JP3901025B2 - Power storage system - Google Patents

Power storage system Download PDF

Info

Publication number
JP3901025B2
JP3901025B2 JP2002170794A JP2002170794A JP3901025B2 JP 3901025 B2 JP3901025 B2 JP 3901025B2 JP 2002170794 A JP2002170794 A JP 2002170794A JP 2002170794 A JP2002170794 A JP 2002170794A JP 3901025 B2 JP3901025 B2 JP 3901025B2
Authority
JP
Japan
Prior art keywords
power
storage battery
house
current
conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002170794A
Other languages
Japanese (ja)
Other versions
JP2003143763A (en
Inventor
誠司 原田
利夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2002170794A priority Critical patent/JP3901025B2/en
Publication of JP2003143763A publication Critical patent/JP2003143763A/en
Application granted granted Critical
Publication of JP3901025B2 publication Critical patent/JP3901025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、蓄電池を電力貯蔵手段とする電力貯蔵システムに係り、特に集合住宅用の電力貯蔵システムに関する。
【0002】
【従来の技術】
従来の電力貯蔵システムとして、電力会社等においては、都市近郊に分散配置が可能なNAS電池(ナトリウム・硫黄電池)を電力貯蔵手段とし、夜間に電力を貯蔵し、昼間のピーク時に電力を放出する夜間電力貯蔵システムの実証試験を行っている。
【0003】
また、他の電力貯蔵システムとして、サイクルユース用制御弁式鉛蓄電池などを用いた事業所向けシステムの開発が進んでいる。
【0004】
これら電力貯蔵システムは、図4に示すように、いずれも1組の蓄電池BATTと1セットのパワーコンディショナ(PCS)で構成され、電力会社の配電系統に連系した運用を基本としている。また、商用電源の停電に備えて、自立運転機能を持たせた構成とする場合もある。
【0005】
【発明が解決しようとする課題】
前記のような系統連系を行う電力貯蔵システムは、集合住宅や個人住宅に適用する場合、以下の問題があった。
【0006】
(1)システムに採用する蓄電池としては、価格と保守性の観点から制御弁式鉛蓄電池のサイクルユース用が妥当である。
【0007】
しかしながら、制御弁式の蓄電池の場合、完全密閉ではないため、火災予防条令等の規制を受けること、および寿命期の蓄電池の交換を考慮すると、仮に住宅の床下等に設置スペースが確保できたとしても、各家庭で蓄電池を設置するのは現状では困難になるものであった。
【0008】
(2)電力会社との受電契約を各家庭毎ではなく、集合住宅の単位で一括して契約し、前記の事業所向けの電力貯蔵システムを適用する方法が考えられる。
【0009】
この場合、事業所向けの電気料金が適用されることになり、一般家庭向けよりも割高になってしまう。また、借室契約とならないため、受変電設備を自前で用意し、電気主任技術者を選任しなければならない。さらに、各家庭からの電気料金徴収も複雑になる。
【0010】
(3)各家庭毎または集合住宅単位で受電契約をするにおいて、夜間には蓄電池の充電と並行して、エアコンや炊飯器など比較的高い電力負荷が発生する。したがって、蓄電池の充電には、契約電力から夜間に予測される最大負荷電力を差し引いた電力範囲内になるようパワーコンディショナの最大充電電流を設定することになる。この場合、最大充電電流を高めに設定すると、夜間負荷電力によっては契約電力のオーバを起こし、最悪の場合には受電ブレーカの過電流トリップを引き起こす。逆に、最大充電電流を低く設定すると、蓄電池の充電不足を起こす。これらの不都合を回避するために、契約電力を上げるのでは夜間電力貯蔵システムのメリットが半減してしまう。
【0011】
本発明の目的は、集合住宅に適用しながら、上記の課題を解決した電力貯蔵システムを提供することにある。
【0012】
【課題を解決するための手段】
本発明は、電力貯蔵用の蓄電池設備を全住宅共用として1組設置し、各住宅にはそれぞれパワーコンディショナを設置し、これらの間を直流電力で授受可能にし、夜間には各住宅のパワーコンディショナから蓄電池を直流充電し、昼間には蓄電池からパワーコンディショナを通して各住宅の負荷に給電するようにしたもので、以下の構成を特徴とする。
【0013】
(1)電力会社の配電系統と連系し、蓄電池設備を電力貯蔵手段とし、複数の住宅の負荷に電力を供給する電力貯蔵システムであって、
前記蓄電池設備は全住宅共用として1組設置し、
各住宅は、それぞれ前記蓄電池設備との間で電力授受を可能にしたパワーコンディショナを設置し、
夜間には各住宅の前記各パワーコンディショナから前記蓄電池設備の蓄電池を直流充電し、昼間には該蓄電池から前記各パワーコンディショナを通して各住宅の負荷に給電する制御手段を備えたことを特徴とする。
【0014】
(2)前記制御手段は、夜間での前記蓄電池の充電量に見合った電力量を、昼間での該蓄電池から各住宅の負荷に給電した時点で、前記パワーコンディショナの運転を停止させることを特徴とする。
【0015】
(3)前記制御手段は、前記蓄電池を充電するとき、各住宅毎の受電電流が規定値以上にならないよう、前記パワーコンディショナから蓄電池への充電量を制限することを特徴とする。
【0016】
(4)前記制御手段は、前記蓄電池から放電するとき、前記住宅の負荷が一定以上にある場合のみ行うことを特徴とする。
【0017】
(5)前記蓄電池に過剰な充電電流や放電電流が発生したとき、前記パワーコンディショナの入出力を絞ることを特徴とする。
【0018】
(6)各住宅の共用電源と前記蓄電池との間に、該蓄電池の補充電や完全充電を可能とする各住宅共用のパワーコンディショナを設置したことを特徴とする。
【0019】
(7)前記各住宅共用のパワーコンディショナは、自立運転機能を持たせること、またはエレベータやポンプの共用電力機器と蓄電池との間の電力授受機能を持たせることを特徴とする。
【0020】
(8)前記パワーコンディショナは、負荷電流検出器と受電ブレーカ位置の全負荷電流検出器とによる両電流検出値を基に、契約電力範囲内で前記蓄電池への充電電流を制御、および電力系統への逆潮流を起こさない範囲内で蓄電池からの放電電流を制御する電流制御回路を設けたことを特徴とする。
【0021】
【発明の実施の形態】
図1は、本発明の実施形態1を示す集合住宅用電力貯蔵システムの構成図である。
【0022】
蓄電池1は、集合住宅全体で1組設置し、監視盤2を介して各住宅3A〜3Nとの間の電力授受を可能にする。各住宅3A〜3Nにはそれぞれパワーコンディショナ(PCS)4を設置し、パワーコンディショナ4と蓄電池1とは直流電力で授受する。原則として、各住宅は、夜間には受電電力をパワーコンディショナ4で直流電力に変換して蓄電池1を充電し、昼間には夜間の充電量に見合った電力量を蓄電池1から放出させてパワーコンディショナ4で交流電力に変換し、負荷5に供給する。
【0023】
また、充電量に見合った電力量を使用した時点で各住宅のパワーコンディショナ4は停止し、待機することで、蓄電池1が過放電になるのを防止する。また、パワーコンディショナ4は、夜間に蓄電池1を充電するときには、各住宅毎の受電電流を監視し、規定値(契約電気量)以上の電流が流れないよう、充電量を制限する。また、パワーコンディショナ4は、昼間の運転には、一定以上の負荷がある場合のみ行い、その高効率運転を図り、また逆潮流が発生するのを防止する。
【0024】
電力会社の配電線から各住宅3A〜3Nへの引き込みは、借室6に設置する1組の変電設備を通した受電母線7からなされる。受電母線7はエレベータ・ポンプ等の共用電源にも接続される。
【0025】
蓄電池1とパワーコンディショナ4との間の電力授受の制御は、遮断器と電流・電圧計測器および電力制御装置を内蔵する監視盤2で行い、その電流・電圧計測器により各住宅別の授受電流検出と総計電流検出および電圧検出し、これら検出値を基に制御装置2Aによる遮断器制御でなされる。また、監視盤2では、各住宅の充放電電力の監視から、各住宅の電力使用量に合わせた電力料金を徴収する等のデータ管理をすると共に、非常時には遮断器の制御によって各住宅への送電を停止する。
【0026】
制御装置2Aの制御電源2Bは集合住宅の共用設備になるエレベータ・ポンプ等の共用電源から交流電力で取り込む。
【0027】
以上のように、本実施形態では、蓄電池1と監視盤2は全住宅共用として1組設置し、各住宅3A〜3Nにはそれぞれパワーコンディショナ4を設置し、これらの間を直流電力で授受可能にし、夜間には各住宅3A〜3Nのパワーコンディショナ4から蓄電池1を直流充電し、昼間には蓄電池1からパワーコンディショナ4を通して各住宅3A〜3Nの負荷5に給電する。
【0028】
これにより、蓄電池1の一括した保守・管理が容易となる。また、住宅全体で1組の蓄電池1を電力貯蔵手段として使用することにより、蓄電池1からみて、負荷が平準化され、各住宅に個別に設置するよりも有効に活用できる。
【0029】
また、集合住宅の設計時点からシステムの導入を計画すれば、蓄電池設備や変電設備の設置スペースの確保は、地下や借室の建物を少し大きくして仕切る等の用法により容易となるし、排気装置も1つ設ければ済む。
【0030】
また、監視盤2による一括監視と制御ができ、電気料金契約も従来の一般住宅と同様の形態をとることができる。
【0031】
図2は、本発明の実施形態2を示す集合住宅用電力貯蔵システム構成図である。同図が図1と異なる部分は、監視盤2の制御装置2Aと各住宅のパワーコンディショナ4との間を制御信号線9で結合した点にある。
【0032】
この制御信号線9の追加により、蓄電池1に対してダメージを与えるような過剰な充電電流や放電電流が発生した場合に、図1の場合には監視盤2の遮断器を開放するしか対策が取れないのに対して、制御信号線9を通したパワーコンディショナ4の入出力を絞る制御、例えば現在値の90%出力や80%出力に絞り、蓄電池1を健全に保つことが可能となる。
【0033】
図3は、本発明の実施形態3を示す集合住宅用電力貯蔵システム構成図である。同図が図2と異なる部分は、共用電源側に各住宅共用のパワーコンディショナ10を設けた点にある。
【0034】
パワーコンディショナ10は、パワーコンディショナ4と同様に蓄電池1の充放電を可能にするが、蓄電池1の補充電や完全充電など、通常のパワーコンディショナ4では難しい充電を可能とすると共に、自立運転機能を持たせておくことで、防災時の最低限の電源確保を可能とする。また、エレベータやポンプに対しても、夜間電力貯蔵のメリットを持たせることができるし、特にエレベータでは回生電力を蓄電池1の充電電力として有効利用することもできる。
【0035】
図5は、本発明の実施形態4を示す各住宅用パワーコンディショナ4の構成図である。パワーコンディショナは、本体4Aと電流制御回路4Bで構成される。本体4Aは、前記までの実施形態と同様に、夜間に蓄電池1に充電電流を供給するための交流−直流電力変換と、昼間に蓄電池1から負荷5に交流電流を供給するための直流−交流電力変換とを切り替え可能な双方向電力変換機能をもつ回路構成にされる。
【0036】
電流制御回路4Bは、電流検出手段として、受電ブレーカ(MCCB)11を通した全負荷電流を検出する電流検出器(変流器など)12と、負荷5への負荷電流のみを検出する電流検出器(変流器など)13による電流検出値を基に、本体4Aと蓄電池1との間の充放電電流を制御または制限する。
【0037】
前記のように、制御装置2Aは、パワーコンディショナ4と蓄電池1との間の直流入出力電力を制御または制限する。これに対して、電流制御回路4Bは、パワーコンディショナ4の交流入出力電流を制御または制限する。
【0038】
この交流入出力電流制御機能として、電流検出器12と13の検出電流から契約電力がオーバーにならないよう蓄電池1への充電電流を制御、および電力系統への逆潮流(逆電力)発生が起きない範囲内で蓄電池1からの放電電流を制御する。
【0039】
具体的には、検出器13による負荷電流ILの検出値が規定値よりも増えた場合、検出器12による全負荷電流検出値の監視を基に、契約電力に対して裕度のある分だけパワーコンディショナ本体4Aの入力電流ICを絞って蓄電池1への充電制御を行う。また負荷電流ILが減少し、裕度が大きくなれば、検出器12による全負荷電流検出値の監視を基に、入力電流ICを規定値に戻して蓄電池1への充電制御を行う。
【0040】
また、昼間、蓄電池1から負荷5への放電中に、検出器12による電流検出値から、電力系統への逆潮流(停電等による)を検出したとき、パワーコンディショナ本体4Aからの放電を制限し、電力系統の保護を行う。
【0041】
したがって、本実施形態では、夜間に負荷が大きく変動する場合にも、契約電力を維持しながら、また受電ブレーカをトリップさせることなく、蓄電池の充電を行うことができる。すなわち、契約電力内で、夜間電力の最大有効利用が可能となる。また、電力系統への逆電力発生を防止でき、夜間電力の最大有効利用と系統保護が可能となる。
【0042】
また、受電ブレーカ位置に電流検出器12を設けて全負荷電流を直接に検出するため、パワーコンディショナ本体4Aへの入出力電流を検出するのに比べて、契約電力を基にした受電電流検出や逆電力検出が確実、容易になる。
【0043】
【発明の効果】
以上のとおり、本発明によれば、電力貯蔵用の蓄電池設備を全住宅共用として1組設置し、各住宅にはそれぞれパワーコンディショナを設置し、これらの間を直流電力で授受可能にし、夜間には各住宅のパワーコンディショナから蓄電池を直流充電し、昼間には蓄電池からパワーコンディショナを通して各住宅の負荷に給電するようにしたため、以下の効果がある。
【0044】
(1)蓄電池の一括した保守・管理が容易となる。
【0045】
(2)蓄電池からみて負荷が平準化され、各住宅に個別に設置するよりも有効に活用できる。
【0046】
(3)集合住宅の設計時点からシステムの導入を計画すれば、蓄電池設備や変電設備の設置スペースの確保が容易となるし、排気装置も1つで済む。
【0047】
(4)監視盤による一括監視と制御ができ、電気料金契約も従来の一般住宅と同様の形態をとることができる。
【0048】
(5)監視盤と各パワーコンディショナとの間に制御信号線を設けることで、蓄電池に過剰な充電電流や放電電流が発生した場合の対応が適切に行える。
【0049】
(6)各住宅共用のパワーコンディショナを設けることで、蓄電池の補充電や完全充電などを可能とする。また、自立運転機能を持たせておくことで、防災時の最低限の電源確保を可能とする。また、エレベータやポンプに対しても、夜間電力貯蔵のメリットを持たせることができる。
【0050】
(7)契約電力範囲内で蓄電池への充電電流を制御、および電力系統への逆潮流を起こさない範囲内で蓄電池からの放電電流を制御することで、夜間電力を最大有効利用しながら系統保護ができる。
【図面の簡単な説明】
【図1】本発明の実施形態1を示すシステム構成図。
【図2】本発明の実施形態2を示すシステム構成図。
【図3】本発明の実施形態3を示すシステム構成図。
【図4】従来の電力貯蔵システムの基本構成図。
【図5】本発明の実施形態4を示すパワーコンディショナの構成図。
【符号の説明】
1…蓄電池
2…監視盤
3A〜3N…住宅
4…パワーコンディショナ
4A…パワーコンディショナ本体
4B…電流制御回路
5…負荷
6…借室
9…制御信号線
10…共用のパワーコンディショナ
11…受電ブレーカ
12、13…電流検出器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power storage system using a storage battery as power storage means, and more particularly to a power storage system for an apartment house.
[0002]
[Prior art]
As a conventional power storage system, power companies, etc. use NAS batteries (sodium / sulfur batteries) that can be distributed in the suburbs of the city as power storage means, store power at night, and release power during peak hours in the daytime. We are conducting a demonstration test of a nighttime power storage system.
[0003]
In addition, as another power storage system, development of a system for business establishments using a control valve type lead storage battery for cycle use is in progress.
[0004]
As shown in FIG. 4, each of these power storage systems is composed of one set of storage battery BATT and one set of power conditioner (PCS), and is based on an operation linked to a power distribution system of an electric power company. In some cases, a self-sustaining operation function is provided in preparation for a commercial power failure.
[0005]
[Problems to be solved by the invention]
The power storage system that performs grid connection as described above has the following problems when applied to an apartment house or a private house.
[0006]
(1) As a storage battery employed in the system, a control valve type lead storage battery for cycle use is appropriate from the viewpoint of price and maintainability.
[0007]
However, in the case of a storage battery of a control valve type, it is not completely sealed, so if you take into account regulations such as fire prevention ordinances and replacement of the storage battery at the end of its life, the installation space could be secured under the floor of the house, etc. However, it was difficult to install a storage battery in each home.
[0008]
(2) A method is conceivable in which a power receiving contract with an electric power company is contracted in a collective housing unit, not for each home, and the power storage system for the office is applied.
[0009]
In this case, the electricity charge for business establishments will be applied, and it will be more expensive than for ordinary households. In addition, since there is no lease contract, it is necessary to prepare the substation equipment by yourself and select the chief electrical engineer. Furthermore, the collection of electricity charges from each household is also complicated.
[0010]
(3) When a power receiving contract is made for each home or apartment unit, a relatively high power load such as an air conditioner or rice cooker is generated in parallel with charging of the storage battery at night. Therefore, for charging the storage battery, the maximum charging current of the power conditioner is set to be within a power range obtained by subtracting the maximum load power predicted at night from the contract power. In this case, if the maximum charging current is set high, the contract power may be exceeded depending on the night load power, and in the worst case, an overcurrent trip of the power receiving breaker is caused. Conversely, if the maximum charging current is set low, the storage battery will be insufficiently charged. In order to avoid these inconveniences, if the contract power is increased, the merit of the nighttime power storage system is halved.
[0011]
The objective of this invention is providing the electric power storage system which solved said subject, applying to an apartment house.
[0012]
[Means for Solving the Problems]
In the present invention, one set of storage battery equipment for power storage is installed for use in all houses, and each house is provided with a power conditioner, which can be exchanged with DC power. The storage battery is DC-charged from the conditioner, and in the daytime, power is supplied from the storage battery to the load of each house through the power conditioner.
[0013]
(1) A power storage system that is connected to a power distribution system of a power company, uses storage battery facilities as power storage means, and supplies power to a plurality of residential loads,
One set of the storage battery facilities is installed for all houses,
Each house is equipped with a power conditioner that enables power transfer to and from the storage battery equipment.
It is characterized by comprising control means for direct charging the storage battery of the storage battery facility from each power conditioner of each house at night and supplying power to the load of each house from the storage battery through each power conditioner during the day. To do.
[0014]
(2) The control means stops the operation of the power conditioner at the time when the amount of electric power corresponding to the amount of charge of the storage battery at night is supplied from the storage battery to the load of each house. Features.
[0015]
(3) When charging the storage battery, the control means limits the amount of charge from the power conditioner to the storage battery so that the received current for each house does not exceed a specified value.
[0016]
(4) The control means is characterized in that when discharging from the storage battery, it is performed only when the load of the house is above a certain level.
[0017]
(5) The input / output of the power conditioner is narrowed down when an excessive charging current or discharging current is generated in the storage battery.
[0018]
(6) It is characterized in that a power conditioner for each house is installed between the common power source for each house and the storage battery, which enables supplemental charging or complete charging of the storage battery.
[0019]
(7) The residential-use power conditioner has a self-sustaining operation function or a power transfer function between a shared power device of an elevator or a pump and a storage battery.
[0020]
(8) The power conditioner controls a charging current to the storage battery within a contract power range based on both current detection values by the load current detector and the full load current detector at the power receiving breaker position, and a power system A current control circuit that controls the discharge current from the storage battery within a range that does not cause reverse power flow to the battery is provided.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a configuration diagram of a collective housing power storage system showing Embodiment 1 of the present invention.
[0022]
One set of storage battery 1 is installed in the entire apartment house, and power can be exchanged with each of the houses 3 </ b> A to 3 </ b> N via the monitoring panel 2. A power conditioner (PCS) 4 is installed in each of the houses 3A to 3N, and the power conditioner 4 and the storage battery 1 exchange DC power. As a general rule, each house uses the power conditioner 4 to convert the received power to DC power to charge the storage battery 1, and in the daytime, it discharges from the storage battery 1 the amount of power that corresponds to the nighttime charge. It is converted into AC power by the conditioner 4 and supplied to the load 5.
[0023]
Moreover, the power conditioner 4 of each house stops at the time of using the electric energy suitable for the amount of charge, and prevents the storage battery 1 from being overdischarged by waiting. In addition, when the storage battery 1 is charged at night, the power conditioner 4 monitors the power reception current for each house, and limits the amount of charge so that a current exceeding a specified value (contracted electricity amount) does not flow. In addition, the power conditioner 4 performs the daytime operation only when there is a load of a certain level or more, and performs the high-efficiency operation and prevents the reverse power flow from occurring.
[0024]
Drawing from the distribution lines of the electric power company to each of the houses 3 </ b> A to 3 </ b> N is performed from a power receiving bus 7 that passes through a set of substation equipment installed in the rental room 6. The power receiving bus 7 is also connected to a common power source such as an elevator / pump.
[0025]
Control of power transfer between the storage battery 1 and the power conditioner 4 is performed by a monitoring panel 2 containing a circuit breaker, a current / voltage measuring device and a power control device, and the current / voltage measuring device is used for each house. Current detection, total current detection, and voltage detection are performed, and circuit breaker control is performed by the control device 2A based on these detection values. In addition, the monitoring panel 2 performs data management such as monitoring the charging / discharging power of each house, collecting a power charge according to the power consumption of each house, and controlling the circuit breaker in an emergency. Stop power transmission.
[0026]
The control power source 2B of the control device 2A is taken in by AC power from a common power source such as an elevator / pump that becomes a common facility of an apartment house.
[0027]
As described above, in this embodiment, one set of the storage battery 1 and the monitoring panel 2 is installed for use in all houses, and the power conditioner 4 is installed in each of the houses 3A to 3N. The storage battery 1 is DC-charged from the power conditioner 4 of each house 3A to 3N at night, and the load 5 of each house 3A to 3N is supplied from the storage battery 1 through the power conditioner 4 during the daytime.
[0028]
Thereby, the maintenance and management of the storage battery 1 are facilitated. Moreover, by using one set of storage battery 1 as an electric power storage means in the whole house, the load is leveled from the viewpoint of the storage battery 1 and can be used more effectively than installing in each house individually.
[0029]
In addition, if the system is planned to be introduced from the design stage of the housing complex, the installation space for storage battery facilities and substation facilities can be secured easily by using a method such as partitioning the building in the basement or rented room. Only one device is required.
[0030]
Moreover, collective monitoring and control by the monitoring panel 2 can be performed, and the electricity bill contract can take the same form as a conventional ordinary house.
[0031]
FIG. 2 is a configuration diagram of a collective housing power storage system showing Embodiment 2 of the present invention. 1 differs from FIG. 1 in that the control signal line 9 connects the control device 2A of the monitoring panel 2 and the power conditioner 4 of each house.
[0032]
In the case of FIG. 1, the only countermeasure is to open the circuit breaker of the monitoring panel 2 when an excessive charging current or discharging current that damages the storage battery 1 occurs due to the addition of the control signal line 9. In contrast to this, the control for narrowing the input / output of the power conditioner 4 through the control signal line 9, for example, the current value is reduced to 90% output or 80% output, so that the storage battery 1 can be kept healthy. .
[0033]
FIG. 3 is a configuration diagram of a power storage system for an apartment house showing Embodiment 3 of the present invention. 2 is different from FIG. 2 in that a power conditioner 10 for each house is provided on the shared power supply side.
[0034]
The power conditioner 10 enables charging / discharging of the storage battery 1 as in the case of the power conditioner 4, but enables charging that is difficult with the normal power conditioner 4, such as supplementary charging and complete charging of the storage battery 1, and is independent. By having an operation function, it is possible to secure a minimum power supply during disaster prevention. Also, the elevator and the pump can have the merit of nighttime power storage, and the regenerative power can be effectively used as the charging power for the storage battery 1 particularly in the elevator.
[0035]
FIG. 5 is a configuration diagram of each residential power conditioner 4 showing Embodiment 4 of the present invention. The power conditioner includes a main body 4A and a current control circuit 4B. The main body 4A has an AC-DC power conversion for supplying a charging current to the storage battery 1 at night and a DC-AC for supplying an AC current from the storage battery 1 to the load 5 during the day, as in the previous embodiments. The circuit configuration has a bidirectional power conversion function capable of switching between power conversion.
[0036]
The current control circuit 4B serves as current detection means, such as a current detector (such as a current transformer) 12 that detects the full load current that has passed through the power receiving breaker (MCCB) 11, and a current detection that detects only the load current to the load 5. The charge / discharge current between the main body 4 </ b> A and the storage battery 1 is controlled or limited based on the current detection value by the current transformer (current transformer or the like) 13.
[0037]
As described above, the control device 2 </ b> A controls or restricts the DC input / output power between the power conditioner 4 and the storage battery 1. On the other hand, the current control circuit 4B controls or limits the AC input / output current of the power conditioner 4.
[0038]
As this AC input / output current control function, the charging current to the storage battery 1 is controlled so that the contract power does not exceed the detection current of the current detectors 12 and 13, and the occurrence of reverse power flow (reverse power) to the power system does not occur. The discharge current from the storage battery 1 is controlled within the range.
[0039]
Specifically, if the detected value of the load current I L by the detector 13 is increased from the prescribed value, based on the monitoring of the total load current detection value of the detector 12, a margin with respect to the contract power amount Only the input current I C of the power conditioner body 4A is reduced to control charging of the storage battery 1. If the load current I L decreases and the tolerance increases, the charging of the storage battery 1 is controlled by returning the input current I C to a specified value based on the monitoring of the full load current detection value by the detector 12.
[0040]
In addition, during the discharge from the storage battery 1 to the load 5 during the daytime, when a reverse power flow (due to a power failure, etc.) is detected from the current detection value by the detector 12, the discharge from the power conditioner body 4A is limited. And protect the power system.
[0041]
Therefore, in this embodiment, even when the load fluctuates greatly at night, the storage battery can be charged while maintaining the contract power and without tripping the power receiving breaker. That is, the maximum effective use of nighttime power is possible within the contracted power. Moreover, reverse power generation to the power system can be prevented, and the maximum effective use of night power and system protection can be achieved.
[0042]
In addition, since the current detector 12 is provided at the position of the power receiving breaker and the full load current is directly detected, the power receiving current detection based on the contract power is detected compared to the case where the input / output current to the power conditioner body 4A is detected. And reverse power detection is reliable and easy.
[0043]
【The invention's effect】
As described above, according to the present invention, one set of storage battery equipment for power storage is installed for use in all houses, and each house is provided with a power conditioner, which can be exchanged with DC power at night. Has the following effects because the storage battery is DC-charged from the power conditioner of each house and power is supplied from the storage battery to the load of each house through the power conditioner during the daytime.
[0044]
(1) Batch maintenance and management of the storage battery becomes easy.
[0045]
(2) The load is leveled from the viewpoint of the storage battery, and it can be used more effectively than installing each house individually.
[0046]
(3) If the introduction of the system is planned from the design stage of the housing complex, it is easy to secure the installation space for the storage battery facility and the substation facility, and only one exhaust device is required.
[0047]
(4) Collective monitoring and control by the monitoring panel can be performed, and the electricity bill contract can take the same form as a conventional ordinary house.
[0048]
(5) By providing a control signal line between the monitoring panel and each power conditioner, it is possible to appropriately cope with a case where an excessive charging current or discharging current is generated in the storage battery.
[0049]
(6) By providing a power conditioner that is shared by each house, it is possible to perform auxiliary charging or complete charging of the storage battery. In addition, by providing a self-sustaining operation function, it is possible to secure a minimum power source during disaster prevention. Moreover, the merit of nighttime electric power storage can be given also to an elevator and a pump.
[0050]
(7) By controlling the charging current to the storage battery within the contracted power range and controlling the discharging current from the storage battery within the range that does not cause reverse power flow to the power system, system protection is achieved while making maximum use of nighttime power. Can do.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing Embodiment 1 of the present invention.
FIG. 2 is a system configuration diagram showing Embodiment 2 of the present invention.
FIG. 3 is a system configuration diagram showing Embodiment 3 of the present invention.
FIG. 4 is a basic configuration diagram of a conventional power storage system.
FIG. 5 is a configuration diagram of a power conditioner showing a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Storage battery 2 ... Monitoring board 3A-3N ... Housing 4 ... Power conditioner 4A ... Power conditioner main body 4B ... Current control circuit 5 ... Load 6 ... Lease room 9 ... Control signal line 10 ... Common power conditioner 11 ... Power reception Breakers 12, 13 ... Current detector

Claims (8)

電力会社の配電系統と連系し、蓄電池設備を電力貯蔵手段とし、複数の住宅の負荷に電力を供給する電力貯蔵システムであって、
前記蓄電池設備は全住宅共用として1組設置し、
各住宅は、それぞれ前記蓄電池設備との間で電力授受を可能にしたパワーコンディショナを設置し、
夜間には各住宅の前記各パワーコンディショナから前記蓄電池設備の蓄電池を直流充電し、昼間には該蓄電池から前記各パワーコンディショナを通して各住宅の負荷に給電する制御手段を備えたことを特徴とする電力貯蔵システム。
A power storage system that is connected to a power company's distribution system, uses storage battery facilities as power storage means, and supplies power to a plurality of residential loads,
One set of the storage battery facilities is installed for all houses,
Each house is equipped with a power conditioner that enables power transfer to and from the storage battery equipment.
It is characterized by comprising control means for direct charging the storage battery of the storage battery facility from each power conditioner of each house at night and supplying power to the load of each house from the storage battery through each power conditioner during the day. Power storage system.
前記制御手段は、夜間での前記蓄電池の充電量に見合った電力量を、昼間での該蓄電池から各住宅の負荷に給電した時点で、前記パワーコンディショナの運転を停止させることを特徴とする請求項1に記載の電力貯蔵システム。  The control means is configured to stop the operation of the power conditioner at the time when the amount of power corresponding to the amount of charge of the storage battery at night is supplied from the storage battery to the load of each house during the daytime. The power storage system according to claim 1. 前記制御手段は、前記蓄電池を充電するとき、各住宅毎の受電電流が規定値以上にならないよう、前記パワーコンディショナから蓄電池への充電量を制限することを特徴とする請求項1または2に記載の電力貯蔵システム。  3. The control unit according to claim 1, wherein when the storage battery is charged, the charge amount from the power conditioner to the storage battery is limited so that a receiving current for each house does not exceed a specified value. The power storage system described. 前記制御手段は、前記蓄電池から放電するとき、前記住宅の負荷が一定以上にある場合のみ行うことを特徴とする請求項1〜3のいずれか1項に記載の電力貯蔵システム。  The power storage system according to any one of claims 1 to 3, wherein the control means performs only when the load of the house is above a certain level when discharging from the storage battery. 前記蓄電池に過剰な充電電流や放電電流が発生したとき、前記パワーコンディショナの入出力を絞ることを特徴とする請求項1〜4のいずれか1項に記載の電力貯蔵システム。  The power storage system according to any one of claims 1 to 4, wherein when an excessive charging current or discharging current is generated in the storage battery, input / output of the power conditioner is narrowed down. 各住宅の共用電源と前記蓄電池との間に、該蓄電池の補充電や完全充電を可能とする各住宅共用のパワーコンディショナを設置したことを特徴とする請求項1〜5のいずれか1項に記載の電力貯蔵システム。The power conditioner for each house is installed between the common power source of each house and the storage battery, and the home battery power conditioner that enables supplemental charging or complete charging of the storage battery is installed. The power storage system according to. 前記各住宅共用のパワーコンディショナは、自立運転機能を持たせること、またはエレベータやポンプの共用電力機器と蓄電池との間の電力授受機能を持たせることを特徴とする請求項6に記載の電力貯蔵システム。7. The electric power according to claim 6, wherein the power conditioner shared by each house has a self-sustaining operation function, or has a power transfer function between a shared electric power device of an elevator or a pump and a storage battery. Storage system. 前記パワーコンディショナは、負荷電流検出器と受電ブレーカ位置の全負荷電流検出器とによる両電流検出値を基に、契約電力範囲内で前記蓄電池への充電電流を制御、および電力系統への逆潮流を起こさない範囲内で蓄電池からの放電電流を制御する電流制御回路を設けたことを特徴とする請求項1〜7のいずれか1項に記載の電力貯蔵システム。  The power conditioner controls the charging current to the storage battery within the contract power range based on both current detection values by the load current detector and the full load current detector at the power receiving breaker position, and reverses to the power system. The power storage system according to any one of claims 1 to 7, further comprising a current control circuit that controls a discharge current from the storage battery within a range in which no power flow occurs.
JP2002170794A 2001-08-24 2002-06-12 Power storage system Expired - Fee Related JP3901025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170794A JP3901025B2 (en) 2001-08-24 2002-06-12 Power storage system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001253972 2001-08-24
JP2001-253972 2001-08-24
JP2002170794A JP3901025B2 (en) 2001-08-24 2002-06-12 Power storage system

Publications (2)

Publication Number Publication Date
JP2003143763A JP2003143763A (en) 2003-05-16
JP3901025B2 true JP3901025B2 (en) 2007-04-04

Family

ID=26620913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170794A Expired - Fee Related JP3901025B2 (en) 2001-08-24 2002-06-12 Power storage system

Country Status (1)

Country Link
JP (1) JP3901025B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320099A (en) * 2005-05-12 2006-11-24 Matsushita Electric Ind Co Ltd Electric power storage system
JP4716946B2 (en) * 2006-07-20 2011-07-06 中国電力株式会社 Storage battery sharing system and storage battery sharing method
JP5168891B2 (en) * 2006-11-28 2013-03-27 日産自動車株式会社 Electric vehicle charging power management system
JP4840660B2 (en) * 2007-01-18 2011-12-21 住友電気工業株式会社 Power supply system
JP2010259218A (en) * 2009-04-24 2010-11-11 Ihi Infrastructure Systems Co Ltd Load drive unit
WO2011055186A1 (en) * 2009-11-06 2011-05-12 パナソニック電工株式会社 Power distribution system
JP2011101529A (en) 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd Power distribution system
JP5520574B2 (en) * 2009-11-06 2014-06-11 パナソニック株式会社 Power interchange system
JP2011130649A (en) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd Electric power supply system
US8326467B2 (en) * 2011-09-06 2012-12-04 General Electric Company Controller and method of controlling a power system
JP6025332B2 (en) * 2012-01-10 2016-11-16 株式会社Nttファシリティーズ Power supply system, power supply control device, power supply method and program
JP6050938B2 (en) * 2012-01-10 2016-12-21 株式会社Nttファシリティーズ Power supply system, power supply control device, power supply method and program
KR101379343B1 (en) 2012-07-13 2014-03-31 한국산업기술대학교산학협력단 Energy storage system, and method of controlling energy storage system
WO2014148054A1 (en) * 2013-03-22 2014-09-25 パナソニック株式会社 Electricity-storage system, monitoring device, and power control system
JP5963326B2 (en) * 2014-09-08 2016-08-03 東芝エレベータ株式会社 Storage battery device and storage battery control system
JP6182562B2 (en) * 2015-03-30 2017-08-16 大和ハウス工業株式会社 Apartment house power supply system
JP6789866B2 (en) * 2017-03-28 2020-11-25 京セラ株式会社 Power storage device and power management system
KR102244636B1 (en) * 2017-12-19 2021-04-26 이영조 System for replacing battery of electric vehicle having energy saving system and driving method thereof

Also Published As

Publication number Publication date
JP2003143763A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
JP3901025B2 (en) Power storage system
KR101984484B1 (en) Dc power server for a dc microgrid
US7531915B2 (en) System and method for controlling power flow in a power system
US8981716B2 (en) Power share system for electric vehicle service equipment
US20110005567A1 (en) Modular solar panel system
US9553480B2 (en) Power system
KR100987562B1 (en) DC power supply and management system for house and method thereof
KR101264142B1 (en) New and renewable energy system for home and/or microgrid application
US20120235492A1 (en) Power supply system
WO2011107846A1 (en) Electric power supply system
WO2011042779A1 (en) Dc power distribution system
JP2010041782A (en) Power distribution system
JP2000224769A (en) Distributed battery system
US20130234520A1 (en) Modular energy portal with ac architecture for harvesting energy from electrical power sources
JP4722585B2 (en) An electricity reduction system for collective housing using solar cells and / or cubicles that can reduce not only electricity charges but also CO2 emissions
JP2014158327A (en) Power supply apparatus
JP2002354680A (en) Power supply system for apartment house
JP2004104851A (en) Linkage system provided with generator-linkage function
JP3469678B2 (en) DC power supply system
JP2016214003A (en) Power supply system
CN107743671B (en) Storage unit, storage system and method for controlling storage system for consumer
WO2015001701A1 (en) Power management system and control device
JP2016046829A (en) Power supply system
JP2012253842A (en) Power supply system
JP2001231169A (en) Compensating device for unbalanced load in distribution system and building facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Ref document number: 3901025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees