JP3892299B2 - Hts超伝導回転機械 - Google Patents

Hts超伝導回転機械 Download PDF

Info

Publication number
JP3892299B2
JP3892299B2 JP2001552505A JP2001552505A JP3892299B2 JP 3892299 B2 JP3892299 B2 JP 3892299B2 JP 2001552505 A JP2001552505 A JP 2001552505A JP 2001552505 A JP2001552505 A JP 2001552505A JP 3892299 B2 JP3892299 B2 JP 3892299B2
Authority
JP
Japan
Prior art keywords
superconducting
assembly
rotating machine
machine according
rotor assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001552505A
Other languages
English (en)
Other versions
JP2003533957A (ja
Inventor
ティ. ハワード、レイモンド
エス. カルサイ、スウォーン
エル. スニッチラー、グレゴリー
ビー. ガンブル、ブルース
ティ. サンド、ウィリアム
エム. ウィン、ピーター
ピー. ヴォッチオ、ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Superconductor Corp
Original Assignee
American Superconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27401882&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3892299(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/632,776 external-priority patent/US6597082B1/en
Application filed by American Superconductor Corp filed Critical American Superconductor Corp
Publication of JP2003533957A publication Critical patent/JP2003533957A/ja
Application granted granted Critical
Publication of JP3892299B2 publication Critical patent/JP3892299B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
本発明はその一部が、海軍研究事務所によって与えられた契約書第N00014−99−C−0296号に準ずる研究から発生した。
【0002】
本発明の技術分野
本発明は超伝導回転機械の構造及び動作に関する。より詳細には超伝導モータに使用されるトルク伝達アッセンブリに関する。
背景
超伝導空心の同期発電機は1960年代の初め以来開発されてきた。これらの機械に対する超伝導巻線の使用は、巻線によって生成された起磁力の著しい増加および機械中の増加した磁束密度に帰着した。初期の超伝導機械は、初期にはNbZrやNbTi及び後にはNbSnを伴う低温超伝導体(LTS)が巻回された界磁巻線を有していた。界磁巻線は固定された液化装置からの液体ヘリウムで冷却された。液体ヘリウムは機械のロータへ輸送され、次に、巻線を冷却するために流体の潜熱及び顕熱の両方を使用すべく気化された。この方法は、非常に大型(例えば、500MWより大型)の同期モータ及びジェネレータには実行可能であることが判明した。1980年代の高温超伝導体(HTS)の到来により、超伝導同期機械中のHTS巻線の実現可能性を決定すべく調査が次々に行われた。
【0003】
要約
本発明は、比較的高い出力電力を供給する一方で比較的コンパクトなデザインを有した超伝導回転機械を特色とする。その構造は実際に、増加した出力密度特性を有した超伝導回転機械を提供する。
【0004】
その超伝導機械は、ステータ・アッセンブリと、同ステータ・アッセンブリ内で回転し、ステータ・アッセンブリから一定の間隙により離間したロータ・アッセンブリとを有するタイプである。この構造は例えば、超伝導モータ又はジェネレータを生産するために使用可能である。
【0005】
本発明の一実施態様において超伝導回転機械は、、駆動時にステータ・アッセンブリとロータ・アッセンブリを結合する磁束を生成する少なくとも1つのHTS超伝導巻線アッセンブリと、このロータ・アッセンブリの少なくとも1つの超伝導巻線を冷却するための低温冷却システムとを有する。超伝導回転機械は、500RPM以下において約75N・m/kg以上のトルク密度を有し、このトルク密度は、モータ・シャフト・トルクのモータの重量による商と等しい。高速モータがギアーケースの出力速度を減少させることを必要とする場合には低速での高トルク密度が有利である。ギアーケースは騒々しく、大型、かつ高価である。例えば、ギアーケースを使用せずに船プロペラを運転するために本発明を使用することにより船の有効なスペースを確保し、かつ全体的ノイズを縮小し得る。
【0006】
間隙せん断応力は機械のトルク密度の有効な目安である。それは、ロータ・アッセンブリおよびステータ・アッセンブリの間の間隙の表面積を機械の性能と関連づける。より詳細には間隙せん断応力は、機械トルクの、間隙の面積及び半径による商と等価の数値である。ロータが間隙せん断応力と等しい表面せん断応力を受ける場合、設計トルクと等しいトルクが機械のシャフトに伝達される。約103.4〜589.5kPa(15 lbs/in(psi)〜100psi)の範囲の間隙せん断応力特性を達成する一方で、500RPM以下において約75N・m/kg以上の好適なトルク密度を達成する。
【0007】
本発明のこの実施態様は、次の特長の1つ以上を有していてもよい。実施形態では機械は、300RPM以下において約150N・m/kgのトルク密度、及び、約206.9kPa〜689.5kPa(30 lbs/in(psi)〜100psi)の範囲のせん断応力特性を有する。
【0008】
超伝導巻線アッセンブリは開口を画定する複数の同心上の回転を提供すべく同巻線アッセンブリの軸の周りに巻回され、この軸に沿った超伝導体テープを有した超伝導コイルを有する。超伝導体テープの各1周は、巻線アッセンブリの軸とほぼ平行に維持され幅広の表面を有する。
【0009】
超伝導体テープは1組の対向する弓形の端部と1組の対向するほぼ直線の側部を画定するレーストラック形状に巻回されている。超伝導体テープは、マルチフィラメント複合超伝導体の長さ全体に亙り、マトリックス形成材料によって包囲された別個の超伝導フィラメントを有するマルチフィラメント複合超伝導体を含む。
【0010】
超伝導体テープは異方性を有する高温超伝導体、例えばBiSrCaCuOを含有する。代替手段として、異方性を有する高温超伝導体は希土類−酸化銅系に属する。
【0011】
特定の実施形態において、超伝導巻線アッセンブリは内部支持部材を有する。同内部支持部材は超伝導巻線と隣接し、及び交互の設けられて、超伝導巻線アッセンブリ内で生じる大きな曲げ応力の緩和を促進する。例えば、約1.02mm(40ミル)の厚さのステンレス・スチールを超伝導巻線と交互に設けることが可能である。内部支持部材及び超伝導巻線は積層構造を形成する。積層構造はシステムに機械的強度を与え、非円形の超伝導巻線がそれら自体を互いに押し離すことを防止する。例えば、レーストラック形状の超伝導体巻線は、ほぼ直線の側部を互いに押し出して、円形巻線に向かう傾向がある。内部支持部材は、ロータ本体内部にある低温冷却管に熱伝導経路を提供する熱伝導性の被覆で覆われる。例えば、内部支持部材を被覆するために銅を使用し得る。
【0012】
超伝導回転機械のロータ・アッセンブリは真空チェンバで包囲される。チェンバは周囲の部品から低温冷却超伝導巻線を分離する。ロータ・アッセンブリを貫通し、ロータ・アッセンブリから間隙により離間されたシャフトが取り付けられる。シャフトは接線バックル・アッセンブリを使用して取り付けられ、これはロータ・アッセンブリとシャフトとの間の回転力の伝達を可能にする。シャフトは接線のアッセンブリと連結された、軸方向バックル・アッセンブリを使用しても取り付けられる。軸方向バックル・アッセンブリは、ロータ・アッセンブリをシャフトに対して軸方向に固定する。接線バックル・アッセンブリ及び軸方向バックル・アッセンブリの両方は、ロータ・アッセンブリをシャフトから熱的に分離すべく断熱バンドを利用する。低温冷却超伝導巻線がより高温のシャフトから断熱されていない場合には、シャフトは、巨大なヒートシンクの役割を果たす。断熱バンドは、高い引張強さおよび低い熱伝導率を備えた任意の材料から製造できる。ある実施形態では、断熱バンドは、強化エポキシ樹脂(例えばパラ型アラミド及びエポキシの混合物)から形成される。パラ型アラミドはデラウェア州ウィルミントンのE.I.デュポン・ドゥ・ヌムールによってケブラー(登録商標)の商標で販売されている。
【0013】
ステータ・アッセンブリは長菱形のステータコイルを利用して製造される。ステータ・アッセンブリは個々のステータコイル冷却を有していてもよい。各コイルは電気絶縁材料により包囲されるとともに、ステータコイルの片側に外部のソースからから冷却材を受けるための冷却コンジットが取り付けられる。電気絶縁材料は接地電位にある冷却コンジットをステータコイルに対して立て掛けることを可能にする。冷却コンジット及び電気的に絶縁されたステータコイルは伝熱材料によって包まれる。伝熱材料は、ステータコイルの冷却コンジットと隣接していない側からの冷却を促進することにより、電気絶縁材料内の温度勾配を減少させる。
【0014】
外部の冷却コンジットを利用し、かつそれをステータコイルから電気的に絶縁することは、脱イオン化水の代わりに真水の使用を可能にし、ステータ・アッセンブリの空気冷却に依存する必要がないため、より小さく、より密集したステータコイルが可能である。ある実施形態では、システムにより良好な冷却特性を与えるべく対抗した平行の面に2つの冷却コンジットを取り付けることが可能である。さらに、多数の通路を有したコンジットが使用されてもよい。
【0015】
ある実施形態において電気絶縁材料は、ステータ・アッセンブリの全体にわたって受ける電圧に比例して厚さが多様であり得る。個々の長菱形ステータコイルはステータ内での位置に依存して多様な電圧を受ける。電源電圧に最も近いステータコイルは最も厚い絶縁材料を必要とする。相の両端から電気的に中間に設けられたステータコイル上の絶縁体は、前のコイルにおける電圧降下のために、最も薄い絶縁を必要とする。従って、電気絶縁材料の厚さは、相の両端における最大値と、位相の両端間の電気的に中間に位置するコイルにおける、最大の厚さの約半分である最小値との間で段階的に減少する。電気絶縁材料の厚さを変えることは、それが必要でない場合にはより厚い絶縁が使用とされないため冷却を容易にすることを促進する。奇数個のコイルを有した相については、同様の原理だが絶縁材料の最小厚さに対して異なる絶対値が必要となる。
【0016】
二層巻線中の1組のコイルを異なる絶縁材の厚さで適切な整合することによって、及び、同様の温度上昇のために各組のコイルのワイヤのサイズを変えることによって、本質的に減少した温度上昇或いは電圧故障に対する増加した抵抗を得ることが可能となる。
【0017】
超伝導回転機械は、超伝導巻線を冷却するために低温冷却システムを有する。低温冷却システムは、複数個の低温冷却表面と、低温環境内にあり冷却表面とロータ・アッセンブリ内の超伝導巻線との間で低温流体を移動させる低温流体輸送装置とを有する。低温流体は、低温冷却表面と流体連通し、ロータ・アッセンブリとの熱的に伝達する閉鎖ループシステムによって輸送される。回転継手は、閉鎖ループシステムが回転する一方で、低温冷却表面と低温流体輸送装置とを静止している状態に維持することを可能とさせる。
【0018】
一実施形態では、低温流体運搬装置は低温条件に適応可能なファンである。低温条件に適応可能なファンを使用することの利点は、低温流体が状態変化を経ないため、流体を周囲温度に加温することを必要としない点である。さらに、低温条件に適応可能なファンは、状態変化を必要とするコンプレッサ及び熱交換器を追加するよりもより小型、かつそれほど高価ではない。
【0019】
ある実施形態では、低温冷却表面はギフォード・マクマフォン・コールドヘッドである。パルス・チューブ及び低温冷凍機も低温冷却表面として有用である。
本発明の他の利点及び特徴は以下の記載及びクレームから明白になる。
異なる図面において同一の参照符号は、類似の要素を示す。
発明の詳細な説明
図1,2を参照する。超伝導同期モータ10は、ここではギフォード・マクマフォン(GM)冷却システムである低温冷却システム100によって冷却されたロータ・アッセンブリ50を有し、ステータ・アッセンブリ20によって包囲される。ステータ・アッセンブリ20及びロータ・アッセンブリ50の両方は、部品及び超伝導モータ10の全てのユーザを保護すべくハウジング12内に搭載される。以下により詳細に記載されるように、これらの部品及びアッセンブリのそれぞれは、全体的性能向上及びモータ10の外形寸法の縮小の両方に寄与する特徴を有する。より詳細には、超伝導同期モータ10は500RPM以下において75N・m/Kg以上まで高いトルク密度を生成可能である。さらに、そのようなモータは約103.4〜589.5kPa(15psi〜100psi)の範囲の、大幅に改善された間隙せん断応力特性を提供することが予想される。
【0020】
図1,3〜5を参照する。この実施形態においてステータ・アッセンブリ20は、支持チューブ34の周りに巻回された108個のステータコイル22を有し、多相構造、ここでは9位相構造に配置されている。1相あたり12個のステータコイル22は12ポール構造を提供する。上面鉄36は、ステータコイル22を磁気ワイヤで包むことにより形成される。ステータコイル22は長菱形状に巻回され、1個のステータコイル22の長菱形が1つのポールを表す。ステータコイル22は、ステータコイル22の同じ相にて隣接する側を重ね合わせて、支持チューブ34の周りに配置される。
【0021】
図6を参照する。冷却コンジット30はステータ・アッセンブリ20の冷却を促進すべく各ステータコイル22との熱的に接触させて設けられる。各冷却コンジット30は渦電流加熱を最小限にするために、薄い壁面の高電気抵抗合金から形成される。冷却コンジット30の各冷却材通路は、隣接した冷却材通路からそれぞれ別個であり、電気的に分離される。冷却コンジット30が一般に導電材料から形成されるため、ステータコイル22を接地電位にある周囲の他の部品、特に冷却コンジット30から電気的に分離すべく、ステータコイル22を絶縁テープ28により包囲する。より詳細には、電気絶縁テープ28は冷却コンジット30を接地電位に維持することにより、イオンを含有する真水の使用を可能にする。電気絶縁テープ28は、導体回転24の動作電圧及び同導体回転24によって生成された熱に耐えることが可能である厚さを有した材料から形成されている。電気絶縁テープ28の厚さは、材料の絶縁耐力(絶縁特性)及び動作電圧によって決定され、典型的には約0.025cm〜0.25cm(約0.001〜0.100インチ)の間にある。電気絶縁テープ28の材料の例にはエポキシ、マイカ、及びガラステープが含まれるが、これらに限定されない。
【0022】
この実施形態では、ステータコイル22は多数の導体回転24のアレイから形成される。各導体回転24は、絶縁体26によって隣接した回転から電気的に分離される。絶縁体26は電気絶縁テープ28と同一の材料から形成され得るが、より薄い厚さ(例えば約0.025cm〜0.076cm(0.001〜0.030インチ))を有する。
【0023】
図6,6Aを参照する。冷却コンジット30は各ステータコイル22を包囲する絶縁テープ28に隣接し、かつ接触して取り付けられる。各冷却コンジット30は、真水外部ソース200から冷却材を受け取るべくその内部を貫通して伸びる多数の通路を有する。図3を参照すると、各冷却コンジット30は各ステータコイル22の末端領域に開口(図示せず)を有する。従って、外部ソース200から各冷却コンジット30へ流体を流入させるべく、108個の開口が、マニホールド・アッセンブリ(図示せず)と流体連通している。ステータコイル22の反対側では、108個の開口が出口202と流体連通している。一実施形態においてマニホールドは、ステータ・アッセンブリ20の正面及び後方端部の周囲に取り付けられたキャップ(図示せず)である。
【0024】
ステータコイル22全体の冷却を促進すべく、低い電気伝導率を有した多孔質銅製伝熱部材32がステータコイル22及び冷却コンジット30の周囲に設けられる。他の実施形態では、ステータコイル22の周囲に設けられたワイヤからこれを形成し得る。伝熱部材32がない場合には、ステータコイル22は冷却コンジット30と電気絶縁テープ28との間の接点のみで冷却される。この接点における冷却のために、電気絶縁材料28内部に熱勾配が引き起こされる。この熱勾配は、冷却コンジット30と電気絶縁テープ28との間に熱ストレスを生成し、それはこの界面での電気的故障によりステータ・アッセンブリ20における早期の故障を生じ得る。さらに、高出力密度の実施形態では、冷却コンジット30は、必要とされる高いパッケージ密度により、ステータコイル22の幅広い側に取り付け可能でない。ピーク温度を最小化するために、伝熱部材32がステータコイル22及び冷却コンジット30の周囲に設けられて、ステータコイル22の冷却コンジット30と直接接触していない側部からの熱伝達を可能とする。
【0025】
ある実施形態では、ステータ・アッセンブリ20の冷却は、電気絶縁材料28の厚さを変えることによりさらに増強される。個々の長菱形のステータコイル22中の導体回転24を接地された伝熱部材32から分離する電気絶縁材料28は、ステータコイル22が直列に連結されたステータ・アッセンブリ20のある位相内のコイルの電気的配置に依存して多様な誘電応力を受ける。位相の末端にある2つのステータコイル22は、電源電圧に直接接続されて、それらの電気絶縁材料28は導体回転24と伝熱部材32との間で最大の誘電応力を受ける。位相の両端間の電気的に中間に位置するコイルには、位相の末端と中間との間でのステータコイル22における電圧降下のために約半分の誘電応力にさらされる。電気絶縁材料28の厚さは電圧の変動に正比例して均一に段階的に変えられる。一実施形態では、電気絶縁材料28の厚さの最小厚さは、関係式Tins=(0.5+(1/N))によって計算される。ここでTinsは電源電圧に接続されたコイルにおける電気絶縁材料28の最大厚さを表し、Nは各位相中でのステータコイル22の偶数の個数を表わす。電気絶縁材料28の厚さは、最大厚さ、T ns、及び最小厚さの間で均一な段階的に比例して異なる。電気絶縁材料28の厚さを変えることは、それが必要でない場合にはより厚い電気絶縁材料28が使用とされないため冷却を容易にすることを促進する。
【0026】
別の実施形態では、ステータコイル22が最も薄い、及び最も厚い電気絶縁材料28を対にして備えた二層巻線の対に各位相中のステータコイル22が配置され、接続され得る。その後、次に薄く、次に厚い電気絶縁材料28を備えたステータコイル22が対にされ、このプロセスは最後に2つの中央のステータコイル22が組になるまで継続される。
【0027】
他の実施形態では、電気絶縁材料28の厚さを変える利点は、上記のステータコイル22の組における2つのステータコイル22のそれぞれの断面積を変えることにより増強し得る。ステータコイル22内の薄い電気絶縁材料を備えた導体回転24の断面積は、薄い電気絶縁材料28の減少した熱抵抗によってより高電力を消費可能とするため減少可能である。これは、導体回転24の断面積を増加させることによって厚い電気絶縁材料28を備えたもう一方のコイルでの電力浪費を減少させるべく、同一の組のコイルにおいて空間を空ける。均一な絶縁厚さ、及び均一なワイヤ断面積を有した従来の技術を使用した結果と比較して典型的に、巻線の温度上昇は30パーセント減少される。上記のコイルの組の各コイルで電気絶縁材料28の厚さを増加させることにより、導体回転24と隣接の伝熱部材32との間において、従来技術で得られるものと同様な高温で従来技術と比較して電圧故障に対する向上した抵抗が得られ得る。
【0028】
図7を参照する。その上に超伝導ロータコイル52が接線バックル70及び軸方向バックル60によって出力シャフト82上に取り付けて固定されるロータ・アッセンブリ50はロータ本体58を有する。以下に詳細に記載されるように、接線バックル70及び軸方向バックル60は、出力シャフト82から低温冷却されたロータ本体58を熱的に分離するとともに、ロータコイル52により生成されたトルクと力とを出力シャフト82に伝達する。以下に詳細に記載されるように、接線バックル70及び軸方向バックル60は、ロータ本体リブ59と出力シャフトプレート84との間に取り付けられる。真空チェンバ壁面86は出力シャフト82と一体的に取り付けられて、ロータ・アッセンブリ50を包囲し、クリオスタットの役割を果たす。以下に詳細に記載されるように、ロータコイル52から熱を発散し得るクライオクーラ104まで熱を伝導すべく低温冷却閉鎖ループ118(図2に示されている)が使用される。特定の実施形態では、真空チェンバ86は以下に記載された理由のために電磁遮蔽88としての役割を果たす外部円筒形壁面を有する。
【0029】
図7,8を参照する。出力シャフト82は、出力シャフト82表面から径方向に外側へ伸びる多数のプレート84を有する。多数のプレート84には、出力シャフト82の周囲に設けられた周辺拡張プレート84Aの第1の組と、出力シャフト82に沿って設けられた長手方向拡張プレート84Bの第2の組が含まれる。プレート84の壁面はここでは30個のほぼ長方形のポケットを出力シャフト82表面の周囲になし、そこに接線バックル70及び軸方向バックル60が取り付けられる。プレート84はさらに放射状のスロットを有する。より詳細には長手方向プレート84Bは、出力シャフト82の周囲に長手方向プレート84Bがなす各長方形ポケットの壁面に接線バックル70を取り付けるための径方向スロット85Bを有する。同様に周辺プレート84Bは、出力シャフト82の周囲に周辺プレート84Bがなす各長方形ポケットの壁面に軸方向バックル60を取り付けるための径方向スロット85Bを画定する。しかし、この実施形態では長方形ポケットのアレイの中間にある長方形ポケット内に置き換えられた3つの軸方向バックルのみを利用する。即ち、外部の周辺プレート84A上には径方向スロット85Aはない。
【0030】
図2を再び参照する。上記されたように、真空チェンバ86は、出力シャフト82と一体的に取り付けられ、ロータ・アッセンブリ50を包囲する。真空チェンバ86は周辺プレート84A及び長手方向プレート84Bを包囲し、ロータ本体58及びロータコイル52を出力シャフト82に取り付け得る寸法を有する。出力シャフト82は、真空チェンバ86およびプレート84の両端を越えて延伸する。出力シャフト82はその一端において、モータ10が駆動する外部負荷に接続するように延伸する。他端では出力シャフト82は、ブラシレス励磁機の回転する方の部材16に接続される。
【0031】
図2に示されるブラシレス励磁機は、固定ディスク14から離間した(例えば1〜4mm離間した)回転ディスク16を有する。回転ディスク16は、高い透磁性を有した粉末又は積相された材料(例えば鉄)から形成され、1組のコイル巻線が設けられる、同心の1組の溝を有する。固定ディスク14は、高い透磁性を有した材料から形成され、1組のコイル巻線が設けられる、同心の1組の溝を有する。実質上この構造は、トランスの二次側と相対回転するトランスの一次側(或いはその逆)を提供する。この特定の構造での重要な特徴は、静止している場合に固定ディスク14と回転ディスク16とによって生成された鎖交磁束が、回転ディスクが回転する場合と同一である点である。この特徴は、回転ディスク16を回転させる前(即ちモータ10が作動する前)に、超伝導ロータコイル52を帯電させることを有利に可能にする。
【0032】
ロータ・アッセンブリは、好適には非磁性体(例えばアルミニウム、銅)から形成され、真空チェンバ86を包囲する電磁遮蔽88を有する。真空チェンバ86がステンレス・スチールなど異なる材料から形成される実施形態では、電磁遮蔽88は、真空チェンバ86の外壁の周囲に機械的に設けることが可能である。電磁遮蔽88は、さらに誘導体構造物(即ち、誘導電流を保持する)の役割を果たすため、多目的である。より詳細には電磁遮蔽88は、AC磁界がロータ・アッセンブリ12の超伝導巻線26に影響を及ぼす前に、ステータからAC磁界を遮断する。さらに、電磁遮蔽60が誘導体構造物としての役割を果たすため、誘導モードでの起動時に同期超伝導モータ10を駆動すべく使用可能である。電磁遮蔽88は、超伝導モータ10が起動時の誘導モータとして、或いは極低温システムの破滅的故障の場合におけるバックアップ・モードとしての連続的モードにおいて駆動することを可能とする。
【0033】
図9を参照する。ロータ・アッセンブリ50は、支持のためにステンレス・スチールロータ本体58に取り付けられた超伝導ロータコイル52をさらに有する。ロータ本体58は、ロータコイル52を冷却する低温冷却閉鎖ループ118を支持する。ロータ本体58は、内面90及び外面92を備えた管状である。外面92は、ほぼ円筒状の形状であってもよく、或いはロータコイル52を受容すべき平坦機械加工部を有していてもよい。平坦機械加工部は例えば、外面92にほぼ五角形、六角形、又は7辺形の形状を与え得る。本発明では、12平面が12個の平坦なロータコイル52を受容すべく機械加工された。
【0034】
ロータ本体58は、出力シャフト82と連結する接線バックル70及び軸方向バックル60を取り付けるためにロータ本体リブ59を有する。ロータ本体リブ59は、内面90の円周上に固定され、ロータ本体58の内面90から径方向に内側を指向して伸びる。
【0035】
この実施形態では、ロータコイル52の超伝導体は、一般にBSCCO2223又はBSCCO(2.1)223と呼ばれるBiSrCaCuOx又は(BiPb)などの高温酸化銅セラミック超伝導材料である。YBCO(或いはイットリウムの代わりに希土類元素が使用される超伝導体)、TBCCO(即ち、タリウム・バリウ・ムカルシウム酸化銅系)及びHgBCCO(即ち水銀バリウム・カルシウム酸化銅系)を含む他の高温超伝導体も本発明の範囲内である。ロータコイル52は、単層、又は二層のパンケーキコイルから形成されてもよい。ある実施形態では、1組が同一の長さの連続した超伝導テープにより巻回されている2つのコイルを備えた二層パンケーキコイルが使用されてもよい。この場合、パンケーキコイルは2層パンケーキに伴われるパンケーキコイルより小さな直径を有し得る。この方法を使用するための方法は米国特許第5,581,220号に記載されている。それは本発明の譲受人であるアメリカン・スーパーコンダクタに譲渡され、参照によって本明細書に組み込まれる。好適な実施形態は、好適には超伝導セラミック酸化物、最適には酸化銅系のものを含む、高温超伝導複合材料の磁気特性及び熱特性に基づく。
【0036】
図10を参照する。レーストラック形状が超伝導コイル・アッセンブリを分解するように押し出す強大な曲げ応力を生成するため、構造物の安定を促進すべく、上記のロータコイル52は内部支持材54を備えて形成される。この制限を克服するために、ロータコイル52は、超伝導巻線126と内部支持材54を交互にした内部コイル支持材54との積層形状に形成されている。内部スペーサ140及び外部のスペーサ142などの外部支持材は、十分にレーストラック形状などの非円形・非線形の形状に伴われる内部応力を緩和しない。内部スペーサ140及び外部スペーサ142と組み合わされた内部コイル支持材54の付加は、ロータコイル52に機械強度を与えて、超伝導コイル126中の内部歪みを縮小する。ひとつにはピーク歪みが、超伝導コイル126の内径に位置して使用され得る全ての外部支持構造体から遠くに取り除かれるため、内部歪みは内部コイル支持材54の使用により縮小される。
【0037】
この実施形態では、内部コイル支持材54は厚さ約1.02mm(40ミル)のステンレス・スチールである。しかし、様々な実施形態が性能を最適化すべく異なる厚さを必要とするであろうため、それらの意図された目的のために、様々な厚さ及び材料(銅または繊維ガラスの複合材料などの)がその役割を果たすことが認識され得る。ある実施形態では、熱伝導性のコーティングが、ロータ本体58内に設けられた低温冷却管118に、より良好な熱伝導率を提供すべく内部コイル支持材54に塗布され得る。例えば、内部コイル支持材は銅でコーティングされることが可能である。
【0038】
内部コイル支持材54を共に結合すべくファスナーが使用され得る。例えば、複数の層は、超伝導体巻線126によって形成された環状開口136内の箇所において内部コイル支持材54を貫通して、1本、又は多数のボルトを渡すことにより機械的連結され得、ロータ本体58にアッセンブリ及び上部キャップ144を固定する。ボルトは内部コイル支持材54を一体化された構造体へと共に連結して、さらに大きな機械強度に帰着する。ロータコイル52は積層構造をさらに互いに固定するためにファスナーを使用し、或いは使用せずにエポキシ樹脂で接着することが可能である。
【0039】
内部コイル支持部材54はさらに、隣接した超伝導体巻線間の電気接続を容易にする多様な開口(図示せず)を有する。ロータコイル52内の各超伝導コイルアッセンブリは電気接続される必要がある。内部支持部材54が各ロータコイル52間に設けられるため、各ロータコイル52間の電気接続を可能とするために開口が設けられる必要がある。
【0040】
図11及び13Bを参照する。ロータ本体58と出力シャフト82との間の軸方向移動を防止すべく、軸方向バックル60がロータ・アッセンブリ50に組み込まれている。軸方向バックル60は、連結部材62,64間の断熱連結バンド66の使用により、低温冷却ロータ本体58を出力シャフト82からさらに断熱する。
【0041】
ほぼU字型の連結部材62は、ロータ本体リブ59上に開口端を摺動させることにより、ロータ本体58に取り付けられる。ロータ本体リブ59は軸方向へU字型連結部材62を拘束する。2つの小型連結部材64は、小型連結部材64の1つの面上の幅が狭い肩65によって、円周状出力シャフトプレート84Aの中の対向する径方向スロット85Aに取り付けられる。小型連結部材64の残りの部分の幅が径方向スロット85Aより広い場合には、幅が狭い肩65は径方向スロット85A内に摺動することにより、小型連結部材64がスロット85Aを越えて移動することを防止する。2つの小型連結部材64は、断熱連結バンド66によりU字型連結部材62に機械的に連結される。断熱連結バンド66はパラアラミド/エポキシの帯である。連結バンド66がU字型連結部材62と小型連結部材64との間の唯一の直接的接続であるため、断熱連結バンド66の使用によって、出力シャフト82及びロータ本体58は互いに断熱される。この断熱は、出力シャフト82が熱シンクの役割を果たすことの防止を促進する。
【0042】
連結バンド66は、U字型連結部材62及び小型連結部材64に取り付けられた球状ボール・エンド継手69の周囲を包囲する。小型連結部材のうちの1つの中の球状ボール・エンド継手69はカム68であり、連結バンド66をプレロードするために使用される。円筒状ピン72及びカム68を包囲している物は球状ボール・エンド69である。球状ボール・エンド継手69は連結バンド66を支持し、ずれの調整を提供する。球状ボール・エンド継手69は連結バンド66に対する均一な荷重を維持する。連結バンド66は、張力を変化させるべくカム68を回転することによりプレロードされている。連結バンド66は180°離れており、1つのカムが両方の連結バンド66を同時に引っ張り、両方の連結バンド66を一軸張力をもって設けることを可能とする。この構造は、ロータ本体58及び出力シャフト82を軸の両方向に制限する。
【0043】
図12A,13Aを参照する。ロータ本体58と出力シャフト82との間の回転力を伝達すべく、ロータ・アッセンブリ50には接線バックル70が組み入れられる。軸方向バックル60は、連結部材72,74間の断熱連結バンド66の使用により、低温冷却ロータ本体58を出力シャフト82からさらに断熱する。
【0044】
X型連結部材74は、X型連結部材74の対向する脚に設けられた2つの陥没スライド取り付け領域78によって出力シャフト82に取り付けられる。これらの陥没スライド取り付け領域78は、X型連結部材74が出力シャフト82の軸と平行に取り付けられるように設けられている。陥没スライド取り付け領域78は、X型連結部材74を円周方向及び軸方向に制限する長手方向プレート84Bの径方向スロット85B内へと滑降する。2つの球状ボール・エンド継手69が、ロータ本体リブ59および球状ボール・エンド継手69によって円筒状ピン72を押しながら、ロータ本体リブ59の間に取り付けられる。球状ボール・エンド継手69は、断熱連結バンド66によってX型連結部材74に機械的に連結される。上記されたように、断熱連結バンドはパラ型アラミド/エポキシ樹脂の帯であり、出力シャフト82からロータ本体58を断熱する。
【0045】
図12A,12Bを参照する。連結バンド66は、X型連結部材74の陥没スライド取り付け領域78を画定しない2つの脚の間に取り付けられた球状ボール・エンド継手69の周囲と、ロータ本体リブ59内に取り付けられた球状ボール・エンド継手69周囲とを包囲する。連結バンド66は180°離れて取り付けられており、両方の連結バンド66を一軸張力をもって設けることを可能とする。
【0046】
X型連結部材74はスプリング96を収容する寸法を有し、両方のバンドを一軸張力にプレロードする開口80を内部を貫通して画定する。開口80は、X型連結部材74が出力シャフト82に取り付けられる場合には出力シャフト82の軸に対して垂直にであるように画定されて、スプリング96がX型連結部材74を径方向に外側へ押し出すことを可能にする。スプリング96は、接線バックル70がスプリング96の圧縮によりプレロードされることを可能にする。接線バックル70がロータ・アッセンブリ50内に組み入れられる場合、スプリング96はさらに幾分かコンプライアンスを可能にする。圧縮したスプリング96は、各接線バックル70が任意の製作公差、例えば連結バンド66内に調節されることによりより迅速にプレロードされることを可能にし、それによりロータ・アッセンブリ50のより迅速な組立時間を促進する。プレロードの機能はさらに純粋な張力にて連結バンド66を取り付けることを促進する。純粋な張力に連結バンド66を取り付けることによって、アッセンブリは、ロータ本体58と出力シャフト82との間の非常に大きなトルクを伝達できる。
【0047】
高度に誤った取り付けの状況ですることにより連結バンド66が破損することを防止すべく、長手方向の出力シャフトプレート84Bはロータ本体58内で軸方向スロット(図13A)の範囲内の寸法に形成される。突然の衝撃荷重がモータ10に適用される場合、金属接触が生じる。そのようなショック・システムを設計することに対する利点は、連結バンド66を実用性を減少させる誤り及び衝撃荷重のための寸法に連結バンド66を形成する必要がない点である。
【0048】
図2,14,15を参照する。低温冷却システム100は、低温流体を極低温に維持し、かつ低温流体を、ロータコイル52と隣接して、かつ熱伝達するように設けられた低温冷却ループ118との間で移動させるために使用される。低温流体は低温条件に適応可能なファン114によって低温冷却ループ118を通って移動される。適切かつ効率的に駆動させるために超伝導ロータコイル52を低温(即ち−790℃未満)に維持する必要があるため、このシステムはロータコイル52を低温に維持することを促進する。低温冷却システム100は、クライオクーラ・アッセンブリ104、取付フランジ106及び低温条件に適応可能なファン114に取り付けられた複数の低温冷却表面102、ここではギフォード・マクマフォン・コールドヘッドを有する。低温冷却システム100は、効率とメンテナンスの容易さのため、閉鎖ループシステムを利用する。
【0049】
1つ以上の低温冷却表面102の利点は効率、及びメンテナンスの容易さである。第1に、直列の1つ以上の低温冷却表面102は、各低温冷却表面102が低温流体の温度を低下させるべく低度に稼動することを可能とする。さらに、低温冷却表面102の1つが機能不全である場合にも、システムの冗長性はロスを克服することが可能である。さらに、低温冷却表面102の1つが機能不全となった場合、機能不全の低温冷却表面102は適切なバルブ制御によりシステムから分離可能であり、システムをシャットダウンせず、かつ、システムへ汚染物質を導入せずにメンテナンスがなされる。
【0050】
クライオクーラ・アッセンブリ104は、ハウジング12に固定された取付フランジ106を介して超伝導モータ10の外側に取り付けられる。固定クライオクーラ・アッセンブリ104は、低温冷却ループ118との流体連通にある。ロータコイル52などの回転する熱負荷を備えた実施形態においてクライオクーラ・アッセンブリ104は、ここでは磁性流体ロータリシールであるロータリシール108と接続することにより回転低温冷却ループ118と接続される。ロータリシール108は、低温冷却ループ118がロータ・アッセンブリ50と回転する一方で、クライオクーラ・アッセンブリ104が固定された状態に維持されることを許容する。クライオクーラ・アッセンブリ104は、それが回転した場合にクライオクーラ・アッセンブリ104内部に観察される不適当な高い重力熱伝達のために、回転するのではなく静止状態に維持される。低温冷却ループ118はロータコイル52と熱伝達しており、ロータコイル52を極低温に維持する。
【0051】
クライオクーラ・アッセンブリ104は、ロータ・アッセンブリ50の真空室86に対して開放している。クライオクーラ・アッセンブリ104の内部領域を真空に維持することは、クライオクーラ・アッセンブリ104内にある低温冷却ループ118の部分を外温から分離することを促進する。真空断熱はさらに、低温冷却表面102の効率改善を促進する。
【0052】
低温流体、この実施形態ではヘリウムは、低温流体ソース116からシステムへ導入される。低温冷却システムは閉じた系であるが、万一、任意のリークが生じたときのために低温流体は周期的に添加される必要がある。水素、ネオン或いは酸素なども他の低温流体も使用されてもよい。
【0053】
低温流体は、クライオクーラ104からロータ本体58内にある、低温冷却ループ118の部分に移動される必要がある。低温流体を物理的に移動させるために低温条件に適応可能なファン114が使用される。ファンの利点は、ファンが周囲のコンプレッサの温度へ流体を加温するための熱交換器に要求しない点であり、かつそれは安価であり、比較的小さい。これと比較して、熱交換器と連携される先行技術の室温コンプレッサはより高価で、はるかに大型である。
【0054】
上記の実施形態においてロータ・アッセンブリは、両方ともワンピースのデザインであるロータ本体58及び出力シャフト82を有していた。他の実施形態では、出力シャフトのロータ本体及び外部シャフトの部分は、より小型の、同一、かつより扱いやすいセグメントから構築可能であり、これによりアッセンブリを容易にする。
【0055】
図16を参照する。例えば、分割されたロータ・アッセンブリ400が電磁遮蔽及び超伝導コイルなしで示されている。この実施形態では、ロータ・アッセンブリ400は、4つの六角形のロータ本体セグメント300から構成される。他の実施形態では、ロータ・アッセンブリはより少数、或いはより多数のロータ本体セグメントを有していてもよく、他の多角形の形状であってもよい。各ロータ本体セグメント300は、ハブ310を包囲する支持構造体302を有する。各支持本体302は、相互連結する一方の側に陥没面320と、反対側に相補する突出面323とを有して、アッセンブリの間にロータ本体セグメント300の重なりを可能とする。ハブは集合として、超伝導モータ10の出力シャフト82を収容し、これと嵌合する中空を形成する。より詳細には、出力シャフト82の外面はハブ310の相補型非円筒形状部と係合するためのスプライン構造315を有する。アッセンブリの間に、非円筒状スプライン構造315の表面はハブ310の対応する表面に適合すべく軸方向にロックし、その結果、駆動時にハブ310は、超伝導コイル52によって生成されたトルクを出力シャフト82へ伝達する。
【0056】
同様に図17を参照する。各ロータ本体セグメント支持構造体302は、図7に関連させて上記されたものと同一の接線バックル70及び軸方向バックル60をもって対応するハブ310と機械的に連結される。図7の実施形態の場合と同様に、接線バックル70及び軸方向バックル60は、低温冷却ロータ本体を出力シャフト82から断熱する一方で、超伝導コイル52によって生成されたトルク及び力を伝達する。この実施形態では、バックル・アッセンブリは、支持構造体302をハブ310から断熱する一方で、超伝導コイル52によって生成されたトルクと力を支持構造体302からハブ310まで伝達する。ハブ310は順次、スプライン構造によって機械的に連結された出力シャフト82にトルクと力を伝達する。
【0057】
図17に最も明白に示されるように、接線バックル70及び軸方向バックル60、並びに(それらに接続される)セグメント支持構造体302及びハブ310の取り扱い容易性及び到達は、この実施形態のセグメントからなる構造によって容易にされる。個々のロータ本体セグメントがより小さく、事実上同一であるため、セグメントから成るロータ・アッセンブリ400及びその構成部分で作業すること(即ちアッセンブリ、メンテナンス、及び交換)は、ワンピース・デザインのロータ・アッセンブリで作業するよりはるかに容易である。より詳細には、内部バックル・アッセンブリへの到達の問題(即ち両端でアクセス可能でないもの)が最小限にされる。個々のロータ本体セグメント支持構造体、ハブ、及びバックル・アッセンブリが、1ユニットへと組み立てられると、図16に以下に記載されて示されるように、それらは完全なロータ・アッセンブリへと順次組み立てることが可能である。
【0058】
各ロータ本体セグメント支持構造体302は、中空部340を有した少なくとも2つの外面を有する。4つのロータ本体セグメントを組み立てるためには、中空部が位置合わせされ長尺のウェッジ・キー(図示せず)が各中空部300内で固定されるように、各セグメントはロータ・アッセンブリの長手方向軸305に沿って設けられる。このようにして、接線方向ロックが分割されたロータ・アッセンブリ400に亙って提供され、超伝導コイル52によって生成されたトルクは、ロータ本体セグメント300全体に亙り均等に分配される。各ロータ本体セグメント支持構造体302は、隣接したロータ本体セグメント300を固定すべくボルト・スクリュー(図示せず)を収容するための穴330をさらに有する。1つの実施形態では、ボルト・スクリューはセグメントの全部に亙って延伸することに十分な長さを有し得る。別の実施形態では、ボルト・スクリューを固定すべく穴330の一端が切られ得る。
【0059】
図17を参照する。ロータ本体セグメント支持構造体302の各外面は、高くした表面350を有し、これは他のロータ本体セグメントと一体に組み立てられた時に、超伝導コイル52を収容するための上昇面351を形成する。多数の用途において上昇面351は、載置された超伝導ロータコイル52上で最小のストレス及び歪みが生じるように平坦性を確保すべくアッセンブリの前に組み合わされたセットとして機械加工される。
【0060】
各ロータ本体セグメント支持構造体302は支持構造体の周囲に設けられ、これに貫通して低温冷却管ループ118が配置される少なくとも1つのチャネル325を有する。低温チューブは超伝導コイル52を冷却するために外部ソースから冷却材を受容する。冷却材は入り、次にチャネル325を横断し、次に、閉鎖低温冷却ループによって外部ソースへと放出される。ハブ310の内径は、出力シャフト82の非円筒状スプライン構造315と連結する、相補型非円筒状スプライン構造317を有する。これは出力シャフト82がそれ以上の接続機構を必要とせずにハブ内へと圧入されることを可能にする。ハブ310の断熱は、ハブ310と出力シャフト82との間の温度差に帰着しない。従って、冷却材によって生成された温度降下は、超伝導モータ10の出力シャフト82に出現しない。
【0061】
図18を参照する。流入マニホルド360及び流出マニホルド370は、両方が分割されたロータ・ボデー400の片端の出力シャフト82上に周辺に取り付けられて示される。マニホルド360,370は、互いに断熱され、超伝導コイル52を冷却するために、ロータ本体セグメント300内に冷却材を分配する。より詳細には流入マニホルド360は、外部ソースから流入する冷却材を各ロータ本体セグメント支持構造体体302に設けられた各閉鎖低温冷却ループ118に案内する。流体フィードライン365は各閉鎖低温冷却ループ118の入口を流入マニホルド360に接続する。相応して、流体フィードライン375は各閉鎖低温冷却ループ118の出口を、外部ソースによる冷却材の収集用の流出マニホルド370に接続する。
【0062】
図19を参照する。別の実施形態では、分割されたロータ・アッセンブリ400は取り付けられた超伝導ロータコイル52を包囲する電磁遮蔽88を有するように示される。この実施形態では、4つのロータ本体セグメント300を一体化したものが分割されたロータ・アッセンブリ400を形成する。隣接したロータ本体セグメント300間の各接合は対応する支持構造体302にハブ310を連結するために軸方向圧縮装置500(単純化のために、1つの軸方向圧縮装置のみが図19の鎖線内に示される)を有する。図17,18と関連して上記された実施形態と異なり、図7に示されるタイプの軸方向バックル60の代わりに軸方向圧縮装置500が使用される。軸方向圧縮装置500は、低温冷却支持構造体と高温のハブとの間の断熱を提供する一方で、分割されたロータ・アッセンブリ400及び出力シャフト82の軸方向移動を防止すべく、軸方向バックル60によって提供される張力の代わりに圧縮を使用する。
【0063】
図20を参照する。個々の軸方向圧縮装置500は1組の圧縮ブロック510、ほぼU字型の支持部材530、及び十字型支持部材570を有する。U字型支持部材530は圧縮ブロック510をハブ310に連結し、十字型支持部材570は複合材料ブロック510を支持本体302に連結している。U字型支持部材530及び十字型支持部材570は、機械的に強い材料(例えばスチール又はステンレス・スチール)から典型的に形成される。圧縮ブロック510は、ガラス強化エポキシ(例えばG−10)など、機械的に剛性を有する断熱材から形成される。
【0064】
ほぼU字型の支持部材530は、1組の隣接したハブ310の交点に形成されたカットアウト540に収容される。ボルト550は、U字型支持部材530をハブ310の各々へ固定する。U字型支持部材530は、1組の延伸するアーム552によって画定された開口551を有する。開口551は、2つの圧縮ブロック510の間に設けられた十字型支持部材570の下部アーム560を収容する。十字型支持部材570の2つの水平方向アーム580は、1組の対応する隣接した支持構造体302に取り付けられている。ボルト590は、隣接した支持構造体302の交点に形成されたカットアウト601へ、十字型支持部材570の上部アーム600を固定する。
【0065】
1つの特定の実施形態では、任意の軸の方向へのブロックの熱膨張、及び、圧縮及び減圧を可能にすべく複合材料ブロック510はU字型支持部材530内に緩く係合されている。ある実施形態では、ブロックは共に(例えばファスナー、エポキシ樹脂により)接合され、その結果、ブロックは断熱を提供する一方で高負荷圧縮に耐性を有する。
【0066】
1つの特定の実施形態では、軸方向圧縮装置500は隣接したロータ本体セグメント300の接合点の周辺に120°毎に設けられる。この場合、各接合点の円周に3つの軸方向圧縮装置500が設けられる。別の実施形態では、軸方向圧縮装置は隣接したロータ本体セグメント300の接合点の周辺に60°毎に設けられる。この構造では、各接合点の円周に6つの軸方向圧縮装置500が設けられる高負荷圧縮に対する耐性は、複合材料ブロック510中に編組されたガラス材料が利用されることを可能にする。低い熱伝導率により、編組されたガラス材料は、分割された低温冷却ロータ・アッセンブリ400と出力シャフト82との間の断熱をも提供可能である。
【0067】
本発明の多くの実施形態が記載された。しかし、本発明の精神及び範囲から逸脱することなく多様な変形がなされ得ることが理解される。例えば、記載された構成要素が超伝導ジェンテレ−他などの他の超伝導回転機械を生産するために適応され得る。従って、他の実施形態はクレームの範囲内にある。
【図面の簡単な説明】
【図1】 本発明による超伝導をモータの断面斜視図。
【図2】 図1の超伝導モータの概略を示す概念図。
【図3】 図1の超伝導モータのステータ・アッセンブリの斜視図。
【図4】 図3のステータ・アッセンブリのステータコイルの単相の斜視図。
【図5】 図3のステータ・アッセンブリの支持チューブ上に取り付けられたステータコイルの単相の斜視図。
【図6】 図3のステータ・アッセンブリのステータコイル部の断面を示す斜視図。
【図6A】 2つのステータコイル及びこれに関連させたループの概略を示す断面図。
【図7】 図1の超伝導モータのロータ・アッセンブリの断面を示す斜視図。
【図8】 図7のロータ・アッセンブリの出力シャフト及び真空チェンバの断面を示す斜視図。
【図9】 図7のロータ・アッセンブリのロータ本体に取り付けられたロータコイルの斜視図。
【図10】 図9のロータコイルの内部支持部材を備えたロータコイル・スタックの断面図。
【図11】 図7のロータ・アッセンブリの軸方向バックルの斜視図。
【図12A】 図7のロータ・アッセンブリの接線バックルの斜視図。
【図12B】 バネを備えた図12の接線方向バックルの斜視図。
【図13A】 図7のロータ・アッセンブリ内に取り付けられた接線バックルの断面を示す斜視図。
【図13B】 図7のロータ・アッセンブリ内に取り付けられた軸方向バックルの断面を示す斜視図。
【図14】 図1の超伝導モータの低温冷却システム及び取付フランジの斜視図。
【図15】 図1の超伝導モータの低温冷却システムのブロック図。
【図16】 ロータ・アッセンブリの別の実施形態の一部の断面を示す斜視図。
【図17】 図16のロータ・アッセンブリのロータ本体部分の斜視図。
【図18】 図16に部分的に示されたロータ・アッセンブリに取り付けられたクーラント・マニホルドの斜視図。
【図19】 軸の圧縮装置を有したロータ本体アッセンブリの別の実施形態を示す斜視図。
【図20】 図19に示される軸の圧縮装置を部分的に示す斜視図。

Claims (30)

  1. ステータ・アセンブリと、
    前記ステータ・アッセンブリ内で回転し、同ステータ・アッセンブリから一定の間隙をおいて離間するように形成されたロータ・アッセンブリと、
    前記ロータ・アッセンブリは、
    駆動時に前記ステータ・アッセンブリを結合させる磁束を生成する少なくとも1つの高温超伝導巻線アッセンブリ、及び、
    前記ロータ・アッセンブリの少なくとも1つの超伝導巻線を冷却するための低温冷却システムを有することと、
    前記少なくとも1つの超伝導巻線アッセンブリは、同巻線アッセンブリの第1の末端から第2の末端まで及ぶ軸を有することと、この巻線アッセンブリは開口を画定するように前記巻線アッセンブリの軸の周りに巻回されることによって、同心上に複数回周回されているとともに、この軸に沿って超伝導体テープを有する超伝導コイルを有することと、前記超伝導体テープを巻回したものは、巻線アッセンブリの軸とほぼ平行に維持され幅が広い表面を有することと、
    超伝導回転機械は、約103.4〜589.5kPa(約15psi〜100psi)の範囲の間隙せん断応力を有することとからなる超伝導回転機械。
  2. 500RPM以下では約0.2M〜20M Nmの範囲内のトルク出力を有する請求項1に記載の超伝導回転機械。
  3. ほぼ毎分500回転以下において約75N・m/kg以上のトルク密度を有する請求項1に記載の超伝導回転機械。
  4. 前記超伝導体テープは対向する1組の弓形の端部と対向する1組のほぼ直線の側部を画定するレーストラック形状に巻回されている請求項に記載の超伝導回転機械。
  5. 前記超伝導体テープは、マルチフィラメント複合超伝導体の長さ全体に亙り、マトリックス形成材料によって包囲された別個の超伝導フィラメントを有する前記マルチフィラメント複合超伝導体を含む請求項に記載の超伝導回転機械。
  6. 前記超伝導体テープは異方性を有する高温超伝導体を含有する請求項に記載の超伝導回転機械。
  7. 前記異方性を有する高温超伝導体はBiSrCaCuOである請求項に記載の超伝導回転機械。
  8. 前記異方性を有する高温超伝導体は希土類−酸化銅系に属する請求項に記載の超伝導回転機械。
  9. 少なくとも1つの超伝導巻線アッセンブリは、 複数の超伝導コイルと、 複数の超伝導巻線のうちの隣接するものの間に設けられた少なくとも1つの内部支持部材とからなり、
    前記少なくとも1つの内部支持部材は前記複数の超伝導コイルのうちの少なくとも1つの幅広の表面に隣接して、内部支持部材と超伝導コイルとを交互に有した積層スタックを形成する前記請求項に記載の超伝導回転機械。
  10. 前記超伝導巻線アッセンブリは、複数の超伝導コイルと、複数の内部支持部材と、超伝導コイル及び内部支持部材を交互に設けて積層スタックが形成されることとからなる請求項に記載の超伝導回転機械。
  11. 前記少なくとも1つの内部支持部材は、0.013cm〜0.25cm(0.005インチ〜0.1インチ)の範囲の厚さを有するステンレス・スチールである請求項に記載の超伝導回転機械。
  12. 前記ロータ・アッセンブリの周りに設けられた真空領域からなる請求項1に記載の超伝導回転機械。
  13. 前記ロータ・アッセンブリに沿って同ロータ・アッセンブリを貫通して設けられ、ロータ・アッセンブリから間隙により離間されたシャフトと、 複数の接線バックル・アッセンブリとからなり、 前記複数の接線バックル・アッセンブリは、前記ロータ・アッセンブリと前記シャフトとの間で回転力が伝達することを可能とすべくロータ・アッセンブリをシャフトに取り付ける請求項1に記載の超伝導回転機械。
  14. 前記接線バックル・アッセンブリは、前記ロータ・アッセンブリを前記シャフトから熱的に分離するための断熱バンドからなる請求項13に記載の超伝導回転機械。
  15. 前記断熱バンドは強化エポキシを含有する材料から形成される請求項14に記載の超伝導回転機械。
  16. 複数の軸方向バックル・アッセンブリと、同複数の軸方向バックル・アッセンブリは前記ロータ・アッセンブリを前記シャフトに軸方向に固定するように前記ロータ・アッセンブリを前記シャフトに取り付けることとからなる請求項13に記載の超伝導回転機械。
  17. 前記軸方向バックル・アッセンブリは、前記ロータ・アッセンブリを前記シャフトから断熱するための断熱バンドからなる請求項13に記載の超伝導回転機械。
  18. 前記断熱バンドはパラ型アラミド/エポキシ樹脂の帯である請求項17に記載の超伝導回転機械。
  19. 前記ステータ・アッセンブリは複数の長菱形のコイルからなる請求項1に記載の超伝導回転機械。
  20. 前記ステータ・アッセンブリは、
    少なくとも1つの導電性巻線を有するステータコイルと、
    前記ステータコイルの周りに設けられた電気絶縁材料と
    外部ソースから冷却材を受容するための少なくとも1つの冷却コンジットと、前記少なくとも1つの冷却コンジットは前記ステータコイル外面の第1部分に隣接して設けられたことと、
    少なくとも1つの冷却コンジット及びステータコイル外面の第2部分の周りに設けられた熱導電部材と、該部材は、前記第2部分から前記少なくとも1つの冷却コンジットへと熱を伝導することにより前記電気絶縁材料における温度勾配を減少させるべく設けられたこととからなる請求項1に記載の超伝導回転機械。
  21. 前記電気絶縁材料は各ステータコイルに多様な厚さで設けられ、この厚さは前記ステータ・アッセンブリ内の各ステータコイルの電圧差に比例し、最大の厚さは電源電圧を受けるステータコイル上にある請求項20に記載の超伝導回転機械。
  22. 前記少なくとも1つの冷却コンジットは、その内部を貫通する複数の通路からなる請求項20に記載の超伝導回転機械。
  23. 前記低温冷却システムは、
    低温冷却表面を有し、低温環境を規定するクリオスタットと、
    低温環境内に設けられた低温流体輸送装置とからなり、
    前記クリオスタットは遠隔の熱負荷と流体連通し、前記低温流体輸送装置は低温流体を前記クリオスタットと遠隔の熱負荷との間で移動させて、前記低温冷却表面が同遠隔の熱負荷において収集された低温流体中の熱を除去することを可能にする請求項1に記載の超伝導回転機械。
  24. 前記低温冷却表面と流体連通するとともに、前記遠隔の熱負荷と熱伝達を行っている閉鎖冷却ループからなる請求項23に記載の超伝導回転機械。
  25. 前記遠隔の熱負荷はロータ・アッセンブリである請求項24に記載の超伝導回転機械。
  26. 回転継手からなり、同回転継手は、前記閉鎖冷却ループがロータ・アッセンブリと回転している一方で、前記クリオスタットが静止状態に維持されることを可能にする請求項25に記載の超伝導回転機械。
  27. 前記低温流体輸送装置は低温流体中の状態変化を必要としない請求項23に記載の超伝導回転機械。
  28. 前記低温流体運搬装置は低温条件に適応可能なファンである請求項27に記載の超伝導回転機械。
  29. 前記複数の低温冷却表面はギフォード・マクマフォン・コールドヘッドである請求項23に記載の超伝導回転機械。
  30. 前記複数の低温冷却表面はパルス・チューブ・コールドヘッドである請求項23に記載の超伝導回転機械。
JP2001552505A 2000-01-11 2000-11-09 Hts超伝導回転機械 Expired - Fee Related JP3892299B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US48148400A 2000-01-11 2000-01-11
US26631900P 2000-01-11 2000-01-11
US60/266,319 2000-01-11
US09/481,484 2000-01-11
US09/632,776 2000-08-04
US09/632,776 US6597082B1 (en) 2000-08-04 2000-08-04 HTS superconducting rotating machine
PCT/US2000/031011 WO2001052393A1 (en) 2000-01-11 2000-11-09 Hts superconducting rotating machine

Publications (2)

Publication Number Publication Date
JP2003533957A JP2003533957A (ja) 2003-11-11
JP3892299B2 true JP3892299B2 (ja) 2007-03-14

Family

ID=27401882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001552505A Expired - Fee Related JP3892299B2 (ja) 2000-01-11 2000-11-09 Hts超伝導回転機械

Country Status (6)

Country Link
EP (1) EP1247325B2 (ja)
JP (1) JP3892299B2 (ja)
AT (1) ATE306139T1 (ja)
AU (1) AU2001230723A1 (ja)
DE (1) DE60023038T3 (ja)
WO (1) WO2001052393A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597082B1 (en) 2000-08-04 2003-07-22 American Superconductor Corporation HTS superconducting rotating machine
US6693504B1 (en) 2000-01-11 2004-02-17 American Superconductor Corporation Internal support for superconductor windings
DE10158757A1 (de) 2001-11-29 2003-06-18 Siemens Ag Schiffsantrieb
US6759781B1 (en) * 2003-02-14 2004-07-06 American Superconductor Corporation Rotor assembly
US20040266628A1 (en) * 2003-06-27 2004-12-30 Superpower, Inc. Novel superconducting articles, and methods for forming and using same
US7774035B2 (en) 2003-06-27 2010-08-10 Superpower, Inc. Superconducting articles having dual sided structures
US7336059B2 (en) 2005-11-15 2008-02-26 General Electric Company System and method for charging and discharging a superconducting coil
US8134345B2 (en) 2005-11-29 2012-03-13 General Electric Company Cryogenic exciter
GB2434489B (en) 2006-01-18 2011-04-20 Alstom Power Conversion Ltd Tubular electrical machines
JP4981156B2 (ja) * 2010-05-14 2012-07-18 トヨタ自動車株式会社 超電導モータ
US8716188B2 (en) 2010-09-15 2014-05-06 Superpower, Inc. Structure to reduce electroplated stabilizer content
US9130447B2 (en) * 2010-11-08 2015-09-08 Kawasaki Jukogyo Kabushiki Kaisha Rotor core and superconducting rotating machine with the rotor core
DE102011005296A1 (de) * 2011-03-09 2012-09-13 Siemens Aktiengesellschaft Synchronmaschine mit HTS-Läuferwicklung und Dämpfereinrichtung
US8664809B2 (en) * 2011-03-15 2014-03-04 Siemens Energy, Inc. Apparatus to support superconducting windings in a rotor of an electromotive machine
US9431864B2 (en) * 2011-03-15 2016-08-30 Siemens Energy, Inc. Apparatus to support superconducting windings in a rotor of an electromotive machine
JP6029934B2 (ja) * 2012-11-01 2016-11-24 川崎重工業株式会社 超電導回転機の固定子、超電導回転機
EP4024672A1 (en) 2020-12-30 2022-07-06 General Electric Renovables España S.L. Armature segment, armature and methods for assembling them
KR20240054990A (ko) * 2021-08-31 2024-04-26 메사추세츠 인스티튜트 오브 테크놀로지 초전도 풍력 발전기를 위한 냉각 시스템

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190501526A (en) 1905-01-25 1906-01-18 Arthur Francis Berry Improvements in or relating to Coils or Windings for Transformers and other Electrical Apparatus.
US3246270A (en) 1962-09-10 1966-04-12 Westinghouse Electric Corp Graded insulation for interleaved windings
AT258404B (de) 1965-02-06 1967-11-27 Siemens Ag Maschine mit rotierender Erregerwicklung, die durch Zuganker gehalten wird
NL6700375A (ja) 1967-01-11 1968-07-12
GB1282412A (en) * 1968-08-09 1972-07-19 English Electric Co Ltd Dynamo electric machines
DE1815904A1 (de) 1968-12-20 1970-07-16 Siemens Ag Synchrongenerator,insbesondere Turbogenerator,mit rotierender supraleitender Erregerwicklung
US3816780A (en) * 1972-08-18 1974-06-11 Massachusetts Inst Technology Rotor structure for supercooled field winding
DE2442277A1 (de) 1974-09-04 1976-03-18 Kraftwerk Union Ag Kuehlmittelkreislauf fuer den laeufer einer elektrischen maschine mit supraleitender erregerwicklung
US3991333A (en) 1975-08-20 1976-11-09 General Electric Company Winding support structure for superconducting rotor
JPS5526653A (en) 1978-08-15 1980-02-26 Daihen Corp Resin-insulated winding for electric appliance and method of manufacturing the same
JPS5989569A (ja) 1982-11-12 1984-05-23 Fuji Electric Co Ltd 超電導回転電機の電機子
US4554730A (en) 1984-01-09 1985-11-26 Westinghouse Electric Corp. Method of making a void-free non-cellulose electrical winding
JPH0716297B2 (ja) * 1987-11-27 1995-02-22 三菱電機株式会社 電動機
CA2011732A1 (en) * 1989-03-27 1990-09-27 Robert A. Hawsey Axial gap superconducting electrical machine
US5581220A (en) 1994-10-13 1996-12-03 American Superconductor Corporation Variable profile superconducting magnetic coil
US5513498A (en) 1995-04-06 1996-05-07 General Electric Company Cryogenic cooling system
US5777420A (en) * 1996-07-16 1998-07-07 American Superconductor Corporation Superconducting synchronous motor construction
SE510451C2 (sv) 1997-02-03 1999-05-25 Asea Brown Boveri Krafttransformator eller reaktor
US5848532A (en) 1997-04-23 1998-12-15 American Superconductor Corporation Cooling system for superconducting magnet

Also Published As

Publication number Publication date
ATE306139T1 (de) 2005-10-15
EP1247325B1 (en) 2005-10-05
WO2001052393A1 (en) 2001-07-19
JP2003533957A (ja) 2003-11-11
DE60023038T3 (de) 2010-12-23
EP1247325A1 (en) 2002-10-09
EP1247325B2 (en) 2010-06-02
DE60023038D1 (de) 2006-02-16
DE60023038T2 (de) 2006-06-14
AU2001230723A1 (en) 2001-07-24

Similar Documents

Publication Publication Date Title
US6597082B1 (en) HTS superconducting rotating machine
US6693504B1 (en) Internal support for superconductor windings
JP3892299B2 (ja) Hts超伝導回転機械
US6879081B1 (en) Stator coil assembly for superconducting rotating machines
US6489701B1 (en) Superconducting rotating machines
US6911759B2 (en) Stator coil assembly for superconducting rotating machines
US6066906A (en) Rotating machine having superconducting windings
US7489060B2 (en) Superconducting rotating machines with stationary field coils
US7492073B2 (en) Superconducting rotating machines with stationary field coils
US3816780A (en) Rotor structure for supercooled field winding
US8204562B2 (en) Superconducting synchronous machine
US11264885B2 (en) Rotor with a coil arrangement and a winding carrier
US20120040838A1 (en) Coil with superconductive windings cooled without cryogenic fluids
JP2004266988A (ja) 超伝導界磁コイル巻線を有する多極ロータのための極低温構造エンクロージャ
KR101273642B1 (ko) 전도 냉각 방식 초전도 회전기
WO2009045038A2 (en) Superconducting synchronous machine
Kwon et al. Development of a 100 hp synchronous motor with HTS field coils
US6795720B2 (en) High temperature superconducting synchronous rotor coil having multi-piece rotor core
WO2001052392A9 (en) Segmented rotor assembly for superconducting rotating machines
WO2001052383A2 (en) Stator support system for superconducting machines
JP7437579B2 (ja) 超電導機械における界磁コイル支持構造およびモジュール式界磁コイル設計
Colle et al. Construction of a Flux Modulation Superconducting Machine for Aircraft
Al-Mosawi et al. 100kVA High Temperature Superconducting Generator Al-Mosawi MK, Xu B., Beduz C, Goddard K.*, Sykulski JK*, Yang Y., Stephen NG, Webb M., Ship KS*, and Stoll R* Mechanical Engineering Department, School of Engineering Sciences, University of Southampton, Southampton SO17 IBJ, UK.
WO2023034257A1 (en) Cooling system for superconducting wind power generator
Sohn et al. Development and Performance Test of a l00hp HTS Motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20051122

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees