JP3891822B2 - Cooling device for the production of heat shrinkable tubes using thermoplastics - Google Patents

Cooling device for the production of heat shrinkable tubes using thermoplastics Download PDF

Info

Publication number
JP3891822B2
JP3891822B2 JP2001332577A JP2001332577A JP3891822B2 JP 3891822 B2 JP3891822 B2 JP 3891822B2 JP 2001332577 A JP2001332577 A JP 2001332577A JP 2001332577 A JP2001332577 A JP 2001332577A JP 3891822 B2 JP3891822 B2 JP 3891822B2
Authority
JP
Japan
Prior art keywords
cooling
tube
inner diameter
water
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001332577A
Other languages
Japanese (ja)
Other versions
JP2002160294A (en
Inventor
ソン ジュンミョウン
キム ヨンセオ
パーク ジョンミン
ソン ギェオンジョン
Original Assignee
コーロン インダストリーズ インク
ムーデング カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コーロン インダストリーズ インク, ムーデング カンパニー リミテッド filed Critical コーロン インダストリーズ インク
Publication of JP2002160294A publication Critical patent/JP2002160294A/en
Application granted granted Critical
Publication of JP3891822B2 publication Critical patent/JP3891822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/904Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using dry calibration, i.e. no quenching tank, e.g. with water spray for cooling or lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0049Heat shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles

Description

【0001】
【発明の属する技術の分野】
本発明は、熱可塑性樹脂を用いて熱収縮チューブを製造するにあたり、固有粘度が低い熱可塑性樹脂を溶融させながら未延伸状態で均一な厚さと直径をもつ管状に成形する、熱可塑性樹脂を用いた熱収縮チューブの製造のための冷却装置に関する。
【0002】
【従来の技術】
一般に、パイプまたは電解コンデンサの絶縁被覆及び乾電池包装などに用いられる大抵のチューブはポリ塩化ビニール(以下、PVCと略称する)を素材としている。
【0003】
このようなPVC樹脂は熱を加えて転移点を超えると、非結晶部分のPVC分子セグメントがミクロブラウン運動を起こし、このときに分子間間隔が拡大して分子間の結合力が弱化すると同時に軟化が生じ、この場合、引っ張り強度及び硬度などの物理的性質は減少する反面、弾性は増加し、PVCに加えられる温度が150℃を超えると、ミクロブラウン運動が一層活発になりながら結晶部分までに影響を与えて分子間結合力が急激に減少し、このような状態で圧力を加えると分子間に容易に流動を起こす熱可塑性を示すことになる。
【0004】
また、PVCはガラス転移温度が約80℃の非結晶性高分子物質で、熱収縮チューブを成形するためには普通230℃の高温の熱を必要とするが、このような加熱工程中に発生するガスは作業環境の面で迅速な改善対策が求められており、押出工程中に炭化により随時に金型を掃除して再稼働しなければならないため、工程実行中に不良が大量に発生するかまたは生産性が低下して相当な製造原価の上昇要因となり、特に、現在、不良品発生のときにも再活用が不可能であって産業廃棄物として処理している。
【0005】
特に、PVCは樹脂自体の限界のために高耐熱性製品に品質を合わせることが相当に難しく、紫外線などのような高エネルギーに接すると活性化されて脱塩酸、分子切断架橋化、酸化分解などの複合劣化(degradation)現象を起こし、軟質製品の場合には可塑剤の移動(migration)により漸次製品が硬化したり、または周辺の湿気と反応して加水分解現象が進行するという問題点があった。
【0006】
一方、先進国より始まった人体に与える有害性論議のため、各種重金属類の規制が始まり、ガス剤の発ガン誘発などの報告が出ており、一部の玩具製品ではPVCに主に用いられるDOPの使用を禁止するまでに至って、一部では既にPVC、鉛などの段階的縮小案が準備されている。
【0007】
そこで、このようなPVCの代替素材として最近、開発に拍車を加えているものは、DMT工法とTPA工法の重合工程を経て作られ、テレフタル酸ジメチルまたはテレフタル酸エチレングリコールなどに重合触媒、各種添加物などを付加してエステル交換反応、重合反応、冷却乾燥工程を通して製造されるPET(Polyethylene terephthalate)樹脂と、カプロラクタムに水及び各種添加剤を含めて添加及び縮合反応工程を通して重合及び固化して製造するNylon(polyamide)樹脂のような比較的粘度がPVCよりも低い熱可塑性樹脂である。
【0008】
【発明が解決しようとする課題】
しかるに、押出工程を経て押し出されるPET樹脂とNylon樹脂のような低粘度の熱可塑性樹脂は溶融粘度を必要とするせん断率を持たないため、管状チューブまたはパイプ製造のための押出成形は現在の押出成形方式によってはとうてい成形が不可能であるという問題点があった。
【0009】
そこで、本発明の目的は、押出工程を通して押し出される低粘度樹脂を所望の直径と厚さをもつ管状に急冷させるための冷却装置を提供することにある。
【0010】
【課題を解決するための手段】
(1) このような目的を達成するため本発明は、押出台から押し出される溶融熱可塑性樹脂を垂直貫通させるようにしながら冷却水との接触により急冷させ、チューブの外径を調節する一つ以上の冷却台と、前記冷却台を貫通して誘導される管状のチューブを下向きに貫通させるようにしながら真空の吸入圧によりチューブの外径が維持されるようにする真空台と、所定温度に維持される水を貯蔵し、前記真空台から誘導されるチューブが通過しながら再度冷却されるようにする水槽と、前記水槽内に誘導される未延伸管状チューブを一定速度で引っ張って移送させるテークオフローラーと、からなることを特徴とする。
【0011】
(2) 前記冷却台は内径部が段差をもつ形状で、内径面と外径面の間には上向き開放される凹溝が形成され、外周縁端部には垂直の棒が貫通されながら支持される台本体と、前記台本体の段差をもつ内径部に積層されるスリーブリングと多孔質リングと、前記台本体の内径部で上側に積層される多孔質リングはその上側の外周縁部がそれぞれ垂直の棒に一端が支持されるようにしたクランプにより固定される構成をもつことを特徴とする(1)に記載の熱可塑性樹脂を用いた熱収縮チューブの製造のための冷却装置。
【0012】
(3) 前記上向き開放された凹溝には水温が5〜60℃の冷却水が7〜50l/分速度で流入することを特徴とする(2)に記載の熱可塑性樹脂を用いた熱収縮チューブの製造のための冷却装置。
【0013】
(4) 前記スリーブリングと前記多孔質リングは内径がチューブの外径に従いその寸法が決定されることを特徴とする(2)に記載の熱可塑性樹脂を用いた熱収縮チューブの製造のための冷却装置。
【0014】
(5) 前記真空台は、中央が垂直に貫通するようにしながら段差をもつ形状で、内径部の上部は下部よりも内径が拡張されるようにして内部に真空圧が供給される台本体と、上向き開放された上部側内径部に嵌合されるスリーブリングと多孔質リングとからなることを特徴とする(1)に記載の熱可塑性樹脂を用いた熱収縮チューブの製造のための冷却装置。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について図面を用いて詳しく説明する。
【0016】
図1に示すように本発明は大きく冷却台10、真空台20、水槽30及びテークオフローラー40から構成される。
【0017】
冷却台10はその上側の押出台(図示せず)から自由落下により押し出される低粘度及び高温の溶融樹脂が垂直に貫通しながら通過するようにしてメルトを急冷させる構成で、冷却台10には所定温度をもつ冷却水が供給され、冷却水が冷却台10を垂直に通過するメルトの外径面に接触しながら冷却と同時に水膜の形成により管状チューブが安定に維持されるようにしたものである。
【0018】
このとき、冷却台10は少なくとも一つ以上が所定間隔に具備されて、順次的な逐次冷却方式により冷却するのが一番好ましい。
【0019】
一方、冷却台10は、図2に示すように、内径部が段差をもつ形状で、内径面と外径面の間には上向き開放される凹溝11aが形成され、外周縁の端部には垂直の棒60が貫通しながら支持される構成により台本体11が具備される。
【0020】
前記台本体11の段差をもつ内径部には下部にスリーブリング12が載せられ、その上には多孔質リング13が積層され、上向き開放凹溝11aには水温が5〜60℃の冷却水が7〜50l/分速度に流入するようにする。
【0021】
このとき、台本体11で凹溝11aの内側に形成される内側の側壁は外側の側壁よりは上端部の高さが低く形成されるようにして、凹溝11a内に供給される冷却水が内側の側壁の上端を超えて内径部側に誘導されながら冷却水の水圧が分散されるようにする。
【0022】
一方、台本体11の内径部で上側に積層される多孔質リング13はその上側の外周縁部をそれぞれ垂直の棒60に一端が支持されるクランプ14により固定されるようにする。
【0023】
台本体11の内径部に挿入されてクランプ14により固定されるスリーブリング12と多孔質リング13は内径がチューブの外径に従いその寸法が決定されるようにする。
【0024】
そして、このような冷却台10は、上述のように一つ以上が多段に具備される逐次冷却方式とし、形成しようとするチューブの規格に従い各冷却台10間の距離もまた決定されるようにする。
【0025】
このようにして多段に具備される冷却台10の直下部には真空台20を具備する。
【0026】
真空台20は冷却台10を貫通して誘導されるチューブを再び垂直に通過させながら真空の吸入圧によりメルトを管状に安定させるように維持するものである。
【0027】
このような真空台20は、図3のように中央は垂直に貫通するようにしながら段差をもち、特に内径部の上部は下部よりも内径が拡張されるようにした形状の台本体21を具備し、前記台本体21の内部には真空圧が供給されるようにし、上向きに開放された上部側内径部には冷却台10と同様にスリーブリング22と多孔質リング23が積層されるようにした構成である。
【0028】
そして、台本体21には冷却台10と同様に、冷却水を流入しながら多孔質リング23に持続的に冷却水を供給するようにする。
【0029】
一方、上部の多段式冷却台10と真空台20は外周縁部に挿入される棒60により同時に支持され、特に垂直の棒60で冷却台10と真空台20は上下に移動可能に固定されるようにする。
【0030】
真空台20の直下部に具備される水槽30は所定温度に維持される水を多量に貯蔵する構成で、真空台20を貫通して誘導される管状メルトがしばらく浸されるようにする構成である。
【0031】
このような水槽30の内部に装着されるテークオフローラー40は水槽30に浸される管状メルトを一定速度で引っ張って移送させる構成である。
【0032】
このとき、メルトが水槽30に過度に深く浸されると、水圧によりメルトの外形が変形するおそれがあるため、テークオフローラー40の装着位置は水槽30内で水圧がメルトに影響しない程度の深さに具備されるようにすることが好ましい。
【0033】
テークオフローラー40を巻き回して引き出すメルトは少なくとも一つ以上のガイドローラー50を経て次の工程の延伸工程に移送される。
【0034】
このような構成による本発明の作用について詳しく説明する。押出工程でメルトは約0.5〜1.0dl/gの粘度と約150〜330℃の温度をもつ低粘度状態に引き出される。
【0035】
このような低粘度メルトは多段に具備される冷却台10を通過しながら逐次冷却方式により冷却する。
【0036】
このとき、低粘度樹脂による未延伸チューブの外径は冷却台10のスリーブリング12の内径により決定され、スリーブリング12の上側に積層される多孔質リング13は通過する低粘度メルトの外径に微細に水膜が形成されるようにしながら急冷されるようにする。なお、通常は、スリーブリング12の内径は、多孔質リング13の内径と同じかそれより大きい。
【0037】
即ち、台本体11の凹溝11aに冷却水が持続的に供給されながら凹溝11aから台本体11の内径壁上端部を通して多孔質リング13に誘導されると、多孔質リング13では吸収される冷却水により中央を通過するチューブとの間に微細に水膜を形成し、このような水膜の形成によりチューブが冷却されながら外径の変形を防止させることになる。なお、多孔質リング13とチューブの間に水膜を形成した水は、冷却台の内径を伝わって、より下段の冷却台又は真空台へと流れる。凹溝13aから溢れた水も同様であるが、これらの水は製造される過程にあるチューブを冷却しながら、最終的には最下層に位置する水槽30内に落下するか、真空台20に引かれることになる。このため、水を使って冷却をするにしても、構造上、水漏れ等による諸問題が発生しないという効果がある。
【0038】
多段の冷却台10を経ながら順次逐次冷却されるチューブは真空台20を再度通過し、このとき、真空台20では通過するチューブを冷却台10と同様に、冷却水により冷却される。
【0039】
そして、台本体21に供給される吸入圧によって、チューブの外径を台本体21の中央のホール内径に密着するようにして、冷却台10から誘導されるチューブの外径がそのまま維持されるかまたはより拡張されるようにするものである。
【0040】
このような作用は真空台20の内径にチューブの外径が固定されるようにするので、所望の厚さと外径をもつ未延伸チューブが成形されるようになる。
【0041】
一方、真空台20で真空圧により外径が固定された未延伸チューブは水槽30内の水中を通過してテークオフローラー40に誘導され、テークオフローラー40では未延伸チューブを一定速度で引き出してその一方の側で上部に具備されるガイドローラー50を通して次の工程に移送されるようにする。
【0042】
このように本発明は押出台から吐き出される低粘度の樹脂を急冷させるにあたり、多段の逐次冷却方式により冷却されるようにして水圧による変形を防止すると共に、一定した厚さと外径をもつソリッド状態の管状チューブを得るのにその特徴がある。
【0043】
このときの樹脂はポリエステルとポリアミドなどが全て可能である。
【0044】
【実施例】
以下、本発明を実施例に基づき説明するが、本発明は実施例に限定されるものではない。
【0045】
本発明でチューブの一例として熱可塑性ポリエステル系樹脂を乾燥機で水分率100ppm以下に乾燥し適正量の添加剤及び顔料を混合してホッパに投入した後、押出機シリンダ温度220〜290℃に溶融して円形台を通して押し出した。押出台から押し出される高温の低粘度樹脂がスリーブリングと多孔質リングの大きさがφ20mmの2つの冷却台10を垂直に貫通しながら30℃の冷却水と30l/分の速度で接触し、このため低粘度樹脂が急冷されながらソリッド状態となると同時にチューブの外径を調節した。冷却台10を貫通して誘導される管状のチューブは真空台20を下向きに貫通しながら真空の吸入圧によりメルトの外径が維持されるようにした後、水槽30を通過しながら30℃の水により再度冷却された後にテークオフローラー40で未延伸管状チューブを一定速度で引っ張って移送させると、長軸の長さが16mmで、短い軸の長さが400μmの未延伸チューブが製作される。
【0046】
このような未延伸チューブを75℃に予熱した後φ19mmの延伸管で延伸温度100℃に延伸して冷却温度18℃に冷却すると、最終的に長軸の長さが30mm、短軸の長さが100μm、幅収縮率45%、長収縮率7%の製品が得られる。
【0047】
一方、前記例と共に水槽、冷却水温度及び冷却水量を異にしてそのときの加工特性及び物性の変化をチェックした他の例を表1に示す。
【0048】
このように製造されるチューブの加工特性は正常作業の可能な作業性を示し、特に、このようなチューブ製品を肉眼で見ると、凹凸がなく長軸の長さが一定した状態を示す表面形状をもつ。
【0049】
特に、製造された収縮チューブ製品をそれぞれ長さ100mmに切断して両面を開けて98±2℃の沸騰水に30秒間に沈積した後切断面の形状を肉眼で確認すると、収縮後の形状も切断面の形状がもとの状態を維持することがわかる。
【0050】
【表1】

Figure 0003891822
【0051】
【発明の効果】
上述したように本発明に従い熱収縮チューブを提供するにあたり、低粘度及び高温の未延伸チューブを逐次冷却方式により急冷させることにより、ソリッド状態となるようにすると共に水圧による変形を防止して均一な厚さと所望する大きさの外径をもつ形状の未延伸チューブを製作することができるという効果がある。また、水冷却用の水透過性リング(多孔質リング)を通過させることによって、冷却と所定のサイズの形成を行うようにしているため、効率的である。更に、冷却用の多孔質リングと、サイズ決めのためのスリーブリングとが、何れもクランプにより容易に取り外しが可能なものとなっているため、製造したいチューブに応じてフレキシブルに対応することができるとともに、装置の組み立てや部材の交換も楽で、メインテナンスも容易である。
【図面の簡単な説明】
【図1】 本発明による冷却装置の構造図である。
【図2】 本発明の冷却台を示した断面図である。
【図3】 本発明の真空台を示した断面図である。
【符号の説明】
10 冷却台
11 台本体
12 スリーブリング
13 多孔質リング
14 クランプ
15 内径部
15a 段差
16s 内径面
16t 外径面
20 真空台
21 台本体
22 ソリッドリング
23 多孔質リング
30 水槽
40 テークオフローラー[0001]
[Field of the Invention]
The present invention uses a thermoplastic resin that is molded into a tube having a uniform thickness and diameter in an unstretched state while melting a thermoplastic resin having a low intrinsic viscosity when manufacturing a heat-shrinkable tube using a thermoplastic resin. The present invention relates to a cooling device for manufacturing a heat-shrinkable tube.
[0002]
[Prior art]
In general, most tubes used for insulation coating of pipes or electrolytic capacitors and dry battery packaging are made of polyvinyl chloride (hereinafter abbreviated as PVC).
[0003]
When such a PVC resin is heated and the transition point is exceeded, the PVC molecular segment in the amorphous part undergoes micro-Brownian motion. At this time, the intermolecular spacing is expanded and the intermolecular bond strength is weakened and softened at the same time. In this case, physical properties such as tensile strength and hardness decrease, but elasticity increases, and when the temperature applied to PVC exceeds 150 ° C, the micro Brownian motion becomes more active and reaches the crystal part. The intermolecular bonding force is drastically decreased due to the influence, and when pressure is applied in such a state, thermoplasticity that easily causes flow between molecules is exhibited.
[0004]
PVC is an amorphous polymer with a glass transition temperature of about 80 ° C, and heat of 230 ° C is usually required to form heat-shrinkable tubes. As for the gas to be used, quick improvement measures are required in terms of the working environment, and since the mold must be cleaned and restarted at any time by carbonization during the extrusion process, a lot of defects occur during the process execution However, productivity decreases and causes a considerable increase in manufacturing costs. In particular, even when defective products are generated, they cannot be reused and are treated as industrial waste.
[0005]
In particular, PVC is considerably difficult to match the quality of high heat-resistant products due to the limitations of the resin itself, and activated when exposed to high energy such as ultraviolet rays, dehydrochlorination, molecular cutting cross-linking, oxidative decomposition, etc. In the case of soft products, there is a problem that the product gradually hardens due to the migration of the plasticizer or the hydrolysis phenomenon proceeds by reacting with the surrounding moisture. It was.
[0006]
On the other hand, due to the debate on harmful effects on human bodies that began in developed countries, regulations on various heavy metals have started, and reports such as the induction of gas carcinogenesis have been issued, and some toy products are mainly used for PVC Until the use of DOP was banned, some plans for gradual reduction such as PVC and lead have already been prepared.
[0007]
Therefore, as a substitute material for such PVC, recently added to the development is the polymerization process of DMT method and TPA method. Polymerization catalyst and various additives are added to dimethyl terephthalate or ethylene glycol terephthalate. Polyethylene terephthalate (PET) resin produced through transesterification, polymerization, and cooling / drying processes with addition of products, etc., and polymerized and solidified through addition and condensation reaction processes, including water and various additives in caprolactam The Nylon (polyamide) resin is a thermoplastic resin having a relatively lower viscosity than PVC.
[0008]
[Problems to be solved by the invention]
However, low-viscosity thermoplastics such as PET and Nylon resins that are extruded through the extrusion process do not have a shear rate that requires melt viscosity, so extrusion for the production of tubular tubes or pipes is the current extrusion. Depending on the molding method, there is a problem that molding is impossible.
[0009]
Therefore, an object of the present invention is to provide a cooling device for rapidly cooling a low-viscosity resin extruded through an extrusion process into a tube having a desired diameter and thickness.
[0010]
[Means for Solving the Problems]
(1) In order to achieve such an object, the present invention provides at least one of adjusting the outer diameter of the tube by rapidly cooling the molten thermoplastic resin extruded from the extrusion table by contact with cooling water while vertically penetrating the molten thermoplastic resin. A cooling table, a vacuum table for maintaining the outer diameter of the tube by a vacuum suction pressure while penetrating a tubular tube guided through the cooling table downward, and maintaining a predetermined temperature A water tank for storing the water to be cooled and allowing the tube guided from the vacuum table to be cooled again while passing, and a take-off roller for pulling and transferring the unstretched tubular tube guided into the water tank at a constant speed It is characterized by comprising.
[0011]
(2) The cooling table has a shape with a stepped inner diameter portion, and a concave groove that is opened upward is formed between the inner diameter surface and the outer diameter surface, and a vertical rod is supported through the outer peripheral edge portion. A base body, a sleeve ring and a porous ring that are stacked on an inner diameter portion having a step of the base body, and a porous ring that is stacked on the upper side of the inner diameter portion of the base body has an outer peripheral edge portion on the upper side. The cooling device for manufacturing a heat-shrinkable tube using the thermoplastic resin according to (1), wherein each of the vertical bars is fixed by a clamp that is supported at one end.
[0012]
(3) Cooling water having a water temperature of 5 to 60 ° C. flows into the groove that opens upward at a rate of 7 to 50 l / min. Heat shrinkage using the thermoplastic resin according to (2) Cooling device for the manufacture of tubes.
[0013]
(4) The sleeve ring and the porous ring have inner diameters determined in accordance with the outer diameter of the tube, and the dimensions thereof are determined for manufacturing a heat-shrinkable tube using a thermoplastic resin according to (2) Cooling system.
[0014]
(5) The vacuum table has a shape having a step while vertically passing through the center, and a base body to which a vacuum pressure is supplied to the upper part of the inner diameter part so that the inner diameter is expanded more than the lower part. A cooling device for manufacturing a heat-shrinkable tube using a thermoplastic resin according to (1), characterized by comprising a sleeve ring and a porous ring that are fitted into an upper inner diameter portion that is opened upward .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
As shown in FIG. 1, the present invention is mainly composed of a cooling table 10, a vacuum table 20, a water tank 30 and a take-off roller 40.
[0017]
The cooling table 10 is configured to rapidly cool the melt so that a low-viscosity and high-temperature molten resin extruded by free fall from an upper extrusion table (not shown) passes through while passing vertically. Cooling water having a predetermined temperature is supplied, and the tubular tube is stably maintained by forming a water film simultaneously with cooling while the cooling water contacts the outer diameter surface of the melt passing vertically through the cooling table 10 It is.
[0018]
At this time, it is most preferable that at least one cooling table 10 is provided at a predetermined interval and is cooled by a sequential sequential cooling method.
[0019]
On the other hand, as shown in FIG. 2, the cooling table 10 has a shape in which the inner diameter portion has a step, and a concave groove 11a that is open upward is formed between the inner diameter surface and the outer diameter surface. The base body 11 is provided with a configuration in which the vertical rod 60 is supported while penetrating.
[0020]
A sleeve ring 12 is placed on the lower part of the inner diameter part of the base body 11 having a step, a porous ring 13 is laminated thereon, and cooling water having a water temperature of 5 to 60 ° C. is placed in the upward open concave groove 11a. Flow at 7-50 l / min.
[0021]
At this time, the inner side wall formed on the inside of the groove 11a in the base body 11 is formed so that the upper end is lower than the outer side wall, so that the cooling water supplied into the groove 11a The water pressure of the cooling water is dispersed while being guided to the inner diameter side beyond the upper end of the inner side wall.
[0022]
On the other hand, the porous ring 13 stacked on the upper side at the inner diameter portion of the base body 11 is fixed so that the upper outer peripheral edge portion thereof is fixed to the vertical rod 60 by a clamp 14 whose one end is supported.
[0023]
The sleeve ring 12 and the porous ring 13 that are inserted into the inner diameter portion of the base body 11 and fixed by the clamp 14 are determined so that the inner diameter is determined according to the outer diameter of the tube.
[0024]
Such a cooling table 10 is a sequential cooling system in which one or more are provided in multiple stages as described above, and the distance between the cooling tables 10 is also determined according to the standard of the tube to be formed. To do.
[0025]
Thus, a vacuum table 20 is provided immediately below the cooling table 10 provided in multiple stages.
[0026]
The vacuum table 20 maintains the melt in a tubular shape by the suction pressure of the vacuum while passing the tube guided through the cooling table 10 vertically again.
[0027]
As shown in FIG. 3, the vacuum table 20 includes a base body 21 having a shape that has a step while allowing the center to penetrate vertically, and in particular, the upper part of the inner diameter part has a larger inner diameter than the lower part. In addition, a vacuum pressure is supplied to the inside of the base body 21, and a sleeve ring 22 and a porous ring 23 are laminated on the upper inner diameter part opened upward so as to be the cooling base 10. This is the configuration.
[0028]
Then, like the cooling table 10, the cooling water is continuously supplied to the porous ring 23 while flowing the cooling water into the base body 21.
[0029]
On the other hand, the upper multistage cooling table 10 and the vacuum table 20 are simultaneously supported by a rod 60 inserted in the outer peripheral edge, and the cooling table 10 and the vacuum table 20 are fixed to be movable up and down by the vertical rod 60 in particular. Like that.
[0030]
The water tank 30 provided immediately below the vacuum table 20 is configured to store a large amount of water maintained at a predetermined temperature, and is configured to allow the tubular melt guided through the vacuum table 20 to be immersed for a while. is there.
[0031]
The take-off roller 40 mounted inside the water tank 30 is configured to pull and transfer the tubular melt immersed in the water tank 30 at a constant speed.
[0032]
At this time, if the melt is immersed in the water tank 30 too deeply, the outer shape of the melt may be deformed by water pressure, so the take-off roller 40 is mounted at a depth that does not affect the melt in the water tank 30. It is preferable to be included in.
[0033]
The melt drawn out by winding the take-off roller 40 is transferred to the stretching step of the next step via at least one guide roller 50.
[0034]
The operation of the present invention having such a configuration will be described in detail. In the extrusion process, the melt is drawn to a low viscosity state with a viscosity of about 0.5-1.0 dl / g and a temperature of about 150-330 ° C.
[0035]
Such a low-viscosity melt is cooled by a sequential cooling method while passing through a cooling table 10 provided in multiple stages.
[0036]
At this time, the outer diameter of the unstretched tube made of low-viscosity resin is determined by the inner diameter of the sleeve ring 12 of the cooling table 10, and the porous ring 13 laminated on the upper side of the sleeve ring 12 has the outer diameter of the low-viscosity melt that passes therethrough. The water is rapidly cooled while forming a fine water film. Normally, the inner diameter of the sleeve ring 12 is the same as or larger than the inner diameter of the porous ring 13.
[0037]
That is, when the cooling water is continuously supplied to the concave groove 11a of the base body 11 and is guided from the concave groove 11a to the porous ring 13 through the upper end portion of the inner diameter wall of the base body 11, the porous ring 13 absorbs it. A water film is finely formed between the cooling water and the tube passing through the center, and the formation of such a water film prevents the outer diameter from being deformed while the tube is cooled. The water in which a water film is formed between the porous ring 13 and the tube travels along the inner diameter of the cooling table and flows to a lower cooling table or vacuum table. The water overflowing from the groove 13a is the same, but these waters eventually fall into the water tank 30 located in the lowermost layer while cooling the tube in the process of being manufactured, or in the vacuum table 20 Will be drawn. For this reason, even if it cools using water, there exists an effect that various problems by a water leak etc. do not generate | occur | produce structurally.
[0038]
The tubes that are sequentially cooled sequentially through the multi-stage cooling table 10 pass through the vacuum table 20 again. At this time, the tubes passing through the vacuum table 20 are cooled by the cooling water in the same manner as the cooling table 10.
[0039]
Whether or not the outer diameter of the tube guided from the cooling table 10 is maintained as it is by closely adhering the outer diameter of the tube to the inner hole inner diameter of the base body 21 by the suction pressure supplied to the base body 21. Or it will be more extended.
[0040]
Such an action fixes the outer diameter of the tube to the inner diameter of the vacuum table 20, so that an unstretched tube having a desired thickness and outer diameter is formed.
[0041]
On the other hand, the unstretched tube whose outer diameter is fixed by the vacuum pressure in the vacuum table 20 passes through the water in the water tank 30 and is guided to the take-off roller 40. The take-off roller 40 pulls out the unstretched tube at a constant speed. It is transferred to the next process through a guide roller 50 provided on the upper side.
[0042]
Thus, in the present invention, when rapidly cooling the low-viscosity resin discharged from the extrusion table, it is cooled by a multistage sequential cooling system to prevent deformation due to water pressure, and a solid state having a constant thickness and outer diameter. The characteristic is to obtain a tubular tube.
[0043]
The resin at this time can be all polyester and polyamide.
[0044]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to an Example.
[0045]
As an example of a tube in the present invention, a thermoplastic polyester-based resin is dried to a moisture content of 100 ppm or less with a dryer, mixed with appropriate amounts of additives and pigments, put into a hopper, and melted at an extruder cylinder temperature of 220 to 290 ° C. And pushed through a circular platform. The high-temperature, low-viscosity resin extruded from the extrusion table makes contact with 30 ° C cooling water at a rate of 30 l / min while vertically passing through the two cooling tables 10 having a sleeve ring and a porous ring size of φ20 mm. Therefore, the outer diameter of the tube was adjusted at the same time that the low-viscosity resin was solidified while being rapidly cooled. The tubular tube guided through the cooling table 10 is maintained at 30 ° C. while passing through the water tank 30 after maintaining the outer diameter of the melt by the vacuum suction pressure while penetrating the vacuum table 20 downward. When the unstretched tubular tube is pulled and transferred at a constant speed by the take-off roller 40 after being cooled again with water, an unstretched tube having a long axis length of 16 mm and a short shaft length of 400 μm is manufactured.
[0046]
When such an unstretched tube is preheated to 75 ° C and then stretched to a stretching temperature of 100 ° C and cooled to a cooling temperature of 18 ° C with a φ19 mm stretched tube, the major axis length is finally 30 mm and the minor axis length. Of 100 μm, width shrinkage 45%, and long shrinkage 7%.
[0047]
On the other hand, Table 1 shows another example in which the water tank, the cooling water temperature, and the cooling water amount were changed together with the above examples, and the changes in processing characteristics and physical properties at that time were checked.
[0048]
The processing characteristics of the tube manufactured in this way indicate the workability that allows normal operation, especially when such a tube product is viewed with the naked eye, and the surface shape shows a state in which the length of the long axis is constant without irregularities. It has.
[0049]
In particular, when the manufactured shrinkable tube products are cut into 100mm lengths, opened on both sides, and deposited in 98 ± 2 ℃ boiling water for 30 seconds, the shape of the cut surface is confirmed with the naked eye. It can be seen that the shape of the cut surface maintains the original state.
[0050]
[Table 1]
Figure 0003891822
[0051]
【The invention's effect】
As described above, in providing a heat-shrinkable tube according to the present invention, a low-viscosity and high-temperature unstretched tube is rapidly cooled by a sequential cooling method so as to become a solid state and prevent deformation due to water pressure to be uniform. There is an effect that an unstretched tube having a shape having a thickness and a desired outer diameter can be manufactured. Further, since the cooling and formation of a predetermined size are performed by passing through a water-permeable ring (porous ring) for water cooling, it is efficient. Furthermore, both the porous ring for cooling and the sleeve ring for sizing can be easily removed by clamping, so that it can be flexibly adapted to the tube to be manufactured. At the same time, it is easy to assemble the device and replace the parts, and it is easy to maintain.
[Brief description of the drawings]
FIG. 1 is a structural diagram of a cooling device according to the present invention.
FIG. 2 is a sectional view showing a cooling table of the present invention.
FIG. 3 is a cross-sectional view showing a vacuum table of the present invention.
[Explanation of symbols]
10 Cooling table
11 units
12 Sleeve ring
13 Porous ring
14 Clamp
15 Inner diameter
15a Step
16s inner surface
16t outer diameter surface
20 Vacuum table
21 units
22 Solid ring
23 Porous ring
30 aquarium
40 take-off roller

Claims (5)

押出台から押し出される熱可塑性樹脂を垂直貫通させるようにしながら冷却水との接触により急冷させるようにしてチューブの外径を調節する、一つ以上が垂直に具備される冷却台と、
前記冷却台を貫通して誘導される管状のチューブを下向きに貫通させるようにしながら真空の吸入圧によりメルトの外径が維持されるようにする真空台と、
所定温度に維持される水を貯蔵し、前記真空台から誘導されるチューブが通過しながら再度冷却されるようにする水槽と、
前記水槽内に誘導される未延伸管状チューブを一定速度で引っ張って移送させるテークオフローラーと、を備え
前記冷却台は内径部が段差をもつ形状で、内径面と外径面の間には上向き開放される凹溝が形成されたものであり、
前記真空台及び前記水槽は前記冷却台の下方に配置されることを特徴とする熱可塑性樹脂を用いた熱収縮チューブの製造のための冷却装置。
A cooling table in which one or more are vertically equipped to adjust the outer diameter of the tube so as to be rapidly cooled by contact with cooling water while vertically penetrating the thermoplastic resin extruded from the extrusion table;
A vacuum table for maintaining the outer diameter of the melt by the suction pressure of the vacuum while penetrating downward the tubular tube guided through the cooling table;
A water tank for storing water maintained at a predetermined temperature and cooling again while passing a tube derived from the vacuum table;
A take-off roller for pulling and transferring the unstretched tubular tube guided into the water tank at a constant speed ,
The cooling table has a shape in which the inner diameter portion has a step, and a concave groove that is opened upward is formed between the inner diameter surface and the outer diameter surface.
The cooling device for manufacturing a heat-shrinkable tube using a thermoplastic resin, wherein the vacuum table and the water tank are disposed below the cooling table .
前記冷却台は、外周縁端部に垂直の棒が貫通されながら支持される台本体と、前記台本体の段差をもつ内径部に積層されるスリーブリングと多孔質リングと、を備え、前記台本体の内径部で上側に積層される多孔質リングはその上側の外周縁部がそれぞれ垂直の棒に一端が支持されるようにしたクランプにより固定される構成をもつことを特徴とする請求項1に記載の熱可塑性樹脂を用いた熱収縮チューブの製造のための冷却装置。 The cooling pedestal includes a pedestal body that is supported while a vertical bar passes through an outer peripheral edge , and a sleeve ring and a porous ring that are stacked on an inner diameter part having a step of the pedestal body, The porous ring laminated on the upper side of the inner diameter part of the main body has a structure in which the outer peripheral edge part of the upper part is fixed by a clamp so that one end is supported by a vertical bar. A cooling device for producing a heat-shrinkable tube using the thermoplastic resin described in 1. 前記上向き開放された凹溝には水温が5〜60℃の冷却水が7〜50l/分速度で流入することを特徴とする請求項1または2に記載の熱可塑性樹脂を用いた熱収縮チューブの製造のための冷却装置。The heat-shrinkable tube using a thermoplastic resin according to claim 1 or 2, wherein cooling water having a water temperature of 5 to 60 ° C flows into the concave groove opened upward at a rate of 7 to 50 l / min. Refrigeration system for manufacturing. 前記スリーブリングと前記多孔質リングは内径がチューブの外径に従いその寸法が決定されることを特徴とする請求項2に記載の熱可塑性樹脂を用いた熱収縮チューブの製造のための冷却装置。  The cooling device for manufacturing a heat-shrinkable tube using a thermoplastic resin according to claim 2, wherein the sleeve ring and the porous ring have inner diameters determined in accordance with an outer diameter of the tube. 前記真空台は、中央が垂直に貫通するようにしながら段差をもつ形状で、内径部の上部は下部よりも内径が拡張されるようにして内部に真空圧が供給される台本体と、上向き開放された上部側内径部に嵌合されるスリーブリングと多孔質リングとからなることを特徴とする請求項1に記載の熱可塑性樹脂を用いた熱収縮チューブの製造のための冷却装置。  The vacuum table has a stepped shape with the center penetrating vertically, and the upper part of the inner diameter part is expanded upward than the lower part, and the base body to which the vacuum pressure is supplied is opened upward. The cooling device for manufacturing a heat-shrinkable tube using a thermoplastic resin according to claim 1, comprising a sleeve ring and a porous ring fitted to the upper-side inner diameter portion.
JP2001332577A 2000-10-30 2001-10-30 Cooling device for the production of heat shrinkable tubes using thermoplastics Expired - Lifetime JP3891822B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020000063889A KR100357666B1 (en) 2000-10-30 2000-10-30 Cooling apparatus for manufacturing of heat shrinkable tubes using thermoplastic resin
KR2000-63889 2000-10-30

Publications (2)

Publication Number Publication Date
JP2002160294A JP2002160294A (en) 2002-06-04
JP3891822B2 true JP3891822B2 (en) 2007-03-14

Family

ID=19696071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001332577A Expired - Lifetime JP3891822B2 (en) 2000-10-30 2001-10-30 Cooling device for the production of heat shrinkable tubes using thermoplastics

Country Status (3)

Country Link
JP (1) JP3891822B2 (en)
KR (1) KR100357666B1 (en)
CN (1) CN1189308C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925249B1 (en) 2007-12-17 2009-11-05 이붕걸 Medical port tube for extrusion molding device and process for producing the same
KR102055285B1 (en) * 2019-06-21 2019-12-12 황희주 Extruding-forming apparatus to improve cooling efficiency

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774544B1 (en) * 2006-04-18 2007-11-08 이한성 Cylindrical film refrigeration apparatus
KR100932519B1 (en) 2008-02-29 2009-12-21 주식회사 알씨코리아 Molding Cooling Device of Synthetic Resin Band
KR20160122511A (en) 2015-04-14 2016-10-24 (주)삼양패키징 Apparatus of cooling tank for indirect cooling
CN108973079B (en) * 2018-09-10 2020-08-25 巢湖市聚汇遮阳设备科技有限公司 Cooling structure of sunshade net wire drawing machine
CN117183304B (en) * 2023-11-06 2024-01-23 四川益涵新材料科技有限公司 PE shrink film blowing machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887673A (en) * 1970-07-24 1975-06-03 Showa Denko Kk Apparatus and method for manufacturing tubular film of thermoplastic resin
US3886243A (en) * 1972-02-15 1975-05-27 Showa Kenko K K Method and apparatus for manufacturing tubular film from thermoplastic resin
KR860002596Y1 (en) * 1985-03-30 1986-10-08 금성전선주식회사 Card's sliver irregular's inspecting apparatus
KR870002932A (en) * 1985-09-06 1987-04-14 이상섭 Polyester Tube Forming Equipment
JPH0225317A (en) * 1988-07-15 1990-01-26 Fujikura Ltd Manufacture of heat-shrinkable tubing
JP3152961B2 (en) * 1991-07-08 2001-04-03 株式会社興人 Cooling mandrel
KR0142803B1 (en) * 1993-09-02 1998-07-15 모리시다 요이치 Signal processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925249B1 (en) 2007-12-17 2009-11-05 이붕걸 Medical port tube for extrusion molding device and process for producing the same
KR102055285B1 (en) * 2019-06-21 2019-12-12 황희주 Extruding-forming apparatus to improve cooling efficiency

Also Published As

Publication number Publication date
CN1189308C (en) 2005-02-16
JP2002160294A (en) 2002-06-04
CN1350916A (en) 2002-05-29
KR100357666B1 (en) 2002-10-25
KR20020033264A (en) 2002-05-06

Similar Documents

Publication Publication Date Title
US4898924A (en) Process for the production of biaxially oriented rigid rod heterocyclic liquid crystalline polymer films
US4362585A (en) Uniaxially oriented nylon film as carrier web for fiber reinforced plastics
KR930004613B1 (en) Microporous films of ultrahigh molecular weight polyethylene
TWI271302B (en) Polypropylene biaxially oriented film
JPH02258323A (en) Tubular member
JP3891822B2 (en) Cooling device for the production of heat shrinkable tubes using thermoplastics
JP5888933B2 (en) Easy tear biaxially stretched polybutylene terephthalate film
JPS6184224A (en) Manufacture of polyethylene film having high tensile strength and high modulus
JP2012121241A (en) Biaxially-stretched polybutylene terephthalate film
EP0133355B1 (en) Clear oriented polyester material
RU97112451A (en) METHOD FOR MANUFACTURING YARN FROM CONTINUOUS POLYESTER THREAD, YARN FROM POLYESTER THREAD, CORD CONTAINING POLYESTER THREADS, USING YARN FROM POLYESTER THREAD AND RUBBER PRODUCT
US4690792A (en) Biaxially drawn laminated films prepared by sequential stretching
JPH05293885A (en) Sheet consisting of low viscosity polyester resin and its manufacture
KR970025924A (en) Method for manufacturing inflation film, apparatus for manufacturing same and molded article thereof
JP2011105882A (en) Reclaimed resin composition formed of crosslinked polyethylene and heat shrinkable film
JP4052707B2 (en) Method for producing multilayer microporous film
KR970015806A (en) Industrial polyester fiber and manufacturing method thereof
JP3323866B1 (en) Method and apparatus for producing polyester film
KR100384799B1 (en) Apparatus for extruding tube of thermoplastic resin
KR100365810B1 (en) Drawing apparatus for manufacturing of thermoplastic polyester-based heat shrinkable tubes
JPH06240043A (en) Production of porous resin molding
JP4507031B2 (en) High-molecular-weight polyolefin film having highly transparent portion and method for producing the same
JPH07501859A (en) Method for removing spinning solvent from spun fibers
CN116330614A (en) Thermal shrinkage material based on polytetrafluoroethylene nanofiber and manufacturing process thereof
JP4193276B2 (en) Method for melt extrusion of aliphatic polyester resin

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050701

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Ref document number: 3891822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term