JP3901270B2 - Dynamic pressure air bearing type optical deflector - Google Patents

Dynamic pressure air bearing type optical deflector Download PDF

Info

Publication number
JP3901270B2
JP3901270B2 JP2961097A JP2961097A JP3901270B2 JP 3901270 B2 JP3901270 B2 JP 3901270B2 JP 2961097 A JP2961097 A JP 2961097A JP 2961097 A JP2961097 A JP 2961097A JP 3901270 B2 JP3901270 B2 JP 3901270B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
air bearing
type optical
pressure air
bearing type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2961097A
Other languages
Japanese (ja)
Other versions
JPH10213128A (en
Inventor
俊哉 内田
明義 高橋
一男 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Electronics Corp
Original Assignee
Nidec Copal Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Electronics Corp filed Critical Nidec Copal Electronics Corp
Priority to JP2961097A priority Critical patent/JP3901270B2/en
Publication of JPH10213128A publication Critical patent/JPH10213128A/en
Application granted granted Critical
Publication of JP3901270B2 publication Critical patent/JP3901270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0402Bearings not otherwise provided for using magnetic or electric supporting means combined with other supporting means, e.g. hybrid bearings with both magnetic and fluid supporting means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【0001】
【産業上の利用分野】
本発明は光走査により印刷又は読み取りを行う各種装置に使用される動圧空気軸受型光偏向器、特に、動圧軸が専ら垂直以外の方向において使用される動圧空気軸受型光偏向器に関する。
【0002】
【従来の技術】
図12は従来の動圧空気軸受型光偏向器の縦断面図である。6は動圧スリーブで、一方の端部がフランジ8を介してケース1に片持ちに支持されており、その内周にはラジアル隙間Cをもって動圧軸7が間挿されている。この動圧スリーブ6の両端面には、アキシャル隙間S1,S2を隔てて動圧軸7に固着された2個のアキシャル軸受9,9が設けられており、これらにより動圧空気軸受部が構成されている。ケース1の一方の端部にはフランジ8が固着され、内周面にはマグネットワイヤ3が巻回されたステータコア2と、通電切換用のホール素子12等が搭載された結線用の基板13とが固着され、他方の端部にはカバー14が固着されており、これらにより固定子が構成されている。一方のアキシャル軸受9の外周にはマグネット保持部材5が固着され、このマグネット保持部材5の前記ステータコア2と対向する位置にはロータマグネット4が固着されている。また、他方のアキシャル軸受9の外周にはミラー保持部材10が固着され、このミラー保持部材10には単面鏡あるいは多面鏡による回転鏡11(以下、単に「回転鏡」という)が搭載されている。さらに、回転鏡11が搭載されていない側の動圧軸7の端部には、バランス修正部材15が固着されており、これらにより回転子が構成されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の動圧空気軸受型光偏向器においては、動圧軸を専ら垂直方向において使用する場合には特に問題とならないが、光走査系の構成上の理由等から、動圧軸を専ら垂直以外の方向において使用する場合、特に水平方向において使用する場合には、起動・停止時の動圧がまったく発生しない状態及びモータの加速・減速時の動圧が十分に発生しない状態においては、回転部材側の重量が動圧空気軸受部の重力方向下側に作用して、動圧軸7と動圧スリーブ6との接触面圧となり、特に、回転部材側の重量が大きい場合には高面圧による摺動となり、起動摩擦トルクが大きいことによる起動不良や、起動・停止の繰り返し寿命の劣化を生じるという問題を抱えていた。
【0004】
本発明は以上のような従来の欠点に鑑み、これらの欠点を除去するためになされたものであり、動圧軸を専ら垂直以外の方向において使用する場合においても、動圧軸と動圧スリーブとの間の接触面圧を低下させ、起動摩擦トルクが小さく、起動・停止の繰り返し寿命の長い動圧空気軸受型光偏向器を得ることを目的としている。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明はヘリングボーン溝その他の動圧発生部による動圧軸受を介して互いに回転可能に嵌合する動圧軸および動圧スリーブからなる動圧空気軸受部を備え、この動圧空気軸受部を介して回転鏡その他の回転部材を回転可能に支持する、動圧軸を専ら垂直以外の方向、特に水平方向において使用する動圧空気軸受型光偏向器において、回転部材側に軸方向に設けられた略リング状の強磁性材よりなる複数個のコアと、これら各々のコアと対向しこれらコアよりも上部に位置する固定部材側に設けられたラジアル方向に調整可能な調節機能を備える複数個のラジアルマグネットとからなる、回転鏡その他の回転部材側に加わる重力を緩和する方向に作用する磁気的補正手段を設けることにより動圧空気軸受型光偏光器を構成している。
【0006】
【実施の形態】
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。
【0007】
図1は発明者が考えた第1の実施の形態の動圧空気軸受型光偏向器の縦断面図であり、図2は図1のII−II断面図である。また、図3は磁気的補正手段の作用を説明する図である。
【0008】
6は動圧スリーブで、一方の端部がフランジ8を介してケース1に片持ちに支持されており、その内周にはラジアル隙間Cをもって動圧軸7が間挿されている。この動圧スリーブの両端面には、アキシャル隙間S1,S2を隔てて動圧軸7に固着された2個のアキシャル軸受9,9が設けられており、これらにより動圧空気軸受部が構成されている。ケース1の一方の端部にはフランジ8が固着され、内周面にはマグネットワイヤ3が巻回されたステータコア2と、通電切換用のホール素子12等が搭載された結線用の基板13とが固着され、他方の端部にはカバー14が固着されており、これらにより固定子が構成されている。(以下、動圧空気軸受部の動圧スリーブ6等の非回転部と、この固定子とを含めて「固定部材側」と称する。)
一方のアキシャル軸受9の外周にはマグネット保持部材5が固着され、このマグネット保持部材5の前記ステータコア2と対向する位置にはロータマグネット4が固着されている。また、他方のアキシャル軸受9の外周にはミラー保持部材10が固着され、このミラー保持部材10には回転鏡11が搭載されている。さらに、回転鏡11が搭載されていない側の動圧軸7の端部には、バランス修正部材15が固着されており、これらにより回転子が構成されている。(以下、動圧空気軸受部の動圧軸7等の回転部と、この回転子とを含めて「回転部材側」と称する。)
この固定部材であるステータコア2を、回転部材の回転中心軸であるCLに対して、下方向に所定量偏心させることにより、磁気的補正手段を構成している。
【0009】
この磁気的補正手段を図3を参照して詳細に説明すると、ロータマグネット4に作用する磁気吸引力Fは輪郭Hの分布となり、総和として重力方向Gと逆向きの磁気吸引力を生じることとなり、動圧軸7、回転鏡11、ロータマグネット4等の回転部材側の重量がこの磁気吸引力により減算されるため、起動時及び停止時の動圧軸7と動圧スリーブ6との接触面圧を低減することができ、起動・停止時の不具合をなくすことができるとともに、動圧空気軸受部の寿命を向上することができる。
【0010】
なお、動圧スリーブ6が固定部材側、動圧軸7が回転部材側の場合について説明したが、動圧スリーブ6にロータマグネット4を固着して回転部材側とし、動圧軸7をケース1に固着して固定部材側としても同様に構成できることは勿論のこと、アキシャル軸受9,9を公知の磁気スラスト軸受に変更するなどは任意の事項であり、フランジ8やマグネット保持部材5、ミラー保持部材10等の構成要素は、必要に応じて任意に使用することができることは言うまでもない。
【0011】
次に発明者が考えた異なる実施の形態について、図4ないし図8を参照して詳細に説明する。なお、発明者が考えた異なる実施の形態の説明に際し、発明者が考えた第1の実施の形態と同一要件については、同一の符号を付与することにより、詳細な説明を省略する。
【0012】
図4は発明者が考えた第2の実施の形態の動圧空気軸受型光偏向器の縦断面図、図5は図4のV−V断面図である。また、図8は磁気的補正手段の作用を説明する図である。18はリング状の強磁性材からなるコアで、マグネット保持部材5の端部に固着されている。このコア18に対向し、かつ、このコア18よりも上部に位置する固定部材側であるケース1に、厚さ方向に着磁されたラジアルマグネット16を所定の間隔を隔てて固着することにより、磁気的補正手段を構成している。
【0013】
この磁気的補正手段を図8を参照して詳細に説明すると、コア18には重力方向Gと逆向きに、ラジアルマグネット16の磁気吸引力Fが生じることとなり、このコア18を固着したマグネット保持部材5を介して、動圧軸7、回転鏡11、ロータマグネット4等の回転部材側の重量がこの磁気吸引力により減算されるため、発明者が考えた第1の実施の形態の動圧空気軸受型光偏向器と同様に、起動時及び停止時の動圧軸7と動圧スリーブ6との接触面圧を低減することができ、起動・停止時の不具合をなくすことができるとともに、動圧空気軸受部の寿命を向上することができる。
【0014】
なお、動圧スリーブ6と動圧軸7のどちらを回転部材側としても良いことや、フランジ8等の構成要素を必要に応じて任意に変更できることは、発明者が考えた第1の実施の形態と同様である。
【0015】
また、図示はしていないが、ラジアルマグネット16をリング状に形成するとともに径方向に着磁し、コア18と対向する位置の固定部材側であるケース1に、コア18の外周とラジアルマグネットの内周との間隔が、上側で狭く下側で広くなるように固着しても同様の効果を得ることができる。
【0016】
さらに、強磁性材からなるコア18に変えて、径方向に着磁されたリング状マグネットをマグネット保持部材5等の回転部材側に固着し、これと対向する面の磁極が異極となるように着磁されたラジアルマグネット(図4等の16のように厚さ方向に着磁されたもの、あるいは径方向に着磁されたリング状のもの(図示せず))を、重力方向Gと逆向きに磁気吸引力が生じるように固定部材側に固着しても、リング状マグネットと対向する面の磁極が同極となるように着磁されたラジアルマグネットを、重力方向Gと逆向きに磁気反発力が生じるように固定部材側に固着しても同様の効果を得ることができる。
【0017】
加えて、図6に示すように、ラジアルマグネット16の両側面を、強磁性材からなる2枚のヨーク17で挟持することにより、磁気吸引力あるいは磁気反発力を効率良く、コア18あるいは図示せぬリング状マグネットに作用させることができる。
【0018】
また、前記発明者が考えた第2の実施の形態の動圧空気軸受型光偏光器において、コア18を複数の珪素鋼板の積層構造としたり、強磁性材の焼結構造とすることにより、光偏光器の定格回転時において、磁気的補正手段により副次的に生じる渦電流損を低減することができる。
【0019】
次に本発明の第1の実施の形態の動圧空気軸受型光偏向器について、図9ないし図11を参照して詳細に説明する。なお、本発明の第1の実施の形態の説明に際し、発明者が考えた第1乃至第2の実施の形態と同一要件については、同一の符号を付与することにより、詳細な説明を省略する。
【0020】
図9は本発明の第1の実施の形態の動圧空気軸受型光偏向器の縦断面図であり、図10は図9のX−X断面図である。また、図11は複数の磁気的補正手段の作用を説明する図である。ミラー保持部材10及びマグネット保持部材5の各々の端部には、リング状の強磁性材からなるコア18,18がそれぞれ固着されており、発明者が考えた第2の実施の形態と同様に、各々のコア18,18に対向し、かつ、このコア18,18よりも上部に位置する固定部材側であるフランジ8及びカバー14に、厚さ方向に着磁されたラジアルマグネット16を各々所定の間隔を隔てて、長穴を介してネジ19により固着することにより、複数の磁気的補正手段を備えるとともに、ラジアル方向に調整可能な調節機構を備えることにより、動圧空気軸受型光偏向器を構成している。
【0021】
複数の磁気的補正手段を設けたこと及びラジアル方向に調整可能な調節機構を設けたことによる作用を、図11を参照して詳細に説明すると、各々のコア18,18に対向するラジアルマグネット16,16により、回転部材側には重力方向Gと逆向きの磁気吸引力F1及びF2が作用し、回転鏡11、動圧軸7等の回転部材側の重心位置COGに生じる自重Wは、前記磁気吸引力F1及びF2により減算され、かつ、各々のラジアルマグネット16,16の長穴により、ラジアルマグネット16,16とコア18,18との隙間GAPを各々調整することができ、L1×F1=L2×F2とすることによりモーメントMも除去され、起動・停止時の動圧軸7と動圧スリーブ6との間に生じる接触面圧を低減することができ、発明者が考えた第1、第2の実施の形態と同様の効果を得ることができる。 また、動圧軸7を斜めにして使用する場合においても、各々のGAPを適宜調整することにより、最適な条件を設定することができる。
【0022】
なお、本発明はこの実施の形態に限定されるものではなく、公知技術との組み合わせができることは言うまでもない。
【0023】
【発明の効果】
以上詳細に説明したように、本発明による動圧空気軸受型光偏光器の構造によれば、起動時及び停止時あるいは動圧の発生が不十分な状態に、回転部材側の自重により生じる動圧空気軸受部の接触面圧を、ステータコアの偏心あるいは別部材による磁気吸引力あるいは磁気反発力により低減することができるので、起動・停止時の起動摩擦トルクを低減し、起動不良を低減できるとともに、起動・停止の繰り返し寿命を向上することができる。
【図面の簡単な説明】
【図1】 発明者が考えた第1の実施の形態の動圧空気軸受型光偏光器の縦断面図。
【図2】 図1のII−II断面図。
【図3】 発明者が考えた第1の実施の形態の磁気的補正手段の作用を説明する図。
【図4】 発明者が考えた第2の実施の形態の動圧空気軸受型光偏光器の縦断面図。
【図5】 図4のV−V断面図。
【図6】 発明者が考えた第2の実施の形態の他の磁気的補正手段の構成例を示す、動圧空気軸受型光偏光器の縦断面図。
【図7】 発明者が考えた第2の実施の形態の他の磁気的補正手段の構成例を示す、動圧空気軸受型光偏光器の動圧軸受部周辺を示す縦断面図。
【図8】 発明者が考えた第2の実施の形態の磁気的補正手段の作用を説明する図。
【図9】 本発明の第1の実施の形態の動圧空気軸受型光偏光器の縦断面図。
【図10】 図9のX−X断面図。
【図11】 本発明の第1の実施の形態の磁気的補正手段の作用を説明する図。
【図12】 従来の動圧空気軸受型光偏光器の縦断面図。
【符号の説明】
1:ケース、 2:ステータコア、
4:ロータマグネット、 5:マグネット保持部材、
6:動圧スリーブ、 7:動圧軸、
8:フランジ、 9:アキシャル軸受、
10:ミラー保持部材、 11:回転鏡、
12:ホール素子、 13:結線用基板、
14:カバー、 15:バランス修正部材、
16:ラジアルマグネット、 17:ヨーク、
18:コア、 19:ネジ、
C:ラジアル隙間、 S1,S2:アキシャル隙間、
CL:回転中心軸、 G:重力方向、
F1,F2:磁気吸引力、 COG:重心、
GAP:隙間。
[0001]
[Industrial application fields]
The present invention relates to a hydrodynamic air bearing type optical deflector used in various apparatuses that perform printing or reading by optical scanning, and more particularly to a hydrodynamic air bearing type optical deflector in which a hydrodynamic axis is used exclusively in a direction other than vertical. .
[0002]
[Prior art]
FIG. 12 is a longitudinal sectional view of a conventional hydrodynamic air bearing type optical deflector. Reference numeral 6 denotes a dynamic pressure sleeve, one end of which is supported in a cantilever manner by the case 1 via a flange 8, and a dynamic pressure shaft 7 is inserted with a radial gap C on the inner periphery thereof. Two axial bearings 9 and 9 fixed to the dynamic pressure shaft 7 with axial gaps S1 and S2 therebetween are provided on both end faces of the dynamic pressure sleeve 6, and these constitute a dynamic pressure air bearing portion. Has been. A flange 8 is fixed to one end portion of the case 1, a stator core 2 around which an inner peripheral surface is wound with a magnet wire 3, a connection board 13 on which a hall element 12 for switching current is mounted, and the like. Is fixed, and the cover 14 is fixed to the other end portion, thereby forming a stator. A magnet holding member 5 is fixed to the outer periphery of one axial bearing 9, and a rotor magnet 4 is fixed to a position of the magnet holding member 5 facing the stator core 2. A mirror holding member 10 is fixed to the outer periphery of the other axial bearing 9, and a rotating mirror 11 (hereinafter simply referred to as “rotating mirror”) using a single-sided mirror or a polygonal mirror is mounted on the mirror holding member 10. Yes. Furthermore, a balance correction member 15 is fixed to the end of the dynamic pressure shaft 7 on the side where the rotary mirror 11 is not mounted, and a rotor is constituted by these members.
[0003]
[Problems to be solved by the invention]
However, in the conventional dynamic pressure air bearing type optical deflector, there is no particular problem when the dynamic pressure shaft is used exclusively in the vertical direction. However, the dynamic pressure shaft is exclusively used for reasons of the configuration of the optical scanning system. When used in a direction other than vertical, particularly when used in the horizontal direction, in a state where no dynamic pressure is generated at the time of start / stop and when dynamic pressure is not generated at the time of acceleration / deceleration of the motor, The weight on the rotating member side acts on the lower side in the direction of gravity of the dynamic pressure air bearing portion, resulting in a contact surface pressure between the dynamic pressure shaft 7 and the dynamic pressure sleeve 6, especially when the weight on the rotating member side is large. The sliding due to the surface pressure has a problem of starting failure due to a large starting friction torque and deterioration of repeated starting / stopping life.
[0004]
The present invention has been made in order to eliminate these drawbacks in view of the above-described conventional drawbacks. Even when the dynamic pressure shaft is used exclusively in a direction other than vertical, the dynamic pressure shaft and the dynamic pressure sleeve are provided. It is intended to obtain a dynamic pressure air bearing type optical deflector having a low starting friction torque and a long starting / stopping service life.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention comprises a hydrodynamic air bearing portion comprising a hydrodynamic shaft and a hydrodynamic sleeve that are rotatably fitted to each other via a hydrodynamic bearing by a herringbone groove or other dynamic pressure generating portion. Rotating in the dynamic pressure air bearing type optical deflector that supports the rotary mirror and other rotating members rotatably through this dynamic pressure air bearing portion, and uses the dynamic pressure shaft exclusively in directions other than vertical, especially in the horizontal direction. A plurality of cores made of a substantially ring-shaped ferromagnetic material provided in the axial direction on the member side, and a radial direction provided on the fixed member side facing the respective cores and positioned above the cores. Dynamic pressure air bearing type light polarization by providing a magnetic correction means that acts in a direction to relieve gravity applied to the rotating mirror and other rotating members, comprising a plurality of radial magnets with possible adjustment functions Constitute a.
[0006]
[Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0007]
FIG. 1 is a longitudinal sectional view of a hydrodynamic air bearing type optical deflector according to a first embodiment considered by the inventors, and FIG. 2 is a sectional view taken along the line II-II in FIG. FIG. 3 is a diagram for explaining the operation of the magnetic correction means.
[0008]
Reference numeral 6 denotes a dynamic pressure sleeve, one end of which is supported in a cantilever manner by the case 1 via a flange 8, and a dynamic pressure shaft 7 is inserted with a radial gap C on the inner periphery thereof. Two axial bearings 9 and 9 fixed to the dynamic pressure shaft 7 with axial gaps S1 and S2 are provided at both end faces of the dynamic pressure sleeve, and these constitute a dynamic pressure air bearing portion. ing. A flange 8 is fixed to one end portion of the case 1, a stator core 2 around which an inner peripheral surface is wound with a magnet wire 3, a connection board 13 on which a hall element 12 for switching current is mounted, and the like. Is fixed, and the cover 14 is fixed to the other end portion, thereby forming a stator. (Hereinafter, the non-rotating part such as the dynamic pressure sleeve 6 of the dynamic pressure air bearing part and the stator are referred to as “fixed member side”.)
A magnet holding member 5 is fixed to the outer periphery of one axial bearing 9, and a rotor magnet 4 is fixed to a position of the magnet holding member 5 facing the stator core 2. A mirror holding member 10 is fixed to the outer periphery of the other axial bearing 9, and a rotating mirror 11 is mounted on the mirror holding member 10. Furthermore, a balance correction member 15 is fixed to the end of the dynamic pressure shaft 7 on the side where the rotary mirror 11 is not mounted, and a rotor is constituted by these members. (Hereinafter, the rotating part such as the dynamic pressure shaft 7 of the dynamic pressure air bearing part and the rotor are referred to as “rotating member side”.)
The stator core 2 that is the fixed member is decentered downward by a predetermined amount with respect to CL that is the rotation center axis of the rotating member, thereby constituting magnetic correction means.
[0009]
This magnetic correction means will be described in detail with reference to FIG. 3. The magnetic attractive force F acting on the rotor magnet 4 has a distribution of the contour H, and as a sum, a magnetic attractive force opposite to the gravity direction G is generated. Since the weight on the rotating member side such as the dynamic pressure shaft 7, the rotating mirror 11, and the rotor magnet 4 is subtracted by this magnetic attraction force, the contact surface between the dynamic pressure shaft 7 and the dynamic pressure sleeve 6 at the time of start and stop The pressure can be reduced, problems at the time of starting and stopping can be eliminated, and the life of the dynamic pressure air bearing portion can be improved.
[0010]
Although the case where the dynamic pressure sleeve 6 is the fixed member side and the dynamic pressure shaft 7 is the rotating member side has been described, the rotor magnet 4 is fixed to the dynamic pressure sleeve 6 to be the rotating member side, and the dynamic pressure shaft 7 is the case 1. As a matter of course, the fixed member side can be configured in the same manner, and the axial bearings 9 and 9 can be changed to known magnetic thrust bearings. The flange 8, the magnet holding member 5, and the mirror holding are optional. It goes without saying that the components such as the member 10 can be arbitrarily used as necessary.
[0011]
Next, different embodiments considered by the inventors will be described in detail with reference to FIGS. In the description of the different embodiments considered by the inventor, the same reference numerals are given to the same requirements as those of the first embodiment considered by the inventor, and the detailed description is omitted.
[0012]
4 is a longitudinal sectional view of a hydrodynamic air bearing type optical deflector according to a second embodiment considered by the inventor, and FIG. 5 is a VV sectional view of FIG. FIG. 8 is a diagram for explaining the operation of the magnetic correction means. Reference numeral 18 denotes a core made of a ring-shaped ferromagnetic material, which is fixed to the end of the magnet holding member 5. By fixing the radial magnet 16 magnetized in the thickness direction to the case 1 facing the core 18 and located above the core 18 with a predetermined interval, Magnetic correction means is configured.
[0013]
This magnetic correction means will be described in detail with reference to FIG. 8. A magnetic attractive force F of the radial magnet 16 is generated in the core 18 in the direction opposite to the gravity direction G, and the magnet holding the core 18 is held. Since the weight on the rotating member side such as the dynamic pressure shaft 7, the rotating mirror 11, and the rotor magnet 4 is subtracted by this magnetic attractive force via the member 5, the dynamic pressure of the first embodiment considered by the inventor is considered. Similar to the air bearing type optical deflector, the contact surface pressure between the dynamic pressure shaft 7 and the dynamic pressure sleeve 6 at the time of starting and stopping can be reduced, and problems at the time of starting and stopping can be eliminated. The service life of the dynamic pressure air bearing portion can be improved.
[0014]
It should be noted that either the dynamic pressure sleeve 6 or the dynamic pressure shaft 7 may be on the rotating member side, and that the components such as the flange 8 can be arbitrarily changed as necessary in the first embodiment considered by the inventor. It is the same as the form.
[0015]
Although not shown, the radial magnet 16 is formed in a ring shape and is magnetized in the radial direction, and the outer periphery of the core 18 and the radial magnet are placed on the case 1 on the fixing member side at a position facing the core 18. The same effect can be obtained even if the gap is fixed so that the distance from the inner circumference is narrower on the upper side and wider on the lower side.
[0016]
Further, instead of the core 18 made of a ferromagnetic material, a ring-shaped magnet magnetized in the radial direction is fixed to the rotating member side such as the magnet holding member 5 so that the magnetic pole on the surface facing this is different. A radial magnet (not shown) magnetized in the thickness direction as shown in FIG. Even if it is fixed to the fixed member so that a magnetic attractive force is generated in the opposite direction, the radial magnet that is magnetized so that the magnetic pole on the surface facing the ring magnet is the same polarity is The same effect can be obtained even if it is fixed to the fixing member side so that a magnetic repulsive force is generated.
[0017]
In addition, as shown in FIG. 6, both sides of the radial magnet 16 are sandwiched between two yokes 17 made of a ferromagnetic material, so that the magnetic attraction force or the magnetic repulsion force can be efficiently obtained, and the core 18 or the illustrated figure is shown. It can act on the ring-shaped magnet.
[0018]
Further, in the dynamic pressure air bearing optical polarizer of the second embodiment considered by the inventor, the core 18 has a laminated structure of a plurality of silicon steel plates or a sintered structure of a ferromagnetic material. During the rated rotation of the optical polarizer, eddy current loss that occurs secondary by the magnetic correction means can be reduced.
[0019]
Next, the dynamic pressure air bearing type optical deflector according to the first embodiment of the present invention will be described in detail with reference to FIGS. In the description of the first embodiment of the present invention, the same reference numerals are given to the same requirements as those of the first and second embodiments considered by the inventor, and the detailed description is omitted. .
[0020]
FIG. 9 is a longitudinal sectional view of the dynamic pressure air bearing type optical deflector according to the first embodiment of the present invention, and FIG. 10 is a sectional view taken along line XX of FIG. FIG. 11 is a diagram for explaining the operation of a plurality of magnetic correction means. Cores 18 and 18 made of a ring-shaped ferromagnetic material are fixed to the end portions of the mirror holding member 10 and the magnet holding member 5, respectively, as in the second embodiment considered by the inventor. The radial magnets 16 magnetized in the thickness direction are respectively provided on the flange 8 and the cover 14 which are opposed to the cores 18 and 18 and located on the fixing member side above the cores 18 and 18. A dynamic pressure air bearing type optical deflector is provided with a plurality of magnetic correction means and an adjustment mechanism that can be adjusted in the radial direction. Is configured.
[0021]
The operation of providing a plurality of magnetic correction means and providing an adjustment mechanism that can be adjusted in the radial direction will be described in detail with reference to FIG. 11. A radial magnet 16 facing each of the cores 18 and 18 is described below. 16, magnetic attraction forces F1 and F2 opposite to the gravity direction G act on the rotating member side, and the own weight W generated at the center of gravity COG on the rotating member side such as the rotating mirror 11 and the dynamic pressure shaft 7 is The gaps GAP between the radial magnets 16 and 16 and the cores 18 and 18 can be respectively adjusted by the long holes of the radial magnets 16 and 16 and subtracted by the magnetic attractive forces F1 and F2, and L1 × F1 = By adopting L2 × F2, the moment M is also eliminated, and the contact surface pressure generated between the dynamic pressure shaft 7 and the dynamic pressure sleeve 6 at the time of starting and stopping can be reduced. The same effects as those of the first and second embodiments can be obtained. Even when the dynamic pressure shaft 7 is used obliquely, optimum conditions can be set by appropriately adjusting each GAP.
[0022]
The present invention is not limited to this embodiment, and it goes without saying that it can be combined with known techniques.
[0023]
【The invention's effect】
As described above in detail, according to the structure of the dynamic pressure air bearing type optical polarizer according to the present invention, the motion generated by the weight of the rotating member at the time of starting and stopping or in a state where the generation of dynamic pressure is insufficient. The contact surface pressure of the compressed air bearing can be reduced by the eccentricity of the stator core or the magnetic attraction force or magnetic repulsion force of another member, reducing the starting friction torque at the start / stop and reducing the starting failure. In addition, it is possible to improve the repeated life of starting and stopping.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a hydrodynamic air bearing type optical polarizer of a first embodiment considered by the inventor.
2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a diagram for explaining the operation of the magnetic correction means of the first embodiment considered by the inventor.
FIG. 4 is a longitudinal sectional view of a hydrodynamic air bearing type optical polarizer of a second embodiment considered by the inventor.
5 is a cross-sectional view taken along line VV in FIG.
FIG. 6 is a longitudinal sectional view of a dynamic pressure air bearing type optical polarizer showing a configuration example of another magnetic correction means of the second embodiment considered by the inventor.
FIG. 7 is a longitudinal sectional view showing the periphery of a dynamic pressure bearing portion of a dynamic pressure air bearing type optical polarizer, showing a configuration example of another magnetic correction unit of the second embodiment considered by the inventor.
FIG. 8 is a diagram for explaining the operation of the magnetic correction means of the second embodiment considered by the inventor.
FIG. 9 is a longitudinal sectional view of a dynamic pressure air bearing type optical polarizer according to the first embodiment of the present invention.
10 is a sectional view taken along line XX in FIG.
FIG. 11 is a diagram for explaining the operation of the magnetic correction unit according to the first embodiment of the present invention.
FIG. 12 is a longitudinal sectional view of a conventional hydrodynamic air bearing type optical polarizer.
[Explanation of symbols]
1: Case, 2: Stator core,
4: Rotor magnet, 5: Magnet holding member,
6: Dynamic pressure sleeve, 7: Dynamic pressure shaft,
8: Flange, 9: Axial bearing,
10: Mirror holding member, 11: Rotating mirror,
12: Hall element 13: Substrate for connection
14: Cover, 15: Balance correction member,
16: radial magnet, 17: yoke,
18: Core, 19: Screw,
C: radial gap, S1, S2: axial gap,
CL: rotation center axis, G: direction of gravity,
F1, F2: magnetic attractive force, COG: center of gravity,
GAP: gap.

Claims (1)

ヘリングボーン溝その他の動圧発生部による動圧軸受を介して互いに回転可能に嵌合する動圧軸および動圧スリーブからなる動圧空気軸受部を備え、この動圧空気軸受部を介して回転鏡その他の回転部材を回転可能に支持する、動圧軸を専ら垂直以外の方向、特に水平方向において使用する動圧空気軸受型光偏向器において、回転部材側に軸方向に設けられた略リング状の強磁性材よりなる複数個のコアと、これら各々のコアと対向しこれらコアよりも上部に位置する固定部材側に設けられたラジアル方向に調整可能な調節機能を備える複数個のラジアルマグネットとからなる、回転鏡その他の回転部材側に加わる重力を緩和する方向に作用する磁気的補正手段を設けたことを特徴とする動圧空気軸受型光偏光器。 A dynamic pressure air bearing portion comprising a dynamic pressure shaft and a dynamic pressure sleeve, which are rotatably fitted to each other via a dynamic pressure bearing by a herringbone groove and other dynamic pressure generating portions, is rotated via this dynamic pressure air bearing portion. In a hydrodynamic air bearing type optical deflector that supports a mirror and other rotating members in a rotatable manner, and uses a dynamic pressure shaft exclusively in a direction other than vertical, particularly in a horizontal direction, a substantially ring provided in the axial direction on the rotating member side A plurality of radial magnets having a plurality of cores made of a ferromagnetic material and an adjustment function that can be adjusted in the radial direction, provided on the fixing member side facing each of the cores and positioned above the cores A dynamic pressure air bearing type optical polarizer comprising a magnetic correction means that acts in a direction to relieve gravity applied to a rotating mirror or other rotating member side .
JP2961097A 1997-01-29 1997-01-29 Dynamic pressure air bearing type optical deflector Expired - Fee Related JP3901270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2961097A JP3901270B2 (en) 1997-01-29 1997-01-29 Dynamic pressure air bearing type optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2961097A JP3901270B2 (en) 1997-01-29 1997-01-29 Dynamic pressure air bearing type optical deflector

Publications (2)

Publication Number Publication Date
JPH10213128A JPH10213128A (en) 1998-08-11
JP3901270B2 true JP3901270B2 (en) 2007-04-04

Family

ID=12280846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2961097A Expired - Fee Related JP3901270B2 (en) 1997-01-29 1997-01-29 Dynamic pressure air bearing type optical deflector

Country Status (1)

Country Link
JP (1) JP3901270B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686262B2 (en) * 2005-06-02 2011-05-25 日本電産コパル電子株式会社 Inner wall surface inspection device
DE102021129684A1 (en) 2021-11-15 2023-05-17 Boge Kompressoren Otto Boge Gmbh & Co. Kg Magnetic relief of hydrodynamic bearings

Also Published As

Publication number Publication date
JPH10213128A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
JP3949916B2 (en) Magnetic levitation motor and magnetic bearing device
JP2826156B2 (en) Spindle motor
JP2001078389A5 (en)
GB2335242A (en) Rotor support with one or two pairs of permanent magnetic bearings and a pivot
JP3850195B2 (en) Magnetic levitation motor
JP3901270B2 (en) Dynamic pressure air bearing type optical deflector
JPH09303395A (en) Magnetic bearing device
JP2637096B2 (en) Air magnetic bearing type optical deflector
JPH11341734A (en) Disk type motor
JPH0353853B2 (en)
JP5065877B2 (en) Electric motor
JPH02157716A (en) Rotary polygon mirror
JP4039077B2 (en) Thrust magnetic bearing device
KR20020046895A (en) A magnetic bearing and a motor using the magnetic bearing
JPH0746050Y2 (en) Rotating mirror drive
JP2546997B2 (en) Non-contact support method
JPH03213715A (en) Thrust bearing
JP2000188855A (en) Coreless motor
JPS6271916A (en) Air/magnetic bearing type optical deflector
JP3858557B2 (en) Optical deflector
JPH0754842A (en) Roller bearing
JPS6081514A (en) Bearing device
JPS62164016A (en) Manufacture of rotating polygon mirror driving device
JPH08210350A (en) Dynamic pressure bearing device
JPS6223354A (en) Flattened motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees