JP3554385B2 - Main combustion chamber of sub-chamber diesel engine - Google Patents

Main combustion chamber of sub-chamber diesel engine Download PDF

Info

Publication number
JP3554385B2
JP3554385B2 JP30755994A JP30755994A JP3554385B2 JP 3554385 B2 JP3554385 B2 JP 3554385B2 JP 30755994 A JP30755994 A JP 30755994A JP 30755994 A JP30755994 A JP 30755994A JP 3554385 B2 JP3554385 B2 JP 3554385B2
Authority
JP
Japan
Prior art keywords
chamber
combustion chamber
main
sub
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30755994A
Other languages
Japanese (ja)
Other versions
JPH08158869A (en
Inventor
孝 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP30755994A priority Critical patent/JP3554385B2/en
Publication of JPH08158869A publication Critical patent/JPH08158869A/en
Application granted granted Critical
Publication of JP3554385B2 publication Critical patent/JP3554385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【産業上の利用分野】
本発明は副室式ディーゼルエンジンの主燃焼室に関し、特に、ピストンの頂面に形成された主燃焼室の形状を改良して、燃焼を良好にした副室式ディーゼルエンジンの主燃焼室に関する。
【0002】
【従来の技術】
従来、燃焼室内の空気をピストンで圧縮し、圧縮空気中に燃料を噴射して自己着火させるディーゼルエンジンは熱効率の良い内燃機関として知られている。近年、このようなディーゼルエンジンに対して、排気ガス中のNOxと黒煙(スモーク)の低減を行う必要が生じている。
【0003】
このような要求に対し、副燃焼室を備えた副室式ディーゼルエンジンにおいては、NOxやスモークの低減のために主燃焼室の形状を工夫して、副燃焼室からの噴流が主燃焼室において空気と十分に混合されて主燃焼室内の燃焼を良くすることが行われている。
図4(a) は従来の副室付ディーゼルエンジンの部分拡大断面図であり、チャンバ部材6を装着した副室付ディーゼルエンジンにおける主燃焼室2と副燃焼室4の部位を拡大して示している。図4(a) に示すように、シリンダブロック50にはピストン1が上下動可能に収容されており、ピストン1の頂部には主燃焼室2が形成されている。また、シリンダブロック50の上部にはシリンダヘッド60があり、このシリンダヘッド60の一部に、燃料噴射弁10を備えた副燃焼室4がチャンバ部材6を嵌め込むことによって形成されている。主、副燃焼室2,4は、チャンバ部材6に設けられた連通孔5によって連通されている。48は冷間始動時に通電されてエンジンの始動を確実にするグロープラグ、49はシリンダブロック50とシリンダヘッド60の間に介装されたガスケットである。
【0004】
ピストン1の頂面に形成された主燃焼室2は一般に、図4(b) に示すように双葉型主室20と、副燃焼室4からの噴流をこの双葉型主室20に導くための案内溝3とを備えている。以上のように構成された副室式ディーゼルエンジンの主燃焼室2は、ピストン1の上死点においてシリンダヘッド60との隙間Xが1mm程度であり、双葉型主室20の深さYが2mm程度である。
【0005】
この従来の副室式ディーゼルエンジンの主燃焼室2においては、副燃焼室4内に燃料が噴射されて着火されると、燃焼ガスは噴流となって副燃焼室4から連通孔5を通り、主燃焼室2の案内溝3から双葉型主室20内に噴出し、主燃焼室2側の空気と混合されて燃焼が促進される。
図4(b) に示す矢印は、副燃焼室4から連通孔5を通り、主燃焼室2の案内溝3から双葉型主室20内に噴出する噴流の流れを示すものである。噴流は案内溝3に噴出された後、その一部は双葉型主室20内を回り、また一部は双葉型主室20の段部を乗り越えてシリンダブロック60との間の空間に流出し、そこにある空気と混ざって燃焼する。
【0006】
しかしながら、図4(a) ,(b) のように構成された従来の副室式ディーゼルエンジンの主燃焼室2の形状では、ピストン1の頂面の点線Sで示す部分にある空気の利用率が低いという課題があった。
そこで、燃焼室内での空気の利用率を向上させて燃焼を良くするために、実開昭57−174724号公報には、副燃焼室と連通するピストン頂面に案内溝と双葉型主室とからなる主燃焼室を備えるディーゼルエンジンにおいて、主燃焼室を構成する双葉型主室の案内溝から遠い側の段部を、双葉型の形状を保持させたまま階段状に形成し、案内溝の方向からθの角度には階段の奥行を広げたものが開示されている。この提案では、案内溝および案内溝に近い側の双葉型主室の深さは深くなっている。
【0007】
【発明が解決しようとする課題】
しかしながら、実開昭57−174724号公報に提案の副室式ディーゼルエンジンの主燃焼室では、案内溝から出た噴流は、左右に分けられた後、階段状の段部に一段ずつ衝突しながら流れるので、段部によってその流れおよび噴流の広がりが妨げられてしまうという問題点があった。また、階段を上昇する噴流の流れの向きは直線状で混合が不十分であり、更に、広げられた噴流によって双葉型主室内の空気があまり取り込まれることなくピストンの頂面に押し出されるので、ピストンの頂面においても噴流と空気との混合も妨げられるという問題点があった。
【0008】
そこで、本発明は、副燃焼室からの噴流を滑らかに双葉型主室の両側に回り込ませると共に、この回り込んだ噴流と、副燃焼室から直進する噴流とが効率良く混合されるように主燃焼室の案内溝と双葉型主室の形状を工夫して、燃焼室内での燃焼を良好にすることができる副室式ディーゼルエンジンの主燃焼室を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記目的を達成する本発明は、ピストンの頂面に、双葉型主室と、燃料噴射弁を有する副室からの噴流をこの双葉型主室に案内する案内溝とが形成された副室式ディーゼルエンジンの主燃焼室において、案内溝の深さを双葉型主室よりも深く形成すると共に、この案内溝の双葉型主室との接続部には、案内溝と滑らかに接続する補助燃焼室を設け、この補助燃焼室と双葉型主室との境界部の段部は、副室からの噴流が2つに分断されるように案内溝側に突出させ、補助燃焼室の底面はこの段部の高さが双葉型主室の左右方向に向かって次第に少なくなるようななだらかな斜面と、この斜面に接続する延長斜面によって、前記ピストンの頂面まで延長し、段部によって二分された噴流がこれらのなだらかな斜面と延長斜面に沿って上昇してピストンの頂面に流れ込むようにしたことを特徴としている。
この場合、延長斜面と双葉型主室の底面との段差を、補助斜面によって滑らかに接続することができる。
【0010】
【作用】
本発明の副室式ディーゼルエンジンの主燃焼室によれば、副燃焼室から噴出される噴流が案内溝から補助燃焼室に入り、案内溝の正面に形成された段部によって、補助燃焼室内で左右に流れる噴流と、段部を越えて双葉型主室内を直進する噴流に分けられる。補助燃焼室の左右に分けられた噴流は、双葉型の主燃焼室の案内溝側の側面に沿ってなだらかな斜面を登ってその一部が双葉型主室に回り込み、段部を越えて双葉型主室内を進み双葉型の主燃焼室の段部によって左右に分流される噴流と混合され、残りの部分が延長斜面を登ってピストンの頂面に流れる。この結果、双葉型の主燃焼室の案内溝側の側面に沿ってなだらかな斜面を登ることによって勢いが弱められていない噴流と、案内溝から直進した後に左右に分流された噴流とが双葉型主室内で衝突し、回りの空気を攪拌しながら双葉型主室からピストン頂面に溢れ出すと共に、延長斜面を登った噴流が直接ピストン頂面に達するので、ピストン上の空気の利用率が向上し、燃焼が良くなる。また、延長斜面を補助斜面によって滑らかに双葉型主室の底面に接続しておけば、延長斜面上での噴流の混合を増大させることができる。
【0011】
【実施例】
以下添付図面を用いて本発明の実施例を詳細に説明する。
図1(a) は本発明の副室式ディーゼルエンジンの主燃焼室2の第1の実施例における案内溝30と双葉型主室20の構成を示すピストン1の平面図であり、図1(b) は図1(a) のピストン1をその中心線CLで半分に切断してこの実施例の双葉型主室20の形状を示す斜視図であり、図1(c) は図1(a) のA−A線における断面を示している。
【0012】
この実施例では、ピストン1の頂面に双葉型主室20と、燃料噴射弁を有する副燃焼室(図4参照)からの噴流をこの双葉型主室20に案内する案内溝30とが形成されているディーゼルエンジンにおいて、案内溝30の底面33の深さが、図1(b) に示すように、双葉型主室20の底面22の深さよりも深く形成されている。そして、この実施例では、図1(a) に示すように、案内溝30と双葉型主室20との接続部に補助燃焼室40が形成されている。この補助燃焼室40は案内溝30と滑らかに接続し、その後は双葉型主室20の側壁23に沿って所定距離だけ延長されると共に、その深さが次第に浅くなって双葉型主室20に滑らかに接続している。また、この補助燃焼室40の双葉型主室20との境界部は段部21となっている。
【0013】
一方、双葉型主室20の底面22は、図示しない副燃焼室からの噴流が補助燃焼室40内で2つに分断されるように、案内溝30側、即ち、噴流入口側に突出されており、補助燃焼室40と底面22との間の段部21は湾曲状に形成されている。補助燃焼室40の案内溝30に接続する底面41は、案内溝30の底面33と同じ深さであり、補助燃焼室40の双葉型主室20の側壁23に沿った部分の深さは、その深さが次第に浅くなる斜面42になっている。また、双葉型主室20にはこの中を流れる噴流が2つに分断されるような突出部24が設けられている。
【0014】
従って、補助燃焼室40と双葉型主室20の底面22との境界にある段部21の高さは双葉型主室20の左右方向に向かって次第に少なくなるように次第に減少し、補助燃焼室40の斜面42はなだらかに双葉型主室20の底面22に接続されている。
なお、補助燃焼室40と双葉型主室20の底面22との境界にある段部21は、噴流がスムーズに斜面42を登るように、双葉型主室20の側壁23の形状に合わせて湾曲形状に形成されている。
【0015】
以上のように構成された実施例では、副燃焼室からの噴流は図1(a) ,(b) に矢印で示すように補助燃焼室40内および双葉型主室20内を流れる。即ち、副燃焼室からの噴流は矢印▲1▼で示すように最初に案内溝30から補助燃焼室40内に流入する。補助燃焼室40内に入った噴流は矢印▲2▼で示すように段部21によって補助燃焼室40内で左右に振り分けられる。このように、噴流が案内溝30のすぐ近くで振り分けられることにより、従来形状のものよりいち早く主燃焼室内の空気との混合が開始される。
【0016】
補助燃焼室40内で左右に振り分けられた噴流は、双葉型主室20の側壁23に沿って進み、矢印▲4▼で示すように徐々に浅くなる斜面42に導かれて上昇し、双葉型主室20内に流れ込む。このとき、矢印▲4▼で示す噴流は、段部を越えることなく、滑らかな斜面42を上昇するので、その勢いが弱められることがなく、強い勢いで双葉型主室20内に流れ込むことができる。
【0017】
一方、案内溝30から補助燃焼室40に入った噴流の一部は、段部21を乗り越えて双葉型主室20に入り、双葉型主室20の突出部24によって左右に振り分けられ、矢印(3)( 図1では○付数字の3 で示すように双葉型主室20内を流れる。
補助燃焼室40から双葉型主室20に入り込んだ噴流(4)( 図1では○付数字の4 と、段部21を越えて双葉型主室20に入り込んだ後に突出部24によって振り分けられた噴流(3)( 図1では○付数字の3 とは互いに逆向きの旋回流成分を帯びているので、双葉型主室20の左右の部位で衝突する。この衝突により、双方の流れと周囲の空気とを非常に良く攪拌し、燃焼ガス中に空気が取り込まれ、混合、燃焼の改善が得られる。
【0018】
噴流は更にその後に混合しながら双葉型主室20の外側に矢印(7)( 図では○付数字の7) で示すように流れ出るので、従来と同様に矢印(5),(6)( 図1では○付数字の5,6 で示す噴流とも良く混ざり、従来十分に利用されていなかった双葉型主室20からピストン1の外周部にかけての部分S(点線で示す)の空気も利用することができ、燃焼が更に良くなる。
図2(a) は本発明の副室式ディーゼルエンジンの主燃焼室の第2の実施例における案内溝30と双葉型主室20の構成を示すピストン1の平面図であり、図2(b) は図2(a) のB−B線における断面図、図2(c) は図1(a) のC−C線における断面図、図2(d) は図2(a) のピストン1をその中心線CLで半分に切断してこの実施例の双葉型主室20の形状を示す斜視図である。この第2の実施例では、第1の実施例で説明した部分と同じ構成部分には同じ符号を付してその説明を省略する。
【0019】
第2の実施例が第1の実施例と異なる点は、補助燃焼室40の左右に分かれてからの斜面42が、図2(b) ,(c) ,(d) に示すように、双葉型主室20の底面22と同じ高さになった後も更に延長され、延長斜面43が設けられている点である。45は延長斜面43と双葉型主室20の底面22との段差であり、この段差45は双葉型主室20の底面22からピストン1の頂面まで徐々に大きくなっている。また、図2(a) ,(d) における斜面42と延長斜面43の間の点線が双葉型主室20の底面22と同じ高さを示している。そして、第2の実施例における延長斜面43の最終的な高さは、ピストン1の頂面と同じになっている。
【0020】
この第2の実施例の副室式ディーゼルエンジンの主燃焼室20は、第1の実施例のものに比べて、補助燃焼室40からの噴流の流れをより多くピストン1の頂面に導くことができ、燃焼のバランスを双葉型主室20の中からその外側のピストン1の頂面に移すことができる。
図3(a) は本発明の副室式ディーゼルエンジンの主燃焼室の第3の実施例における案内溝30と双葉型主室20の構成を示すピストン1の平面図であり、図3(b) は図3(a) のピストン1をその中心線CLで半分に切断してこの実施例の双葉型主室20の形状を示す斜視図である。この第3の実施例でも第1の実施例で説明した部分と同じ構成部分には同じ符号を付してその説明を省略する。
【0021】
第3の実施例が第2の実施例と異なる点は、延長斜面43と双葉型主室20の底面22との段差45(図2(d) 参照)が補助斜面44によって滑らかに双葉型主室20の底面22に繋げられている点である。この補助斜面44によって延長斜面43と双葉型主室20の底面22との段差45はなくなっている。
この第3の実施例の副室式ディーゼルエンジンの主燃焼室20は、第2の実施例のものに比べて、補助燃焼室40からの噴流の流れをより多くピストン1の頂面に導くことができると共に、双葉型主室20の突出部24を越えて補助斜面44側に流れてきた噴流を滑らかに延長斜面43側に導くことができ、延長斜面43上での噴流の混合を増大させることができる。
【0022】
【発明の効果】
以上説明したように、副室式ディーゼルエンジンの主燃焼室によれば、副燃焼室からの噴流が案内溝から補助燃焼室に入り、案内溝の正面に形成された段部によって、補助燃焼室内で左右に流れる噴流と段部を越えて双葉型主室内を直進する噴流に分けられ、左右に分けられた噴流は斜面を登って勢いを失うことなくその一部が双葉型主室に回り込み、段部を越えて双葉型の主室内で左右に分流された噴流と強く混合され、残りの部分が延長斜面を登ってピストンの頂面に流れる。この結果、補助燃焼室の斜面の下流側の双葉型主室内で噴流が強く衝突し、回りの空気を攪拌しながら双葉型主室からピストン頂面に溢れ出すと共に、延長斜面を登った噴流が直接ピストン頂面に達するので、ピストン上の空気の利用率が向上し、燃焼が良くなるという効果がある。また、延長斜面が補助斜面によって滑らかに双葉型主室の底面に接続されているものでは、延長斜面上での噴流の混合が増大し、更に燃焼が良くなるという効果がある。
【図面の簡単な説明】
【図1】(a) は本発明の副室式ディーゼルエンジンの主燃焼室の第1の実施例における案内溝と双葉型主室の構成を示すピストンの平面図、(b) は(a) のピストンをその中心線で半分に切断して双葉型主室の形状を示す斜視図、(c) は(a) のA−A線における断面図である。
【図2】(a) は本発明の副室式ディーゼルエンジンの主燃焼室の第2の実施例における案内溝と双葉型主室の構成を示すピストンの平面図、(b) は(a) のB−B線における断面図、(c) は(a) のC−C線における断面図、(d) は(a) のピストンをその中心線で半分に切断して第2の実施例の双葉型主室の形状を示す斜視図である。
【図3】(a) は本発明の副室式ディーゼルエンジンの主燃焼室の第3の実施例における案内溝と双葉型主室の構成を示すピストンの平面図、(b) は(a) のピストンをその中心線で半分に切断して第3の実施例の双葉型主室の形状を示す斜視図である。
【図4】(a) は従来の副室付ディーゼルエンジンにおける主燃焼室と副燃焼室の部位を拡大して示す部分断面図、(b) は(a) のピストンの頂面に設けられた双葉型主室と案内溝の形状を示す斜視図である。
【符号の説明】
1…ピストン
2…主燃焼室
4…副燃焼室
5…連通孔
10…本発明の燃料噴射弁
20…双葉型主室
21…段部
22…底面
23…側壁
24…突出部
30…案内溝
33…底面
40…補助燃焼室
41…底面
42…斜面
43…延長斜面
44…補助斜面
45…段差
[0001]
[Industrial applications]
The present invention relates to a main combustion chamber of a sub-chamber diesel engine, and more particularly to a main combustion chamber of a sub-chamber diesel engine in which the shape of a main combustion chamber formed on a top surface of a piston is improved to improve combustion.
[0002]
[Prior art]
Conventionally, a diesel engine that compresses air in a combustion chamber with a piston and injects fuel into the compressed air to self-ignite has been known as an internal combustion engine having high thermal efficiency. In recent years, it has become necessary for such diesel engines to reduce NOx and black smoke (smoke) in exhaust gas.
[0003]
In response to such demands, in a sub-chamber diesel engine having a sub-combustion chamber, the shape of the main combustion chamber is devised to reduce NOx and smoke, and the jet from the sub-combustion chamber is generated in the main combustion chamber. It has been practiced to mix well with air to improve combustion in the main combustion chamber.
FIG. 4A is a partially enlarged cross-sectional view of a conventional diesel engine with a sub-chamber, in which the main combustion chamber 2 and the sub-combustion chamber 4 of the diesel engine with a sub-chamber equipped with the chamber member 6 are enlarged. I have. As shown in FIG. 4A, a piston 1 is accommodated in a cylinder block 50 so as to be vertically movable, and a main combustion chamber 2 is formed at the top of the piston 1. A cylinder head 60 is provided above the cylinder block 50, and a sub-combustion chamber 4 having the fuel injection valve 10 is formed in a part of the cylinder head 60 by fitting the chamber member 6. The main and sub combustion chambers 2 and 4 are communicated by a communication hole 5 provided in a chamber member 6. Reference numeral 48 denotes a glow plug which is energized at the time of cold start to ensure the start of the engine, and 49 denotes a gasket interposed between the cylinder block 50 and the cylinder head 60.
[0004]
In general, the main combustion chamber 2 formed on the top surface of the piston 1 has a dual-lobe main chamber 20 as shown in FIG. And a guide groove 3. In the main combustion chamber 2 of the sub-chamber diesel engine configured as described above, the gap X with the cylinder head 60 at the top dead center of the piston 1 is about 1 mm, and the depth Y of the double-leaf main chamber 20 is 2 mm. It is about.
[0005]
In the main combustion chamber 2 of this conventional sub-chamber diesel engine, when fuel is injected into the sub-combustion chamber 4 and ignited, the combustion gas becomes a jet and passes from the sub-combustion chamber 4 through the communication hole 5, The fuel is ejected from the guide groove 3 of the main combustion chamber 2 into the double-leaf main chamber 20 and mixed with the air on the main combustion chamber 2 side to promote combustion.
The arrows shown in FIG. 4B indicate the flow of the jet flowing from the sub-combustion chamber 4 through the communication hole 5 and from the guide groove 3 of the main combustion chamber 2 into the double-leaf main chamber 20. After being jetted into the guide groove 3, a part of the jet flows around the inside of the main body 20, and a part of the jet flows over the step portion of the main body 20 and flows out into the space between the cylinder block 60. Burns, mixed with the air there.
[0006]
However, in the shape of the main combustion chamber 2 of the conventional sub-chamber diesel engine configured as shown in FIGS. 4A and 4B, the utilization rate of air in the portion indicated by the dotted line S on the top surface of the piston 1 is shown. Was low.
Therefore, in order to improve the utilization rate of air in the combustion chamber and improve combustion, Japanese Utility Model Laid-Open Publication No. Sho 57-174724 discloses a guide groove and a double-leaf type main chamber on a piston top surface communicating with a sub-combustion chamber. In a diesel engine having a main combustion chamber consisting of: a step portion on the side far from the guide groove of the twin-leaf main chamber constituting the main combustion chamber is formed in a step-like shape while maintaining the shape of the twin-leaf type, and An arrangement in which the depth of the stairs is increased at an angle θ from the direction is disclosed. In this proposal, the depth of the bifurcated main chamber on the side close to the guide groove and the guide groove is increased.
[0007]
[Problems to be solved by the invention]
However, in the main combustion chamber of the sub-chamber diesel engine proposed in Japanese Utility Model Laid-Open No. 57-174724, the jet flowing out of the guide groove is divided into right and left, and then collides with the stepped step portion one by one. Because of the flow, there is a problem that the flow and the spread of the jet flow are hindered by the steps. In addition, the direction of the flow of the jet rising up the stairs is linear and the mixing is insufficient, and furthermore, the air in the Futaba type main chamber is pushed out to the top surface of the piston without much intake by the spread jet, There is a problem that mixing of the jet and air is also prevented at the top surface of the piston.
[0008]
In view of this, the present invention is designed to smoothly circulate the jet from the sub-combustion chamber to both sides of the twin-leaf main chamber and to mix the diverted jet and the jet flowing straight from the sub-combustion chamber efficiently. It is an object of the present invention to provide a main combustion chamber of a sub-chamber diesel engine capable of improving the combustion in the combustion chamber by devising the shape of the guide groove of the combustion chamber and the shape of the dual-leaf main chamber.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a sub-chamber type in which a piston has a dual-lobe main chamber and a guide groove for guiding a jet from a sub-chamber having a fuel injection valve to the dual-lobe main chamber. In the main combustion chamber of the diesel engine, the depth of the guide groove is formed to be deeper than that of the Futaba type main chamber, and the connecting portion of the guide groove with the Futaba type main chamber has an auxiliary combustion chamber which is smoothly connected to the guide groove. The step at the boundary between the auxiliary combustion chamber and the dual-lobe main chamber is projected toward the guide groove so that the jet from the sub chamber is divided into two, and the bottom surface of the auxiliary combustion chamber is A jet which is extended to the top surface of the piston by a gentle slope such that the height of the portion gradually decreases in the left-right direction of the Futaba type main chamber and an extended slope connected to the slope, and is divided into two by a step Pis rises along these gentle and extended slopes It is characterized in that the flow into the top surface of the emissions.
In this case, the step between the extended slope and the bottom surface of the double-leaf main room can be smoothly connected by the auxiliary slope.
[0010]
[Action]
According to the main combustion chamber of the sub-chamber diesel engine of the present invention, the jet jet from the sub-combustion chamber enters the auxiliary combustion chamber through the guide groove, and is formed in the auxiliary combustion chamber by the step formed in front of the guide groove. It is divided into a jet that flows to the left and right, and a jet that goes straight in the Futaba type main room beyond the step. Jet divided into left and right auxiliary combustion chamber, sneak a partially Futaba type main chamber up the gentle slope along the sides of the guide groove side of the main combustion chamber of the Futaba type, Futaba beyond the stepped portion type main chamber the flow proceeds Futaba type by the step portion of the main combustion chamber is mixed with the jet diverted to the right and left, flows also the top surface of the piston remaining part up the extended inclined surface. As a result, the jet whose power is not weakened by climbing a gentle slope along the side of the guide groove side of the twin-leaf main combustion chamber, and the jet which is divided right and left after going straight from the guide groove are a twin-leaf type Collision occurs in the main chamber, and the surrounding air is agitated and overflows from the dual-lobe main chamber to the top of the piston , and the jet that climbs the extended slope directly reaches the top of the piston, improving the air utilization rate on the piston. And better combustion. Further, if the extended slope is smoothly connected to the bottom surface of the double-leaf type main chamber by the auxiliary slope, mixing of jets on the extended slope can be increased.
[0011]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1A is a plan view of a piston 1 showing a configuration of a guide groove 30 and a dual-leaf main chamber 20 in a first embodiment of a main combustion chamber 2 of a sub-chamber diesel engine according to the present invention. 1B is a perspective view of the piston 1 of FIG. 1A cut in half at the center line CL to show the shape of the dual-leaf main chamber 20 of this embodiment, and FIG. 1C is a perspective view of FIG. 3) shows a cross section taken along line AA.
[0012]
In this embodiment, a double-lobe main chamber 20 and a guide groove 30 for guiding a jet from a sub-combustion chamber (see FIG. 4) having a fuel injection valve to the double-lobe main chamber 20 are formed on the top surface of the piston 1. In the diesel engine described above, the depth of the bottom surface 33 of the guide groove 30 is formed to be deeper than the depth of the bottom surface 22 of the double-leaf main chamber 20, as shown in FIG. In this embodiment, as shown in FIG. 1A, an auxiliary combustion chamber 40 is formed at a connecting portion between the guide groove 30 and the dual-lobe main chamber 20. The auxiliary combustion chamber 40 is smoothly connected to the guide groove 30, and then extends a predetermined distance along the side wall 23 of the double-leaf main chamber 20. Connects smoothly. The boundary between the auxiliary combustion chamber 40 and the dual-leaf main chamber 20 is a stepped portion 21.
[0013]
On the other hand, the bottom surface 22 of the twin-leaf main chamber 20 is projected toward the guide groove 30 side, that is, the jet inlet side, so that the jet from the sub-combustion chamber (not shown) is divided into two in the auxiliary combustion chamber 40. The step portion 21 between the auxiliary combustion chamber 40 and the bottom surface 22 is formed in a curved shape. The bottom surface 41 connected to the guide groove 30 of the auxiliary combustion chamber 40 has the same depth as the bottom surface 33 of the guide groove 30, and the depth of a portion of the auxiliary combustion chamber 40 along the side wall 23 of the double-leaf main chamber 20 is: The slope 42 has a gradually decreasing depth. Further, the double-leaf main chamber 20 is provided with a protruding portion 24 so that the jet flowing therethrough is divided into two.
[0014]
Accordingly, the height of the stepped portion 21 at the boundary between the auxiliary combustion chamber 40 and the bottom surface 22 of the dual-leaf main chamber 20 gradually decreases so as to gradually decrease in the left-right direction of the double-leaf main chamber 20. The slope 42 of 40 is gently connected to the bottom surface 22 of the double-leaf main room 20.
The step portion 21 at the boundary between the auxiliary combustion chamber 40 and the bottom surface 22 of the dual-leaf main chamber 20 is curved in accordance with the shape of the side wall 23 of the double-leaf main chamber 20 so that the jet smoothly climbs the slope 42. It is formed in a shape.
[0015]
In the embodiment configured as described above, the jet from the sub-combustion chamber flows in the auxiliary combustion chamber 40 and the double-leaf main chamber 20 as shown by arrows in FIGS. 1 (a) and 1 (b). That is, the jet from the sub-combustion chamber first flows into the auxiliary combustion chamber 40 from the guide groove 30 as shown by the arrow (1). The jet flowing into the auxiliary combustion chamber 40 is divided right and left in the auxiliary combustion chamber 40 by the step 21 as shown by the arrow (2). In this way, the jet is distributed immediately near the guide groove 30, so that the mixing with the air in the main combustion chamber is started earlier than in the conventional shape.
[0016]
The jet diverted to the left and right in the auxiliary combustion chamber 40 proceeds along the side wall 23 of the futaba-type main chamber 20, and is guided by the gradually decreasing slope 42 as shown by an arrow {circle around (4)} to ascend. It flows into the main room 20. At this time, the jet indicated by the arrow (4) rises on the smooth slope 42 without going over the stepped portion, so that the momentum is not weakened, and can flow into the Futaba type main chamber 20 with a strong momentum. it can.
[0017]
On the other hand, a portion of the jet which enters from the guide groove 30 in the auxiliary combustion chamber 40 is over the step portion 21 enters the Futaba type main chamber 20, distributed to the right and left by the protruding portion 24 of the Futaba type main chamber 20, an arrow ( 3) (as indicated by 3) numbers with ○ in FIG. 1 through the Futaba type main chamber 20.
A jet entering from the auxiliary combustion chamber 40 to the Futaba type main chamber 20 (4) (4 digits with ○ in FIG. 1), distributed by the projecting portion 24 after having entered the Futaba type main chamber 20 beyond the stepped portion 21 since the jet (3) which carry a swirling flow component opposite to each other and (3 digits with ○ in FIG. 1), collide at the site of the left and right Futaba type main chamber 20. Due to this collision, both the flow and the surrounding air are very well stirred, and the air is taken into the combustion gas to improve mixing and combustion.
[0018]
The jet flows out as shown by an arrow (7) (7 in FIG. 7 in the figure ) outside the futaba-type main chamber 20 while mixing thereafter, so that the arrows (5) and (6) ( FIG. In No. 1, the air is well mixed with the jet indicated by the circled numbers 5 and 6 ) , and the air of the portion S (indicated by a dotted line) from the double leaf type main chamber 20 to the outer peripheral portion of the piston 1 which has not been sufficiently used conventionally is also used. And better combustion.
FIG. 2A is a plan view of the piston 1 showing the configuration of the guide groove 30 and the double-leaf main chamber 20 in the second embodiment of the main combustion chamber of the sub-chamber diesel engine of the present invention, and FIG. ) Is a sectional view taken along line BB of FIG. 2A, FIG. 2C is a sectional view taken along line CC of FIG. 1A, and FIG. 2D is a piston 1 of FIG. Is a perspective view showing the shape of the double-leafed main chamber 20 of this embodiment by cutting the half in the center line CL. In the second embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0019]
The second embodiment is different from the first embodiment in that the slope 42 after the left and right sides of the auxiliary combustion chamber 40 are separated from each other as shown in FIGS. 2 (b), (c) and (d). It is further extended after reaching the same height as the bottom surface 22 of the mold main chamber 20, and an extended slope 43 is provided. Reference numeral 45 denotes a step between the extended slope 43 and the bottom surface 22 of the double-leaf main chamber 20. The step 45 gradually increases from the bottom surface 22 of the double-leaf main chamber 20 to the top surface of the piston 1. 2 (a) and 2 (d), the dotted line between the inclined surface 42 and the extended inclined surface 43 indicates the same height as the bottom surface 22 of the double-leaf main chamber 20. The final height of the extension slope 43 in the second embodiment is the same as the top surface of the piston 1 .
[0020]
The main combustion chamber 20 of the sub-chamber diesel engine of the second embodiment guides a larger amount of jet flow from the auxiliary combustion chamber 40 to the top surface of the piston 1 than that of the first embodiment. Thus, the balance of combustion can be transferred from the inside of the bi-lobal main chamber 20 to the top surface of the piston 1 on the outside thereof.
FIG. 3A is a plan view of the piston 1 showing the configuration of the guide groove 30 and the dual-leaf main chamber 20 in the third embodiment of the main combustion chamber of the sub-chamber diesel engine of the present invention. 3) is a perspective view showing the shape of the double-leaf main chamber 20 of this embodiment by cutting the piston 1 of FIG. 3A in half at the center line CL. Also in the third embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0021]
The difference between the third embodiment and the second embodiment is that a step 45 (see FIG. 2D) between the extended slope 43 and the bottom surface 22 of the double-leaf main chamber 20 is smoothly moved by the auxiliary slope 44 to the double-leaf main. This is a point connected to the bottom surface 22 of the chamber 20. Due to the auxiliary slope 44, the step 45 between the extended slope 43 and the bottom surface 22 of the double-leaf main chamber 20 is eliminated.
The main combustion chamber 20 of the sub-chamber diesel engine of the third embodiment guides more jet flow from the auxiliary combustion chamber 40 to the top surface of the piston 1 than that of the second embodiment. And the jet that has flowed to the auxiliary slope 44 side beyond the protruding portion 24 of the twin-leaf main chamber 20 can be smoothly guided to the extended slope 43 side, and the mixing of the jet on the extended slope 43 is increased. be able to.
[0022]
【The invention's effect】
As described above, according to the main combustion chamber of the sub-chamber diesel engine, the jet from the sub-combustion chamber enters the auxiliary combustion chamber through the guide groove, and is formed by the step formed in front of the guide groove. in divided into jet straight Futaba type main chamber beyond the jet and the stepped portion flowing to the left and right jets divided into right and left wraparound to partially Futaba type main chamber without losing momentum up the slope, is intensively mixed with the jet diverted beyond the stepped portion to the left and right main chamber of Futaba type, flows also the top surface of the piston remaining part up the extended inclined surface. As a result, the jet collides strongly in the bi-lobal main chamber on the downstream side of the slope of the auxiliary combustion chamber, and overflows from the bi-lobal main chamber to the piston top surface while stirring the surrounding air, and the jet that climbs the extended slope is formed. Directly reaching the piston top surface has the effect of improving the utilization of air on the piston and improving combustion. Further, when the extended slope is smoothly connected to the bottom surface of the double-leaf main chamber by the auxiliary slope, there is an effect that the mixing of the jet flow on the extended slope is increased, and the combustion is further improved.
[Brief description of the drawings]
FIG. 1 (a) is a plan view of a piston showing a configuration of a guide groove and a dual-lobe main chamber in a first embodiment of a main combustion chamber of a sub-chamber diesel engine according to the present invention, and (b) is (a). FIG. 3 is a perspective view showing the shape of a double-leaf main chamber by cutting the piston in half at its center line, and FIG. 3C is a cross-sectional view taken along line AA in FIG.
FIG. 2 (a) is a plan view of a piston showing a configuration of a guide groove and a bi-lobe type main chamber in a second embodiment of a main combustion chamber of a sub-chamber diesel engine of the present invention, and (b) is (a). (C) is a cross-sectional view taken along the line CC of (a), (d) is a cross-sectional view of the piston of (a) cut in half at its center line, and It is a perspective view which shows the shape of a futaba type main room.
FIG. 3A is a plan view of a piston showing a configuration of a guide groove and a dual-leaf main chamber in a third embodiment of a main combustion chamber of a sub-chamber diesel engine of the present invention, and FIG. FIG. 10 is a perspective view showing the shape of a double-leaf main chamber of a third embodiment by cutting the piston in half at its center line.
FIG. 4A is an enlarged partial cross-sectional view showing a main combustion chamber and a sub-combustion chamber in a conventional diesel engine with a sub-chamber, and FIG. 4B is provided on the top surface of the piston in FIG. It is a perspective view which shows the shape of a futaba type main chamber and a guide groove.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Piston 2 ... Main combustion chamber 4 ... Sub-combustion chamber 5 ... Communication hole 10 ... Fuel injection valve 20 of the present invention ... Futaba type main chamber 21 ... Step 22 ... Bottom surface 23 ... Side wall 24 ... Projection 30 ... Guide groove 33 ... bottom surface 40 ... auxiliary combustion chamber 41 ... bottom surface 42 ... slope 43 ... extension slope 44 ... auxiliary slope 45 ... step

Claims (2)

ピストンの頂面に、双葉型主室と、燃料噴射弁を有する副室からの噴流をこの双葉型主室に案内する案内溝とが形成された副室式ディーゼルエンジンの主燃焼室において、
前記案内溝の深さを前記双葉型主室よりも深く形成すると共に、この案内溝の前記双葉型主室との接続部には、前記案内溝と滑らかに接続する補助燃焼室を設け、この補助燃焼室と前記双葉型主室との境界部の段部は、前記副室からの噴流が2つに分断されるように前記案内溝側に突出させ、前記補助燃焼室の底面はこの段部の高さが前記双葉型主室の左右方向に向かって次第に少なくなるようななだらかな斜面と、この斜面に連続する延長斜面によって、前記ピストンの頂面まで延長し、
前記段部によって二分された噴流がこれらのなだらかな斜面と延長斜面に沿って上昇して前記ピストンの頂面に流れ込むようにしたことを特徴とする副室式ディーゼルエンジンの主燃焼室。
In the main combustion chamber of the sub-chamber diesel engine, on the top surface of the piston, a double-leaf main chamber and a guide groove for guiding a jet from the sub-chamber having a fuel injection valve to the double-leaf main chamber are formed.
The guide groove is formed to have a depth greater than that of the double-leaf main chamber, and a connecting portion of the guide groove with the double-leaf main chamber is provided with an auxiliary combustion chamber that smoothly connects to the guide groove. A step at the boundary between the auxiliary combustion chamber and the dual-lobe main chamber is projected toward the guide groove so that the jet from the sub-chamber is divided into two, and the bottom surface of the auxiliary combustion chamber is set at this step. A gentle slope such that the height of the portion gradually decreases in the left-right direction of the bi-lobal main chamber, and an extended slope continuous with the slope, extending to the top surface of the piston ,
The main combustion chamber of the sub-chamber diesel engine, wherein the jet divided by the step rises along the gentle slope and the extended slope to flow into the top face of the piston.
前記延長斜面と前記双葉型主室の底面との段差を、補助斜面によって滑らかに接続したことを特徴とする請求項1に記載の副室式ディーゼルエンジンの主燃焼室。2. The main combustion chamber of the sub-chamber diesel engine according to claim 1, wherein a step between the extended slope and a bottom surface of the dual-lobe main chamber is smoothly connected by an auxiliary slope.
JP30755994A 1994-12-12 1994-12-12 Main combustion chamber of sub-chamber diesel engine Expired - Fee Related JP3554385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30755994A JP3554385B2 (en) 1994-12-12 1994-12-12 Main combustion chamber of sub-chamber diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30755994A JP3554385B2 (en) 1994-12-12 1994-12-12 Main combustion chamber of sub-chamber diesel engine

Publications (2)

Publication Number Publication Date
JPH08158869A JPH08158869A (en) 1996-06-18
JP3554385B2 true JP3554385B2 (en) 2004-08-18

Family

ID=17970549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30755994A Expired - Fee Related JP3554385B2 (en) 1994-12-12 1994-12-12 Main combustion chamber of sub-chamber diesel engine

Country Status (1)

Country Link
JP (1) JP3554385B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894735B2 (en) * 2001-03-21 2007-03-22 株式会社クボタ Diesel engine vortex chamber combustion chamber
JP3894737B2 (en) * 2001-03-23 2007-03-22 株式会社クボタ Diesel engine vortex chamber combustion chamber
JP3894736B2 (en) * 2001-03-23 2007-03-22 株式会社クボタ Diesel engine vortex chamber combustion chamber

Also Published As

Publication number Publication date
JPH08158869A (en) 1996-06-18

Similar Documents

Publication Publication Date Title
US4881501A (en) Diesel engine having shaped flame dispersing recess in piston crown
JP3554385B2 (en) Main combustion chamber of sub-chamber diesel engine
JP2760151B2 (en) 2-stroke diesel engine
JP3332694B2 (en) Combustion chamber of subchamber internal combustion engine
JPS6125891B2 (en)
JPS6239665B2 (en)
JPH1113474A (en) Combustion chamber of direct injection diesel engine
JPH0913971A (en) Structure for nozzle hole of combustion chamber of swirl chamber type diesel engine
JP3903604B2 (en) In-cylinder direct injection internal combustion engine
JP2797811B2 (en) Combustion chamber of a swirl chamber type diesel engine
JPH1082323A (en) Combustion chamber of diesel engine
JPS611823A (en) Eddy-current chamber type diesel engine
JPH0614033Y2 (en) Combustion chamber of a sub-chamber internal combustion engine
JP3047211B2 (en) Diesel engine swirl chamber combustion chamber
JP3241130B2 (en) Main combustion chamber of subchamber engine
JPH036824Y2 (en)
JPS6350426Y2 (en)
JPH0619802Y2 (en) Subchamber diesel engine combustion chamber
JPS6338333Y2 (en)
JP2565516Y2 (en) Combustion chamber of a swirl chamber type diesel engine
JPH02123223A (en) Combustion chamber of internal combustion engine
JPH0649854Y2 (en) Sub-compartment 2-cycle diesel engine
JPH0121152Y2 (en)
JP2947962B2 (en) 2 cycle engine
KR200173928Y1 (en) Piston for directly injected engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees