JP3899398B2 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP3899398B2
JP3899398B2 JP05811099A JP5811099A JP3899398B2 JP 3899398 B2 JP3899398 B2 JP 3899398B2 JP 05811099 A JP05811099 A JP 05811099A JP 5811099 A JP5811099 A JP 5811099A JP 3899398 B2 JP3899398 B2 JP 3899398B2
Authority
JP
Japan
Prior art keywords
polyimide
resin composition
resin
diisocyanate
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05811099A
Other languages
Japanese (ja)
Other versions
JP2000256536A (en
Inventor
宏之 辻
浩行 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP05811099A priority Critical patent/JP3899398B2/en
Publication of JP2000256536A publication Critical patent/JP2000256536A/en
Application granted granted Critical
Publication of JP3899398B2 publication Critical patent/JP3899398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、比較的低温で接着硬化でき、溶媒に可溶で耐熱性及び接着性に優れた樹脂組成物に関する。本発明の樹脂組成物は、フレキシブル印刷回路基板、TAB(Tape Automated bonding)用テープ、複合リードフレーム、積層材料等に用いられる耐熱性接着性に優れた接着剤として有用である。
【0002】
【従来の技術】
近年、電子機器の高機能化、高性能化、小型化が進んでおり、それらに伴って用いられる電子部品に対する小型化、軽量化が求められてきている。そのため半導体素子パッケージ方法やそれらを実装する配線材料または配線部品も、より高密度、高機能、かつ高性能なものが求められるようになってきた。特に、半導体パッケージ、COL及びLOCパッケージ、MCM(Multi Chip Module )等の高密度実装材料や多層FPC等のプリント配線板材料、さらには航空宇宙材料として好適に用いることのできる、良好な接着性を示す材料が求められている。
【0003】
従来、半導体パッケージやその他実装材料において、良好な機械的特性や耐熱性、絶縁性を示す接着材料として、アクリル系、フェノール系、エポキシ系、ポリイミド系等の接着剤が知られている。
【0004】
ところが、フェノール系及びエポキシ系の接着剤は、接着性は優れているが、柔軟性に劣る。柔軟性のあるアクリル系の接着剤は耐熱性が低いという問題が生じる。これを解決するために、ポリイミドが用いられている。ポリイミドは、種々の有機ポリマーの中でも耐熱性に優れているため、宇宙、航空分野まで幅広く用いられ、接着材料としても用いられている。しかし、耐熱性の高いポリイミド系接着剤は接着するために300℃前後の高温と高圧力を要し、接着力もそれほど高いとはいえない。また、従来のポリイミド系接着剤は吸水率が高く、例えば、このポリイミド系接着剤を使用したリードフレームを半田浴に浸漬する際、膨れ等を生じやすいといった問題を有していた。
【0005】
【発明が解決しようとする課題】
そこで本発明者らは、上記課題を解決し、半田耐熱性、耐熱性および接着性に優れ、特に250℃以下の低温で接着可能な樹脂組成物を提供することを目的とし、鋭意研究を行った結果、本発明を完成するに至った。
【0006】
【課題を解決するための手段】
本発明にかかる樹脂組成物の要旨とするところは、ポリイミド樹脂とエポキシ樹脂を含有し、硬化反応後の吸水率が、1.5%以下であり得る。
【0007】
また、前記ポリイミド樹脂が、一般式(1)化5
【0008】
【化5】

Figure 0003899398
【0009】
で表されるエステル酸二無水物と
一般式(2)化6
【0010】
【化6】
Figure 0003899398
【0011】
(式中、Yは脂肪族の二価の基、または、化7
【0012】
【化7】
Figure 0003899398
【0013】
(式中、R1 、R2 、R3 、R4 、R5 は水素またはアルキル基、Aは二価の有機基を示す。ベンゼン環の水素は、置換されない。)から選択される二価の基を示す。)
で表されるジイソシアナートとを反応させて得られるポリイミド樹脂であり得る。
【0014】
さらに、前記ジイソシアナートが、一般式(3)化8
【0015】
【化8】
Figure 0003899398
【0016】
(式中Zは、−C(=O)−、−SO2−、−O−、−S−、−(CH2)m−、−NHCO−、−C(CH3)2−、−C(CF3)2−、−C(=O)O−、または結合であり、m、nは1以上10以下の整数である。)で示されるジイソシアナートであり得る。
【0017】
ここで、「樹脂組成物の硬化反応後」とは、例えば樹脂組成物をシート状に成形し、100℃で10分間、150℃で20分間乾燥させた後、150℃で3時間加熱硬化させた後をいう。すなわち樹脂組成物中のエポキシ樹脂が硬化した状態とした後をいう。
【0018】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の樹脂組成物は、ポリイミド樹脂とエポキシ樹脂を混合したものであり、硬化反応後の吸水率が、1.5%以下であり得る樹脂組成物である。
【0019】
かかる、樹脂組成物に用いられるポリイミド樹脂は、上記特性を有していれば基本的には限定されないが、特には一般式(1)化9
【0020】
【化9】
Figure 0003899398
【0021】
(式中、Xは芳香環を含む二価の基を示す。)で表されるエステル酸二無水物を構成成分として含むポリイミド樹脂を用いると、優れた低吸水率を発現するため、半田耐熱性に優れた特性を有する。
【0022】
本発明に用いられる一般式(1)で表されるエステル酸二無水物の好ましい例としては、2,2−ビス(4−ヒドロキシフェニル)プロパンジベンゾエート−3,3’,4,4’−テトラカルボン酸二無水物、p−フェニレンビス(トリメリット酸モノエステル無水物)、3,3’,4,4’−エチレングリコールベンゾエートテトラカルボン酸二無水物、4,4’−ビフェニレンビス(トリメリット酸モノエステル無水物)、1,4−ナフタレンビス(トリメリット酸モノエステル無水物)、1,2−エチレンビス(トリメリット酸モノエステル無水物)、1,3−トリメチレンビス(トリメリット酸モノエステル無水物)、1,4−テトラメチレンビス(トリメリット酸モノエステル無水物)、1,5−ペンタメチレンビス(トリメリット酸モノエステル無水物)、1,6−ヘキサメチレンビス(トリメリット酸モノエステル無水物)等が挙げられるがこれらに限定するものではない。これらのうちの1種または2種以上を組み合わせて用い得る。
【0023】
さらに、一般式(2)化10
【0024】
【化10】
Figure 0003899398
【0025】
(式中、Yは脂肪族の二価の基、または、化11
【0026】
【化11】
Figure 0003899398
【0027】
(式中、R1 、R2 、R3 、R4 、R5 は水素またはアルキル基、Aは二価の有機基を示す。ベンゼン環の水素は、置換されない。)から選択される二価の基を示す。)で表されるジイソシアナートを用いると上記エステル酸二無水物との組み合わせにより、優れた低吸水率を発現することができる。
【0028】
一般式(2)で表されるジイソシアナートの好ましい例としては、ジフェニルメタンジイソシアナート、パラフェニレンジイソシアナート、2−クロロ−1,4−フェニルジイソシアナート、2,4−トルエンジイソシアナート、2,6−トルエンジイソシアナート、1,5−ナフタレンジイソシアナート、ヘキサメチレンジイソシアナート、イソフォロンジイソシアナート、キシリレンジイソシアナート、リジンジイソシアナート、テトラメチルキシレンジイソシアナート、トリメチルヘキサメチレンジイソシアナート等が挙げられるがこれに限定するものではない。これらのうち、一般式(3)化12
【0029】
【化12】
Figure 0003899398
【0030】
(式中Zは、−C(=O)−、−SO2−、−O−、−S−、−(CH2)m−、−NHCO−、−C(CH3)2−、−C(CF3)2−、−C(=O)O−、または結合であり、m、nは1以上10以下の整数である。)
で表される、例えばジフェニルメタンジイソシアナート等が特に好ましく用いられる。本発明にかかる樹脂組成物には、上記のジイソシアナートのうちいずれか1種を用いる。
【0031】
本発明にかかる樹脂組成物に含まれるポリイミド樹脂は、特には上記一般式(1)で表されるエステル酸二無水物及び上記一般式(2)で表されるジイソシアナート成分を有機極性溶媒中で重合して得られる。この場合の配合割合は、エステル酸二無水物と全ジイソシアナートとが実質的に等モルになるように使用するのが好ましいが、エステル酸二無水物を全ジイソシアナートに対して80〜98モル%とし分子量及び分子末端をコントロールすることも可能である。
【0032】
上記ポリイミド樹脂を製造するには、当業者公知の種々の方法により製造することができるが、具体的に示すと、このポリイミドは、まず、アルゴン、窒素などの不活性雰囲気中において、一般式(2)で表されるジイソシアナート及び一般式(1)で表されるエステル酸二無水物より選択される酸二無水物を有機極性溶媒中に溶解または拡散させて加熱反応させることにより得られる。
【0033】
各モノマーの添加順序は特に限定されず、酸二無水物を有機極性溶媒中に先に加えておき、ジイソシアナート成分である上記一般式(2)を添加し、ポリイミド溶液としても良いし、ジイソシアナート成分を有機極性溶媒中に先に適量加えて、次に酸二無水物を加え、最後に残りのジイソシアナート成分を加えて、ポリイミド溶液としても良い。この他にも、当業者に公知の種々の添加方法を用い得る。
【0034】
ポリアミド酸溶液の生成反応に用いられる有機極性溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド等のホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド等のアセトアミド系溶媒、N−メチル−2−ピロリドン等のピロリドン系溶媒、フェノール、o−,p−,m−またはp−クレゾール、キシノール、ハロゲン化フェノール、カテコール等のフェノール系溶媒、あるいはヘキサメチルホスホルアミド、γ−ブチロラクトン等を挙げることができる。更に必要に応じて、これらの有機極性溶媒とキシレンあるいはトルエン等の芳香族炭化水素とを組み合わせて用いることもできる。
【0035】
一般に、酸二無水物とジアミンからポリイミドを生成する場合、発生する水が加水分解を起こしポリアミド酸のイミド化を阻害することを防止するために、発生する水の影響を極力小さくするための工夫や、脱水剤等によりイミド化を積極的に進める等の種々の処理を行っていた。しかし、上記一般式(1)で表されるエステル酸二無水物及び一般式(2)で表されるジイソシアナートからなるポリイミド樹脂では、酸二無水物とジアミンを用いた場合に生じる重合反応時の水の発生を伴わないため、重合時の分子量低下の危険性が少なくなり、安定した分子量のポリイミド樹脂を得ることができる。
【0036】
上記のポリイミド樹脂およびエポキシ樹脂を用いたポリイミド樹脂は、上記一般式(1)で表されるエステル酸二無水物を用いているため、さらに一般式(2)で表されるジイソシアナートとに組み合わせによって、特に優れた低吸水性を有し、またガラス転移温度が比較的低温であるため、低吸湿性及び低温接着を可能とする優れた接着材料となり得る。
【0037】
また、本発明にかかる樹脂組成物に用い得るエポキシ樹脂としては、ビスフェノール系エポキシ樹脂、ハロゲン化ビスフェノール系エポキシ樹脂、フェノールノボラック系エポキシ樹脂、ハロゲン化フェノールノボラック系エポキシ樹脂、アルキルフェノールノボラック系エポキシ樹脂、ポリフェノール系エポキシ樹脂、ポリグリコール系エポキシ樹脂、環状脂肪族エポキシ樹脂、クレゾールノボラック系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂、エポキシ変性ポリシロキサン等が用いることができる。
【0038】
エポキシ樹脂をポリイミド樹脂に混合する場合、混合割合は、ポリイミド100重量部に対して、1〜50重量部、好ましくは5〜30重量部である。エポキシ樹脂を加えることにより接着性が増加するが、1重量部より少ない場合は接着強度が低く、50重量部より多くなると可撓性、耐熱性等の特性が劣る場合がある。また、用いるエポキシ樹脂の吸水特性の影響および有機溶媒への溶解性、ポリイミド樹脂との組み合わせの観点より、吸水率1.5%以下の吸水率を満たす本発明にかかる樹脂組成物中のエポキシ樹脂の混合割合は、上記範囲内において種々選択し得る。
【0039】
本発明の樹脂組成物は、上記のようにして得られた優れた特性を有するポリイミド樹脂からなるため、1.5%以下、好ましくは1.2%以下、さらに好ましくは1.0%以下という優れた低吸水率が発現され得る。また、本発明にかかる樹脂組成物は、さらにエポキシ樹脂を含有するため、ポリイミドの有する優れた耐熱性及び低吸水率等の特性に、さらに良好な接着性が付与されている。
【0040】
また、本発明の樹脂組成物には、さらに種々の材料を添加し得る。具体的には、吸水性、耐熱性、接着性等の特性付与のため必要に応じて、酸二無水物系、アミン系、イミダゾール系等の一般に用いられるエポキシ硬化剤、促進剤や種々のカップリング剤を併用しうる。また、エポキシ樹脂以外の熱硬化性樹脂、ビスマレイミド、ビスアリルナジイミド、フェノール樹脂、シアナート樹脂等を更に加えて本発明の樹脂組成物を得ることも可能である。
【0041】
本発明の樹脂組成物は、ポリイミド樹脂、エポキシ樹脂、さらにエポキシ硬化剤及びその他の成分を均一に撹拌混合することにより得られる。この際、ポリイミド溶液にそのままエポキシ化合物、エポキシ硬化剤、およびその他の成分を添加し、樹脂組成物溶液とし得る。あるいは、ポリイミド溶液に低沸点溶媒を添加し、更にエポキシ樹脂、エポキシ硬化剤等を加えて、撹拌混合して本発明の樹脂組成物を調整し得る。
【0042】
この他に、ポリアミド酸の重合に用いた溶媒を充分に溶解するがポリイミドが溶解しにくい貧溶媒中に、ポリイミド溶液を投入して、ポリイミド樹脂を析出させて未反応モノマーを取り除いて精製し、乾燥させ固形のポリイミド樹脂としてから、適宜、本発明の樹脂組成物とすることもできる。貧溶媒としては、アセトン、メタノール、エタノール、イソプロパノール、ベンゼン、メチルセロソルブ、メチルエチルケトン等が例として挙げられるが、これに限定されない。
【0043】
また、このようにして得られた精製したポリイミド樹脂を他のエポキシ樹脂と共に再び有機溶媒に溶解し、濾過精製ワニスの状態とすることもできが、これに限定されない。この時使用される有機溶媒は特に限定されず、当業者に公知のいずれの有機溶媒でも使用できる。
【0044】
従来のポリイミド系接着剤は、銅箔等の金属及びポリイミド等の樹脂フィルムに対して接着性が十分でなく、またエポキシ樹脂との混合はその難溶性より困難であったが、本発明にかかる樹脂組成物は、銅箔等の金属箔やポリイミドフィルムとの接着性が良好であり、またその有機溶媒に対する溶解性が良好であるという特性をも併せ持ち、使用に際し加工性に優れる。
【0045】
本発明の樹脂組成物は、特に接着剤としての使用に適し、その具体的な使用態様は、当業者が実施しうる範囲内で種々の方法があるが、例えば、あらかじめシート状に成形しておき、シート状接着剤として用い得る。また、本発明の樹脂組成物は、ガラス布、ガラスマット、芳香族ポリアミド繊維布、芳香族ポリアミド繊維マット等にワニスとして含浸し、樹脂を半硬化させ繊維強化型のシート状接着剤として用いることも可能である。
【0046】
さらに、本発明の樹脂組成物は、ワニスとしてそのまま用いることもできる。具体的にはフィルムの片面もしくは両面に、本発明の樹脂組成物を溶解したワニスを塗布、乾燥し、銅箔・アルミ箔・42合金等の金属箔や別のフィルム、印刷回路基板等を加熱加圧して接着しても良い。この場合のフィルムの種類は特に限定されず、例えばポリイミドフィルム及びポリエステルフィルム等が挙げられる。また、この場合の接着条件としては、接着硬化するために必要十分である接着条件であれば良く、具体的には加熱温度150℃〜250℃、圧力0.1〜10MPaで加熱時間5〜20分程度の条件で加熱加圧することが好ましい。
【0047】
上記のようにして得られる本発明にかかる樹脂組成物は、TAB用テープ、複合リードフレーム、積層材料等に好適に用いられ得る特性を有する。すなわち、具体的には、硬化反応後の吸水率が、1.5%以下、好ましくは、1.3%以下、特に好ましくは、1.0%以下という優れた耐吸水率を示し、また半田耐熱性に優れ、且つ耐熱性、接着性ともに優れており、接着剤として使用する際約250℃以下の温度さらには200℃以下の温度において接着可能である。
【0048】
【実施例】
【0049】
(実施例1)
容量500mlのガラス製フラスコにジメチルホルムアミド(DMF)280gにジフェニルメタンジイソシアナート37.18g(0.1487mol)を加え、窒素雰囲気下、130℃で加熱しながら、2,2−ビス(4−ヒドロキシフェニル)プロパンジベンゾエート−3,3’,4,4’−テトラカルボン酸二無水物(以下、ESDAという)85.7g(0.1487mol)を粘度に注目しながら徐々に添加した。粘度が1500poise に達したところでESDAの添加をやめポリイミド溶液を得た。
【0050】
このポリイミド溶液に103gにエピコート828(油化シェル社製)を5g、4,4’−ジアミノジフェニルスルフォン(4,4’−DDS)3gを溶解した。得られたワニスをガラス板上に流延し、100℃で10分間乾燥後、ガラス板より引き剥し、鉄枠に固定しさらに130℃で10分乾燥し、厚み25μm のシートを得た。得られたシートをポリイミドフィルム(アピカル50AH、鐘淵化学工業社製)と25μm の銅箔で挟み込み、温度200℃、圧力3MPaで20分加熱加圧し、銅張フレキシブル積層板を得た。
【0051】
(実施例2)
ジイソシアナート成分をヘキサメチレンジイソシアナート24.39g(0.1487mol)に変更する以外は、実施例1と同様にポリイミド溶液を得た。
【0052】
このポリイミド溶液に103gにエピコート828(油化シェル社製)を5g、4,4’−ジアミノジフェニルスルフォン(4,4’−DDS)3gを溶解した。得られたワニスをガラス板上に流延し、100℃で10分間乾燥後、ガラス板より引き剥し、鉄枠に固定しさらに130℃で10分乾燥し、厚み25μm のシートを得た。得られたシートをポリイミドフィルム(アピカル50AH、鐘淵化学工業社製)と25μm の銅箔で挟み込み、温度200℃、圧力3MPaで20分加熱加圧し、銅張フレキシブル積層板を得た。
【0053】
(実施例3)
実施例1で得られたポリイミド溶液に103gにエピコート1032H60(油化シェル社製)を5g、4,4’−ジアミノジフェニルスルフォン(4,4’−DDS)3gを溶解した。得られたワニスをガラス板上に流延し、100℃で10分間乾燥後、ガラス板より引き剥し、鉄枠に固定しさらに130℃で10分乾燥し、厚み25μm のシートを得た。得られたシートをポリイミドフィルム(アピカル50AH、鐘淵化学工業社製)と25μm の銅箔で挟み込み、温度200℃、圧力3MPaで20分加熱加圧し、銅張フレキシブル積層板を得た。
【0054】
(比較例1)
容量500mlのガラス製フラスコにジメチルホルムアミド(DMF)280gにジフェニルメタンジイソシアナート37.18g(0.1487mol)を仕込み、窒素雰囲気下、130℃で加熱しながら、ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAという)47.88g(0.1487mol)を粘度に注目しながら徐々に添加した。粘度が1500poise に達したところでBTDAの添加をやめポリイミド溶液を得た。
【0055】
上記で得たポリイミド溶液を103g、エピコート828(油化シェル社製)を5g、4,4’−DDS3gを溶解した。得られたワニスをガラス板上に流延し、100℃で10分間乾燥後、ガラス板より引き剥し、鉄枠に固定しさらに150℃で20分乾燥し、厚み25μm のシートを得た。得られたシートをポリイミドフィルム(アピカル50AH、鐘淵化学工業社製)と25μm の銅箔で挟み込み、温度200℃、圧力3MPaで20分加熱加圧し、銅張フレキシブル積層板を得た。
【0056】
( 比較例2)
実施例1で得たポリイミド溶液をガラス板上に流延し、100℃で10分間乾燥後、ガラス板より引き剥し、鉄枠に固定しさらに150℃で20分乾燥し、厚み25μm のシートを得た。得られたシートをポリイミドフィルム(アピカル50AH、鐘淵化学工業社製)と25μm の銅箔で挟み込み、温度200℃、圧力3MPaで20分加熱加圧し、銅張フレキシブル積層板を得た。
【0057】
( 比較例3)
プラタボンドM1276(共重合ナイロン、日本リルサン社製)を10g、エピコート828(油化シェル社製)を20g、ジアミノジフェニルスルフォン1gを83gのDMFに溶解した。得られたワニスをガラス板上に流延し、100℃で10分間乾燥後、ガラス板より引き剥がし、鉄枠に固定しさらに130℃で10分乾燥し、厚み25μmのシートを得た。得られたシートをポリイミドフィルム(アピカル50AH、鐘淵化学工業社製)と25μmの銅箔で挟み込み、温度200℃、圧力3MPaで20分間加熱加圧し、銅張フレキシブル積層板を得た。
【0058】
以上の各実施例及び比較例で得られたフレキシブル銅張積層板について引き剥し強度、半田耐熱性(260℃半田浴に10秒浸漬したときの外観評価)を評価した。また、各接着シートの吸水率も併せて評価した。その結果を表1に示す。
【0059】
【表1】
Figure 0003899398
【0060】
【発明の効果】
本発明の樹脂組成物は、接着剤として使用するときに250℃以下の温度で接着することが可能である。従来の耐熱接着剤と異なり、接着に高温を要せず、ポリイミドフィルムに対しても高い接着力を示し、高温まで高い接着力を保持する。さらに低吸水率であるため、半田浴に浸漬する際の膨れ等を生じない半田耐熱性を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition that can be adhesively cured at a relatively low temperature, is soluble in a solvent, and has excellent heat resistance and adhesiveness. The resin composition of the present invention is useful as an adhesive excellent in heat-resistant adhesive used for flexible printed circuit boards, TAB (Tape Automated Bonding) tapes, composite lead frames, laminated materials and the like.
[0002]
[Prior art]
In recent years, electronic devices have been improved in function, performance, and size, and accordingly, electronic components used are required to be reduced in size and weight. Therefore, semiconductor device packaging methods and wiring materials or wiring components for mounting them have been required to have higher density, higher functionality, and higher performance. In particular, it has good adhesion that can be suitably used as a semiconductor package, COL and LOC packages, high-density mounting materials such as MCM (Multi Chip Module), printed wiring board materials such as multilayer FPC, and aerospace materials. There is a need for materials to show.
[0003]
Conventionally, acrylic, phenolic, epoxy, and polyimide adhesives are known as adhesive materials that exhibit good mechanical properties, heat resistance, and insulation in semiconductor packages and other mounting materials.
[0004]
However, phenolic and epoxy adhesives are excellent in adhesiveness but inferior in flexibility. A flexible acrylic adhesive has a problem of low heat resistance. In order to solve this, polyimide is used. Polyimide is excellent in heat resistance among various organic polymers, and thus is widely used in the space and aviation fields, and is also used as an adhesive material. However, polyimide adhesives with high heat resistance require a high temperature of about 300 ° C. and a high pressure for bonding, and the adhesive strength is not so high. Further, the conventional polyimide adhesive has a high water absorption rate, and has a problem that, for example, when a lead frame using this polyimide adhesive is immersed in a solder bath, it tends to swell.
[0005]
[Problems to be solved by the invention]
Therefore, the present inventors have conducted extensive research with the aim of solving the above-mentioned problems and providing a resin composition that is excellent in solder heat resistance, heat resistance, and adhesiveness, and can be bonded particularly at a low temperature of 250 ° C. or lower. As a result, the present invention has been completed.
[0006]
[Means for Solving the Problems]
The gist of the resin composition according to the present invention includes a polyimide resin and an epoxy resin, and the water absorption after the curing reaction may be 1.5% or less.
[0007]
Further, the polyimide resin is represented by the general formula (1)
[0008]
[Chemical formula 5]
Figure 0003899398
[0009]
An ester dianhydride represented by the general formula (2)
[0010]
[Chemical 6]
Figure 0003899398
[0011]
Wherein Y is an aliphatic divalent group or
[0012]
[Chemical 7]
Figure 0003899398
[0013]
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 are hydrogen or an alkyl group, A represents a divalent organic group, and hydrogen in the benzene ring is not substituted). The group of is shown. )
The polyimide resin obtained by making it react with the diisocyanate represented by these may be used.
[0014]
Further, the diisocyanate is represented by the general formula (3)
[0015]
[Chemical 8]
Figure 0003899398
[0016]
(In the formula, Z represents —C (═O) —, —SO 2 —, —O—, —S—, — (CH 2) m —, —NHCO—, —C (CH 3) 2 —, —C (CF 3). 2-, —C (═O) O—, or a bond, and m and n are integers of 1 or more and 10 or less.
[0017]
Here, “after the curing reaction of the resin composition” means, for example, that the resin composition is formed into a sheet, dried at 100 ° C. for 10 minutes and 150 ° C. for 20 minutes, and then heated and cured at 150 ° C. for 3 hours. After. That is, after the epoxy resin in the resin composition has been cured.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The resin composition of the present invention is a resin composition in which a polyimide resin and an epoxy resin are mixed, and the water absorption after the curing reaction can be 1.5% or less.
[0019]
The polyimide resin used in the resin composition is not basically limited as long as it has the above-described characteristics, but in particular, the general formula (1)
[0020]
[Chemical 9]
Figure 0003899398
[0021]
(In the formula, X represents a divalent group containing an aromatic ring.) When a polyimide resin containing an ester dianhydride represented by the formula is used as a component, an excellent low water absorption rate is exhibited. It has excellent properties.
[0022]
Preferable examples of the ester dianhydride represented by the general formula (1) used in the present invention include 2,2-bis (4-hydroxyphenyl) propanedibenzoate-3,3 ′, 4,4′-. Tetracarboxylic dianhydride, p-phenylenebis (trimellitic acid monoester anhydride), 3,3 ′, 4,4′-ethylene glycol benzoate tetracarboxylic dianhydride, 4,4′-biphenylenebis (tri Merit acid monoester anhydride), 1,4-naphthalenebis (trimellitic acid monoester anhydride), 1,2-ethylenebis (trimellitic acid monoester anhydride), 1,3-trimethylenebis (trimerit Acid monoester anhydride), 1,4-tetramethylene bis (trimellitic acid monoester anhydride), 1,5-pentamethylene bis (trimellitic acid Ester anhydrides), 1,6-hexamethylene bis (trimellitic acid monoester anhydride), and the are exemplified not limited thereto. One or more of these may be used in combination.
[0023]
Furthermore, the general formula (2)
[0024]
[Chemical Formula 10]
Figure 0003899398
[0025]
Wherein Y is an aliphatic divalent group or
[0026]
Embedded image
Figure 0003899398
[0027]
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 are hydrogen or an alkyl group, A represents a divalent organic group, and hydrogen in the benzene ring is not substituted). The group of is shown. When the diisocyanate represented by (2) is used, an excellent low water absorption rate can be expressed by the combination with the above ester dianhydride.
[0028]
Preferred examples of the diisocyanate represented by the general formula (2) include diphenylmethane diisocyanate, paraphenylene diisocyanate, 2-chloro-1,4-phenyl diisocyanate, and 2,4-toluene diisocyanate. 2,6-toluene diisocyanate, 1,5-naphthalene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, lysine diisocyanate, tetramethylxylene diisocyanate, trimethylhexa Examples include, but are not limited to, methylene diisocyanate. Of these, general formula (3)
[0029]
Embedded image
Figure 0003899398
[0030]
(In the formula, Z represents —C (═O) —, —SO 2 —, —O—, —S—, — (CH 2) m —, —NHCO—, —C (CH 3) 2 —, —C (CF 3). 2-, -C (= O) O-, or a bond, and m and n are integers of 1-10.)
For example, diphenylmethane diisocyanate represented by the formula is particularly preferably used. In the resin composition according to the present invention, any one of the above diisocyanates is used.
[0031]
In particular, the polyimide resin contained in the resin composition according to the present invention contains an ester dianhydride represented by the general formula (1) and a diisocyanate component represented by the general formula (2) as an organic polar solvent. Obtained by polymerization in The blending ratio in this case is preferably such that the ester dianhydride and the total diisocyanate are substantially equimolar, but the ester dianhydride is 80 to 80% of the total diisocyanate. It is also possible to control the molecular weight and molecular end by making it 98 mol%.
[0032]
In order to produce the polyimide resin, it can be produced by various methods known to those skilled in the art. Specifically, the polyimide is firstly represented by the general formula (1) in an inert atmosphere such as argon or nitrogen. It can be obtained by dissolving or diffusing an acid dianhydride selected from the diisocyanate represented by 2) and the ester dianhydride represented by the general formula (1) in an organic polar solvent and subjecting it to a heat reaction. .
[0033]
The order of addition of each monomer is not particularly limited, and acid dianhydride is previously added to an organic polar solvent, and the above general formula (2) which is a diisocyanate component is added, and a polyimide solution may be used. A suitable amount of the diisocyanate component is first added to the organic polar solvent, then acid dianhydride is added, and finally the remaining diisocyanate component is added to form a polyimide solution. In addition, various addition methods known to those skilled in the art can be used.
[0034]
Examples of the organic polar solvent used for the reaction for forming the polyamic acid solution include sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide, and N, N. -Acetamide solvents such as dimethylacetamide, N, N-diethylacetamide, pyrrolidone solvents such as N-methyl-2-pyrrolidone, phenol, o-, p-, m- or p-cresol, xinol, halogenated phenol, Phenol solvents such as catechol, hexamethylphosphoramide, γ-butyrolactone and the like can be mentioned. Further, if necessary, these organic polar solvents can be used in combination with an aromatic hydrocarbon such as xylene or toluene.
[0035]
In general, when producing polyimide from acid dianhydride and diamine, in order to prevent the generated water from hydrolyzing and inhibiting imidization of the polyamic acid, a device for minimizing the effect of the generated water In addition, various treatments such as positively proceeding with imidization with a dehydrating agent or the like were performed. However, in the polyimide resin comprising the ester dianhydride represented by the general formula (1) and the diisocyanate represented by the general formula (2), a polymerization reaction that occurs when the acid dianhydride and diamine are used. Since there is no generation of water at the time, there is less risk of molecular weight reduction during polymerization, and a polyimide resin having a stable molecular weight can be obtained.
[0036]
Since the polyimide resin using the above polyimide resin and epoxy resin uses the ester dianhydride represented by the general formula (1), the diisocyanate represented by the general formula (2) is used. The combination has a particularly excellent low water absorption and a relatively low glass transition temperature, so that it can be an excellent adhesive material capable of low moisture absorption and low temperature bonding.
[0037]
Examples of the epoxy resin that can be used in the resin composition according to the present invention include bisphenol epoxy resin, halogenated bisphenol epoxy resin, phenol novolac epoxy resin, halogenated phenol novolac epoxy resin, alkylphenol novolac epoxy resin, polyphenol. Epoxy resin, polyglycol epoxy resin, cycloaliphatic epoxy resin, cresol novolac epoxy resin, glycidylamine epoxy resin, urethane modified epoxy resin, rubber modified epoxy resin, epoxy modified polysiloxane, and the like can be used.
[0038]
When the epoxy resin is mixed with the polyimide resin, the mixing ratio is 1 to 50 parts by weight, preferably 5 to 30 parts by weight with respect to 100 parts by weight of the polyimide. Addition of an epoxy resin increases adhesion, but if it is less than 1 part by weight, the adhesive strength is low, and if it exceeds 50 parts by weight, properties such as flexibility and heat resistance may be inferior. Moreover, the epoxy resin in the resin composition according to the present invention satisfying the water absorption rate of 1.5% or less from the viewpoint of the effect of the water absorption property of the epoxy resin to be used, the solubility in an organic solvent, and the combination with the polyimide resin. The mixing ratio can be variously selected within the above range.
[0039]
Since the resin composition of the present invention comprises the polyimide resin having excellent characteristics obtained as described above, it is 1.5% or less, preferably 1.2% or less, more preferably 1.0% or less. Excellent low water absorption can be expressed. Moreover, since the resin composition concerning this invention contains an epoxy resin further, the adhesiveness is further provided to the characteristics, such as the outstanding heat resistance and low water absorption which a polyimide has.
[0040]
Various materials can be further added to the resin composition of the present invention. Specifically, as necessary for imparting properties such as water absorption, heat resistance, adhesiveness, etc., generally used epoxy curing agents, accelerators and various cups such as acid dianhydrides, amines and imidazoles A ring agent may be used in combination. It is also possible to obtain a resin composition of the present invention by further adding a thermosetting resin other than an epoxy resin, bismaleimide, bisallylnadiimide, phenol resin, cyanate resin, or the like.
[0041]
The resin composition of the present invention can be obtained by uniformly stirring and mixing a polyimide resin, an epoxy resin, an epoxy curing agent, and other components. At this time, an epoxy compound, an epoxy curing agent, and other components can be directly added to the polyimide solution to obtain a resin composition solution. Alternatively, the resin composition of the present invention can be prepared by adding a low boiling point solvent to the polyimide solution, further adding an epoxy resin, an epoxy curing agent, etc., and stirring and mixing.
[0042]
In addition to this, in a poor solvent that dissolves the solvent used for the polyamic acid polymerization sufficiently but the polyimide is difficult to dissolve, the polyimide solution is added, and the polyimide resin is precipitated to remove the unreacted monomer and purified, After drying to obtain a solid polyimide resin, the resin composition of the present invention can be appropriately used. Examples of the poor solvent include, but are not limited to, acetone, methanol, ethanol, isopropanol, benzene, methyl cellosolve, methyl ethyl ketone, and the like.
[0043]
Further, the purified polyimide resin thus obtained can be dissolved again in an organic solvent together with other epoxy resins to form a filtered and purified varnish, but is not limited thereto. The organic solvent used at this time is not particularly limited, and any organic solvent known to those skilled in the art can be used.
[0044]
Conventional polyimide adhesives have insufficient adhesion to metals such as copper foil and resin films such as polyimide, and mixing with an epoxy resin is more difficult than its poor solubility, but the present invention is applied. The resin composition has good adhesion to a metal foil such as a copper foil or a polyimide film, and also has a good solubility in an organic solvent, and is excellent in workability when used.
[0045]
The resin composition of the present invention is particularly suitable for use as an adhesive, and there are various methods for its specific use within the range that can be carried out by those skilled in the art. It can be used as a sheet-like adhesive. In addition, the resin composition of the present invention is impregnated as a varnish in glass cloth, glass mat, aromatic polyamide fiber cloth, aromatic polyamide fiber mat, etc., and the resin is semi-cured to be used as a fiber-reinforced sheet adhesive. Is also possible.
[0046]
Furthermore, the resin composition of the present invention can be used as it is as a varnish. Specifically, a varnish in which the resin composition of the present invention is dissolved is applied to one side or both sides of the film and dried to heat a metal foil such as copper foil, aluminum foil or 42 alloy, another film, or a printed circuit board. You may pressurize and adhere. The kind of film in this case is not specifically limited, For example, a polyimide film, a polyester film, etc. are mentioned. Further, the bonding conditions in this case may be any bonding conditions that are necessary and sufficient for adhesive curing. Specifically, the heating temperature is 150 ° C. to 250 ° C., the pressure is 0.1 to 10 MPa, and the heating time is 5 to 20. It is preferable to heat and press under conditions of about a minute.
[0047]
The resin composition according to the present invention obtained as described above has characteristics that can be suitably used for TAB tapes, composite lead frames, laminated materials and the like. Specifically, the water absorption after the curing reaction is 1.5% or less, preferably 1.3% or less, and particularly preferably 1.0% or less. It is excellent in heat resistance and excellent in both heat resistance and adhesiveness. When used as an adhesive, it can be bonded at a temperature of about 250 ° C. or lower, further 200 ° C. or lower.
[0048]
【Example】
[0049]
Example 1
To a glass flask having a capacity of 500 ml, 37.18 g (0.1487 mol) of diphenylmethane diisocyanate was added to 280 g of dimethylformamide (DMF), and heated at 130 ° C. in a nitrogen atmosphere while 2,2-bis (4-hydroxyphenyl) was added. ) 85.7 g (0.1487 mol) of propanedibenzoate-3,3 ′, 4,4′-tetracarboxylic dianhydride (hereinafter referred to as ESDA) was gradually added while paying attention to the viscosity. When the viscosity reached 1500 poise, the addition of ESDA was stopped to obtain a polyimide solution.
[0050]
In 103 g of this polyimide solution, 5 g of Epicoat 828 (manufactured by Yuka Shell) and 3 g of 4,4′-diaminodiphenyl sulfone (4,4′-DDS) were dissolved. The obtained varnish was cast on a glass plate, dried at 100 ° C. for 10 minutes, peeled off from the glass plate, fixed to an iron frame, and further dried at 130 ° C. for 10 minutes to obtain a sheet having a thickness of 25 μm. The obtained sheet was sandwiched between a polyimide film (Apical 50AH, Kaneka Chemical Co., Ltd.) and a 25 μm copper foil, and heated and pressurized at a temperature of 200 ° C. and a pressure of 3 MPa for 20 minutes to obtain a copper-clad flexible laminate.
[0051]
(Example 2)
A polyimide solution was obtained in the same manner as in Example 1 except that the diisocyanate component was changed to 24.39 g (0.1487 mol) of hexamethylene diisocyanate.
[0052]
In 103 g of this polyimide solution, 5 g of Epicoat 828 (manufactured by Yuka Shell) and 3 g of 4,4′-diaminodiphenyl sulfone (4,4′-DDS) were dissolved. The obtained varnish was cast on a glass plate, dried at 100 ° C. for 10 minutes, peeled off from the glass plate, fixed to an iron frame, and further dried at 130 ° C. for 10 minutes to obtain a sheet having a thickness of 25 μm. The obtained sheet was sandwiched between a polyimide film (Apical 50AH, Kaneka Chemical Co., Ltd.) and a 25 μm copper foil, and heated and pressurized at a temperature of 200 ° C. and a pressure of 3 MPa for 20 minutes to obtain a copper-clad flexible laminate.
[0053]
(Example 3)
5 g of Epicoat 1032H60 (manufactured by Yuka Shell) and 3 g of 4,4′-diaminodiphenylsulfone (4,4′-DDS) were dissolved in 103 g of the polyimide solution obtained in Example 1. The obtained varnish was cast on a glass plate, dried at 100 ° C. for 10 minutes, peeled off from the glass plate, fixed to an iron frame, and further dried at 130 ° C. for 10 minutes to obtain a sheet having a thickness of 25 μm. The obtained sheet was sandwiched between a polyimide film (Apical 50AH, Kaneka Chemical Co., Ltd.) and a 25 μm copper foil, and heated and pressurized at a temperature of 200 ° C. and a pressure of 3 MPa for 20 minutes to obtain a copper-clad flexible laminate.
[0054]
(Comparative Example 1)
A glass flask having a capacity of 500 ml was charged with 280 g of dimethylformamide (DMF) with 37.18 g (0.1487 mol) of diphenylmethane diisocyanate, and heated at 130 ° C. in a nitrogen atmosphere while benzophenone tetracarboxylic dianhydride (hereinafter, 47.88 g (0.1487 mol) (referred to as BTDA) was gradually added while paying attention to the viscosity. When the viscosity reached 1500 poise, the addition of BTDA was stopped to obtain a polyimide solution.
[0055]
103 g of the polyimide solution obtained above, 5 g of Epicoat 828 (manufactured by Yuka Shell), and 3 g of 4,4′-DDS were dissolved. The obtained varnish was cast on a glass plate, dried at 100 ° C. for 10 minutes, peeled off from the glass plate, fixed to an iron frame, and further dried at 150 ° C. for 20 minutes to obtain a sheet having a thickness of 25 μm. The obtained sheet was sandwiched between a polyimide film (Apical 50AH, Kaneka Chemical Co., Ltd.) and a 25 μm copper foil, and heated and pressurized at a temperature of 200 ° C. and a pressure of 3 MPa for 20 minutes to obtain a copper-clad flexible laminate.
[0056]
(Comparative Example 2)
The polyimide solution obtained in Example 1 was cast on a glass plate, dried at 100 ° C. for 10 minutes, then peeled off from the glass plate, fixed to an iron frame and further dried at 150 ° C. for 20 minutes, and a sheet having a thickness of 25 μm was formed. Obtained. The obtained sheet was sandwiched between a polyimide film (Apical 50AH, Kaneka Chemical Co., Ltd.) and a 25 μm copper foil, and heated and pressurized at a temperature of 200 ° C. and a pressure of 3 MPa for 20 minutes to obtain a copper-clad flexible laminate.
[0057]
(Comparative Example 3)
Platabond M1276 (copolymerized nylon, manufactured by Nippon Rilsan) was dissolved in 10 g, Epicoat 828 (manufactured by Yuka Shell) in 20 g, and 1 g of diaminodiphenylsulfone was dissolved in 83 g of DMF. The obtained varnish was cast on a glass plate, dried at 100 ° C. for 10 minutes, peeled off from the glass plate, fixed to an iron frame, and further dried at 130 ° C. for 10 minutes to obtain a sheet having a thickness of 25 μm. The obtained sheet was sandwiched between a polyimide film (Apical 50AH, Kaneka Chemical Co., Ltd.) and a 25 μm copper foil, and heated and pressurized at a temperature of 200 ° C. and a pressure of 3 MPa for 20 minutes to obtain a copper-clad flexible laminate.
[0058]
The flexible copper-clad laminates obtained in the above Examples and Comparative Examples were evaluated for peel strength and solder heat resistance (appearance evaluation when immersed in a 260 ° C. solder bath for 10 seconds). Moreover, the water absorption rate of each adhesive sheet was also evaluated. The results are shown in Table 1.
[0059]
[Table 1]
Figure 0003899398
[0060]
【The invention's effect】
The resin composition of the present invention can be bonded at a temperature of 250 ° C. or lower when used as an adhesive. Unlike conventional heat-resistant adhesives, it does not require high temperature for bonding, exhibits high adhesion to polyimide films, and maintains high adhesion to high temperatures. Furthermore, since it has a low water absorption rate, it has solder heat resistance that does not cause swelling or the like when immersed in a solder bath.

Claims (2)

一般式(1)化1
Figure 0003899398
(式中、Xは芳香族環を含む二価の基を示す。)で表されるエステル酸二無水物と一般式(2)化2
Figure 0003899398
(式中、Yは脂肪族の二価の基、または、化3
Figure 0003899398
(式中、R 1 、R 2 、R 3 、R 4 、R 5 は水素またはアルキル基、Aは二価の有機基を示す。ベンゼン環の水素は、置換されない。)から選択される二価の基を示す。)で表されるジイソシアナートとを反応させて得られるポリイミド樹脂とエポキシ樹脂を含有し、硬化反応後の吸水率が1.5%以下であることを特徴とする樹脂組成物。
General formula (1)
Figure 0003899398
(Wherein X represents a divalent group containing an aromatic ring) and an ester dianhydride represented by the general formula (2)
Figure 0003899398
Wherein Y is an aliphatic divalent group or
Figure 0003899398
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 are hydrogen or an alkyl group, A represents a divalent organic group, and hydrogen in the benzene ring is not substituted). The group of is shown. The resin composition characterized by containing the polyimide resin obtained by making it react with the diisocyanate represented by this, and an epoxy resin, and the water absorption after hardening reaction is 1.5% or less.
前記ジイソシアナートが一般式(3)化4
Figure 0003899398
(式中Zは、−C(=O)−、−SO−、−O−、−S−、−(CH−、−NHCO−、−C(CH−、−C(CF−、または−C(=O)O−であり、m、nは1以上10以下の整数である。)で示されることを特徴とする、請求項1に記載する樹脂組成物。
【0000】
The diisocyanate is represented by the general formula (3)
Figure 0003899398
(In the formula, Z represents —C (═O) —, —SO 2 —, —O—, —S—, — (CH 2 ) m —, —NHCO—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or —C (═O) O—, and m and n are integers of 1 or more and 10 or less.) The resin composition according to claim 1, object.
0000
JP05811099A 1999-03-05 1999-03-05 Resin composition Expired - Fee Related JP3899398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05811099A JP3899398B2 (en) 1999-03-05 1999-03-05 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05811099A JP3899398B2 (en) 1999-03-05 1999-03-05 Resin composition

Publications (2)

Publication Number Publication Date
JP2000256536A JP2000256536A (en) 2000-09-19
JP3899398B2 true JP3899398B2 (en) 2007-03-28

Family

ID=13074846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05811099A Expired - Fee Related JP3899398B2 (en) 1999-03-05 1999-03-05 Resin composition

Country Status (1)

Country Link
JP (1) JP3899398B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267024A (en) * 2001-03-07 2002-09-18 Mitsubishi Cable Ind Ltd Oil seal

Also Published As

Publication number Publication date
JP2000256536A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
JP4221290B2 (en) Resin composition
CN107325285B (en) Polyimide, polyimide-based adhesive, adhesive material, adhesive layer, adhesive sheet, laminate, wiring board, and method for producing same
EP1193280B1 (en) Polyimide resin composition with improved moisture resistance, adhesive solution, filmy bonding member, layered adhesive film, and processes for producing these
TWI400268B (en) Thermosetting resin composition and use thereof
KR100960174B1 (en) Thermo-setting resin composition and lamination body and circuit board using the composition
CN108690552B (en) Adhesive, adhesive material, adhesive layer, adhesive sheet, copper foil, copper-clad laminate, wiring board, and method for producing same
WO2001057112A1 (en) Adhesive polyimide resin and adhesive laminate
JP4875794B2 (en) Resin composition
JP2003027014A (en) Adhesive film
JP4017029B2 (en) Coverlay adhesive and coverlay film
JP3638404B2 (en) Flexible printed wiring board
JP3899398B2 (en) Resin composition
EP1281727A1 (en) Soluble polyimide and composition comprising the same, bonding sheet, adhesive laminated film for covering accelerator beam tube, and adhesive laminated film for covering conductor wire for accelerator quench heater
JP4071958B2 (en) Polyimide resin composition
JP3590902B2 (en) Polyimide film with improved adhesion and method for producing the same
JP4169978B2 (en) Low dielectric adhesive and film-like joining member comprising the same
JP2009001793A (en) Adhesive
JP2001329246A (en) Curable resin composition for adhesive improved in moisture resistance, cured item obtained therefrom, and production method thereof
JP2000143981A (en) Resin composition
JP4620834B2 (en) Bonding sheet
JP2003011308A (en) Film-shaped laminated member
JP3531082B2 (en) Flexible copper clad laminate
JP2005162945A (en) Heat-resistant resin composition and resin and adhesive film produced therefrom
JP4077621B2 (en) Low dielectric adhesive, film-like bonding material, and adhesive laminate
JP2002060620A (en) Polyimide solution excellent in storage stability, polyimide-based adhesive solution and film-like laminated member obtained using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061207

R150 Certificate of patent or registration of utility model

Ref document number: 3899398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees