を極力小さくすることができる。
【0043】
また、時計44により計時されたナイトタイムの時刻に入口温度センサ28、出口温度センサ29或いは貯湯槽入口温度センサ30のいずれかの検出温度が第1の設定温度(例えば5℃)になると、マイコン40が動作し、第1の戻り弁36を閉じ、流量調整弁24を開き、循環ポンプ19を運転するばかりか、更にマイコン40はマイコン50に運転信号を出力し、ヒートポンプユニット100の運転を開始させる。
【0044】
したがって、冷媒対水熱交換器2にて熱交換して温度上昇した高温水が第1の戻り管23から貯湯槽10の上部10bへ流れ、また、貯湯槽10の下部10aの水が往き管18を介して冷媒対水熱交換器2へ流れ、第1の戻り管23及び往き管18の温度が上昇し、凍結が予防される。
【0045】
そして、往き管18及び第1の戻り管23などの循環路の温度が上昇し、入口温度センサ28、出口温度センサ29及び貯湯槽入口温度センサ30の検出温度が全て第2の設定温度(例えば10℃)になると、マイコン40が動作して第1の戻り弁36は閉じ流量調整弁24は開いたままとし、循環ポンプ19の運転を停止すると共にヒートポンプユニット100を停止し、凍結予防運転が終了する。
【0046】
この結果、ナイトタイムには、安い電力を使用してヒートポンプユニット100を運転し、高温水を使用して凍結を確実に予防することができ、また、凍結予防運転の時間を短縮することができる。
【0047】
次に、主として図6に基づき、凍結防止運転についての第2の実施形態について説明するが同一の図番については同一の機能を有するものとし、説明は省略する。
【0048】
以下、第1の実施形態と異なる給湯回路300についてのみ説明する。前記給湯回路300は、前記貯湯槽10に水道水を供給する逆止弁付き水道減圧弁11、貯湯槽10からお湯を取出す出湯管12、水道減圧弁11の出口側から出湯管12に接続された混合弁13に至るバイパス管14、出湯管12から分岐して浴槽31ヘ至るお湯張り管15、お湯張り管15に接続された流量調整弁16、前記混合弁13より上流側の出湯管12に接続される圧力逃がし弁17、貯湯槽10の下端部と前記冷媒対水熱交換器2の入口側との間に接続された往き管18、この往き管18の途中に接続されて貯湯槽10から前記冷媒対水熱交換器2に水を供給するための循環ポンプ19、この循環ポンプ19の上流側に接続された開閉弁(以下、「入水弁」という)20、循環ポンプ19と入水弁20との間の往き管18から分岐して出湯管12に至る高温水循環用管21、この高温水循環用管21の途中に接続された開閉弁(以下、「高温弁」という)22、冷媒対水熱交換器2の出口側と貯湯槽10の上端部との間に接続された第1の戻り管23、この第1の戻り管23の途中に接続された流量調整手段としての流量調整弁24、第1の戻り管23の途中から分岐して貯湯槽10の下部10aに至る第2の戻り管35、この第2の戻り管35の途中に接続された開閉弁(以下、「第1の戻り弁」という)36を配管接続して構成されている。
【0049】
ヒートポンプユニット100の運転が停止しているときに外気温度が低下し、時計44により計時されたデイタイムの時刻に入口温度センサ28、出口温度センサ29或いは貯湯槽入口温度センサ30のいずれかの検出温度が第1の設定温度(例えば5℃)になると、マイコン40が動作し、入水弁20を閉じると共に第1の戻り弁36を開き、流量調整弁24を閉じると共に高温弁22を開き、循環ポンプ19を運転する。
【0050】
この循環ポンプ19の運転により、貯湯槽10の上部10bに貯留している高温層の高温水が高温弁22、循環ポンプ19、往き管18、ヒートポンプユニット100の冷媒対水熱交換器2、第1の戻り管23、第2の戻り管35及び第1の戻り弁36を介して貯湯槽10の下部10aと循環し、往き管18及び第1の戻り管23の特にヒートポンプユニット100と貯湯槽ユニット200との間に位置している部分の凍結を予防する。
【0051】
また、上記のように低温水を循環しているとき、往き管18、第1の戻り管23及び第2の戻り管35を流れた低温水は貯湯槽10の上部10bの高温水の層及び中間部10cの中間温水の層に戻されることなく下部10aに戻されるため、戻った低温水により貯湯槽10内の上部10bの高温水の層及び中間部10cの中間温水の層に影響を与えることを回避でき、層崩れを防止することができる。
【0052】
そして、上記凍結予防運転により往き管18及び第1の戻り管23などの循環路の温度が上昇し、入口温度センサ28、出口温度センサ29及び貯湯槽入口温度センサ30の検出温度が全て第2の設定温度(例えば10℃)になると、マイコン40が動作して入水弁20を開くと共に第1の戻り弁36を閉じ、流量調整弁24を開くと共に高温弁22を閉じ、更に循環ポンプ19の運転を停止する。この結果、貯湯槽10からの高温水の循環が停止し、凍結予防運転は終了し、凍結予防運転による消費電力の増加を極力小さくすることができる。
【0053】
また、時計44により計時されたナイトタイムの時刻に入口温度センサ28、出口温度センサ29或いは貯湯槽入口温度センサ30のいずれかの検出温度が第1の設定温度(例えば5℃)になると、マイコン40が動作し、入水弁20を開くと共に第1の戻り弁36を閉じ、流量調整弁24を開くと共に高温弁22を閉じている状態で、循環ポンプ19を運転するばかりか、更にマイコン40はマイコン50に運転信号を出力し、ヒートポンプユニット100の運転を開始させる。
【0054】
したがって、冷媒対水熱交換器2にて熱交換して温度上昇した高温水が第1の戻り管23から貯湯槽10の上部10bへ流れ、また、貯湯槽10の下部10aの水が往き管18を介して冷媒対水熱交換器2へ流れ、第1の戻り管23及び往き管18の温度が上昇し、凍結が予防される。
【0055】
そして、往き管18及び第1の戻り管23などの循環路の温度が上昇し、入口温度センサ28、出口温度センサ29及び貯湯槽入口温度センサ30の検出温度が全て第2の設定温度(例えば10℃)になると、マイコン40が動作して入水弁20を開くと共に第1の戻り弁36を閉じ、流量調整弁24を開くと共に高温弁22を閉じたままとし、循環ポンプ19の運転を停止すると共にヒートポンプユニット100を停止し、凍結予防運転が終了する。
【0056】
この結果、ナイトタイムには、安い電力を使用してヒートポンプユニット100を運転し、高温水を使用して凍結を確実に予防することができ、また、凍結予防運転の時間を短縮することができる。
【0057】
次に、主として図7に基づき、凍結防止運転についての第3の実施形態について説明するが同一の図番については同一の機能を有するものとし、説明は省略する。
【0058】
以下、他の実施形態と異なる給湯回路300についてのみ説明する。前記給湯回路300は、前記貯湯槽10に水道水を供給する逆止弁付き水道減圧弁11、貯湯槽10からお湯を取出す出湯管12、水道減圧弁11の出口側から出湯管12に接続された混合弁13に至るバイパス管14、出湯管12から分岐して浴槽31ヘ至るお湯張り管15、お湯張り管15に接続された流量調整弁16、前記混合弁13より上流側の出湯管12に接続される圧力逃がし弁17、貯湯槽10の下端部と前記冷媒対水熱交換器2の入口側との間に接続された往き管18、この往き管18の途中に接続されて貯湯槽10から前記冷媒対水熱交換器2に水を供給するための循環ポンプ19、この循環ポンプ19の上流側に接続された開閉弁(以下、「入水弁」という)20、循環ポンプ19と入水弁20との間の往き管18から分岐して出湯管12に至る高温水循環用管21、この高温水循環用管21の途中に接続された開閉弁(以下、「高温弁」という)22、冷媒対水熱交換器2の出口側と貯湯槽10の上端部との間に接続された第1の戻り管23、この第1の戻り管23の途中に接続された流量調整手段としての流量調整弁24、第1の戻り管23の途中から分岐して貯湯槽10の中間部10cである中間層に至る第3の戻り菅25、この第3の戻り管25の途中に接続された開閉弁(以下、「第1の戻り弁」という)36及び逆止弁27を配管接続して構成されている。
【0059】
そして、ヒートポンプユニット100の運転が停止しているときに外気温度が低下し、時計44により計時されたデイタイムの時刻に入口温度センサ28、出口温度センサ29或いは貯湯槽入口温度センサ30のいずれかの検出温度が第1の設定温度(例えば5℃)になると、マイコン40が動作し、入水弁20を閉じると共に第1の戻り弁36を開き、流量調整弁24を閉じると共に高温弁22を開き、循環ポンプ19を運転する。
【0060】
この循環ポンプ19の運転により、貯湯槽10の上部10bに貯留している高温層の高温水が高温弁22、循環ポンプ19、往き管18、ヒートポンプユニット100の冷媒対水熱交換器2、第1の戻り管23、第3の戻り管25、第1の戻り弁36及び逆止弁27を介して貯湯槽10の中間部10cに戻り、往き管18及び第1の戻り管23の特にヒートポンプユニット100と貯湯槽ユニット200との間に位置している部分の凍結を予防する。
【0061】
この場合、第3の戻り管25を介して貯湯槽10の中間部10cに戻って来る水が中間温度であっても、貯湯槽10内で上部10bの水の高温層や下部10aの低温層に影響を与えることなく凍結予防ができる。
【0062】
以上のように、往き管18及び第1の戻り管23の凍結予防運転を行うときには、その時刻によってヒートポンプユニット100を運転して凍結を予防するか、貯湯槽100の水を使用して凍結を予防するかを選択し決定することにより、使用電力を極力抑えた安価な方法で凍結を予防することができる。
【0063】
尚、上記各実施の形態において、流量調整弁24を運転時の貯湯槽10へ供給される高温水の温度制御及び凍結予防運転のときには閉じ貯湯槽10の上部へ循環水が戻ることを阻止するために使用したが、流量調整弁24と直列に電磁弁を設け、この電磁弁を凍結予防運転時に閉じるようにしてもよい。
【0064】
以上本発明の実施態様について説明したが、上述の説明に基づいて当業者にとって種々の代替例、修正又は変形が可能であり、本発明の趣旨を逸脱しない範囲で前述の種々の代替例、修正又は変形を包含するものである。
【0065】
【発明の効果】
以上のように本発明は、貯湯式給湯機において外気温度が低下し、凍結予防運転を行うときには、その時刻によって加熱用熱源を運転して凍結を予防するか、貯湯槽の水を使用して凍結を予防するかを制御手段により選択し決定することにより、使用電力を極力抑えた安価な方法で凍結を予防することができる。
【0066】
また、凍結予防運転時に貯湯槽内の温度層を維持し、高温水を安定して供給することができる。
【図面の簡単な説明】
【図1】ヒートポンプ給湯機の回路説明図である。
【図2】制御ブロック図である。
【図3】各モード毎の最大沸上量、沸き増し開始時の最低貯湯量及び沸き増し終了時の貯湯量のテーブルを示す図である。
【図4】沸き増し運転時の貯湯量の変化を説明する図である。
【図5】フローチャートを示す図である。
【図6】第2の実施形態のヒートポンプ給湯機の回路説明図である。
【図7】第3の実施形態のヒートポンプ給湯機の回路説明図である。
【符号の説明】
1 圧縮機
2 冷媒対水熱交換器(加熱用熱交換器)
10 貯湯槽
18 往き管
23 第1の戻り管
24 流量調整弁
25 第3の戻り管
35 第2の戻り管
40 マイコン
41 CPU
42 RAM
43 ROM
50 マイコン
100 ヒートポンプユニット
200 貯湯槽ユニット
Claims (2)
- 循環ポンプにより水を貯湯槽と加熱用熱源との間を循環させると共に前記貯湯槽から出湯可能とする給湯回路とを備えた貯湯式給湯機において、外気温度を検出する温度検出器と、前記循環ポンプを運転開始させる設定温度を格納した記憶手段と、前記温度検出器の検出温度が前記記憶手段に記憶されている前記設定温度まで低下したときには前記循環ポンプの運転を開始させると共に、時刻によって前記加熱用熱源の運転により温水を循環させて凍結予防するか、前記貯湯槽内の水を循環させて凍結予防するかを決定する制御手段とを備えたことを特徴とする貯湯式給湯機。
- 前記循環ポンプを運転し、前記貯湯槽内の上部の高温水を使用して凍結予防するときには、前記貯湯槽内の上部から供給され前記配管内を循環した戻り水を前記貯湯槽の中間層に戻す戻し配管を備えたことを特徴とする請求項1に記載の貯湯式給湯機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002131248A JP3903462B2 (ja) | 2002-05-07 | 2002-05-07 | 貯湯式給湯機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002131248A JP3903462B2 (ja) | 2002-05-07 | 2002-05-07 | 貯湯式給湯機 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003322414A JP2003322414A (ja) | 2003-11-14 |
JP3903462B2 true JP3903462B2 (ja) | 2007-04-11 |
Family
ID=29543957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002131248A Expired - Fee Related JP3903462B2 (ja) | 2002-05-07 | 2002-05-07 | 貯湯式給湯機 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3903462B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4327170B2 (ja) * | 2006-04-05 | 2009-09-09 | リンナイ株式会社 | 貯湯式給湯システム |
JP4933177B2 (ja) * | 2006-07-11 | 2012-05-16 | 東芝キヤリア株式会社 | 給湯装置 |
JP2010084975A (ja) * | 2008-09-30 | 2010-04-15 | Sanyo Electric Co Ltd | 暖房装置 |
JP5210906B2 (ja) * | 2009-02-02 | 2013-06-12 | 東芝キヤリア株式会社 | 給湯装置 |
JP5620727B2 (ja) * | 2010-07-08 | 2014-11-05 | パナソニック株式会社 | 貯湯式給湯システム |
JP5996288B2 (ja) * | 2012-06-14 | 2016-09-21 | 東邦瓦斯株式会社 | コジェネレーションシステム及びコジェネレーションシステムの運転方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6023652U (ja) * | 1983-07-27 | 1985-02-18 | 三菱重工業株式会社 | 貯湯タンク付給湯装置 |
JPS61213423A (ja) * | 1985-03-19 | 1986-09-22 | Matsushita Electric Ind Co Ltd | 貯湯式給湯機 |
JP2001349608A (ja) * | 2000-06-09 | 2001-12-21 | Toshiba Electric Appliance Co Ltd | 浴槽用給湯装置 |
JP2002048399A (ja) * | 2000-07-31 | 2002-02-15 | Daikin Ind Ltd | ヒートポンプ式給湯装置 |
-
2002
- 2002-05-07 JP JP2002131248A patent/JP3903462B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003322414A (ja) | 2003-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7603872B2 (en) | Heat-pump hot water supply apparatus | |
US6837443B2 (en) | Heat pump hot-water supply system | |
WO2014002133A1 (ja) | ヒートポンプ式給湯暖房システム | |
JP4324154B2 (ja) | 貯湯式給湯装置 | |
JP4525820B2 (ja) | 給湯装置 | |
JP4389378B2 (ja) | 貯湯式ヒートポンプ給湯機 | |
JP3903462B2 (ja) | 貯湯式給湯機 | |
JP2007327728A (ja) | ヒートポンプ給湯システム | |
JP3869749B2 (ja) | 貯湯式給湯機 | |
JP3749194B2 (ja) | 貯湯式給湯機 | |
JP5192406B2 (ja) | ヒートポンプ式給湯機の沸き上げ目標温度決定方法 | |
JP3857951B2 (ja) | 風呂装置 | |
CN102016439B (zh) | 热泵热水器 | |
CN110050163B (zh) | 用于控制热泵的压缩机的方法 | |
JP5164634B2 (ja) | ヒートポンプ給湯機 | |
JP4740284B2 (ja) | ヒートポンプ給湯機 | |
JP4045266B2 (ja) | ヒートポンプ給湯機 | |
JP3897039B2 (ja) | ヒートポンプ給湯機 | |
JP2006138513A (ja) | ヒートポンプ式給湯暖房装置 | |
JP2023102870A (ja) | 貯湯式給湯機 | |
JP3858919B2 (ja) | ヒートポンプ給湯機 | |
JPH05118660A (ja) | 貯湯式給湯装置 | |
JP2004361080A (ja) | ヒートポンプ給湯機 | |
JP2005016943A (ja) | ヒートポンプ給湯機 | |
JP4185948B2 (ja) | ヒートポンプ給湯機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040802 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061212 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061228 |
|
LAPS | Cancellation because of no payment of annual fees |