JP3894736B2 - Diesel engine vortex chamber combustion chamber - Google Patents

Diesel engine vortex chamber combustion chamber Download PDF

Info

Publication number
JP3894736B2
JP3894736B2 JP2001084491A JP2001084491A JP3894736B2 JP 3894736 B2 JP3894736 B2 JP 3894736B2 JP 2001084491 A JP2001084491 A JP 2001084491A JP 2001084491 A JP2001084491 A JP 2001084491A JP 3894736 B2 JP3894736 B2 JP 3894736B2
Authority
JP
Japan
Prior art keywords
chamber
groove
combustion gas
guide groove
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001084491A
Other languages
Japanese (ja)
Other versions
JP2002276371A (en
Inventor
学 宮崎
潔 畑浦
宏 鈴木
ジョージ 松本
幸子 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001084491A priority Critical patent/JP3894736B2/en
Publication of JP2002276371A publication Critical patent/JP2002276371A/en
Application granted granted Critical
Publication of JP3894736B2 publication Critical patent/JP3894736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0678Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets
    • F02B23/069Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets characterised by its eccentricity from the cylinder axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/16Indirect injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0678Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets
    • F02B23/0687Multiple bowls in the piston, e.g. one bowl per fuel spray jet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンのうず室式燃焼室に関する。
【0002】
【前提構成】
本発明のディーゼルエンジンのうず室式燃焼室は、例えば図1・図2(本発明)、または図11−図12(従来技術)に示すように、次の前提構成を有するものを対象とする。
【0003】
図1(A)は本発明の実施形態1を説明するための水冷縦形ディーゼルエンジンのうず室式燃焼室の縦断側面図、図1(B)は図1(A)中のピストンの平面図、図1(C)は図1(B)のC−C線断面図。図2(A)・図2(B)は図1中のピストン上面部分の斜視図である。
【0004】
図11(A)は従来技術1を示す水冷縦形ディーゼルエンジンのうず室式燃焼室の縦断側面図、図11(B)は図11(A)中のピストンの平面図。図12は図11中のピストン上面部分の斜視図である。
【0005】
[前提構成]
ディーゼルエンジンのうず室式燃焼室の主室(1)にうず室(2)を噴孔(3)を介して連通させ、噴孔(3)は主室(1)の上面の後部位置に前下がり傾斜向きに開口させる。
主室(1)の下面を形成するピストン上面(4)に、左右一対の円板状凹室(5)(5)と前部凹室(25)と燃焼ガス流拡散ガイド溝(6)と分流ガイド体(7)とを設ける。
【0006】
左右一対の円板状凹室(5)(5)は、ピストン上面(4)の前後方向の中間領域内で互いに左右に離して配置する。前部凹室(25)はピストン上面(4)の前部中央領域に配置する。
燃焼ガス流拡散ガイド溝(6)は、ピストン上面(4)の左右方向の中間部領域内で、前後方向の後部領域から中間部領域に亘って形成し、この拡散ガイド溝(6)の溝底面(8)は、前上がり傾斜状に形成し、拡散ガイド溝(6)の左右両溝側縁(9)(9)は互いに前拡がりに形成する。
【0007】
拡散ガイド溝(6)の後端の溝始端部(10)に噴孔(3)を臨ませ、拡散ガイド溝(6)の前寄りの溝終端寄り部(11)を各円板状凹室(5)(5)のピストン中心側凹室部分に連通させる。
分流ガイド体(7)は拡散ガイド溝(6)内の溝幅中間部領域内で溝底面(8)から隆起させて構成したものである。
なお、円板状凹室(5)(5)は、燃焼促進の働きをするものであり、この燃焼促進専用のものとして形成てもよいが、吸排気弁のバルブリセスと兼ねさせてもよい。
【0008】
[前提構成の作用]
ピストン(43)の圧縮上死点付近において、うず室(2)内で燃焼・膨張し始めた燃焼ガス流は、噴孔(3)から主室(1)の燃焼ガス流拡散ガイド溝(6)の溝始端部(10)に吹き込み、この拡散ガイド溝(6)内を左右に拡がりながら、勢いよく前進して行く。
【0009】
この拡散ガイド溝(6)内を流れる燃焼ガス流は、その前進流の勢いに乗って、拡散ガイド溝(6)および左右の円板状凹室(5)(5)から、ピストン上面(4)のうちの前側上面部分上に乗り上がり、主室(1)の前側部分領域からその左右両側部分領域に亘って、勢いよく多量に流れ込んで行く。
【0010】
しかし、その燃焼ガス流は、主室(1)の左右両側部分領域から反転して、主室(1)の後側部分領域へ流れ込もうとするが、この後側部分領域の全域にまで充分多量に速やかに流れ込みにくくて、不足ぎみになり、主室(1)での空気利用率が低下する傾向にある。
【0011】
【従来の技術】
本発明と対比すべき従来技術としては、本出願人がさきに提案した次のものがある。
○ 従来技術1. 図11・図12参照. (特開平5−195783号公報の図1とその明細書中の説明文).
【0012】
図11(A)は従来技術1を示す水冷縦形ディーゼルエンジンのうず室式燃焼室の縦断側面図、図11(B)は図11(A)中のピストンの平面図。図12は図11中のピストン上面部分の斜視図である。
この従来技術1は、上記前提構成において、次の構成を追加したものである。
【0013】
前記燃焼ガス流拡散ガイド溝(6)の溝終端縁(12)は、各円板状凹室(5)(5)よりも前方へオーバーハングさせて位置させてある。
分流ガイド体(7)の左右の各ガイド体側面(13)(13)は、拡散ガイド溝(6)内で、その溝終端縁(12)にまで伸びている。
ガイド体(7)の上面(16)は、前上がりの緩やかな傾斜面になつている。分流ガイド体(7)の始端面(15)は垂直に立ち上がっている。
【0014】
○ 従来技術2. 図13・図14参照. (特開平5−195783号公報の図4とその明細書中の説明文).
図13(A)は従来技術2を示す水冷縦形ディーゼルエンジンのうず室式燃焼室の縦断側面図、図13(B)は図13(A)中のピストンの平面図。図14は図13中のピストン上面部分の斜視図である。
この従来技術2は、上記前提構成において、その一部を次のように変更したものである。
【0015】
前記前提構成の燃焼ガス流拡散ガイド溝(6)の代りに、直進ガイド溝(91)を形成する。前記分流ガイド体(7)の代わりに、半円板体(92)を形成する。この直進ガイド溝(91)・半円板体(92)・前記左右一対の円板状凹室(5)(5)により、クローバーリーフ形燃焼室を形成したものである。
半円板体(92)の上面(93)は、前上がりの緩やかな傾斜面になつている。半円板体(92)の周面は垂直に立ち上がっている。
【0016】
【発明が解決しようとする課題】
上記従来技術では、次の問題がある。
○ 従来技術1. 図11・図12参照.
[ イ. 燃焼ガス流は、主室(1)の前側部分領域および左右両側部分領域から、その後側部分領域の全域にまで充分多量に速やかに流れ込みにくくて、不足ぎみになるため、主室(1)での空気利用率が低下する。 ]
【0017】
ピストン(43)の圧縮上死点付近において、うず室(2)内で燃焼・膨張し始めた燃焼ガス流は、噴孔(3)から主室(1)の燃焼ガス流拡散ガイド溝(6)の溝始端部(10)に吹き込み、この拡散ガイド溝(6)内を左右に拡がりながら、勢いよく前進して行く。
【0018】
この拡散ガイド溝(6)内を流れる燃焼ガス流は、その前進流の勢いに乗って、拡散ガイド溝(6)および左右の円板状凹室(5)(5)から、ピストン上面(4)のうちの前側上面部分上に乗り上がり、主室(1)の前側部分領域からその左右両側部分領域に亘って、勢いよく多量に流れ込んで行く。
【0019】
しかし、その燃焼ガス流は、主室(1)の左右両側部分領域から反転して、主室(1)の後側部分領域へ流れ込もうとするが、この後側部分領域の全域にまで充分多量に速やかに流れ込みにくくて、不足ぎみになり、主室(1)での空気利用率が低下する。
このため、I排気ガス中のHCやCOなどの未燃焼有害成分を低減させるうえ、IIエンジンの出力を向上させ、III燃費を低減させることに、充分に寄与することができない。
【0020】
[ ロ. 燃焼ガス流の残部が主室(1)の後側部分領域の全域にまで充分多量に速やかに流れ込みにくい分だけ、燃焼速度を速めにくく、エンジンを高速回転化するのに寄与しにくい。 ]
【0021】
上記問題点[イ]で述べたように、燃焼ガス流は、主室(1)の前側部分領域および左右両側部分領域から、その後側部分領域の全域にまで充分多量に速やかに流れ込みにくくて、不足ぎみになる分だけ、燃焼速度を速めることができず、エンジンを高速回転化するのに寄与することができにくい。
【0022】
○ 従来技術2. 図13・図14参照.
[ イ. 燃焼ガス流は、主室(1)の左右両側部分領域から、その後側部分領域の全域にまで充分多量に速やかに流れ込みにくくて、不足ぎみになるため、主室(1)での空気利用率が低下する。 ]
【0023】
ピストン(43)の圧縮上死点付近において、うず室(2)内で燃焼・膨張し始めた燃焼ガス流は、噴孔(3)から主室(1)の直進ガイド溝(91)内を直進し、半円板体(92)の周面に衝突する。この燃焼ガス流の一部は半円板体(92)を乗り越えて主室(1)の前側部分領域に流れ込み、その残部は左右に分かれて左右の各円板状凹室(5)(5)内で旋回する。
しかし、その燃焼ガス流の残部は、各円板状凹室(5)(5)内から主室(1)の後側部分領域の全域にまで充分多量に速やかに流れ込みにくくて、この後側部分領域で不足ぎみになり、主室(1)での空気利用率が低下する。
【0024】
[ ロ. 燃焼ガス流の残部が主室(1)の後側部分領域の全域にまで充分多量に速やかに流れ込みにくい分だけ、燃焼速度を速めにくく、エンジンを高速回転化するのに寄与しにくい。 ]
【0025】
上記問題点[イ]で述べたように、その燃焼ガス流の残部は、各円板状凹室(5)(5)内から主室(1)の後側部分領域の全域にまで充分多量に速やかに流れ込みにくくて、この後側部分領域で不足ぎみになる分だけ、燃焼速度を速めることができず、エンジンを高速回転化するのに寄与することができにくい。
【0026】
本発明の課題は、次のようにすることにある。
(イ).分流ガイド体の左右の各ガイド斜面の案内作用で、拡散ガイド溝内を流れる燃焼ガス流が主室の後側部分領域の全域にまで流れ込む量を充分多量に増加させることにより、主室での空気利用率を向上させる。
(ロ).燃焼ガス流が主室の後側部分領域の全域にまで充分多量に速やかに流れ込むようにすることにより、燃焼速度を速めて、エンジンを高速回転化するのに寄与する。
【0027】
(ハ).燃焼ガス流は、大きな流動抵抗を受けること無く高速度のままに保持するうえ、広いガイド斜面から円板状凹室の狭い室内周面に向かって絞りながら加速していくことにより、主室の後側部分領域の全域にまで流れ込んで行く時間を短縮させて、空気と燃料との混合性能を高めて、燃焼性能を高める。
(ニ).燃焼ガス流を主室の前側部分領域・左右両側部分領域・および後側部分領域の全ての領域部分に亘って、短時間の内に速やかに充分多量に行き渡らせることにより、上記課題(イ)・(ロ)・(ハ)の達成度合いを更に高める。
【0028】
【課題を解決するための手段】
本発明のディーゼルエンジンのうず室式燃焼室は、上記前提構成において、上記課題を解決するために、次の特徴構成を追加したことを特徴とする。
【0029】
【0030】
【0031】
【0032】
【0033】
○ 発明1. 図1・図2・図6参照
前記燃焼ガス流拡散ガイド溝(6)の溝終端縁(12)は、各円板状凹室(5)(5)内に位置させる。
【0034】
分流ガイド体(7)の表面にはその左右両側部から中央部に近付くにつれて高くなる左右一対のガイド斜面(19)(19)を形成する。この左右一対の各ガイド斜面(19)(19)は、左右の各円板状凹室(5)(5)の各室内周面(14)(14)のうちのピストン中心寄りの内周面部分に滑らかに連続させる。
【0035】
分流ガイド体(7)の前部中央領域の上面に段下がり面(26)をピストン上面(4)よりも低く位置させて形成する。段下がり面(26)は左右の各ガイド斜面(19)(19)の上部に連続させ、段下がり面(26)の前端部(28)はピストン上面(4)よりも低い位置で、前部凹室(25)の室内周面(29)の少なくとも上部周面部分を切除する形で前部凹室(25)に臨ませる。
これにより、燃焼ガス流拡散ガイド溝(6)内を前向きに流れる燃焼ガス流の一部を前部凹室(25)へ流入させる燃焼ガス流導入空間(30)を段下がり面(26)の上側位置に形成する。
図1・図2に例示するように、前記分流ガイド体(7)の始端面(15)を前上がりの傾斜面に形成する。
【0036】
図6に例示するように、前記燃焼ガス流拡散ガイド溝(6)の溝底面(8)は、その溝幅方向の左右両側部から分流ガイド体(7)に近づくほど深くなる中下がり傾斜状に形成した。
【0037】
【発明の効果】
本発明のディーゼルエンジンのうず室式燃焼室は、つぎの効果を奏する。
○ 発明1. 請求項1. 図1・図2・図6参照
【0038】
[ イ. 分流ガイド体(7)の表面の左右一対のガイド斜面(19)(19)の案内作用で、拡散ガイド溝(6)内を流れる燃焼ガス流の残部が主室(1)の後側部分領域の全域にまで流れ込む量が充分多量に増加させることができた分だけ、主室(1)での空気利用率が向上する。 ]
【0039】
まず、前記前提構成から、ピストン(43)の圧縮上死点付近において、うず室(2)内で燃焼・膨張し始めた燃焼ガス流は、噴孔(3)から主室(1)の燃焼ガス流拡散ガイド溝(6)の溝始端部(10)に吹き込み、この拡散ガイド溝(6)内を左右に拡がりながら、勢いよく前進して行く。
【0040】
この拡散ガイド溝(6)内を流れる燃焼ガス流の一部は、その前進流の勢いに乗って、拡散ガイド溝(6)および左右の円板状凹室(5)(5)から、ピストン上面(4)のうちの前側上面部分上に乗り上がり、主室(1)の前側部分領域からその左右両側部分領域に亘って、勢いよく多量に流れ込んで行く。
【0041】
そして、本発明1の特徴構成として、前記燃焼ガス流拡散ガイド溝(6)の溝終端縁(12)は、各円板状凹室(5)(5)内に位置させる。
分流ガイド体(7)の表面にはその左右両側部から中央部に近付くにつれて高くなる左右一対のガイド斜面(19)(19)を形成する。この左右一対の各ガイド斜面(19)(19)は、左右の各円板状凹室(5)(5)の各室内周面(14)(14)のうちのピストン中心寄りの内周面部分に滑らかに連続させて構成する。
【0042】
この特徴構成から、拡散ガイド溝(6)内を流れる燃焼ガス流の残部は、分流ガイド体(7)の表面の左右一対のガイド斜面(19)(19)で、左右の各円板状凹室(5)(5)の内周面(14)(14)に沿って滑らかに案内されて、各円板状凹室(5)(5)内で勢いよくUターンさせられて、両円板状凹室(5)(5)からピストン上面(4)(4)のうちの後側上面部分上に乗り上がり、主室(1)の左右両側部分領域から後側部分領域の全域にまで、勢いよく速やかに充分多量に流れ込んで行く。
【0043】
このように、拡散ガイド溝(6)内を流れる燃焼ガス流の残部が主室(1)の後側部分領域の全域にまで流れ込む量が、従来技術では不足していたのを、本発明1では充分多量に増加させることができた分だけ、主室(1)での空気利用率が向上して、I排気ガス中のHCやCOなどの未燃焼有害成分を低減させるうえ、IIエンジンの出力を向上させ、III燃費を低減させることに、寄与することができる。
【0044】
[ ロ. 燃焼ガス流の残部が主室(1)の後側部分領域の全域にまで充分多量に速やかに流れ込むようになった分だけ、燃焼速度が速まり、エンジンを高速回転化するのに寄与することができる。 ]
【0045】
上記効果[イ]で述べたように、拡散ガイド溝(6)内を流れる燃焼ガス流の残部は、分流ガイド体(7)の表面の左右一対のガイド斜面(19)(19)で、左右の各円板状凹室(5)(5)の内周面(14)(14)に沿って滑らかに案内されて、各円板状凹室(5)(5)内で勢いよくUターンさせられて、両円板状凹室(5)(5)からピストン上面(4)(4)のうちの後側上面部分上に乗り上がり、主室(1)の左右両側部分領域から後側部分領域の全域にまで、勢いよく速やかに充分多量に流れ込んで行く。
【0046】
このように、上記燃焼ガス流の残部が主室(1)の後側部分領域の全域にまで充分多量に速やかに流れ込むようになった分だけ、燃焼速度が速まり、エンジンを高速回転化するのに寄与することができる。
【0047】
[ ハ. 燃焼ガス流は、両ガイド斜面(19)(19)に沿ってスムースに左右に分かれて行って、大きな流動抵抗を受けること無く高速度のままに保持されるうえ、広いガイド斜面(19)(19)から円板状凹室(5)(5)の狭い室内周面(14)(14)に向かって、絞られながら加速されていく分だけ、主室(1)の後側部分領域の全域にまで流れ込んで行く時間が短縮されて、空気と燃料との混合性能が高まり、燃焼性能が高まる。 ]
【0048】
うず室(2)内で燃焼・膨張し始めた燃焼ガス流は、噴孔(3)から主室(1)の燃焼ガス流拡散ガイド溝(6)の溝始端部(10)に吹き込み、分流ガイド体(7)に衝突して行くときに、このガイド体(7)の表面が左右一対のガイド斜面(19)(19)になっていることから、両ガイド斜面(19)(19)に沿ってスムースに左右に分かれて行って大きな流動抵抗が生じることが無く、その流動速度が殆ど低下せず、高速度のままに保持される。
【0049】
この高速度に保持された燃焼ガス流は、広い各ガイド斜面(19)(19)から円板状凹室(5)(5)の狭いから室内周面(14)(14)に向かって、次第に絞られながら加速していく分だけ、各円板状凹室(5)(5)内で勢いよくUターンさせられて行くUターン速度も加速されて、主室(1)の左右両側部分領域から後側部分領域の全域にまで、勢いよく速やかに多量に流れ込んで行く時間が短縮されるので、空気と燃料との混合速度が速まって混合性能が高まり、燃焼性能が高まる。
【0050】
その結果、I排気ガス中のHCやCOなどの未燃焼有害成分を低減させる事、IIエンジンの出力を向上させる事、III燃費を低減させる事、およびIVエンジンを高速回転化させる事に、更に寄与することができる。
【0051】
[ ニ. 燃焼ガス流を主室(1)の前側部分領域・左右両側部分領域・および後側部分領域の全ての領域部分に亘って、短時間の内に速やかに充分多量に行き渡らせることにより、上記効果[イ.空気利用率の向上に寄与すること]、効果[ロ.エンジンの高速回転化に寄与すること]、および効果[ハ.燃焼性能を高めること]を、更に向上させる。 ]
【0052】
分流ガイド体(7)の前部中央領域の上面に段下がり面(26)をピストン上面(4)よりも低く位置させて形成速する。段下がり面(26)は左右の各ガイド斜面(19)(19)の上部に連続させる。段下がり面(26)の前端部(28)はピストン上面(4)よりも低い位置で、前部凹室(25)の室内周面(29)の少なくとも上部周面部分を切除する形で前部凹室(25)に臨ませる。これにより、燃焼ガス流拡散ガイド溝(6)内を前向きに流れる燃焼ガス流の一部を前部凹室(25)へ流入させる燃焼ガス流導入空間(30)を段下がり面(26)の上側位置に形成する。
【0053】
この構成から、まず、うず室(2)内から主室(1)の燃焼ガス流拡散ガイド溝(6)内に流れ込んできた燃焼ガス流の一部は、分流ガイド体(7)の左右一対のガイド斜面(19)(19)の上側空間、および段下がり面(26)上の燃焼ガス流導入空間(30)を通って前部凹室(25)に流れ込み、シリンダ(41)の前部の内周面に案内されて左右両側へ拡がって行って、Uターンして行く。このため、その燃焼ガス流の一部は、主室(1)の前側部分領域から左右両側部分領域までの間の全域に亘って、短時間のうちに速やかに充分多量に行き渡る。
【0054】
次に、上記効果[イ]でも述べたように、拡散ガイド溝(6)内を流れる燃焼ガス流の残部は、分流ガイド体(7)の表面の左右一対のガイド斜面(19)(19)で、左右の各円板状凹室(5)(5)の内周面(14)(14)に沿って滑らかに案内されて、各円板状凹室(5)(5)内で勢いよくUターンさせられて、両円板状凹室(5)(5)からピストン上面(4)(4)のうちの後側上面部分上に乗り上がり、主室(1)の左右両側部分領域から後側部分領域の全域にまで、勢いよく速やかに充分多量に流れ込んで行く。
【0055】
このように、燃焼ガス流を主室(1)の前側部分領域・左右両側部分領域・および後側部分領域の全ての領域部分に亘って、短時間の内に速やかに充分多量に行き渡らせることができる。これにより、上記効果[イ.空気利用率の向上に寄与すること]、効果[ロ.エンジンの高速回転化に寄与すること]、および効果[ハ.燃焼性能を高めること]を、更に向上させることができる。
【0056】
[ ヘ. 燃焼ガス流が分流ガイド体(7)の始端面(15)の前上がり傾斜面に容易に乗り上がりながら左右に分流案内されて、拡散ガイド溝(6)内へとスムースに流れ込んで行って、その流速低下を無くすことにより、上記効果[イ.空気利用率の向上に寄与すること]、効果[ロ.エンジンの高速回転化に寄与すること]、効果[ハ.燃焼性能を高めること]、および効果[ニ.燃焼ガス流を主室の全ての領域部分に亘って、短時間の内に速やかに充分多量に行き渡らせること]を、更に向上させる。 ]
【0057】
前記分流ガイド体(7)の始端面(15)を前上がりの傾斜面に形成した。
この構成から、うず室(2)内で燃焼・膨張し始めた燃焼ガス流は、噴孔(3)から拡散ガイド溝(6)の溝始端部(10)に吹き込んで来て、分流ガイド体(7)の始端面(15)に衝突して行ったときに、この始端面(15)の前上がりの傾斜面に容易に乗り上がりながら左右に分流案内されて、拡散ガイド溝(6)内へとスムースに流れ込んで行く。
【0058】
このため、燃焼ガス流が分流ガイド体(7)の始端面(15)で跳ね返されて反転・逆流して流動抵抗が大きくなることが無くなる分だけ、燃焼ガス流が拡散ガイド溝(6)内を流れる流速の低下が無くなり、その流速が速くなる。
これにより、上記発明1の効果[イ.空気利用率の向上に寄与すること]、効果[ロ.エンジンの高速回転化に寄与すること]、効果[ハ.燃焼性能を高めること]、および効果[ニ.燃焼ガス流を主室の全ての領域部分に亘って、短時間の内に速やかに充分多量に行き渡らせること]を更に向上させることができる。
【0059】
[ チ. 拡散ガイド溝(6)内を流れる燃焼ガス流は、その流動中心がガイド斜面 (19)(19)側に近付いてくる分だけ、円板状凹室(5)(5)内でUターンする勢いが強くなることにより、上記効果[イ.空気利用率の向上に寄与すること]、効果[ロ.エンジンの高速回転化に寄与すること]、および効果[ハ.燃焼性能を高めること]を更に向上させる。 ]
【0060】
前記燃焼ガス流拡散ガイド溝(6)の溝底面(8)は、その溝幅方向の左右両側部から分流ガイド体(7)に近づくほど深くなる中下がり傾斜状に形成した。
この構成から、拡散ガイド溝(6)内を流れる燃焼ガス流は、その流動中心が溝側縁(9)(9)よりもガイド斜面 (19)(19)側に近付いてくる分だけ、ガイド斜面 (19)(19)から円板状凹室(5)(5)の内周面(14)(14)に沿って案内されるときに大回りするので、円板状凹室(5)(5)内でUターンする勢いが強くなる。
これにより、上記効果[イ.空気利用率の向上に寄与すること]、効果[ロ.エンジンの高速回転化に寄与すること]、および効果[ハ.燃焼性能を高めること]を更に向上させることができる。
【0061】
【発明の実施の形態】
以下、本発明のディーゼルエンジンのうず室式燃焼室の実施の形態を、図面に基づき説明する。
【0062】
○ 実施形態1. 図1・図2・図6参照.
図1(A)は本発明の実施形態1を説明するための図で、実施形態1の構成要素である、前上がりの傾斜面になっている、分流ガイド体の始端面を有する、水冷縦形ディーゼルエンジンのうず室式燃焼室の縦断側面図、図1(B)は図1(A)中のピストンの平面図、図1(C)は図1(B)のC−C線断面図。図2(A)・図2(B)は図1中のピストン上面部分の斜視図である。
図6(A)は本発明の実施形態1を説明するための図で、実施形態1の構成要素である、中下がり傾斜状になっている、燃焼ガス流拡散ガイド溝の溝底面を有する、水冷縦形ディーゼルエンジンのうず室式燃焼室のピストン上面部分の斜視図、図6(B)は図6(A)のB−B線断面図である。
【0063】
図1(A)において、符号(41)はシリンダブロック、(42)はシリンダヘッドブロック、(43)はピストン、(44)は吸気弁、(45)は燃料噴射器、(46)はヒートプラグ、(1)はうず室式燃焼室の主室、(2)はうず室、(3)は噴孔、(4)はピストン上面(4)である。
【0064】
図1および図2に示すように、水冷縦形多気筒ディーゼルエンジンのうず室式燃焼室の主室(1)に、うず室(2)を噴孔(3)を介して連通させる。噴孔(3)は主室(1)の上面の後部位置に前下がり傾斜向きに開口させる。
噴孔(3)の横幅の寸法は、その孔上端から孔下端に向かって次第に大きくなる、横拡がり状に形成する。これにより、うず室(2)で燃焼・膨張し始めた燃焼ガス流は、この噴孔(3)を通過するときに次第に左右に拡げられて行って、主室(1)内で左右に拡がりながら前進するように方向づけられる。
【0065】
主室(1)の下面を形成するピストン上面(4)に、左右一対の円板状凹室(5)(5)と、1つの円板状前部凹室(25)と、燃焼ガス流拡散ガイド溝(6)と、分流ガイド体(7)とを設ける。
左右一対の円板状凹室(5)(5)は、ピストン上面(4)の前後方向の中間領域内で互いに左右に離して配置する。1つの円板状前部凹室(25)は、ピストン上面(4)の前部中央領域に配置する。この左右一対の円板状凹室(5)(5)と1つの円板状前部凹室(25)とは、2つの吸気弁(44)のバルブリセスと1つの排気弁のバルブリセスとを兼ねている。
【0066】
燃焼ガス流拡散ガイド溝(6)は、ピストン上面(4)の左右方向の中間部領域内で、前後方向の後部領域から中間部領域に亘って形成する。この拡散ガイド溝(6)の溝底面(8)は、前上がり傾斜状に形成する。拡散ガイド溝(6)の左右両溝側縁(9)(9)は互いに前拡がりに形成する。
【0067】
拡散ガイド溝(6)の後端の溝始端部(10)に噴孔(3)を臨ませる。拡散ガイド溝(6)の前寄りの溝終端寄り部(11)を各円板状凹室(5)(5)のピストン中心側凹室部分に連通させる。
分流ガイド体(7)は拡散ガイド溝(6)内の溝幅中間部領域内で溝底面(8)から隆起させる。
【0068】
前記燃焼ガス流拡散ガイド溝(6)の溝終端縁(12)は、各円板状凹室(5)(5)内に位置させる。この終端縁(12)のうちの分流ガイド体(7)より左側に位置する部分は、円板状凹室(5)内の途中部に位置させるのに対し、その右側に位置する部分は円板状凹室(5)の室内周面(14)に一致させる。
【0069】
分流ガイド体(7)の表面にはその左右両側部から中央部に近付くにつれて高くなる左右一対のガイド斜面(19)(19)を形成する。この左右一対の各ガイド斜面(19)(19)は、左右の各円板状凹室(5)(5)の各室内周面(14)(14)のうちのピストン中心寄りの内周面部分に滑らかに連続させる。
この左右一対の各ガイド斜面(19)(19)は、偏平面に形成する。そして、このガイド斜面(19)(19)は、その長さ方向の中間部の斜面部分よりも、その終端側の斜面部分の方が傾斜角度が次第に大きくなっていくように形成する。
【0070】
分流ガイド体(7)の前部中央領域の上面に段下がり面(26)を、ピストン上面(4)よりも低く位置させて形成する。この段下がり面(26)は前部凹室(25)の底面に対して、同じ高さ位置または少し高い位置に位置させる。段下がり面(26)は左右の各ガイド斜面(19)(19)の上部に連続させる。
【0071】
段下がり面(26)の前端部(28)はピストン上面(4)よりも低い位置で、前部凹室(25)の室内周面(29)の高さ方向の全部または上寄り部の周面部分を切除する形で前部凹室(25)に臨ませる。
これにより、燃焼ガス流拡散ガイド溝(6)内を前向きに流れる燃焼ガス流の一部を前部凹室(25)へ流入させる燃焼ガス流導入空間(30)を段下がり面(26)の上側位置に形成する。
【0072】
そして、図1・図2に示すように、前記分流ガイド体(7)の始端面(15)を前上がりの傾斜面に形成する。分流ガイド体(7)の始端部(31)は、拡散ガイド溝(6)内の始端側領域(32)内で、前記噴孔(3)の下端開口部(33)の直前にずらせて位置させたものである。
また、実施形態1では、前記燃焼ガス流拡散ガイド溝 ( ) の溝底面 ( ) は、図6に示すような、その溝幅方向の左右両側部から分流ガイド体 ( ) に近づくほど深くなる中下がり傾斜状に形成する。
【0073】
○ 実施形態2. 図3参照.
図3(A)は本発明の実施形態2を説明するための水冷縦形ディーゼルエンジンのうず室式燃焼室のピストン上面部分の斜視図、図3(B)は図3(A)のIII−III線断面図、図3(C)・図3(D)は図3(B)の変形例を示す同断面図である。
実施形態2は、上記実施形態1の構成において、その一部を次のように変更する。
図3(A)・図3(B)で示すように、前記一対の各ガイド斜面(19)(19)は、凹局面状に形成する。
【0074】
なお、この図3(B)に示すガイド斜面(19)(19)の形状は、図3(C)に示すように、その尾根すじの断面形状を二山平行凸曲面状に変更すること、または、図3(D)に示すように、その尾根すじの断面形状を曲率半径の大きな円弧または楕円弧状(48)に変更することが考えられる。
【0075】
○ 実施形態3. 図4参照.
図4(A)は本発明の実施形態3を説明するための水冷縦形ディーゼルエンジンのうず室式燃焼室のピストン上面部分の斜視図、図4(B)は図4(A)のB−B線断面図、図4(C)は図4(A)のC−C線断面図である。
実施形態3は、実施形態1と同様、前記分流ガイド体 ( ) の始端面 (15) を前上がりの傾斜面に形成する。
実施形態3は、上記実施形態1または2の構成において、次の構成を追加する。
【0076】
前記燃焼ガス流拡散ガイド溝(6)の溝底面(8)の右半部分の終端部に位置する溝底面終端部(20)は、円板状凹室(5)の凹室底面(21)よりも低く位置させる。この溝底面終端部(20)と凹室底面(21)とを、螺旋状上り傾斜面(37)を介して滑らかに連続させる。
【0077】
○ 実施形態4. 図5参照.
図5(A)は本発明の実施形態4を説明するための水冷縦形ディーゼルエンジンのうず室式燃焼室のピストン上面部分の斜視図、図5(B)は図5(A)のB−B線断面図である。
実施形態4は、上記実施形態1・2または3の構成において、次の構成を追加する。
【0078】
前記分流ガイド体(7)の左右一対のガイド斜面(19)(19)の尾根すじ(22)のうち、その始端寄りに位置する始端寄り尾根部分(23)は、ピストン上面(4)よりも低く位置させて、ピストン上面(4)とほぼ平行なほぼ水平状に形成する。
これに対して、その尾根すじ(22)の終端寄りに位置する終端寄り尾根部分(24)は、始端寄り尾根部分(23)から次第に高くなって行く上り傾斜状に形成する。
【0079】
【0080】
【0081】
○ 実施形態. 図7・図8参照.
図7(A)は本発明の実施形態5を説明するための水冷縦形ディーゼルエンジンのうず室式燃焼室の縦断側面図、図7(B)は図7(A)中のピストンの平面図、図7(C)は図7(B)のC−C線断面図。図8(A)・図8(B)は図7中のピストン上面部分の斜視図である。
実施形態は、上記実施形態1・2・3または4の構成において、その一部を次のように変更する。
【0082】
前述の実施形態1(図1・図2参照)では、分流ガイド体(7)の始端部(31)は、拡散ガイド溝(6)内の始端側領域(32)内で、前記噴孔(3)の下端開口部(33)の直前にずらせて位置させた。この構成をこの実施形態では次のように変更する。
【0083】
すなわち、その分流ガイド体(7)の始端部(31)は、拡散ガイド溝(6)内の始端側領域(32)内で、前記噴孔(3)の下端開口部(33)内のうちの前寄り部分でのみオーバーラップさせる構成にする。
【0084】
○ 実施形態. 図9・図10参照.
図9(A)は本発明の実施形態6を説明するための水冷縦形ディーゼルエンジンのうず室式燃焼室の縦断側面図、図9(B)は図9(A)中のピストンの平面図、図9(C)は図9(B)のC−C線断面図。図10(A)・図10(B)は図9中のピストン上面部分の斜視図である。
実施形態は、上記実施形態1・2・3または4の構成において、その一部を次のように変更する。
【0085】
前述の分流ガイド体(7)の始端部(31)は、拡散ガイド溝(6)内の始端側領域(32)と終端側領域(35)との間の中間領域(34)内に位置させるとともに、左右一対の円板状凹室(5)(5)の中心点間を結ぶ仮想線(36)よりも噴孔(3)側に偏倚させるとともに、噴孔(3)の下端開口部(33)よりも上記仮想線(36)に近い位置に位置させる構成にしたものである。
【図面の簡単な説明】
【図1】 図1(A)は本発明の実施形態1を説明するための図で、実施形態1の構成要素である、前上がりの傾斜面になっている、分流ガイド体の始端面を有する、水冷縦形ディーゼルエンジンのうず室式燃焼室の縦断側面図、図1(B)は図1(A)中のピストンの平面図、図1(C)は図1(B)のC−C線断面図。
【図2】 図2(A)・図2(B)は図1中のピストン上面部分の斜視図。
【図3】 図3(A)は本発明の実施形態2を説明するための水冷縦形ディーゼルエンジンのうず室式燃焼室のピストン上面部分の斜視図、図3(B)は図3(A)のIII−III線断面図、図3(C)・図3(D)は図3(B)の変形例を示す同断面図。
【図4】 図4(A)は本発明の実施形態3を説明するための水冷縦形ディーゼルエンジンのうず室式燃焼室のピストン上面部分の斜視図、図4(B)は図4(A)のB−B線断面図、図4(C)は図4(A)のC−C線断面図。
【図5】 図5(A)は本発明の実施形態4を説明するための水冷縦形ディーゼルエンジンのうず室式燃焼室のピストン上面部分の斜視図、図5(B)は図5(A)のB−B線断面図。
【図6】 図6(A)は本発明の実施形態1を説明するための図で、実施形態1の構成要素である、中下がり傾斜状になっている、燃焼ガス流拡散ガイド溝の溝底面を有する、水冷縦形ディーゼルエンジンのうず室式燃焼室のピストン上面部分の斜視図、図6(B)は図6(A)のB−B線断面図。
【図7】 図7(A)は本発明の実施形態5を説明するための水冷縦形ディーゼルエンジンのうず室式燃焼室の縦断側面図、図7(B)は図7(A)中のピストンの平面図、図7(C)は図7(B)のC−C線断面図。
【図8】 図8(A)・図8(B)は図7中のピストン上面部分の斜視図。
【図9】 図9(A)は本発明の実施形態6を説明するための水冷縦形ディーゼルエンジンのうず室式燃焼室の縦断側面図、図9(B)は図9(A)中のピストンの平面図、図9(C)は図9(B)のC−C線断面図。
【図10】 図10(A)・図10(B)は図9中のピストン上面部分の斜視図。
【図11】 図11(A)は従来技術1を示す水冷縦形ディーゼルエンジンのうず室式燃焼室の縦断側面図、図11(B)は図11(A)中のピストンの平面図。
【図12】 図11中のピストン上面部分の斜視図。
【図13】 図13(A)は従来技術2を示す水冷縦形ディーゼルエンジンのうず室式燃焼室の縦断側面図、図13(B)は図13(A)中のピストンの平面図。
【図14】 図13中のピストン上面部分の斜視図。
【符号の説明】
1…主室. 2…うず室. 3…噴孔. 4…ピストン上面. 5…円板状凹室. 6…燃焼ガス流拡散ガイド溝. 7…分流ガイド体. 8…溝底面. 9…溝側縁. 10…溝始端部. 11…溝終端寄り部. 12…溝終端縁. 14…室内周面. 15…ガイド体始端面. 19…ガイド斜面. 20…溝底面終端部. 21…凹室底面. 22…尾根すじ. 23…始端寄り尾根すじ部分. 24…終端寄り尾根すじ部分. 25…前部凹室. 26…段下がり面. 28…前端部. 29…室内周面.30…燃焼ガス流導入空間, 37…螺旋状上り傾斜面。
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a vortex chamber combustion chamber of a diesel engine.
[0002]
[Prerequisite configuration]
  The vortex chamber combustion chamber of the diesel engine of the present invention is intended for the one having the following premise configuration as shown in FIGS. 1 and 2 (present invention) or FIGS. 11 to 12 (prior art), for example. .
[0003]
  FIG. 1A shows Embodiment 1 of the present invention.To explainFIG. 1B is a plan view of a piston in FIG. 1A, and FIG. 1C is a cross-sectional view taken along line CC in FIG. 1B. Figure. 2 (A) and 2 (B) are perspective views of the upper surface portion of the piston in FIG.
[0004]
  11A is a vertical side view of a vortex chamber type combustion chamber of a water-cooled vertical diesel engine showing the prior art 1, and FIG. 11B is a plan view of a piston in FIG. 11A. 12 is a perspective view of the upper surface portion of the piston in FIG.
[0005]
    [Prerequisite configuration]
  The vortex chamber (2) communicates with the main chamber (1) of the vortex chamber combustion chamber of the diesel engine via the nozzle hole (3), and the nozzle hole (3) is in front of the rear portion of the upper surface of the main chamber (1). Open in a downward sloping direction.
  On the piston upper surface (4) forming the lower surface of the main chamber (1), a pair of left and right disk-shaped concave chambers (5), (5), a front concave chamber (25), and a combustion gas flow diffusion guide groove (6) A diversion guide body (7) is provided.
[0006]
  The pair of left and right disk-shaped concave chambers (5) and (5) are arranged apart from each other in the left-right direction within an intermediate region in the front-rear direction of the piston upper surface (4). The front concave chamber (25) is disposed in the front central region of the piston upper surface (4).
  The combustion gas flow diffusion guide groove (6) is formed from the rear region in the front-rear direction to the intermediate region in the intermediate region in the left-right direction of the piston upper surface (4), and the groove of the diffusion guide groove (6). The bottom surface (8) is formed so as to be inclined forward, and the left and right groove side edges (9) and (9) of the diffusion guide groove (6) are formed so as to expand forward.
[0007]
  The injection hole (3) faces the groove start end (10) at the rear end of the diffusion guide groove (6), and the front end of the diffusion guide groove (6) near the end of the groove (11) is each disk-shaped concave chamber. (5) The piston is communicated with the concave portion on the piston center side in (5).
  The diversion guide body (7) is configured to protrude from the groove bottom surface (8) in the intermediate region of the groove width in the diffusion guide groove (6).
  The disk-shaped concave chambers (5) and (5) serve to promote combustion and may be formed exclusively for this combustion promotion, but may also serve as valve recesses for the intake and exhaust valves.
[0008]
    [Effects of prerequisite configuration]
  Near the compression top dead center of the piston (43), the combustion gas flow that has started to combust and expand in the vortex chamber (2) flows from the nozzle hole (3) to the combustion gas flow diffusion guide groove (6) in the main chamber (1). ) Is blown into the groove start end portion (10), and advances forward vigorously while expanding left and right in the diffusion guide groove (6).
[0009]
  The combustion gas flow flowing in the diffusion guide groove (6) rides on the momentum of the forward flow, and from the diffusion guide groove (6) and the left and right disk-shaped concave chambers (5) (5), the piston upper surface (4 ) On the front upper surface portion of the main chamber (1), and flows from the front partial region of the main chamber (1) to the left and right partial regions thereof in a large amount.
[0010]
  However, the combustion gas flow reverses from the left and right side partial areas of the main chamber (1) and tries to flow into the rear partial area of the main chamber (1). It is difficult to flow in a sufficiently large amount of time, resulting in a shortage, and the air utilization rate in the main room (1) tends to decrease.
[0011]
[Prior art]
  As the prior art to be compared with the present invention, there is the following one previously proposed by the present applicant.
  ○ Prior art See FIG. 11 and FIG. (FIG. 1 of JP-A-5-195783 and explanatory text in the specification).
[0012]
  11A is a vertical side view of a vortex chamber type combustion chamber of a water-cooled vertical diesel engine showing the prior art 1, and FIG. 11B is a plan view of a piston in FIG. 11A. 12 is a perspective view of the upper surface portion of the piston in FIG.
  This prior art 1 is obtained by adding the following configuration to the above premise configuration.
[0013]
  The groove end edge (12) of the combustion gas flow diffusion guide groove (6) is positioned to overhang forward from the respective disk-shaped concave chambers (5) and (5).
  The left and right guide body side surfaces (13) and (13) of the diversion guide body (7) extend to the groove end edge (12) in the diffusion guide groove (6).
  The upper surface (16) of the guide body (7) is a gently inclined surface that rises forward. The starting end face (15) of the diversion guide body (7) rises vertically.
[0014]
  ○ Prior art 2. See FIG. 13 and FIG. (FIG. 4 of Unexamined-Japanese-Patent No. 5-195783 and explanatory text in the specification).
  13A is a vertical side view of a vortex chamber type combustion chamber of a water-cooled vertical diesel engine showing the prior art 2, and FIG. 13B is a plan view of a piston in FIG. 13A. FIG. 14 is a perspective view of the upper surface portion of the piston in FIG.
  This prior art 2 is obtained by changing a part of the premise configuration as follows.
[0015]
  Instead of the combustion gas flow diffusion guide groove (6) having the above-mentioned premise, a straight guide groove (91) is formed. Instead of the diversion guide body (7), a semicircular disk body (92) is formed. The linear guide groove (91), the semicircular disk body (92), and the pair of left and right disk-shaped concave chambers (5) and (5) form a cloverleaf combustion chamber.
  The upper surface (93) of the semicircular disk body (92) is a gently inclined surface that rises forward. The circumferential surface of the semicircular disk body (92) rises vertically.
[0016]
[Problems to be solved by the invention]
  The above prior art has the following problems.
  ○ Prior art See FIG. 11 and FIG.
  [ I. The combustion gas flow is difficult to flow in a sufficiently large amount from the front partial area and the left and right side partial areas of the main chamber (1) to the entire area of the rear partial area. The air utilization rate of ]
[0017]
  Near the compression top dead center of the piston (43), the combustion gas flow that has started to combust and expand in the vortex chamber (2) flows from the nozzle hole (3) to the combustion gas flow diffusion guide groove (6) in the main chamber (1). ) Is blown into the groove start end portion (10), and advances forward vigorously while expanding left and right in the diffusion guide groove (6).
[0018]
  The combustion gas flow flowing in the diffusion guide groove (6) rides on the momentum of the forward flow, and from the diffusion guide groove (6) and the left and right disk-shaped concave chambers (5) (5), the piston upper surface (4 ) On the front upper surface portion of the main chamber (1), and flows from the front partial region of the main chamber (1) to the left and right partial regions thereof in a large amount.
[0019]
  However, the combustion gas flow reverses from the left and right side partial areas of the main chamber (1) and tries to flow into the rear partial area of the main chamber (1). It becomes difficult to flow in a sufficiently large amount of time quickly, resulting in a shortage, and the air utilization rate in the main room (1) decreases.
  For this reason, it is not possible to sufficiently contribute to reducing unburned harmful components such as HC and CO in the exhaust gas I, improving the output of the II engine, and reducing the fuel consumption III.
[0020]
  [B. It is difficult to increase the combustion speed and contribute to the high-speed rotation of the engine by the amount that the remaining portion of the combustion gas flow does not flow quickly enough to the entire rear partial region of the main chamber (1). ]
[0021]
  As described in the above problem [A], the combustion gas flow is difficult to flow in a sufficiently large amount from the front partial region and the left and right partial regions of the main chamber (1) to the entire rear partial region. The combustion speed cannot be increased by the shortage and it is difficult to contribute to the high speed rotation of the engine.
[0022]
  ○ Prior art 2. See FIG. 13 and FIG.
  [ I. Air flow rate in the main chamber (1) is not sufficient because the combustion gas flow is difficult to flow quickly enough from the left and right side partial areas of the main chamber (1) to the entire rear partial area. Decreases. ]
[0023]
  Near the compression top dead center of the piston (43), the combustion gas flow that has started to combust and expand in the vortex chamber (2) passes from the nozzle hole (3) into the straight guide groove (91) of the main chamber (1). It goes straight and collides with the peripheral surface of the semi-disc body (92). Part of this combustion gas flow passes over the semi-disc body (92) and flows into the front partial region of the main chamber (1), and the remainder is divided into left and right disk-shaped concave chambers (5) (5 Turn in).
  However, it is difficult for the remaining part of the combustion gas flow to flow in a sufficiently large amount from the inside of each disk-shaped concave chamber (5) (5) to the entire rear partial region of the main chamber (1). The partial area becomes deficient, and the air utilization rate in the main room (1) decreases.
[0024]
  [B. It is difficult to increase the combustion speed and contribute to the high-speed rotation of the engine by the amount that the remaining portion of the combustion gas flow does not flow quickly enough to the entire rear partial region of the main chamber (1). ]
[0025]
  As described in the above problem [I], the remaining portion of the combustion gas flow is sufficiently large from the inside of each disk-shaped concave chamber (5) (5) to the entire rear partial region of the main chamber (1). Therefore, the combustion speed cannot be increased by an amount that is insufficient in the rear partial region, and it is difficult to contribute to the high-speed rotation of the engine.
[0026]
  An object of the present invention is to do as follows.
  (I). The left and right guidesSlopeWith this guiding action, the amount of combustion gas flowing in the diffusion guide groove is increased to a sufficiently large amount so as to flow into the entire rear partial region of the main chamber, thereby improving the air utilization rate in the main chamber.
  (B). By making the combustion gas flow quickly and sufficiently flow into the entire rear partial region of the main chamber, the combustion speed is increased and the engine is rotated at a high speed.
[0027]
  (C). The combustion gas flow is maintained at a high speed without receiving a large flow resistance, and is accelerated while being squeezed from a wide guide slope toward a narrow inner circumferential surface of a disk-shaped concave chamber. The time for flowing into the entire rear partial region is shortened, the mixing performance of air and fuel is improved, and the combustion performance is improved.
  (D). The above problem (ii) is achieved by allowing the combustion gas flow to spread over a sufficient amount quickly in a short period of time over the entire partial area of the front partial area, the left and right partial areas, and the rear partial area of the main chamber.・ Further increase the degree of achievement of (b) and (c).
[0028]
[Means for Solving the Problems]
  The vortex chamber type combustion chamber of the diesel engine according to the present invention is to solve the above-mentioned problems in the above premise configuration.In addition,The following feature configuration is added.
[0029]
[0030]
[0031]
[0032]
[0033]
  ○ Invention 1.See FIG. 1, FIG. 2 and FIG..
  The groove end edge (12) of the combustion gas flow diffusion guide groove (6) is located in each of the disk-shaped concave chambers (5) and (5).
[0034]
  On the surface of the diversion guide body (7), a pair of left and right guide slopes (19) and (19) are formed which become higher from the left and right sides to the center. Each of the pair of left and right guide slopes (19), (19) is an inner peripheral surface near the center of the piston among the respective inner peripheral surfaces (14), (14) of the respective disc-shaped concave chambers (5), (5). Make the parts smooth and continuous.
[0035]
  A stepped surface (26) is formed on the upper surface of the front central region of the diversion guide body (7) so as to be positioned lower than the piston upper surface (4). The step-down surface (26) is connected to the upper part of the left and right guide slopes (19), (19), and the front end (28) of the step-down surface (26) is lower than the piston upper surface (4). At least the upper peripheral surface portion of the indoor peripheral surface (29) of the concave chamber (25) is cut away so as to face the front concave chamber (25).
  As a result, the combustion gas flow introduction space (30) for allowing a part of the combustion gas flow flowing forward in the combustion gas flow diffusion guide groove (6) to flow into the front concave chamber (25) is reduced in the stepped surface (26). Form in the upper position.
  As illustrated in FIGS. 1 and 2,Forming the start end face (15) of the diversion guide body (7) into an upwardly inclined surfaceTo do.
[0036]
  As illustrated in FIG.The bottom surface (8) of the combustion gas flow diffusion guide groove (6) is formed in a slanted downward slope that becomes deeper from the left and right sides in the groove width direction toward the diversion guide body (7).
[0037]
【The invention's effect】
  The vortex chamber combustion chamber of the diesel engine of the present invention has the following effects.
  ○ Invention 1. Claim 1.See FIG. 1, FIG. 2 and FIG..
[0038]
  [ I. Due to the guiding action of the pair of left and right guide slopes (19), (19) on the surface of the diversion guide body (7), the remaining portion of the combustion gas flow flowing in the diffusion guide groove (6) is the rear partial region of the main chamber (1). The air utilization rate in the main room (1) is improved by the amount that the amount flowing into the entire area of the room can be increased sufficiently. ]
[0039]
  First, from the premise configuration, the combustion gas flow that has started to burn and expand in the vortex chamber (2) near the compression top dead center of the piston (43) is combusted from the nozzle hole (3) to the main chamber (1). It blows into the groove start end (10) of the gas flow diffusion guide groove (6), and moves forward vigorously while expanding in the diffusion guide groove (6) from side to side.
[0040]
  Part of the combustion gas flow flowing in the diffusion guide groove (6) rides on the momentum of the forward flow from the diffusion guide groove (6) and the left and right disk-shaped concave chambers (5) and (5) to the piston. It rides on the front upper surface portion of the upper surface (4) and flows in a large amount vigorously from the front partial region of the main chamber (1) to the left and right partial regions.
[0041]
  As a characteristic configuration of the first aspect of the present invention, the groove end edge (12) of the combustion gas flow diffusion guide groove (6) is positioned in each of the disk-shaped concave chambers (5) and (5).
  On the surface of the diversion guide body (7), a pair of left and right guide slopes (19) and (19) are formed which become higher from the left and right sides to the center. Each of the pair of left and right guide slopes (19), (19) is an inner peripheral surface near the center of the piston among the respective inner peripheral surfaces (14), (14) of the respective disc-shaped concave chambers (5), (5). Consists of smooth and continuous parts.
[0042]
  Due to this characteristic configuration, the remaining part of the combustion gas flow flowing in the diffusion guide groove (6) is a pair of left and right guide slopes (19) and (19) on the surface of the diversion guide body (7), and the left and right disc-shaped recesses. Both circles are smoothly guided along the inner peripheral surfaces (14) and (14) of the chambers (5) and (5), and vigorously U-turned in the respective disk-shaped concave chambers (5) and (5). Rides from the plate-like concave chambers (5) and (5) onto the rear upper surface portion of the piston upper surface (4) and (4), from the left and right side partial regions of the main chamber (1) to the entire rear partial region. , Flow in a large amount quickly and vigorously.
[0043]
  Thus, according to the present invention, the amount of the remaining portion of the combustion gas flow flowing in the diffusion guide groove (6) flowing into the entire rear partial region of the main chamber (1) is insufficient in the prior art. Then, the air utilization rate in the main chamber (1) is improved by the amount that can be increased sufficiently, reducing unburned harmful components such as HC and CO in the I exhaust gas, and the II engine It can contribute to improving output and reducing III fuel consumption.
[0044]
  [B. Combustion speed will be increased by the amount that the remaining part of the combustion gas flow has flowed into the entire rear part region of the main chamber (1) in a sufficiently large amount, contributing to high speed engine rotation. Can do. ]
[0045]
  As described in the above effect [A], the remaining part of the combustion gas flow flowing in the diffusion guide groove (6) is a pair of left and right guide slopes (19) and (19) on the surface of the diversion guide body (7). Are smoothly guided along the inner peripheral surfaces (14) and (14) of the disk-shaped concave chambers (5) and (5), and the U-turns are vigorously moved in the disk-shaped concave chambers (5) and (5). Then, it rides on the rear upper surface part of the piston upper surfaces (4) and (4) from both disk-shaped concave chambers (5) and (5), and from the left and right side partial regions of the main chamber (1) to the rear side. It flows into a large amount of the partial area quickly and sufficiently.
[0046]
  Thus, the combustion speed is increased and the engine is rotated at a high speed by the amount that the remaining portion of the combustion gas flow quickly and sufficiently flows into the entire rear partial region of the main chamber (1). Can contribute.
[0047]
  [C. The combustion gas flow is smoothly divided into left and right along both guide slopes (19, 19), and is maintained at a high speed without receiving a large flow resistance, and a wide guide slope (19) ( 19) from the disk-shaped concave chambers (5) and (5) toward the narrow inner peripheral surfaces (14) and (14) of the rear partial region of the main chamber (1) by the amount of acceleration while being throttled. The time for flowing into the entire area is shortened, the mixing performance of air and fuel is enhanced, and the combustion performance is enhanced. ]
[0048]
  The combustion gas flow that has started to burn and expand in the vortex chamber (2) is blown from the nozzle hole (3) into the groove start end (10) of the combustion gas flow diffusion guide groove (6) of the main chamber (1), and is divided. Since the surface of the guide body (7) is a pair of left and right guide slopes (19) and (19) when colliding with the guide body (7), both guide slopes (19) and (19) The flow is divided into left and right smoothly and no large flow resistance is generated, and the flow velocity is hardly lowered and is kept at a high velocity.
[0049]
  The combustion gas flow maintained at this high speed flows from the wide guide slopes (19), (19) toward the inner peripheral surfaces (14), (14) from the narrow disk-shaped concave chambers (5), (5). The amount of U-turn that is caused to make a U-turn in each disc-shaped concave chamber (5) (5) is accelerated by the amount of acceleration while gradually squeezing, and the left and right sides of the main chamber (1) Since the time required to flow in a large amount vigorously and quickly from the region to the entire rear partial region is shortened, the mixing speed of air and fuel is increased, so that the mixing performance is improved and the combustion performance is improved.
[0050]
  As a result, to reduce unburned harmful components such as HC and CO in I exhaust gas, to improve the output of II engine, to reduce III fuel consumption, and to make IV engine rotate at high speed, Can contribute.
[0051]
  [D. The above effect is achieved by allowing the combustion gas flow to spread over a large amount quickly in a short period of time over the entire area of the front partial area, the left and right partial areas, and the rear partial area of the main chamber (1). [I. Contributing to improvement of air utilization rate], effects [b. Contributing to high-speed engine rotation] and effects [c. [Improving combustion performance] is further improved. ]
[0052]
  The step-down surface (26) is positioned lower than the piston upper surface (4) on the upper surface of the front central region of the diversion guide body (7), and the formation speed is increased. The stepped surface (26) is continued to the upper part of the left and right guide slopes (19), (19). The front end portion (28) of the stepped surface (26) is lower than the piston upper surface (4), and at least the upper peripheral surface portion of the inner peripheral surface (29) of the front concave chamber (25) is cut away. It faces the concave chamber (25). As a result, the combustion gas flow introduction space (30) for allowing a part of the combustion gas flow flowing forward in the combustion gas flow diffusion guide groove (6) to flow into the front concave chamber (25) is reduced in the stepped surface (26). Form in the upper position.
[0053]
  From this configuration, first, a part of the combustion gas flow that has flowed from the vortex chamber (2) into the combustion gas flow diffusion guide groove (6) of the main chamber (1) is left and right of the branch guide body (7). Through the upper space of the guide slopes (19) and (19) and the combustion gas flow introduction space (30) on the stepped surface (26) into the front concave chamber (25) and the front of the cylinder (41) Guided by the inner peripheral surface of the door, it spreads to the left and right sides and makes a U-turn. For this reason, a part of the combustion gas flow spreads in a sufficiently large amount quickly in a short time over the entire region from the front side partial region to the left and right side partial regions of the main chamber (1).
[0054]
  Next, as described in the above effect [A], the remaining portion of the combustion gas flow flowing in the diffusion guide groove (6) is a pair of left and right guide slopes (19) and (19) on the surface of the diversion guide body (7). Then, it is guided smoothly along the inner peripheral surfaces (14), (14) of the left and right disc-shaped concave chambers (5), (5), and momentum is generated in the disc-shaped concave chambers (5), (5). It is made to make a U-turn and rides on the rear upper surface part of the piston upper surfaces (4) and (4) from both disk-shaped concave chambers (5) and (5). From there to the entire rear partial area, it flows quickly and sufficiently in a large amount.
[0055]
  In this way, the combustion gas flow can be quickly and sufficiently distributed over a short period of time in all areas of the front partial area, the left and right side partial areas, and the rear partial area of the main chamber (1). Can do. As a result, the above-mentioned effect [I. Contributing to improvement of air utilization rate], effects [b. Contributing to high-speed engine rotation] and effects [c. The combustion performance can be further improved.
[0056]
  [F. The combustion gas flow is guided to be diverted to the left and right while easily climbing on the front rising surface of the start end face (15) of the diversion guide body (7), and smoothly flows into the diffusion guide groove (6). By eliminating the decrease in the flow velocity, the above effects [i. Contributing to improvement of air utilization rate], effects [b. Contributing to high-speed engine rotation], effects [c. Enhancing combustion performance] and effects [d. The combustion gas flow can be quickly and sufficiently distributed over all the region of the main chamber within a short period of time]. ]
[0057]
  The starting end face (15) of the flow dividing guide body (7) was formed as an upwardly inclined surface.
  From this configuration, the combustion gas flow that has started to combust and expand in the vortex chamber (2) blows into the groove start end (10) of the diffusion guide groove (6) from the nozzle hole (3), and the flow dividing guide body. When it collides with the start end surface (15) of (7), it is shunted to the left and right while being easily climbed on the inclined surface that rises forward of the start end surface (15), so that it is in the diffusion guide groove (6). It flows in smoothly.
[0058]
  For this reason, the combustion gas flow is rebounded from the start end face (15) of the diversion guide body (7) and reversed or reversely flowed so that the flow resistance does not increase, so that the combustion gas flow is within the diffusion guide groove (6). The flow velocity flowing through the flow is not reduced, and the flow velocity is increased.
  As a result, the effect of the invention 1 [i. Contributing to improvement of air utilization rate], effects [b. Contributing to high-speed engine rotation], effects [c. Enhancing combustion performance] and effects [d. It is possible to further improve the distribution of the combustion gas flow over the entire region of the main chamber in a sufficiently short amount of time.
[0059]
[H. The flow of combustion gas flowing in the diffusion guide groove (6)Guide slope (19) (19)The above-mentioned effect [I. is achieved by increasing the momentum of making a U-turn in the disk-shaped concave chambers (5) and (5) by the amount approaching the side. Contributing to improvement of air utilization rate], effects [b. Contributing to high-speed engine rotation] and effects [c. [Improving combustion performance] is further improved. ]
[0060]
  The bottom surface (8) of the combustion gas flow diffusion guide groove (6) is formed in a slanted downward slope that becomes deeper from the left and right sides in the groove width direction toward the diversion guide body (7).
  With this configuration, the flow center of the combustion gas flowing in the diffusion guide groove (6) has a flow center that is more than the groove side edge (9) (9).Guide slope (19) (19)As much as you get closer to the side,Guide slope (19) (19)Makes a large turn when guided along the inner circumferential surfaces (14) and (14) of the disk-shaped concave chambers (5) and (5), so that a U-turn is made in the disk-shaped concave chambers (5) and (5). Momentum will increase.
  As a result, the above-mentioned effect [I. Contributing to improvement of air utilization rate], effects [b. Contributing to high-speed engine rotation] and effects [c. The combustion performance can be further improved.
[0061]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of a vortex chamber combustion chamber of a diesel engine according to the present invention will be described below with reference to the drawings.
[0062]
  Embodiment 1 Fig. 1 Fig. 2FIG.reference.
  FIG. 1A shows Embodiment 1 of the present invention.It is a figure for explanation, and has a start end face of a diversion guide body, which is a constituent element of the first embodiment, which is an upwardly inclined surface.FIG. 1B is a plan view of a piston in FIG. 1A, and FIG. 1C is a cross-sectional view taken along line CC in FIG. 1B. Figure. 2 (A) and 2 (B) are perspective views of the upper surface portion of the piston in FIG.
  FIG. 6 (A) is a diagram for explaining the first embodiment of the present invention, and has a groove bottom surface of the combustion gas flow diffusion guide groove, which is a constituent element of the first embodiment, and has a downwardly inclined shape. The perspective view of the piston upper surface part of the vortex chamber type combustion chamber of a water-cooled vertical diesel engine, FIG.6 (B) is BB sectional drawing of FIG. 6 (A).
[0063]
  In FIG. 1A, reference numeral (41) is a cylinder block, (42) is a cylinder head block, (43) is a piston, (44) is an intake valve, (45) is a fuel injector, and (46) is a heat plug. , (1) is the main chamber of the vortex chamber type combustion chamber, (2) is the vortex chamber, (3) is the nozzle hole, and (4) is the piston upper surface (4).
[0064]
  As shown in FIGS. 1 and 2, the vortex chamber (2) is communicated with the main chamber (1) of the vortex chamber type combustion chamber of the water-cooled vertical multi-cylinder diesel engine through the nozzle hole (3). The nozzle hole (3) is opened forward and inclined toward the rear position on the upper surface of the main chamber (1).
  The horizontal dimension of the injection hole (3) is formed in a laterally expanded shape that gradually increases from the upper end of the hole toward the lower end of the hole. As a result, the combustion gas flow that has started to combust and expand in the vortex chamber (2) is gradually expanded to the left and right when passing through the nozzle hole (3), and expands to the left and right in the main chamber (1). Oriented to move forward.
[0065]
  On the piston upper surface (4) forming the lower surface of the main chamber (1), a pair of left and right disk-shaped concave chambers (5), (5), one disk-shaped front concave chamber (25), and a combustion gas flow A diffusion guide groove (6) and a diversion guide body (7) are provided.
  The pair of left and right disk-shaped concave chambers (5) and (5) are arranged apart from each other in the left-right direction within an intermediate region in the front-rear direction of the piston upper surface (4). One disk-shaped front concave chamber (25) is arranged in the front central region of the piston upper surface (4). The pair of left and right disk-shaped concave chambers (5) and (5) and one disk-shaped front concave chamber (25) serve as valve recesses for two intake valves (44) and valve recesses for one exhaust valve. ing.
[0066]
  The combustion gas flow diffusion guide groove (6) is formed from the rear region in the front-rear direction to the intermediate region in the intermediate region in the left-right direction of the piston upper surface (4). The groove bottom surface (8) of the diffusion guide groove (6) is formed so as to be inclined upward. The left and right groove side edges (9) and (9) of the diffusion guide groove (6) are formed so as to expand forward.
[0067]
  The injection hole (3) faces the groove start end (10) at the rear end of the diffusion guide groove (6). The groove end portion (11) near the front of the diffusion guide groove (6) is communicated with the piston center side recessed chamber portion of each disk-shaped recessed chamber (5) (5).
  The diversion guide body (7) is raised from the groove bottom surface (8) in the intermediate region of the groove width in the diffusion guide groove (6).
[0068]
  The groove end edge (12) of the combustion gas flow diffusion guide groove (6) is located in each of the disk-shaped concave chambers (5) and (5). The portion of the terminal edge (12) located on the left side of the diversion guide body (7) is located in the middle of the disc-shaped concave chamber (5), whereas the portion located on the right side thereof is a circle. It is made to correspond with the indoor peripheral surface (14) of a plate-shaped recessed chamber (5).
[0069]
  On the surface of the diversion guide body (7), a pair of left and right guide slopes (19) and (19) are formed which become higher from the left and right sides to the center. Each of the pair of left and right guide slopes (19), (19) is an inner peripheral surface near the center of the piston among the respective inner peripheral surfaces (14), (14) of the respective disc-shaped concave chambers (5), (5). Make the parts smooth and continuous.
  Each of the pair of left and right guide slopes (19) (19) is formed in a flat plane. The guide slopes (19) and (19) are formed such that the slope angle is gradually increased at the end slope side than the slope part at the intermediate part in the length direction.
[0070]
  A step-down surface (26) is formed on the upper surface of the front central region of the diversion guide body (7) so as to be positioned lower than the piston upper surface (4). The stepped surface (26) is positioned at the same height or a little higher than the bottom surface of the front concave chamber (25). The stepped surface (26) is continued to the upper part of the left and right guide slopes (19), (19).
[0071]
  The front end portion (28) of the step-down surface (26) is lower than the piston upper surface (4), and the entire inner peripheral surface (29) of the front concave chamber (25) in the height direction or around the upper portion. Face the front concave chamber (25) in the form of excising the face.
  As a result, the combustion gas flow introduction space (30) for allowing a part of the combustion gas flow flowing forward in the combustion gas flow diffusion guide groove (6) to flow into the front concave chamber (25) is reduced in the stepped surface (26). Form in the upper position.
[0072]
  AndAs shown in FIG. 1 and FIG.The start end face (15) of the diversion guide body (7) is formed in a forwardly inclined surface. The start end portion (31) of the diversion guide body (7) is shifted in the start end side region (32) in the diffusion guide groove (6) and just before the lower end opening (33) of the nozzle hole (3). It has been made.
  In the first embodiment, the combustion gas flow diffusion guide groove ( 6 ) Groove bottom ( 8 ) FIG. 6 shows a diversion guide body from the left and right sides in the groove width direction as shown in FIG. ( 7 ) It is formed in an inclining downward slope that becomes deeper as it approaches.
[0073]
  Embodiment 2 See FIG.
  FIG. 3A shows a second embodiment of the present invention.To explain3B is a cross-sectional view taken along the line III-III of FIG. 3A, and FIGS. 3C and 3D are diagrams. It is the same sectional view showing the modification of 3 (B).
In the second embodiment, a part of the configuration of the first embodiment is changed as follows.To do.
  As shown in FIGS. 3A and 3B, each of the pair of guide slopes (19) and (19) is formed in a concave shape.To do.
[0074]
  In addition, the shape of the guide slopes (19) and (19) shown in FIG. 3 (B) is that the cross-sectional shape of the ridge streak is changed to a double parallel convex curved surface as shown in FIG. 3 (C). Alternatively, as shown in FIG. 3D, it is conceivable to change the cross-sectional shape of the ridge streak into an arc or elliptical arc shape (48) having a large curvature radius.
[0075]
  Embodiment 3 See FIG.
  FIG. 4A shows a third embodiment of the present invention.To explain4B is a cross-sectional view taken along the line BB of FIG. 4A, and FIG. 4C is a view of C of FIG. 4A. FIG.
  In the third embodiment, as in the first embodiment, the flow dividing guide body ( 7 ) Start face of (15) Are formed on an inclined surface that rises forward.
In the third embodiment, the following configuration is added to the configuration of the first or second embodiment.To do.
[0076]
The groove bottom end portion (20) located at the end portion of the right half portion of the groove bottom surface (8) of the combustion gas flow diffusion guide groove (6) is the bottom surface (21) of the concave chamber (5). Lower than. The groove bottom surface end portion (20) and the concave chamber bottom surface (21) are smoothly and continuously connected through the spiral upward inclined surface (37).The
[0077]
  Embodiment 4 See FIG.
  FIG. 5A shows a fourth embodiment of the present invention.To explainThe perspective view of the piston upper surface part of the vortex chamber type combustion chamber of a water-cooled vertical diesel engine, FIG.5 (B) is BB sectional drawing of FIG. 5 (A).
In the fourth embodiment, the following configuration is added to the configuration of the first, second, or third embodiment.To do.
[0078]
  Of the ridge lines (22) of the pair of left and right guide slopes (19) and (19) of the diversion guide body (7), the ridge portion (23) closer to the start end is closer to the piston upper surface (4). It is positioned low and formed in a substantially horizontal shape substantially parallel to the upper surface (4) of the piston.
  On the other hand, the end ridge portion (24) located near the end of the ridge streak (22) is formed in an upward slope gradually increasing from the ridge portion (23) near the start end.To do.
[0079]
[0080]
[0081]
  ○ Embodiment5. See FIG. 7 and FIG.
  FIG. 7A shows an embodiment of the present invention.For explaining 5FIG. 7B is a plan view of the piston in FIG. 7A, and FIG. 7C is a cross-sectional view taken along line CC in FIG. 7B. Figure. 8A and 8B are perspective views of the upper surface portion of the piston in FIG.
Embodiment5Is the above-mentioned embodiment 1, 2, 3Or 4A part of the configuration is changed as followsTo do.
[0082]
  Embodiment 1 described above (FIGS. 1 and 2)reference), The start end portion (31) of the flow dividing guide body (7) is located in the start end side region (32) in the diffusion guide groove (6) immediately before the lower end opening (33) of the nozzle hole (3). The position was shifted. This configuration is this embodiment5Then, change as follows.
[0083]
  That is, the starting end portion (31) of the diversion guide body (7) is located in the lower end opening (33) of the nozzle hole (3) in the starting end side region (32) in the diffusion guide groove (6). In a configuration that overlaps only at the front part ofTo do.
[0084]
  ○ Embodiment6. See FIG. 9 and FIG.
  FIG. 9A shows an embodiment of the present invention.6 to explainFIG. 9B is a plan view of the piston in FIG. 9A, and FIG. 9C is a cross-sectional view taken along line CC in FIG. 9B. Figure. 10 (A) and 10 (B) are perspective views of the upper surface portion of the piston in FIG.
Embodiment6Is the above-mentioned embodiment 1, 2, 3Or 4A part of the configuration is changed as followsTo do.
[0085]
  The start end portion (31) of the above-mentioned diversion guide body (7) is positioned in an intermediate region (34) between the start end side region (32) and the end end side region (35) in the diffusion guide groove (6). At the same time, it is biased toward the nozzle hole (3) with respect to the imaginary line (36) connecting the center points of the pair of left and right disc-shaped concave chambers (5) and (5), and the lower end opening of the nozzle hole (3) ( It is configured to be positioned closer to the virtual line (36) than 33).
[Brief description of the drawings]
FIG. 1A shows Embodiment 1 of the present invention.It is a figure for explanation, and has a start end face of a diversion guide body, which is a constituent element of the first embodiment, which is an upwardly inclined surface.FIG. 1B is a plan view of a piston in FIG. 1A, and FIG. 1C is a cross-sectional view taken along line CC in FIG. 1B. Figure.
2 (A) and 2 (B) are perspective views of the upper surface portion of the piston in FIG.
FIG. 3 (A) shows a second embodiment of the present invention.To explain3B is a cross-sectional view taken along the line III-III of FIG. 3A, and FIGS. 3C and 3D are diagrams. Sectional drawing which shows the modification of 3 (B).
FIG. 4 (A) shows a third embodiment of the present invention.To explain4B is a cross-sectional view taken along the line BB of FIG. 4A, and FIG. 4C is a view of C of FIG. 4A. -C sectional view.
FIG. 5 (A) shows a fourth embodiment of the present invention.To explainThe perspective view of the piston upper surface part of the vortex chamber type combustion chamber of a water-cooled vertical diesel engine, FIG.5 (B) is a BB sectional drawing of FIG. 5 (A).
FIG. 6 (A) shows the present invention.It is a figure for describing Embodiment 1, and has a groove bottom face of a combustion gas flow diffusion guide groove which is a component which is Embodiment 1, and is in the shape of sloping downward,The perspective view of the piston upper surface part of the vortex chamber type combustion chamber of a water-cooled vertical diesel engine, FIG.6 (B) is the BB sectional drawing of FIG.6 (A).
FIG. 7A is an embodiment of the present invention.For explaining 5FIG. 7B is a plan view of the piston in FIG. 7A, and FIG. 7C is a cross-sectional view taken along line CC in FIG. 7B. Figure.
8A and FIG. 8B are perspective views of the upper surface portion of the piston in FIG.
FIG. 9A is an embodiment of the present invention.6 to explainFIG. 9B is a plan view of the piston in FIG. 9A, and FIG. 9C is a cross-sectional view taken along line CC in FIG. 9B. Figure.
10 (A) and 10 (B) are perspective views of the upper surface portion of the piston in FIG.
11A is a vertical side view of a vortex chamber type combustion chamber of a water-cooled vertical diesel engine showing prior art 1, and FIG. 11B is a plan view of a piston in FIG. 11A.
12 is a perspective view of an upper surface portion of a piston in FIG.
13A is a vertical side view of a vortex chamber type combustion chamber of a water-cooled vertical diesel engine showing prior art 2, and FIG. 13B is a plan view of a piston in FIG. 13A.
14 is a perspective view of an upper surface portion of a piston in FIG.
[Explanation of symbols]
  1 ... Main room. 2 ... Uzumuro. 3 ... nozzle hole. 4 ... The upper surface of the piston. 5 ... Disc-shaped concave chamber. 6 ... Combustion gas flow diffusion guide groove. 7 ... Branch guide body. 8 ... groove bottom surface. 9: groove side edge. 10 ... groove start end. 11: Near the groove end. 12 ... groove end edge. 14 ... Indoor peripheral surface. 15 ... Starting end surface of the guide body. 19 ... Guide slope. 20 ... groove bottom end portion. 21 ... bottom of the concave chamber. 22 ... ridge line. 23 ... Ridge line near the start. 24 ... ridge line near the end. 25. Front concave chamber. 26: Stepped surface. 28 ... front end. 29. Indoor peripheral surface. 30 ... Combustion gas flow introduction space, 37 ... Spiral upward inclined surface.

Claims (1)

ディーゼルエンジンのうず室式燃焼室の主室 ( ) にうず室 ( ) を噴孔 ( ) を介して連通させ、噴孔 ( ) は主室 ( ) の上面の後部位置に前下がり傾斜向きに開口させ、
主室 ( ) の下面を形成するピストン上面 ( ) に、左右一対の円板状凹室 ( )( ) と前部凹室 (25) と燃焼ガス流拡散ガイド溝 ( ) と分流ガイド体 ( ) とを設け、
左右一対の円板状凹室 ( )( ) は、ピストン上面 ( ) の前後方向の中間領域内で互いに左右に離して配置し、前部凹室 (25) はピストン上面 ( ) の前部中央領域に配置し、
燃焼ガス流拡散ガイド溝 ( ) は、ピストン上面 ( ) の左右方向の中間部領域内で、前後方向の後部領域から中間部領域に亘って形成し、この拡散ガイド溝 ( ) の溝底面 ( ) は、前上がり傾斜状に形成し、拡散ガイド溝 ( ) の左右両溝側縁 ( )( ) は互いに前拡がりに形成し、
拡散ガイド溝 ( ) の後端の溝始端部 (10) に噴孔 ( ) を臨ませ、拡散ガイド溝 ( ) の前寄りの溝終端寄り部 (11) を各円板状凹室 ( )( ) のピストン中心側凹室部分に連通させ、
分流ガイド体 ( ) は拡散ガイド溝 ( ) 内の溝幅中間部領域内で溝底面 ( ) から隆起させ、
て構成したディーゼルエンジンのうず室式燃焼室において、
前記燃焼ガス流拡散ガイド溝 ( ) の溝終端縁 (12) は、各円板状凹室 ( )( ) 内に位置させ、
分流ガイド体 ( ) の表面にはその左右両側部から中央部に近付くにつれて高くなる左右一対のガイド斜面 (19)(19) を形成し、この左右一対の各ガイド斜面 (19)(19) は、左右の各円板状凹室 ( )( ) の各室内周面 (14)(14) のうちの前寄りの内周面部分に滑らかに連続させ、
分流ガイド体 ( ) の前部中央領域の上面に段下がり面 (26) をピストン上面 ( ) よりも低く位置させて形成し、段下がり面 (26) は左右の各ガイド斜面 (19)(19) の上部に連続させ、段下がり面 (26) の前端部 (28) はピストン上面 ( ) よりも低い位置で、前部凹室 (25) の室内周面 (29) の少なくとも上部周面部分を切除する形で前部凹室 (25) に臨ませ、
これにより、燃焼ガス流拡散ガイド溝 ( ) 内を前向きに流れる燃焼ガス流の一部を前部凹室 (25) へ流入させる燃焼ガス流導入空間 (30) を段下がり面 (26) の上側位置に形成し、
前記分流ガイド体 ( ) の始端面 (15) を前上がりの傾斜面に形成し、
前記燃焼ガス流拡散ガイド溝(6)の溝底面(8)は、その溝幅方向の左右両側部から分流ガイド体(7)に近づくほど深くなる中下がり傾斜状に形成した、ことを特徴とするもの。
The swirl chamber type combustion chamber of the main chamber of the diesel engine (1) to the swirl chamber (2) communicates through a nozzle hole (3), the nozzle hole (3) before the rear position of the upper surface of the main chamber (1) Open in the downward direction,
The upper surface of the piston (4) forming the lower surface of the main chamber (1), a pair of left and right circular-shaped recessed chamber (5) (5) and the front recess chamber (25) and the combustion gas flow diffusion guide groove (6) A diversion guide body ( 7 ) ,
The pair of left and right disk-shaped concave chambers ( 5 ) and ( 5 ) are disposed apart from each other in the middle region in the front-rear direction of the piston upper surface ( 4 ) , and the front concave chamber (25) is disposed on the piston upper surface ( 4 ). Placed in the front center area of
The combustion gas flow diffusion guide groove ( 6 ) is formed from the rear region in the front-rear direction to the intermediate region in the intermediate region in the left-right direction of the piston upper surface ( 4 ) , and the groove of the diffusion guide groove ( 6 ) . The bottom surface ( 8 ) is formed in an upwardly inclined shape, and the left and right groove side edges ( 9 ) ( 9 ) of the diffusion guide groove ( 6 ) are formed so as to expand forward.
The groove start end of the rear end of the diffusion guide groove (6) (10) is faced to the nozzle hole (3), the diffusion guide groove groove end nearer portion of the front portion (6) (11) of each disc-shaped recessed chamber ( 5 ) Communicate with the piston center concave chamber part of ( 5 ) ,
The shunt guide body ( 7 ) is raised from the groove bottom surface ( 8 ) in the middle region of the groove width in the diffusion guide groove ( 6 ) ,
In the vortex chamber combustion chamber of the diesel engine
A groove end edge (12) of the combustion gas flow diffusion guide groove ( 6 ) is located in each of the disk-shaped concave chambers ( 5 ) ( 5 ) ,
Shunt guide body (7) on the surface of the pair of guide slope becomes higher as it approaches the central portion from the left and right side portions (19) (19) is formed, the pair of the guide slope (19) (19) Is smoothly connected to the front inner peripheral surface portion of the indoor peripheral surfaces (14), (14) of the left and right disc-shaped concave chambers ( 5 ), ( 5 ) ,
A step-down surface (26) is formed on the upper surface of the front central region of the diversion guide body ( 7 ) so as to be positioned lower than the piston upper surface ( 4 ) , and the step-down surface (26) is formed on the left and right guide slopes (19). The front end (28) of the stepped surface (26) is lower than the piston upper surface ( 4 ) , and is continuous with the upper part of (19) , and at least the upper part of the inner peripheral surface (29) of the front concave chamber (25) Face the front concave chamber (25) in the form of excising the peripheral surface part ,
Thus, some front recessed chamber (25) combustion gas stream introduction space stage falling surface (30) to flow into the combustion gas stream diffusion guide groove (6) in a forward flow combustion gas stream (26) Formed in the upper position,
Forming the start end face (15) of the diversion guide body ( 7 ) in an upwardly inclined surface;
The bottom surface (8) of the combustion gas flow diffusion guide groove (6) is formed in a slanted downward slope that becomes deeper from the left and right sides in the groove width direction toward the diversion guide body (7). What to do.
JP2001084491A 2001-03-23 2001-03-23 Diesel engine vortex chamber combustion chamber Expired - Fee Related JP3894736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084491A JP3894736B2 (en) 2001-03-23 2001-03-23 Diesel engine vortex chamber combustion chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084491A JP3894736B2 (en) 2001-03-23 2001-03-23 Diesel engine vortex chamber combustion chamber

Publications (2)

Publication Number Publication Date
JP2002276371A JP2002276371A (en) 2002-09-25
JP3894736B2 true JP3894736B2 (en) 2007-03-22

Family

ID=18940152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084491A Expired - Fee Related JP3894736B2 (en) 2001-03-23 2001-03-23 Diesel engine vortex chamber combustion chamber

Country Status (1)

Country Link
JP (1) JP3894736B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548056B (en) * 2018-05-04 2024-03-01 力帆实业(集团)股份有限公司 Gasoline engine base

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136226U (en) * 1987-02-27 1988-09-07
JPH02123223A (en) * 1988-10-31 1990-05-10 Isuzu Motors Ltd Combustion chamber of internal combustion engine
JPH0363718U (en) * 1989-10-23 1991-06-21
JP2838743B2 (en) * 1992-01-20 1998-12-16 株式会社クボタ Combustion chamber of sub-combustion chamber diesel engine
JP3268341B2 (en) * 1993-06-25 2002-03-25 株式会社クボタ Secondary combustion chamber diesel engine
JP2591567Y2 (en) * 1993-09-24 1999-03-03 日産ディーゼル工業株式会社 Combustion chamber structure of vortex chamber type diesel engine
JP3554385B2 (en) * 1994-12-12 2004-08-18 トヨタ自動車株式会社 Main combustion chamber of sub-chamber diesel engine
JPH10339137A (en) * 1997-06-05 1998-12-22 Toyota Motor Corp Combustion chamber structure in swirl chamber type diesel engine

Also Published As

Publication number Publication date
JP2002276371A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
KR20010005438A (en) Direct intake port and helical intake port for engine
JP3894736B2 (en) Diesel engine vortex chamber combustion chamber
JP3894737B2 (en) Diesel engine vortex chamber combustion chamber
JP3894740B2 (en) Diesel engine vortex chamber combustion chamber
JP3639799B2 (en) Diesel engine vortex chamber combustion chamber
JP3894735B2 (en) Diesel engine vortex chamber combustion chamber
JP3013569B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2658407B2 (en) Combustion chamber of a swirl chamber type diesel engine
JPH10339137A (en) Combustion chamber structure in swirl chamber type diesel engine
JP2565516Y2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2797794B2 (en) Combustion chamber of a swirl chamber type diesel engine
JPH0511297Y2 (en)
JP2853421B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2565517Y2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2660687B2 (en) Whirlpool combustion chamber for diesel engine
JP3523498B2 (en) Engine swirl intake port
JP3013573B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2715750B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP3557353B2 (en) Double intake port of engine
JPH04259624A (en) Structure for combustion chamber of direct injection type diesel engine
JP3013571B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP3243546B2 (en) Combustion chamber of a swirl chamber diesel engine
JP3277067B2 (en) Whirlpool engine
KR950003737B1 (en) Stratified burning i.c. engine
JPH0711957A (en) Auxiliary chamber type diesel engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees