JPH03213715A - Thrust bearing - Google Patents

Thrust bearing

Info

Publication number
JPH03213715A
JPH03213715A JP789890A JP789890A JPH03213715A JP H03213715 A JPH03213715 A JP H03213715A JP 789890 A JP789890 A JP 789890A JP 789890 A JP789890 A JP 789890A JP H03213715 A JPH03213715 A JP H03213715A
Authority
JP
Japan
Prior art keywords
thrust bearing
thrust
groove
bearing surface
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP789890A
Other languages
Japanese (ja)
Inventor
Takeyuki Yoshiba
岳雪 吉場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP789890A priority Critical patent/JPH03213715A/en
Publication of JPH03213715A publication Critical patent/JPH03213715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To increase rigidity against thrust load by providing at least one of a thrust receiving face and a thrust bearing face with a groove for inducing a fluid in a thrust bearing space to act as negative pressure at the time of rotation. CONSTITUTION:An axially magnetized magnet 11 is buried into the thrust bearing face 8 of a thrust bearing S, as well as an axially magnetized magnet 12 is buried into a thrust receiving face 9. Both magnets 11, 12 are disposed in such a way that their like poles are mutually opposed in the axial direction. At the time of rated rotation, a fluid in a thrust bearing space (s) flows out of the thrust bearing space (s) by the pumping action of a groove 13 so as to become negative pressure, and the thrust receiving face 9 and the thrust bearing face 8 approach mutually against the magnetic resiliency of the magnets 11, 12. Rigidity against thrust load can be thus increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、事務機器、情報機器等に使用されるスラスト
軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thrust bearing used in office equipment, information equipment, etc.

〔従来の技術〕[Conventional technology]

従来のスラスト軸受としては、例えば特開昭63−19
5414号公報に提示されたものがある。
As a conventional thrust bearing, for example, Japanese Patent Application Laid-Open No. 63-19
There is one presented in Publication No. 5414.

この従来例のスラスト軸受は、軸方向に磁化された磁石
の同磁極面を所定のギャップを介して対向させてなる磁
気反発形スラスト軸受であって、前記対向する磁極面の
何れか一方の磁極面を他方の磁極面よりも大きく形成す
ることにより、何れか一方の磁極面の外周端は他方と軸
方向に対向し、他方の磁極面の外周端は一方と軸方向に
対向しないように構成されたものである。
This conventional thrust bearing is a magnetic repulsion type thrust bearing in which the same magnetic pole faces of magnets magnetized in the axial direction are opposed to each other with a predetermined gap between them, and one of the magnetic pole faces of the opposing magnetic pole faces is By forming the surface to be larger than the other magnetic pole surface, the outer circumferential end of one of the magnetic pole surfaces is axially opposed to the other, and the outer circumferential edge of the other magnetic pole surface is configured not to oppose the other in the axial direction. It is what was done.

両磁極面をこのように対向させたため、磁気中心がずれ
た場合も磁石相互を横方向に移動させる力はほとんど作
用せず、ラジアル軸受に負荷される荷重と起動トルクと
を小さくすることができる利点がある。
By arranging both magnetic pole faces to face each other in this way, even if the magnetic centers shift, there is almost no force to move the magnets in the lateral direction, and the load and starting torque applied to the radial bearing can be reduced. There are advantages.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来の磁気反発形スラスト軸受にあっては
、磁石の反発力のみでスラスト荷重を支持していたため
、スラスト負荷に対する剛性が小さく軸方向の加振力で
振動し易いという問題点があった。
However, in the conventional magnetic repulsion type thrust bearings mentioned above, the thrust load was supported only by the repulsive force of the magnets, so there was a problem that the rigidity against the thrust load was low and it was easy to vibrate due to the excitation force in the axial direction. Ta.

そこで本発明は、上記従来の問題点に着目してなされた
ものであり、その目的とするところは、磁気反発形であ
ってもスラスト負荷に対する剛性が大きいスラスト軸受
を提供して、上記従来の問題点を解決することにある。
SUMMARY OF THE INVENTION The present invention has been made by focusing on the above-mentioned conventional problems, and its purpose is to provide a thrust bearing that has high rigidity against thrust loads even if it is a magnetic repulsion type, thereby overcoming the above-mentioned conventional problems. It is about solving problems.

〔課題を解決するための手段] 上記目的を達成するため、本発明は、軸部材に設けたス
ラスト受面が軸受部材に設けたスラスト軸受面とスラス
ト軸受すきまを介して対向するスラスト軸受において、
前記スラスト受面に設けた一方の磁石とスラスト軸受面
に設けた他方の磁石とは同極どうしが軸方向に対向し、
前記スラスト受面とスラスト軸受面との少なくとも一方
には、軸部材と軸受部材とのいずれか一方の回転時にス
ラスト軸受すきま内の流体を負圧に作用させる溝が設け
られていることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a thrust bearing in which a thrust bearing surface provided on a shaft member faces a thrust bearing surface provided on a bearing member via a thrust bearing clearance,
One magnet provided on the thrust bearing surface and the other magnet provided on the thrust bearing surface have the same polarity facing each other in the axial direction,
At least one of the thrust receiving surface and the thrust bearing surface is provided with a groove that causes the fluid in the thrust bearing clearance to exert negative pressure when either the shaft member or the bearing member rotates. do.

前記の溝はへリングボーン状の溝でもよく、またはスパ
イラル状の溝でもよい。
The groove may be a herringbone groove or a spiral groove.

〔作用] 本発明のスラスト軸受は、停止中及び起動時・停止時は
同極どうしが軸方向に対向している磁石の磁気反発力で
非接触である。
[Function] The thrust bearing of the present invention is non-contact during stopping, starting, and stopping due to the magnetic repulsion of the magnets whose like poles face each other in the axial direction.

一方、定格回転時は、溝のポンピング作用によりスラス
ト軸受すきま内の流体がスラスト軸受すきまから流出し
て負圧となり、スラスト受面とスラスト軸受面とが磁石
の磁気反発力に抗して接近する。これによりスラスト軸
受剛性が増大する。
On the other hand, at rated rotation, the fluid in the thrust bearing clearance flows out from the thrust bearing clearance due to the pumping action of the groove, creating negative pressure, and the thrust bearing surface and the thrust bearing surface approach against the magnetic repulsion of the magnet. . This increases thrust bearing rigidity.

〔実施例〕〔Example〕

以下、本発明の実施例を図を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明のスラスト軸受Sをレーザビームプリン
タ用スキャナユニットに組み込んだものである。
FIG. 1 shows a thrust bearing S of the present invention incorporated into a scanner unit for a laser beam printer.

軸部材としての固定軸1は、一方の端部が同じく軸部材
としての基台2に圧入等により固定され、その固定軸1
の外周面に円筒状のラジアル受面3が設けられている。
A fixed shaft 1 as a shaft member has one end fixed to a base 2 also as a shaft member by press fitting or the like, and the fixed shaft 1
A cylindrical radial receiving surface 3 is provided on the outer circumferential surface of.

固定軸1の他方の端部は自由端である。この固定軸1に
、軸受部材であるスリーブ5が回転可能に嵌合されてい
る。そのスリーブ5の内周面は、ヘリングボーン状の動
圧発生用の溝6を形成した円筒状のラジアル軸受面7と
され、前記固定軸1のラジアル受面3とラジアル軸受す
きまrを介して対向して動圧形のラジアル軸受を構成し
ている。
The other end of the fixed shaft 1 is a free end. A sleeve 5, which is a bearing member, is rotatably fitted onto the fixed shaft 1. The inner peripheral surface of the sleeve 5 is a cylindrical radial bearing surface 7 in which a herringbone-shaped groove 6 for generating dynamic pressure is formed. The opposing components constitute a dynamic pressure type radial bearing.

また、スリーブ5の下端面は平面状のスラスト軸受面8
とされ、このスラスト軸受面8とスラスト軸受すきまS
を介して対向する基台2の面には平面状のスラスト受面
9が設けられて、動圧形のスラスト軸受Sを構成してい
る。このスラスト軸受Sのスラスト軸受面8には、軸方
向に磁化されたドーナツ板状の磁石11が面一に埋め込
んで取付けられている。一方、スラスト受面9にも、固
定軸lの周りに同じく軸方向に磁化されたドーナツ板状
の磁石12が面一に埋め込んで取付けられている。これ
ら両磁石11.12は、同極同士が軸方向に対向するよ
うに配設されている。
The lower end surface of the sleeve 5 is a flat thrust bearing surface 8.
The thrust bearing surface 8 and the thrust bearing clearance S
A planar thrust bearing surface 9 is provided on the surface of the base 2 that faces the base 2 with the diaphragm interposed therebetween, thereby configuring a dynamic pressure type thrust bearing S. A donut plate-shaped magnet 11 magnetized in the axial direction is embedded in the thrust bearing surface 8 of the thrust bearing S so as to be flush with the magnet 11 . On the other hand, a donut plate-shaped magnet 12, which is similarly magnetized in the axial direction, is mounted flush with the thrust receiving surface 9 around the fixed axis l. Both of these magnets 11 and 12 are arranged so that the same poles face each other in the axial direction.

更に、スラスト軸受面8とスラスト受面9との少なくと
も一方、この実施例にあってはスラスト軸受面8の方に
、磁石11の面を含む全面にわたりスパイラル状の動圧
発生用の満13が設けられている。この動圧発生用の溝
13は、スリーブ5の回転時に、スラスト軸受すきまS
内の流体を半径方向外方ヘポンピングして負圧に作用さ
せる機能を果たす。
Further, at least one of the thrust bearing surface 8 and the thrust bearing surface 9, in this embodiment, the thrust bearing surface 8 is provided with a spiral-shaped groove 13 for generating dynamic pressure over the entire surface including the surface of the magnet 11. It is provided. This groove 13 for generating dynamic pressure is formed in the thrust bearing clearance S when the sleeve 5 rotates.
The function is to pump the fluid inside radially outward to create negative pressure.

なお、スリーブ5の外径面に段部15が設けてあり、ス
リーブ5に嵌合された多面鏡16がこの段部15に支持
され取付は部材17で固定されている。
A stepped portion 15 is provided on the outer diameter surface of the sleeve 5, and a polygon mirror 16 fitted into the sleeve 5 is supported by this stepped portion 15 and fixed by a member 17.

また、スリーブ5の段部15の下側に形成された他の段
部18に、支持部材19を介してスリーブ5を取り巻く
ロータマグネット20を取付け、このロータマグネット
20と半径方向に周対向するステータコイル21を基台
2の上面に配設し、ロータマグネット20とステータコ
イル21とにより周面対向形の駆動モータMを構成して
いる。
Further, a rotor magnet 20 surrounding the sleeve 5 is attached to another step 18 formed on the lower side of the step 15 of the sleeve 5 via a support member 19, and a stator 20 that surrounds the sleeve 5 is attached to the stator which is circumferentially opposed to the rotor magnet 20 in the radial direction. A coil 21 is disposed on the upper surface of the base 2, and the rotor magnet 20 and the stator coil 21 constitute a drive motor M having opposed peripheral surfaces.

次に作用を説明する。Next, the action will be explained.

上記のスキャナユニットの停止中、り極どうしが軸方向
に対向している両磁石11.12の磁気反発力が作用し
て、スラスト軸受面8とスラスト受面9とは非接触であ
り、スラスト荷重に応したスラスト軸受すきまSが保た
れている。
When the scanner unit is stopped, the magnetic repulsion of both magnets 11 and 12, whose poles are axially opposed to each other, acts, and the thrust bearing surface 8 and the thrust bearing surface 9 are out of contact, and the thrust A thrust bearing clearance S corresponding to the load is maintained.

駆動モータMの作動により起動すると、多面鏡16がス
リーブ5と共に所定の回転方向に回転し始める。この場
合、スラスト軸受面8とスラスト受面9とは非接触であ
るから、起動抵抗はなく、摩耗も生じない。
When activated by the operation of the drive motor M, the polygon mirror 16 begins to rotate together with the sleeve 5 in a predetermined rotational direction. In this case, since the thrust bearing surface 8 and the thrust bearing surface 9 are not in contact with each other, there is no starting resistance and no wear occurs.

スリーブ5が回転すると、スラスト軸受Sの動圧発生用
の溝13のポンピング作用で、スラスト軸受S内の流体
が半径方向外方へ流出する。そのためスラスト軸受Sの
軸受すきまS内は負圧になる。この負圧の大きさは、半
径方向中心側部がもっとも大きく、半径方向外方に向か
い直線的に減少していく。この負圧の吸引作用で、スラ
スト軸受面8がスラスト受面9の方へ引き寄せられて接
近する。両磁石11.12の磁気反発力はクーロンの法
則にしたがって距離の自乗に反比例するから、その接近
でスラスト軸受剛性が増大する。かくして、スラスト軸
受Sは、スリーブ5の回転速度に応じた負圧力とスラス
ト軸受すきまSの寸法に応した磁気反発力とが平衡した
非接触状態でバランスを保つ。
When the sleeve 5 rotates, the fluid in the thrust bearing S flows outward in the radial direction due to the pumping action of the groove 13 for generating dynamic pressure in the thrust bearing S. Therefore, the pressure inside the bearing clearance S of the thrust bearing S becomes negative. The magnitude of this negative pressure is greatest at the center side in the radial direction, and decreases linearly toward the outside in the radial direction. Due to the suction effect of this negative pressure, the thrust bearing surface 8 is drawn toward the thrust bearing surface 9 and approaches it. Since the magnetic repulsion of both magnets 11 and 12 is inversely proportional to the square of the distance according to Coulomb's law, the thrust bearing stiffness increases as they approach each other. Thus, the thrust bearing S maintains a balance in a non-contact state where the negative pressure corresponding to the rotational speed of the sleeve 5 and the magnetic repulsion force corresponding to the dimension of the thrust bearing clearance S are balanced.

また、スリーブ5が回転すると、ラジアル軸受における
動圧発生用の溝6のポンピング作用によってラジアル軸
受すきまr内の流体の圧力が高くなり、ラジアル軸受面
7はラジアル受面3と非接触で回転する。
Furthermore, when the sleeve 5 rotates, the pressure of the fluid in the radial bearing clearance r increases due to the pumping action of the groove 6 for generating dynamic pressure in the radial bearing, and the radial bearing surface 7 rotates without contacting the radial bearing surface 3. .

こうして、スリーブ5はスラスト方向に高い剛性を有し
て軸方向の加振力で振動することなく、一定の浮上量を
保持しつつ、固定軸Iの回りを非接触で回転する。
In this way, the sleeve 5 has high rigidity in the thrust direction and rotates around the fixed axis I in a non-contact manner while maintaining a constant flying height without vibrating due to the excitation force in the axial direction.

停止時は、駆動モータMへの通電を切ると、定常回転し
ていたスリーブ50回転速度が次第に低下し、スラスト
軸受Sの動圧発生用の溝13のポンピング作用が弱まり
、スラスト軸受すきまSの流体は次第に正圧に戻り、ス
リーブ5は磁石11゜12の磁気反発力で支持され、ス
ラスト軸受面8とスラスト受面9とが非接触のまま停止
する。よって、停止時も軸受摩耗は発生せず、半永久的
な軸受寿命が保証される。
When stopped, when the power to the drive motor M is cut off, the rotational speed of the sleeve 50, which was rotating steadily, gradually decreases, the pumping action of the groove 13 for generating dynamic pressure of the thrust bearing S weakens, and the thrust bearing clearance S decreases. The fluid gradually returns to positive pressure, and the sleeve 5 is supported by the magnetic repulsion of the magnets 11 and 12, and the thrust bearing surface 8 and the thrust bearing surface 9 are stopped without contacting each other. Therefore, bearing wear does not occur even when the machine is stopped, and a semi-permanent bearing life is guaranteed.

なお、上記実施例では、スラスト軸受Sの動圧発生用の
溝13は、スラスト軸受面8の全面に設けた場合を説明
したが、スラスト軸受面8のうちの磁石11を除いた個
所にのみ溝を設けても良く、スラスト軸受面8のうちの
磁石11の部分にのみ溝を設けても良い。
In the above embodiment, the groove 13 for generating dynamic pressure of the thrust bearing S is provided on the entire surface of the thrust bearing surface 8, but the groove 13 for generating dynamic pressure in the thrust bearing S is provided only in a portion of the thrust bearing surface 8 excluding the magnet 11. A groove may be provided, or a groove may be provided only in the portion of the thrust bearing surface 8 where the magnet 11 is located.

また、スラスト軸受面8ではなく、スラスト受面9の全
面に設けても良く、スラスト受面9のうちの磁石12を
除いた個所にのみ溝を設けても良く、スラスト受面9の
うちの磁石12の部分にのみ溝を設けても良い。
Furthermore, grooves may be provided on the entire surface of the thrust bearing surface 9 instead of the thrust bearing surface 8, or grooves may be provided only on the portions of the thrust bearing surface 9 excluding the magnets 12. The groove may be provided only in the magnet 12 portion.

また、スラスト軸受面8とスラスト受面9との両方に溝
を設けても良い。
Further, grooves may be provided in both the thrust bearing surface 8 and the thrust bearing surface 9.

また、動圧発生用の溝13のパターンについては、スパ
イラル状の溝とは限らず、ヘリングボーン状の溝でも良
い。すなわち、例えばスラスト軸受Sのスラスト軸受面
8にヘリングボーン状の溝を設けて、スリーブ5の回転
時に、スラスト軸受すきまS内の流体を半径方向外方と
、半径方向内方とにそれぞれ流出させても良い。
Further, the pattern of the grooves 13 for generating dynamic pressure is not limited to a spiral groove, and may be a herringbone groove. That is, for example, by providing a herringbone-shaped groove in the thrust bearing surface 8 of the thrust bearing S, when the sleeve 5 rotates, the fluid in the thrust bearing clearance S flows out radially outward and radially inward. It's okay.

第2図はこの発明の他の実施例であるが、軸受部材2に
設けた円筒状孔30には円筒状のラジアル軸受面7と平
面状のスラスト軸受面8とが設けられている。前記円筒
状孔30に嵌合する軸体1にはラジアル軸受面7にラジ
アル軸受すきまrを介して対向するラジアル受面3とス
ラスト軸受面8にスラスト軸受すきまSを介して対向す
るスラスト受面9とが設けられている。ラジアル受面3
には軸方向に離れた二カ所にヘリングボーン状の溝6が
それぞれ設けられ、またスラスト受面9に設けた一方の
磁石12とスラスト軸受面8に設けた他方の磁石11と
は同極とおしが軸方向に対向している。スラスト受面9
には、軸部材1の回転時にスラスト軸受すきまS内の流
体を半径方向外方へ流出してスラスト軸受すきまSを負
圧に作用させるスパイラル状の動圧発生用の溝13が設
けられている。また、軸部材lの上部には多面鏡16と
ロータマグネット20とが取付けられ、軸受部材2には
ロータマグネット20に対向するステータコイル21が
取付けられている。そして、軸部材1は軸受部材2に覆
われて密閉されている。
FIG. 2 shows another embodiment of the present invention, in which a cylindrical hole 30 provided in a bearing member 2 is provided with a cylindrical radial bearing surface 7 and a planar thrust bearing surface 8. The shaft body 1 that fits into the cylindrical hole 30 has a radial bearing surface 3 that faces the radial bearing surface 7 with a radial bearing clearance r in between, and a thrust bearing surface that faces the thrust bearing surface 8 with a thrust bearing clearance S therebetween. 9 is provided. Radial bearing surface 3
Herringbone-shaped grooves 6 are provided at two locations separated in the axial direction, and one magnet 12 provided on the thrust bearing surface 9 and the other magnet 11 provided on the thrust bearing surface 8 have the same polarity. are axially opposed. Thrust receiving surface 9
is provided with a spiral dynamic pressure generation groove 13 that causes the fluid in the thrust bearing clearance S to flow outward in the radial direction when the shaft member 1 rotates, and causes the thrust bearing clearance S to act as a negative pressure. . Further, a polygon mirror 16 and a rotor magnet 20 are attached to the upper part of the shaft member 1, and a stator coil 21 facing the rotor magnet 20 is attached to the bearing member 2. The shaft member 1 is covered with a bearing member 2 and hermetically sealed.

この実施例では、軸部材1の回転時にスラスト軸受すき
まS内の流体がラジアル軸受すきまrへ流出するが、ラ
ジアル軸受すきまrから上方への流出は抑制される。従
って、スラスト軸受すきまSからラジアル軸受すきまr
への流体の流出が抑制されるのでスラスト軸受剛性が高
い。
In this embodiment, when the shaft member 1 rotates, the fluid in the thrust bearing clearance S flows out into the radial bearing clearance r, but the fluid flowing upward from the radial bearing clearance r is suppressed. Therefore, from the thrust bearing clearance S to the radial bearing clearance r
The thrust bearing has high rigidity because the outflow of fluid to the bearing is suppressed.

なお、一方の磁石12及び他方の磁石11は永久磁石で
はなくて電磁石でも良い。
Note that one magnet 12 and the other magnet 11 may be electromagnets instead of permanent magnets.

また、スラスト軸受すきまSは0〜10μmが好ましい
。スラスト軸受面8とスラスト受面9とが接すると起動
トルクが大きく、またスラスト軸受すきまSが10μm
より大きいと動圧発生用の溝13のボンピング作用が弱
くなる。しかし、スラスト軸受すきまSは10μmを越
えても良い。
Further, the thrust bearing clearance S is preferably 0 to 10 μm. When the thrust bearing surface 8 and the thrust bearing surface 9 are in contact, the starting torque is large, and the thrust bearing clearance S is 10 μm.
If it is larger, the pumping effect of the groove 13 for generating dynamic pressure will be weakened. However, the thrust bearing clearance S may exceed 10 μm.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、スラスト軸受す
きまを介して対向するスラスト軸受のスラスト受面に設
けた一方の磁石とスラスト軸受面に設けた他方の磁石と
は、同極どうしが軸方向に対向する磁気反発形スラスト
軸受にあって、スラスト受面とスラスト軸受面との少な
くとも一方に、回転時にスラスト軸受すきま内の流体を
負圧に作用させる溝を設けた構成とした。そのため、軸
受作動時にスラスト受面とスラスト軸受面とが負圧で吸
引されて接近するので磁気反発力が増大し、その結果ス
ラスト負荷に対する剛性が増すという効果が得られる。
As explained above, according to the present invention, one magnet provided on the thrust bearing surface of the thrust bearing and the other magnet provided on the thrust bearing surface that face each other through the thrust bearing clearance have the same polarity. The magnetic repulsion type thrust bearing facing in the direction has a structure in which at least one of the thrust receiving surface and the thrust bearing surface is provided with a groove that causes the fluid in the thrust bearing clearance to act on negative pressure during rotation. Therefore, when the bearing is operated, the thrust bearing surface and the thrust bearing surface are attracted to each other by negative pressure and approach each other, so that the magnetic repulsion increases, and as a result, the effect of increasing the rigidity against the thrust load is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断面図、本発明の他の実
施例の縦断面図である。 図中、1.2は軸部材、5は軸受部材、8はスラスト軸
受面、9はスラスト受面、Sはスラスト軸受、Sはスラ
スト軸受すきま、11.12は磁石、13はスラスト軸
受すきま内の流体を負圧にする溝。 第2図は
FIG. 1 is a longitudinal cross-sectional view of one embodiment of the present invention, and a longitudinal cross-sectional view of another embodiment of the present invention. In the figure, 1.2 is the shaft member, 5 is the bearing member, 8 is the thrust bearing surface, 9 is the thrust bearing surface, S is the thrust bearing, S is the thrust bearing clearance, 11.12 is the magnet, and 13 is the inside of the thrust bearing clearance. A groove that creates a negative pressure on the fluid. Figure 2 is

Claims (3)

【特許請求の範囲】[Claims] (1)軸部材に設けたスラスト受面が軸受部材に設けた
スラスト軸受面とスラスト軸受すきまを介して対向する
スラスト軸受において、 前記スラスト受面に設けた一方の磁石とスラスト軸受面
に設けた他方の磁石とは同極どうしが軸方向に対向し、
前記スラスト受面とスラスト軸受面との少なくとも一方
には、軸部材と軸受部材とのいずれか一方の回転時にス
ラスト軸受すきま内の流体を負圧に作用させる溝が設け
られていることを特徴とするスラスト軸受。
(1) In a thrust bearing in which a thrust bearing surface provided on the shaft member faces a thrust bearing surface provided on the bearing member with a thrust bearing clearance, one magnet provided on the thrust bearing surface and one magnet provided on the thrust bearing surface. The other magnet has the same polarity facing each other in the axial direction,
At least one of the thrust receiving surface and the thrust bearing surface is provided with a groove that causes the fluid in the thrust bearing clearance to exert negative pressure when either the shaft member or the bearing member rotates. thrust bearing.
(2)溝がヘリングボーン状の溝である請求項(1)記
載のスラスト軸受。
(2) The thrust bearing according to claim (1), wherein the groove is a herringbone-shaped groove.
(3)溝がスパイラル状の溝である請求項(1)記載の
スラスト軸受。
(3) The thrust bearing according to claim (1), wherein the groove is a spiral groove.
JP789890A 1990-01-17 1990-01-17 Thrust bearing Pending JPH03213715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP789890A JPH03213715A (en) 1990-01-17 1990-01-17 Thrust bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP789890A JPH03213715A (en) 1990-01-17 1990-01-17 Thrust bearing

Publications (1)

Publication Number Publication Date
JPH03213715A true JPH03213715A (en) 1991-09-19

Family

ID=11678402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP789890A Pending JPH03213715A (en) 1990-01-17 1990-01-17 Thrust bearing

Country Status (1)

Country Link
JP (1) JPH03213715A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289067A (en) * 1992-01-31 1994-02-22 Nsk Ltd. Bearing device
JPH06148552A (en) * 1992-11-02 1994-05-27 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing motor
JP2016140142A (en) * 2015-01-26 2016-08-04 学校法人早稲田大学 Power generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289067A (en) * 1992-01-31 1994-02-22 Nsk Ltd. Bearing device
JPH06148552A (en) * 1992-11-02 1994-05-27 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing motor
JP2016140142A (en) * 2015-01-26 2016-08-04 学校法人早稲田大学 Power generator

Similar Documents

Publication Publication Date Title
JP3652875B2 (en) motor
US6417590B1 (en) Spindle motor
JP2001286116A (en) Noncontact drive motor
US6498411B2 (en) Bearing apparatus
JP2000201459A (en) Motor for driving recording disk and device therefor provided with this motor
JP2004092910A (en) Fluid bearing system
US6552455B1 (en) Hydrodynamic bearing and spindle motor
JPH03213715A (en) Thrust bearing
JP2004190855A (en) Spindle motor
JPH06311698A (en) Magnetically levitated gas dynamic-pressure bearing for axial gap-type motor
JP3184795B2 (en) Spindle motor and rotating device using the spindle motor as a driving source of the rotating body
JP2005192387A (en) Bearing-integrated spindle motor
JP2637096B2 (en) Air magnetic bearing type optical deflector
JPH1182508A (en) Spindle device, spindle motor, and rotary device adopting spindle motor
KR100570539B1 (en) Spindle motor with magnetic thrust bearing and hydrodynamic journal bearing
JPS61294218A (en) Fluid bearing device
JPH0731094A (en) Motor
KR100207987B1 (en) Hemispherical bearing system using magnetic material
JPH0742214Y2 (en) Fluid bearing motor
KR100233010B1 (en) Bearing system using magnetic material
JP3497366B2 (en) Laser scanning motor
JP2536471Y2 (en) motor
JP3643047B2 (en) Ceramic hydrodynamic bearing, motor with bearing, hard disk drive, and polygon scanner
JPH0416014Y2 (en)
JP3858557B2 (en) Optical deflector