JPH08210350A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device

Info

Publication number
JPH08210350A
JPH08210350A JP1416095A JP1416095A JPH08210350A JP H08210350 A JPH08210350 A JP H08210350A JP 1416095 A JP1416095 A JP 1416095A JP 1416095 A JP1416095 A JP 1416095A JP H08210350 A JPH08210350 A JP H08210350A
Authority
JP
Japan
Prior art keywords
dynamic pressure
bearing
pressure bearing
radial
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1416095A
Other languages
Japanese (ja)
Inventor
Katsuhiko Tanaka
克彦 田中
Hiromitsu Muraki
宏光 村木
Ikunori Sakatani
郁紀 坂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP1416095A priority Critical patent/JPH08210350A/en
Publication of JPH08210350A publication Critical patent/JPH08210350A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide a dynamic pressure bearing device capable of suppressing the increase in the dynamic torque and heat generation of a radial dynamic pressure bearing, capable of mounting an optimum motor for driving at high speed, small in dimensional restriction, and capable of coping with high speed. CONSTITUTION: In a dynamic pressure bearing device, a rotary member 13 fitted with a mirror 6 is supported by a fixed member through a radial dynamic pressure bearing R and a magnetic bearing Sm, and driven by a motor M. The thrust magnetic bearing Sm is provided inside the rotary member 13 while the radial dynamic pressure bearing R is provided outside the rotary member, and the position of the motor M is different from that of the radial dynamic pressure bearing R in the axial direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、動圧軸受装置に係り、
特に、光偏向装置のような高速回転を要求される用途に
適した動圧軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure bearing device,
In particular, the present invention relates to a dynamic pressure bearing device suitable for applications requiring high-speed rotation such as an optical deflector.

【0002】[0002]

【従来の技術】従来の動圧軸受装置としては、例えば図
3に示すようなものがある。この従来例は、ハウジング
1の下部のベース板1Aの中心部に立設された固定軸2
に回転部材である回転スリーブ3がラジアル動圧流体軸
受R及びスラスト磁気軸受Smを介して回転自在に支持
されている。
2. Description of the Related Art As a conventional dynamic pressure bearing device, for example, there is one shown in FIG. In this conventional example, a fixed shaft 2 that is erected in the center of a base plate 1A below the housing 1 is provided.
A rotary sleeve 3 as a rotary member is rotatably supported via a radial dynamic pressure fluid bearing R and a thrust magnetic bearing Sm.

【0003】その回転スリーブ3の外周面に、ミラー6
が搭載される。そして、回転スリーブ3の内周面にロー
タマグネット7が取り付けられると共に、そのロータマ
グネット7と径方向にエアギャップを介して対向するス
テータコイル8が固定軸2の外周面に取付けられて回転
スリーブ回転駆動用のモータMが構成されている。この
動圧軸受装置は、回転スリーブ3の内部に設けられたモ
ータMで回転スリーブ3を固定軸2と非接触に回転させ
ることにより、搭載したミラー6を高速回転させる。
A mirror 6 is provided on the outer peripheral surface of the rotary sleeve 3.
Will be installed. The rotor magnet 7 is attached to the inner peripheral surface of the rotary sleeve 3, and the stator coil 8 that faces the rotor magnet 7 in the radial direction with an air gap is attached to the outer peripheral surface of the fixed shaft 2 to rotate the rotary sleeve. A driving motor M is configured. In this dynamic pressure bearing device, the motor M provided inside the rotary sleeve 3 rotates the rotary sleeve 3 in a non-contact manner with the fixed shaft 2 to rotate the mounted mirror 6 at high speed.

【0004】[0004]

【発明が解決しようとする課題】光偏向装置用の動圧軸
受装置はデジタル複写機やレーザプリンタなどに用いら
れているが、それらのプリント速度の高速化に伴い、ま
すます高速回転が必要になってきている。しかしなが
ら、このようにモータMを回転スリーブ3の内部空間に
配置する従来の動圧軸受装置では、モータMの外径が大
きいのでラジアル動圧軸受Rの軸受面を構成する回転ス
リーブ外周面の直径が必然的に大きくなってしまうた
め、あまり高速回転を行うことができないという問題点
がある。
Dynamic bearing devices for optical deflectors are used in digital copiers, laser printers, etc., but as their printing speed increases, they need to rotate at even higher speeds. It has become to. However, in the conventional dynamic pressure bearing device in which the motor M is arranged in the inner space of the rotary sleeve 3 as described above, since the outer diameter of the motor M is large, the diameter of the outer peripheral surface of the rotary sleeve which constitutes the bearing surface of the radial dynamic pressure bearing R is large. Is inevitably large, so that there is a problem that it cannot rotate at a high speed.

【0005】すなわち、動圧軸受の動トルクや発熱は、
軸受すきまに存在する空気の粘性抵抗によるものである
が、その粘性抵抗は軸受面直径の3乗に比例するため、
直径の大きいものほど高速回転では大きな駆動力を必要
とし、発熱も大きくなる。軸受の発熱が大きくなると、
回転スリーブとミラーとの熱膨張差に起因して回転中に
ミラーの位置がずれ、不釣り合いによる振動が大きくな
るという性能面への影響も無視できない。
That is, the dynamic torque and heat generation of the dynamic pressure bearing are
This is due to the viscous resistance of the air present in the bearing clearance, but since the viscous resistance is proportional to the cube of the bearing surface diameter,
The larger the diameter, the greater the driving force required for high-speed rotation, and the more heat is generated. When the heat generation of the bearing increases,
The effect on the performance that the position of the mirror shifts during rotation due to the difference in thermal expansion between the rotating sleeve and the mirror and vibration due to imbalance becomes large cannot be ignored.

【0006】また一方、回転スリーブ3の内部空間にモ
ータを配置するという寸法上の制約のもとでは、高速回
転に必要な駆動力を有する最適なモータを自由に設計す
ることができないという問題点もある。そこで本発明
は、ラジアル動圧軸受の動トルクや発熱の増大を押さ
え、かつ駆動に最適なモータを自由に設計できるように
した、寸法制約の少ない高速回転対応の動圧軸受装置を
提供することを目的とする。
On the other hand, under the dimensional constraint that the motor is arranged in the inner space of the rotary sleeve 3, it is impossible to freely design an optimum motor having a driving force necessary for high speed rotation. There is also. Therefore, the present invention provides a dynamic pressure bearing device which is capable of suppressing the increase of the dynamic torque and heat generation of the radial dynamic pressure bearing and freely designing an optimum motor for driving, and which is compatible with high speed rotation with few dimensional constraints. With the goal.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明の動圧軸受装置は、ミラーを取付けた回転部
材の内部にスラスト磁気軸受、外部にラジアル動圧軸受
を設けると共に、モータとラジアル動圧軸受との軸方向
位置が異なる構成とした。
In order to achieve this object, a dynamic pressure bearing device of the present invention is provided with a thrust magnetic bearing inside a rotary member on which a mirror is mounted and a radial dynamic pressure bearing outside and a motor. And the radial dynamic pressure bearing have different axial positions.

【0008】[0008]

【作用】本発明の動圧軸受装置にあっては、ラジアル動
圧軸受の外径を小さくすることができる。そのため、軸
受すきまの空気の粘性抵抗が小さくなり、高速回転でも
ラジアル動圧軸受の動トルクや発熱が抑制される。ま
た、モータの寸法が規制されないため、モータ設計上の
寸法の自由度が大きい。
In the dynamic pressure bearing device of the present invention, the outer diameter of the radial dynamic pressure bearing can be reduced. Therefore, the viscous resistance of air in the bearing clearance is reduced, and dynamic torque and heat generation of the radial dynamic pressure bearing are suppressed even at high speed rotation. In addition, since the dimensions of the motor are not restricted, there is a large degree of freedom in designing the motor.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の一実施例の断面図であ。先ず構
成を説明すると、この動圧軸受装置のハウジング11
は、下部がベース板11Aで塞がれ、そのベース板11
Aの中心部に固定軸12が立設されている。そして、ハ
ウジング11と下部ベース板11Aと固定軸12とが固
定部材を構成している。この固定軸12に、ミラー6を
搭載する回転部材としてアルミ合金製(表面硬化処理を
施しても良い)の回転スリーブ13が、ラジアル動圧軸
受Rとスラスト磁気軸受Smとを介して回転自在に支持
されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of an embodiment of the present invention. First, the structure will be described. The housing 11 of this dynamic pressure bearing device.
The lower part is closed by the base plate 11A,
A fixed shaft 12 is erected at the center of A. The housing 11, the lower base plate 11A, and the fixed shaft 12 constitute a fixed member. A rotary sleeve 13 made of an aluminum alloy (may be subjected to a surface hardening treatment) as a rotary member for mounting the mirror 6 on the fixed shaft 12 is freely rotatable via a radial dynamic pressure bearing R and a thrust magnetic bearing Sm. It is supported.

【0010】ラジアル動圧軸受Rは、回転スリーブ13
の外周面に設けられた円筒状の一方のラジアル軸受面1
4及びこれにラジアル軸受すきまを介して対向させたハ
ウジング11の内周面の他方のラジアル軸受面15を備
え、それら両ラジアル軸受面14,15の少なくとも一
方にヘリングボーン状の動圧発生用の溝を有して構成さ
れている。
The radial dynamic pressure bearing R includes a rotary sleeve 13
One cylindrical radial bearing surface 1 provided on the outer peripheral surface of the
4 and the other radial bearing surface 15 of the inner peripheral surface of the housing 11 opposed to this via a radial bearing clearance, and at least one of the radial bearing surfaces 14 and 15 for generating a herringbone dynamic pressure is provided. It is configured to have a groove.

【0011】また、スラスト磁気軸受Smは、固定軸1
2の自由端部に固着した永久磁石からなる一方の磁石部
材18及び回転スリーブ13の内周面に圧入または焼き
ばめ等の手段で固着した他方の磁石部材19を備え、両
磁石部材18,19がラジアル軸受すきまより大きなす
きまで非接触に半径方向に対向して吸引し合う吸引形ス
ラスト磁気軸受として構成されている。両磁石部材1
8,19の磁化方向は半径方向でも軸方向でも良い。
Further, the thrust magnetic bearing Sm is composed of the fixed shaft 1
One magnet member 18 made of a permanent magnet fixed to the free end of 2 and the other magnet member 19 fixed to the inner peripheral surface of the rotary sleeve 13 by means of press-fitting or shrink-fitting. Reference numeral 19 is a suction type thrust magnetic bearing which is opposed to and radially attracts a gap larger than the radial bearing clearance in a non-contact manner. Both magnet members 1
The magnetization directions of 8 and 19 may be radial or axial.

【0012】回転スリーブ13の上部の底部には段部2
0が設けてあり、そこに回転スリーブ13とほぼ同じ熱
膨張係数を有するアルミ合金製のミラー6が取付けられ
る。モータMは、ラジアル動圧軸受Rと軸方向位置が異
なる。モータMは回転部材である回転スリーブ13の外
部であって回転スリーブ13より大径のハウジング内部
空間11S内に配設されている。すなわち、回転スリー
ブ13の下部に圧入,焼きばめ,かしめ等の手段により
回転スリーブ13より大径のヨーク22が固着され、ハ
ウジング内部空間11S内に位置させたそのヨーク22
の端部にロータマグネット23が固着され、ヨーク22
とロータマグネット23がロータ24を構成している。
ロータマグネット23の内周面は、固定軸12に根元に
固定されたステータ25の外周面とエアギャップを介し
て半径方向に対向して周対向モータを構成している。
A step portion 2 is provided on the bottom of the upper portion of the rotary sleeve 13.
0 is provided, and an aluminum alloy mirror 6 having a coefficient of thermal expansion substantially the same as that of the rotary sleeve 13 is attached thereto. The motor M differs from the radial dynamic pressure bearing R in the axial position. The motor M is disposed outside the rotary sleeve 13 as a rotary member and inside the housing internal space 11S having a diameter larger than that of the rotary sleeve 13. That is, a yoke 22 having a diameter larger than that of the rotary sleeve 13 is fixed to the lower portion of the rotary sleeve 13 by means such as press fitting, shrinkage fitting, or caulking, and the yoke 22 located in the housing internal space 11S.
The rotor magnet 23 is fixed to the end of the yoke 22
The rotor magnet 23 constitutes a rotor 24.
The inner peripheral surface of the rotor magnet 23 faces the outer peripheral surface of the stator 25 fixed at the root of the fixed shaft 12 in the radial direction via an air gap to form a circumferentially opposed motor.

【0013】次に作用を述べる。ミラー6を搭載した回
転スリーブ13は、スラスト磁気軸受Smの軸方向に幾
らかずらして対向させてある両磁石部材18,19の磁
気吸引力で、固定軸12に対して常時非接触に軸方向に
浮上支持されている。モータMのステータ25のアマチ
ュアコイルに図外の制御回路を介して所定の電流を流す
ことによりロータ24が回転し、同時に回転スリーブ1
3が回転する。すると、ラジアル動圧軸受Rの動圧発生
用の溝のポンピング作用により、対向するラジアル軸受
面14,15の間の半径方向のラジアル軸受すきまに動
圧が発生して、回転スリーブ13はハウジング11の内
周面のラジアル軸受面15に対しても完全に非接触に支
持され、短い立ち上がり時間で高速の定常回転に到達す
る。
Next, the operation will be described. The rotating sleeve 13 on which the mirror 6 is mounted is always in non-contact with the fixed shaft 12 in the axial direction by the magnetic attraction force of both magnet members 18 and 19 which are opposed to each other with some deviation in the axial direction of the thrust magnetic bearing Sm. Suspended by. The rotor 24 is rotated by passing a predetermined current through the armature coil of the stator 25 of the motor M via a control circuit (not shown), and at the same time the rotary sleeve 1 is rotated.
3 rotates. Then, due to the pumping action of the groove for generating the dynamic pressure of the radial dynamic pressure bearing R, a dynamic pressure is generated in the radial bearing clearance in the radial direction between the opposing radial bearing surfaces 14 and 15, and the rotary sleeve 13 is attached to the housing 11. It is also supported in a completely non-contact manner with respect to the radial bearing surface 15 on the inner peripheral surface of, and reaches high-speed steady rotation in a short rising time.

【0014】高速回転に達すると、従来のモータ内蔵回
転スリーブであれば外径の大きいラジアル動圧軸受Rか
らかなり発熱する。しかるに、この実施例の場合、モー
タMは回転スリーブ13の外部に配置されているので、
モータMの外径にかかわりなく回転スリーブ13の外周
面(一方のラジアル軸受面)14の直径は従来よりかな
り小さくできる。そのため、ラジアル動圧軸受Rのラジ
アル軸受すきまに存在する空気の粘性抵抗が小さくな
り、高速回転時の動圧軸受の動トルクや発熱を小さくで
きる。
When a high speed rotation is reached, the conventional rotary sleeve with a built-in motor generates a considerable amount of heat from the radial dynamic pressure bearing R having a large outer diameter. However, in the case of this embodiment, since the motor M is arranged outside the rotating sleeve 13,
Regardless of the outer diameter of the motor M, the diameter of the outer peripheral surface (one radial bearing surface) 14 of the rotary sleeve 13 can be made considerably smaller than in the conventional case. Therefore, the viscous resistance of the air existing in the radial bearing clearance of the radial dynamic pressure bearing R is reduced, and the dynamic torque and heat generation of the dynamic pressure bearing during high speed rotation can be reduced.

【0015】また、モータMを回転スリーブ13の外部
に配置したため、回転スリーブ13の寸法の制約を受け
ずに必要な駆動力のモータを設計することができる。モ
ータMのロータ24の外径を大きくしすぎると風損が大
きくなり、逆に小さすぎると所要の駆動力が得られない
ことになるが、この実施例によればモータ設計の寸法自
由度が大きいので、最適なサイズのモータMを設置でき
る利点がある。
Further, since the motor M is arranged outside the rotary sleeve 13, it is possible to design a motor having a necessary driving force without being restricted by the size of the rotary sleeve 13. If the outer diameter of the rotor 24 of the motor M is too large, the wind loss becomes large, and if it is too small, the required driving force cannot be obtained. However, according to this embodiment, the dimensional freedom of the motor design is increased. Since it is large, there is an advantage that a motor M having an optimum size can be installed.

【0016】また、高速回転時のミラー6の風損、およ
びスラスト磁気軸受Smの軸受面と空気との摩擦による
発熱が回転スリーブ13に伝わり熱膨張が生じても、こ
の実施例では回転スリーブ13とミラー6とをほぼ同じ
熱膨張係数を有するアルミ合金製としたことにより、熱
膨張差によって回転スリーブ13とミラー6との重心位
置がずれて回転に不釣り合いが生じ装置が振動する現象
が防止される。
Further, even if the wind loss of the mirror 6 at the time of high speed rotation and the heat generated by the friction between the bearing surface of the thrust magnetic bearing Sm and the air are transmitted to the rotary sleeve 13 and thermal expansion occurs, the rotary sleeve 13 is used in this embodiment. Since the mirror 6 and the mirror 6 are made of an aluminum alloy having substantially the same coefficient of thermal expansion, it is possible to prevent a phenomenon in which the center of gravity of the rotating sleeve 13 and the mirror 6 are deviated due to a difference in thermal expansion, resulting in imbalance in rotation and vibration of the device. To be done.

【0017】また、この実施例においては、回転スリー
ブ下部へのモータのロータ24の取付け及び回転スリー
ブ内周面へのスラスト磁気軸受の磁石部材19の取付け
を、いずれも焼きばめまたは圧入で行っているため、回
転スリーブ13が熱膨張してもロータ24及び磁石部材
19の重心の回転中心に対する移動が少なく、この点か
らも装置の回転のバランス保持,振動防止が図られてい
る。
In this embodiment, the rotor 24 of the motor is attached to the lower part of the rotary sleeve and the magnet member 19 of the thrust magnetic bearing is attached to the inner peripheral surface of the rotary sleeve by shrink fitting or press fitting. Therefore, even if the rotary sleeve 13 thermally expands, the center of gravity of the rotor 24 and the magnet member 19 does not move with respect to the center of rotation, and from this point also, the balance of rotation of the device is maintained and vibration is prevented.

【0018】図2に第2の実施例を示す。この実施例
は、スラスト磁気軸受Smを反発形磁気軸受とし、かつ
モータMを面対向モータとした点が第1の実施例とは異
なっている。モータMは、ベース11Aの平面上に多数
のアマチュアコイルを全体として平らな円環状に配列し
てなるステータ25に、アキシアル方向のエアギャップ
を介してドーナツ板状のロータ磁石23を平面対向に配
して構成されている。スラスト磁気軸受Smを反発形磁
気軸受にすると、第1の実施例と違って、磁石のラジア
ル吸引力の磁気アンバランスに基づくラジアル負荷を小
さくできるので、ラジアル動圧軸受Rの起動・停止時の
損傷を小さくできる利点がある。
FIG. 2 shows a second embodiment. This embodiment is different from the first embodiment in that the thrust magnetic bearing Sm is a repulsive type magnetic bearing and the motor M is a surface facing motor. The motor M includes a stator 25 having a large number of amateur coils arranged in a flat annular shape as a whole on the plane of the base 11A, and a donut plate-shaped rotor magnet 23 arranged to face the plane through an air gap in the axial direction. Is configured. If the thrust magnetic bearing Sm is a repulsive type magnetic bearing, unlike the first embodiment, the radial load based on the magnetic imbalance of the radial attractive force of the magnet can be reduced, so that when the radial dynamic pressure bearing R is started and stopped. There is an advantage that damage can be reduced.

【0019】すなわち第1の実施例の場合には、固定軸
12の一端部と回転スリーブ13の内周面とにそれぞれ
固着した円筒状の両磁石部材18,19の半径方向の取
付け誤差に伴う心ずれ及び着磁むら等によりラジアル方
向の磁気吸引力のアンバランスが生じる。一方、スラス
ト磁気軸受Smのエアギャップは、回転の起動摩擦トル
クを小さくするためラジアル流体軸受Rのラジアル軸受
すきまより大きくして常時非接触を保つようにしている
ので、ラジアル流体軸受Rの動圧がラジアル軸受すきま
を維持するのに十分な大きさにない回転スリーブ13の
起動時及び停止時においては、対向する両軸受面14,
15が接触回転する。したがって、ラジアル方向の磁石
吸引力のアンバランスによるラジアル負荷により、ラジ
アル動圧軸受Rの軸受面14,15が起動・停止時に損
傷を受けやすい。
That is, in the case of the first embodiment, there is a radial mounting error between the cylindrical magnet members 18 and 19 fixed to one end of the fixed shaft 12 and the inner peripheral surface of the rotary sleeve 13, respectively. Misalignment of the magnetic attraction force in the radial direction occurs due to misalignment and uneven magnetization. On the other hand, the air gap of the thrust magnetic bearing Sm is made larger than the radial bearing clearance of the radial fluid bearing R so as to keep the starting friction torque of rotation small so as to keep non-contact at all times. When the rotating sleeve 13 is not large enough to maintain the radial bearing clearance, the opposing bearing surfaces 14, 14
15 rotates in contact. Therefore, the bearing surfaces 14 and 15 of the radial dynamic pressure bearing R are easily damaged at the time of starting and stopping due to the radial load due to the imbalance of the magnet attraction force in the radial direction.

【0020】これに対し、この第2の実施例のスラスト
磁気軸受Smは、両磁石部材18,19を平面対向に装
着して、その磁気反発力で回転スリーブ13を固定軸1
2に対し軸方向に浮上支持している。当然のことなが
ら、両磁石部材18,19の半径方向の取付け誤差に伴
う心ずれや着磁むらにより磁気反発力のラジアル方向の
アンバランスが生じるが、上記のようなラジアル方向の
磁気吸引力によるラジアル負荷に比べて小さいのでラジ
アル動圧軸受Rの軸受面14,15の起動・停止時の損
傷は小さい。
On the other hand, in the thrust magnetic bearing Sm of the second embodiment, both magnet members 18 and 19 are mounted on the flat surface so that the rotary sleeve 13 is fixed by the magnetic repulsive force.
2 is supported by levitation in the axial direction. As a matter of course, the magnetic repulsion force is unbalanced in the radial direction due to the misalignment and the uneven magnetization due to the mounting error in the radial direction of the two magnet members 18, 19, but it is caused by the magnetic attraction force in the radial direction as described above. Since the load is smaller than the radial load, damage to the bearing surfaces 14 and 15 of the radial dynamic pressure bearing R during starting and stopping is small.

【0021】なお、ハウジング11内はハウジング11
と回転スリーブ13との間のラジアル軸受すきまを介し
て密封されているが、ベース11Aに小穴30を設け
て、ハウジングの内部空間11Sを空気ダンパとして機
能させることにより、外部振動による回転スリーブ13
のアキシアル方向の振動を減少させることができる。も
っとも、ラジアル動圧軸受Rのラジアル軸受すきまの大
きさが前記小穴30の機能を果たし得るものであれば、
改めて小穴30を設けなくても良い。
The inside of the housing 11 is the housing 11.
Although it is hermetically sealed via a radial bearing clearance between the rotary sleeve 13 and the rotary sleeve 13, a small hole 30 is provided in the base 11A so that the internal space 11S of the housing functions as an air damper.
Axial vibration can be reduced. However, if the radial bearing clearance of the radial dynamic pressure bearing R can fulfill the function of the small hole 30,
The small hole 30 may not be provided again.

【0022】なお、スラスト磁気軸受Smが第1の実施
例のもののように吸引形スラスト磁気軸受の場合は、一
対の磁石部材18,19のうちの一方を磁石に代えて強
磁性体としても良い。また、動圧軸受装置を光偏向装置
等の本体へ組み込む前にハウジング11内にゴミなどの
異物が侵入しないようにするため、ハウジング11にミ
ラー6を覆うカバーを取り付けて動圧軸受装置全体を密
閉すると、輸送時や組立時の取り扱いが容易になる。
When the thrust magnetic bearing Sm is the attraction type thrust magnetic bearing as in the case of the first embodiment, one of the pair of magnet members 18 and 19 may be replaced with a magnet to be a ferromagnetic material. . Further, in order to prevent foreign matter such as dust from entering the housing 11 before the dynamic pressure bearing device is incorporated in the main body of the optical deflector or the like, a cover for covering the mirror 6 is attached to the housing 11 so that the entire dynamic pressure bearing device is installed. The hermeticity facilitates handling during transportation and assembly.

【0023】[0023]

【発明の効果】以上説明したように、本発明の動圧軸受
装置によれば、ラジアル動圧軸受Rの大きさはモータM
に規制されないのでラジアル動圧軸受Rの外径を小さく
することができ、その結果、ラジアル軸受すきまの空気
の粘性抵抗が低減されて高速回転でもラジアル動圧軸受
の動トルクや発熱が抑制されるという効果を奏する。
As described above, according to the dynamic pressure bearing device of the present invention, the size of the radial dynamic pressure bearing R is the size of the motor M.
Since the radial dynamic pressure bearing R is not restricted by the above, the outer diameter of the radial dynamic pressure bearing R can be reduced, and as a result, the viscous resistance of the air in the radial bearing clearance is reduced and the dynamic torque and heat generation of the radial dynamic pressure bearing are suppressed even at high speed rotation. Has the effect.

【0024】また、モータの寸法がラジアル動圧軸受R
に規制されないため、モータ設計上の寸法の自由度が大
きくなり、高速回転に必要な駆動力を有する最適なモー
タを設置することができるという効果が得られる。
The size of the motor is the radial dynamic pressure bearing R.
Therefore, the degree of freedom in designing the motor is increased, and an optimum motor having a driving force required for high-speed rotation can be installed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の断面図である。FIG. 1 is a cross-sectional view of a first embodiment of the present invention.

【図2】本発明の第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】従来の軸受装置の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a conventional bearing device.

【符号の説明】[Explanation of symbols]

6 ミラー 11 ハウジング 12 固定軸 13 回転部材(回転スリーブ) M モータ R ラジアル動圧軸受 Sm スラスト磁気軸受 6 Mirror 11 Housing 12 Fixed shaft 13 Rotating member (rotating sleeve) M Motor R Radial dynamic pressure bearing Sm Thrust magnetic bearing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ミラーを取付けた回転部材がラジアル動
圧軸受とスラスト磁気軸受を介して固定部材に支持され
てモータによって回転駆動される動圧軸受装置におい
て、前記回転部材の内部には前記スラスト磁気軸受、外
部に前記ラジアル動圧軸受を設けると共に、前記モータ
とラジアル動圧軸受との軸方向位置が異なることを特徴
とする動圧軸受装置。
1. A dynamic pressure bearing device in which a rotary member having a mirror is supported by a fixed member via a radial dynamic pressure bearing and a thrust magnetic bearing and is driven to rotate by a motor, wherein the thrust member is inside the rotary member. A dynamic bearing device, characterized in that a magnetic bearing and the radial dynamic bearing are provided outside, and axial positions of the motor and the radial dynamic bearing are different from each other.
JP1416095A 1995-01-31 1995-01-31 Dynamic pressure bearing device Withdrawn JPH08210350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1416095A JPH08210350A (en) 1995-01-31 1995-01-31 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1416095A JPH08210350A (en) 1995-01-31 1995-01-31 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JPH08210350A true JPH08210350A (en) 1996-08-20

Family

ID=11853406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1416095A Withdrawn JPH08210350A (en) 1995-01-31 1995-01-31 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JPH08210350A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253996A (en) * 2011-06-03 2012-12-20 Samsung Electro-Mechanics Co Ltd Motor
US9359991B2 (en) 2009-10-29 2016-06-07 Oceana Energy Company Energy conversion systems and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9359991B2 (en) 2009-10-29 2016-06-07 Oceana Energy Company Energy conversion systems and methods
US10060473B2 (en) 2009-10-29 2018-08-28 Oceana Energy Company Energy conversion systems and methods
JP2012253996A (en) * 2011-06-03 2012-12-20 Samsung Electro-Mechanics Co Ltd Motor

Similar Documents

Publication Publication Date Title
US5493161A (en) Sealed magnetic fluid bearing for polygon mirror drive motor
US20080213104A1 (en) Motor
JP2777011B2 (en) Surface-facing motor
US20070262669A1 (en) Motor and magnetic bearing assembly thereof
JP3519457B2 (en) Spindle motor
US5751085A (en) Axial gap type electric motor with dynamic pressure air bearing
JPH0686503A (en) Motor, polygon mirror motor and disk driving motor
EP1578005A2 (en) Motor and magnetic bearingassembly thereof
JP2001165165A (en) Magnetic bearing structure
JP2004092910A (en) Fluid bearing system
US6420809B1 (en) Bearing structure for flat motor
US20100148600A1 (en) Fluid dynamic bearing system
JPH08210350A (en) Dynamic pressure bearing device
JP2007507193A (en) motor
US6933642B2 (en) Hydrodynamic gas bearing
JP3240637B2 (en) Bearing device
JP2559029Y2 (en) Motor stator structure
KR100267696B1 (en) A motor for disk driving
JP3024283B2 (en) Bearing device
JP2003329037A (en) Bearing device
JP2005192385A (en) Spindle motor
JP2567917Y2 (en) Motors using hydrodynamic bearings
JP3192279B2 (en) Deflection scanning device
JPH03213715A (en) Thrust bearing
JP2002165395A (en) Electric motor

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Effective date: 20050114

Free format text: JAPANESE INTERMEDIATE CODE: A761