JP2012121241A - Biaxially-stretched polybutylene terephthalate film - Google Patents

Biaxially-stretched polybutylene terephthalate film Download PDF

Info

Publication number
JP2012121241A
JP2012121241A JP2010274362A JP2010274362A JP2012121241A JP 2012121241 A JP2012121241 A JP 2012121241A JP 2010274362 A JP2010274362 A JP 2010274362A JP 2010274362 A JP2010274362 A JP 2010274362A JP 2012121241 A JP2012121241 A JP 2012121241A
Authority
JP
Japan
Prior art keywords
film
biaxially stretched
polybutylene terephthalate
unstretched
terephthalate film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010274362A
Other languages
Japanese (ja)
Other versions
JP6032780B2 (en
Inventor
Shuichi Nagae
修一 永江
Kazuhiro Hamada
和宏 浜田
Tsubasa Honda
翼 本田
Takenori Murakami
武典 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Kohjin Co
Original Assignee
Kohjin Holdings Co Ltd
Kohjin Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd, Kohjin Co filed Critical Kohjin Holdings Co Ltd
Priority to JP2010274362A priority Critical patent/JP6032780B2/en
Publication of JP2012121241A publication Critical patent/JP2012121241A/en
Application granted granted Critical
Publication of JP6032780B2 publication Critical patent/JP6032780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To stably manufacture a film having characteristics suitable for a converting film, a food packaging film, and a drawing film, that is, a biaxially-stretched PBT film that has almost no anisotropy and is excellent in mechanical properties and dimensional stability.SOLUTION: A biaxially-stretched polybutylene terephthalate (PBT) film is provided such that the tensile breaking strength in all four directions is ≥200 MPa and the tensile elongation at break is ≥50% and ≤150%. The film is suitably used as a food packaging film, a drawing film, and a converting film. Such a film is stably obtained by subjecting extruded PBT resin melt to quench film-formation at a very high cooling speed of ≥200°C/second and simultaneously biaxially stretching it in the longitudinal and lateral directions respectively to 2.7-4.0 times.

Description

本発明は延伸加工の安定性、および生産性が良好で、かつ異方性が少なく、機械的性質や寸法安定性に優れた二軸
延伸ポリブチレンテレフタレート(以下、PBT)フィルムに関するものである。
The present invention relates to a biaxially stretched polybutylene terephthalate (hereinafter referred to as PBT) film having good stretching process stability and productivity, little anisotropy, and excellent mechanical properties and dimensional stability.

PBT樹脂は、優れた機械的強度、耐熱性、耐薬品性、柔軟性、透明性、表面光沢性、耐候性、および低吸水性等の特性を有しており、従来から代表的なエンジニアリングプラスチックとして幅広い分野、用途で利用されてきた。特に、注目すべきPBT樹脂の特徴として、その他汎用プラスチックと比べて結晶化速度が著しく高い点が挙げられ、その特徴を活かして各種自動車部品や電気・電子部品等の射出成形用途でハイサイクル性を目的に、近年広く用いられている。 PBT resin has characteristics such as excellent mechanical strength, heat resistance, chemical resistance, flexibility, transparency, surface gloss, weather resistance, and low water absorption. Has been used in a wide range of fields and applications. In particular, a remarkable feature of PBT resin is that it has a significantly higher crystallization speed than other general-purpose plastics. Taking advantage of this feature, it is highly cycleable in injection molding applications such as various automobile parts and electrical / electronic parts. In recent years, it has been widely used.

一方、フィルム用途では、主に一般惣菜向けとしてキャスト成形による未延伸PBTフィルム、または飲料ボトルのシュリンクラベル向けに一軸延伸PBTフィルムが製造されているが、これらの二軸延伸でないフィルムは強度や寸法安定性に問題があるため用途が限定され、特にコンバーティングフィルムなどに用いることはできない。また、二軸延伸PBTフィルムに関しては、食品用包材向けにコンバーティングフィルムとして一般的に使用されている二軸延伸ポリエチレンテレフタレート(以下、PET)フィルムと比べると耐ピンホール性、耐衝撃性が優れており、また二軸延伸ナイロン6(以下、ONY)フィルムと比べると耐薬品性、防湿性が優れているものの、引張破断強度や寸法安定性、異方性等のフィルムの品質面で問題点があり、またPBT樹脂の特性により安定した二軸延伸が難しいことから、未だ実用化に至っていないのが現状である。 On the other hand, in film applications, unstretched PBT films produced by cast molding are mainly used for general sugar beet, or uniaxially stretched PBT films are used for beverage bottle shrink labels. Since there is a problem in stability, the use is limited, and in particular, it cannot be used for a converting film. In addition, the biaxially stretched PBT film is more resistant to pinholes and impacts than biaxially stretched polyethylene terephthalate (hereinafter referred to as PET) films that are commonly used as converting films for food packaging. Although superior in chemical resistance and moisture resistance compared to biaxially stretched nylon 6 (hereinafter referred to as ONY) film, it has problems in terms of film quality such as tensile rupture strength, dimensional stability, and anisotropy. However, since it is difficult to perform stable biaxial stretching due to the characteristics of the PBT resin, it has not yet been put into practical use.

PBT樹脂は、周知の通り、その高い結晶化速度の影響により二軸延伸が極めて困難であり、PET、ナイロン6、ポリプロピレン等の汎用プラスチックの二軸延伸技術をそのまま応用するだけでは安定製造は難しい。特に、未延伸原反製膜時の結晶化を極力抑え、その低結晶状態を維持したまま延伸を行うことがPBT樹脂を安定的に二軸延伸フィルムにする大きなポイントと言える。そのPBT樹脂の未延伸原反の製膜法、二軸延伸法、および二軸延伸フィルムの品質改善に関して、これまで種々の方法が提案されている。特許文献1、特許文献2、および特許文献3では、テンター法同時、または逐次二軸延伸法において、延伸温度、延伸倍率、延伸変形速度、延伸システム等の各種延伸条件、あるいは原反冷却速度等の未延伸原反製膜条件を工夫して延伸性、およびフィルム物性を改良する方法が提案されている。また、特許文献3、特許文献4、および特許文献5では、チューブラー法同時二軸延伸法において、結晶性が比較的低い未延伸原反の製膜法とその低結晶状態を延伸工程まで維持する方法、および延伸温度、延伸倍率等の各種延伸条件の適正化を図ることにより、PBT樹脂の二軸延伸性を向上させる方法が提案されている。さらには、同製膜、延伸技術を用いることにより、機械的強度が比較的大きく、異方性が小さい二軸延伸PBTフィルムを得ることが出来ている。 As is well known, PBT resin is extremely difficult to biaxially stretch due to the effect of its high crystallization rate, and stable production is difficult just by applying biaxial stretching technology of general-purpose plastics such as PET, nylon 6, and polypropylene as they are. . In particular, it can be said that the crystallization at the time of unstretched raw film formation is suppressed as much as possible, and stretching is performed while maintaining the low crystal state, which is a big point for stably making the PBT resin a biaxially stretched film. Various methods have been proposed so far for the film-forming method of the unstretched raw material of the PBT resin, the biaxial stretching method, and the quality improvement of the biaxially stretched film. In Patent Document 1, Patent Document 2, and Patent Document 3, in the tenter method simultaneous or sequential biaxial stretching method, various stretching conditions such as stretching temperature, stretching ratio, stretching deformation rate, stretching system, or the raw fabric cooling rate, etc. A method for improving stretchability and film physical properties has been proposed by devising the unstretched raw film forming conditions. In Patent Document 3, Patent Document 4, and Patent Document 5, in the tubular method simultaneous biaxial stretching method, an unstretched raw film forming method with relatively low crystallinity and its low crystalline state are maintained until the stretching step. And a method for improving the biaxial stretchability of the PBT resin by optimizing various stretching conditions such as a stretching temperature and a stretching ratio. Furthermore, by using the film forming and stretching techniques, a biaxially stretched PBT film having relatively high mechanical strength and low anisotropy can be obtained.

特開昭49−80178号公報JP-A-49-80178 特開昭51−146572号公報JP 51-146572 A 特開昭53−79969号公報JP-A-53-79969 特開平5−261809号公報Japanese Patent Laid-Open No. 5-261809 特開平5−269843号公報JP-A-5-269843

しかしながら、テンター法二軸延伸法では得られた二軸延伸PBTフィルムは異方性が大きく、また引張破断強度、あるいは破断伸度が低すぎる場合があり、コンバーティングフィルムとして取り扱うには、印刷やラミネート、成形等の二次加工適性の点で大きな問題があった。また、特許文献3で提案された冷却ドラムを用いたキャスト方式による原反製膜法では、未延伸原反の冷却速度をある程度までしか上げられず、急冷製膜という点で十分とは言えなかった。一方、チューブラー法同時二軸延伸法である特許文献5では、異方性は少ないものの、引張破断強度が十分とは言えず、またインモールド転写用基材フィルム用途であるため基材の破断伸度が大きく、包装用フィルム、絞り成形用としては寸法安定性の点で改善の余地があった。さらには、特許文献4で提案された原反製膜法、すなわちチューブ状に押出された溶融体の外側は直接水冷、内側は間接水冷方式では、冷却速度を上げるのが困難であり、また原反の内外で結晶性に差が生じ、その結果、PBT樹脂を安定的に延伸するポイントの一つであった原反の結晶化抑制、および原反トータルの結晶均一化の点で十分では無かった。さらには、原反冷却速度の観点から、生産速度アップも限界があり、さらなるPBT未延伸原反の製膜法の改良が必要であった。 However, the biaxially stretched PBT film obtained by the tenter biaxial stretching method has a large anisotropy, and the tensile breaking strength or the breaking elongation may be too low. There was a big problem in terms of suitability for secondary processing such as laminating and molding. Moreover, in the original film forming method by the casting method using the cooling drum proposed in Patent Document 3, the cooling rate of the unstretched original film can be increased only to a certain extent, and it cannot be said that it is sufficient in terms of rapid cooling film formation. It was. On the other hand, in Patent Document 5 which is a tubular method simultaneous biaxial stretching method, although the anisotropy is small, it cannot be said that the tensile breaking strength is sufficient, and the substrate breaks because it is used for a substrate film for in-mold transfer. The elongation was large, and there was room for improvement in terms of dimensional stability for packaging films and drawing. Furthermore, it is difficult to increase the cooling rate with the raw film forming method proposed in Patent Document 4, that is, with the direct water cooling on the outside and the indirect water cooling on the inside of the melt extruded into a tube shape. There is a difference in crystallinity between the inside and outside of the fabric, and as a result, it is not sufficient in terms of suppressing crystallization of the original fabric, which was one of the points for stably stretching the PBT resin, and homogenizing the total crystal of the original fabric. It was. Furthermore, from the viewpoint of the raw fabric cooling rate, the production rate is limited, and further improvement of the film forming method for the unstretched PBT raw fabric is necessary.

本発明者らは、4方向すべての引張破断強度が大きく、かつ引張破断伸度が50〜150%の範囲内であるポリブチレンテレフタレートフィルムが包装用、絞り成形用に適していること、さらに、極めて高い冷却速度で急冷製膜した未延伸原反を縦横同時二軸延伸することにより、延伸安定性、生産性が良好であるとともに、異方性が少なく、上記の条件を満たす機械的性質や寸法安定性に優れた二軸延伸ポリブチレンテレフタレートフィルムを得ることが出来ることを見い出し、本発明を完成するに至った。 The present inventors have found that a polybutylene terephthalate film having a large tensile breaking strength in all four directions and a tensile breaking elongation in the range of 50 to 150% is suitable for packaging and drawing, By stretching the unstretched original fabric that has been rapidly cooled and formed at an extremely high cooling rate in the vertical and horizontal simultaneous biaxial directions, the stretching stability and productivity are good, and the mechanical properties satisfying the above conditions are low. It has been found that a biaxially stretched polybutylene terephthalate film having excellent dimensional stability can be obtained, and the present invention has been completed.

すなわち、本発明は以下の物及び手段を提供する。
[1]4方向(0°(MD)、45°、90°(TD)、135°)すべての引張破断強度が200MPa以上、引張破断伸度が50%以上150%以下であることを特徴とする二軸延伸ポリブチレンテレフタレートフィルム。
[2]4方向(0°(MD)、45°、90°(TD)、135°)の引張破断強度のうち、最大値と最小値の比が1.5以下であることを特徴とする上記[1]に記載の二軸延伸ポリブチレンテレフタレートフィルム。
[3]ポリブチレンテレフタレート樹脂を溶融押出した直後に200℃/秒以上の冷却速度で急冷製膜して得られた未延伸原反を縦横それぞれ2.7〜4.0倍同時二軸延伸することにより得られる、上記[1]または[2]に記載の二軸延伸ポリブチレンテレフタレートフィルム。
[4]前記冷却速度が250℃/秒以上であることを特徴とする上記[3]に記載の二軸延伸ポリブチレンテレフタレートフィルム。
[5]前記冷却速度が350℃/秒以上であることを特徴とする上記[3]に記載の二軸延伸ポリブチレンテレフタレートフィルム。
[6]前記未延伸原反の40℃、0.5kg/cm荷重下における伸び率が5%以上であることを特徴とする上記[3]〜[5]に記載の二軸延伸ポリブチレンテレフタレートフィルム。
[7]前記未延伸原反の40℃、0.5kg/cm荷重下における伸び率が30%以上であることを特徴とする上記[3]〜[5]に記載の二軸延伸ポリブチレンテレフタレートフィルム。
[8]前記急冷製膜が、膜状に溶融押出された直後のポリブチレンテレフタレートの両面に30℃以下の水を直接接触させることによるものである、上記[3]〜[7]に記載の二軸延伸ポリブチレンテレフタレートフィルム。
[9]下記(a)のいずれか一種または二種以上と貼り合わせて用いられることを特徴とする上記[1]〜[8]に記載の二軸延伸ポリブチレンテレフタレートフィルム。
(a)二軸延伸ナイロン6フィルム、二軸延伸ポリプロピレンフィルム、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸エチレン−ビニルアルコール系フィルム、二軸延伸ポリエチレンナフタレートフィルム、二軸延伸ポリスチレンフィルム、二軸延伸芳香族ポリアミドフィルム、二軸延伸ポリ塩化ビニリデンフィルム、二軸延伸ポリビニルアルコールフィルム、各種コートフィルム、各種蒸着フィルム、未延伸ポリエチレン系フィルム、未延伸ポリプロピレン系フィルム、未延伸ポリ塩化ビニルフィルム、エチレン−酢酸ビニルフィルム、アイオノマーフィルム、その他エチレンコポリマー系フィルム、未延伸ポリビニルアルコールフィルム、未延伸ナイロン6フィルム、アルミ箔、銅箔、ステンレス箔、紙、不織布、発泡ポリスチレン。
[10]印刷して使用されることを特徴とする上記[1]〜[9]に記載の二軸延伸ポリブチレンテレフタレートフィルム。
[11]食品包装用、絞り成形用の基材として使用されることを特徴とする上記[1]〜[10]に記載の二軸延伸ポリブチレンテレフタレートフィルム。
That is, the present invention provides the following items and means.
[1] Characteristically, the tensile strength at break in all four directions (0 ° (MD), 45 °, 90 ° (TD), 135 °) is 200 MPa or more, and the tensile elongation at break is 50% or more and 150% or less. Biaxially stretched polybutylene terephthalate film.
[2] The ratio between the maximum value and the minimum value among the tensile rupture strengths in four directions (0 ° (MD), 45 °, 90 ° (TD), 135 °) is 1.5 or less. The biaxially stretched polybutylene terephthalate film according to [1] above.
[3] Immediately after the polybutylene terephthalate resin is melt-extruded, the unstretched raw material obtained by rapid film formation at a cooling rate of 200 ° C./second or more is simultaneously biaxially stretched by 2.7 to 4.0 times each in length and width. The biaxially stretched polybutylene terephthalate film according to [1] or [2], obtained by
[4] The biaxially stretched polybutylene terephthalate film according to [3], wherein the cooling rate is 250 ° C./second or more.
[5] The biaxially stretched polybutylene terephthalate film according to [3], wherein the cooling rate is 350 ° C./second or more.
[6] The biaxially stretched polybutylene terephthalate according to the above [3] to [5], wherein the unstretched raw fabric has an elongation percentage of 5% or more at 40 ° C. under a load of 0.5 kg / cm. the film.
[7] The biaxially stretched polybutylene terephthalate as described in the above [3] to [5], wherein the unstretched raw fabric has an elongation of 30% or more under a load of 40 ° C. and 0.5 kg / cm. the film.
[8] The above-mentioned [3] to [7], wherein the rapid cooling film formation is performed by bringing water at 30 ° C. or less into direct contact with both surfaces of polybutylene terephthalate immediately after being melt-extruded into a film shape. Biaxially stretched polybutylene terephthalate film.
[9] The biaxially stretched polybutylene terephthalate film according to any one of [1] to [8] above, wherein the biaxially stretched polybutylene terephthalate film is used by being bonded to one or more of the following (a).
(A) Biaxially stretched nylon 6 film, biaxially stretched polypropylene film, biaxially stretched polyethylene terephthalate film, biaxially stretched ethylene-vinyl alcohol film, biaxially stretched polyethylene naphthalate film, biaxially stretched polystyrene film, biaxially stretched Aromatic polyamide film, biaxially stretched polyvinylidene chloride film, biaxially stretched polyvinyl alcohol film, various coated films, various deposited films, unstretched polyethylene film, unstretched polypropylene film, unstretched polyvinyl chloride film, ethylene-acetic acid Vinyl film, ionomer film, other ethylene copolymer film, unstretched polyvinyl alcohol film, unstretched nylon 6 film, aluminum foil, copper foil, stainless steel foil, paper, nonwoven fabric, foamed poly Styrene.
[10] The biaxially stretched polybutylene terephthalate film according to any one of [1] to [9], which is used after printing.
[11] The biaxially stretched polybutylene terephthalate film as described in [1] to [10] above, which is used as a base material for food packaging or drawing.

本発明者らは、極めて高い冷却速度で急冷製膜したPBT未延伸原反を縦横同時二軸延伸することにより、延伸が長時間安定的となり、生産速度アップも可能となった。また、得られた二軸延伸PBTフィルムは、引張破断強度が高く、かつ破断伸度が低いという特徴を有し、さらには物性の異方性が少なく、寸法安定性にも優れていることから、包装用、絞り成形用、一般コンバーティングフィルムとして好適に用いることが可能となった。 The inventors of the present invention made the PBT unstretched raw film rapidly cooled and formed at an extremely high cooling rate biaxially and longitudinally and biaxially stretched stably for a long time, and increased production speed. In addition, the obtained biaxially stretched PBT film has the characteristics that the tensile strength at break is high and the elongation at break is low, and furthermore, there is little anisotropy of physical properties and it is excellent in dimensional stability. It can be suitably used for packaging, drawing, and general converting films.

チューブラー同時二軸延伸装置の概略図である。It is the schematic of a tubular simultaneous biaxial stretching apparatus.

以下に、本発明を実施するための最良の形態について説明する。
(二軸延伸PBTフィルムの原料) 二軸延伸PBTフィルムに用いられる原料は、ブチレンテレフタレートを主たる繰返し単位とするポリエステルであれば特に限定されるものでは無いが、具体的にはグリコール成分としての1,4−ブタンジオール、又はそのエステル形成性誘導体と、二塩基酸成分としてのテレフタル酸、又はそのエステル形成性誘導体を主成分とし、それらを縮合して得られるホモ、またはコポリマータイプのポリエステルである。最適な機械的強度特性を付与するためには、ポリブチレンテレフタレート系樹脂のうち、融点200〜250℃、IV値1.10〜1.35dl/gの範囲のものが好ましく、さらには融点215〜225℃、IV値1.15〜1.30dl/gの範囲のものが特に好ましい。
The best mode for carrying out the present invention will be described below.
(Raw Material for Biaxially Stretched PBT Film) The raw material used for the biaxially stretched PBT film is not particularly limited as long as it is a polyester having butylene terephthalate as a main repeating unit. , 4-Butanediol, or an ester-forming derivative thereof, and terephthalic acid as a dibasic acid component, or an ester-forming derivative thereof as a main component, and a homo- or copolymer-type polyester obtained by condensing them. . In order to impart optimum mechanical strength characteristics, among polybutylene terephthalate resins, those having a melting point of 200 to 250 ° C. and an IV value of 1.10 to 1.35 dl / g are preferable, and a melting point of 215 to 215 Those having a range of 225 ° C. and an IV value of 1.15 to 1.30 dl / g are particularly preferable.

ここでポリブチレンテレフタレートを主体とするコポリエステルとは、二塩基酸成分としてのテレフタル酸成分の一部を、例えばイソフタル酸、フタル酸、アジピン酸、セバシン酸等の他の二塩基酸成分に置き換えたもの、及び/またはグリコール成分としての1,4−ブタンジオール成分の一部を、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール等の他のグリコール成分に置き換えたものを縮合させたポリエステルであり、ブチレンテレフタレート単位が70%以上のものが好ましい。 Here, the copolyester mainly composed of polybutylene terephthalate replaces a part of the terephthalic acid component as the dibasic acid component with other dibasic acid components such as isophthalic acid, phthalic acid, adipic acid, and sebacic acid. And / or a part of 1,4-butanediol component as a glycol component is condensed with another glycol component such as ethylene glycol, diethylene glycol, propylene glycol, neopentyl glycol, cyclohexanedimethanol, etc. Polyester having a butylene terephthalate unit of 70% or more is preferable.

なお、本発明のポリブチレンテレフタレートには、物性に支障をきたさない範囲で、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリヘキサメチレンテレフタレート、ポリ(エチレンテレフタレート/エチレンイソフタレート)などの他のポリエステル類やポリカーボネート、ポリアミド等を混合、あるいは積層して延伸加工をしても良く、さらに必要に応じて滑剤、アンチブロッキング剤、無機増量剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤、着色剤、結晶化抑制剤、結晶化促進剤等の添加剤を加えても差し支えない。また、PBT樹脂ペレットは加熱溶融時の加水分解による粘度低下を避けるため、加熱溶融前に水分率が0.05wt%以下、好ましくは0.02wt%以下になるように十分予備乾燥を行った上で使用するのが好ましい。 In the polybutylene terephthalate of the present invention, other polyesters such as polyethylene terephthalate, polyethylene naphthalate, polyhexamethylene terephthalate, poly (ethylene terephthalate / ethylene isophthalate), polycarbonate, and the like, as long as physical properties are not hindered. Polyamide etc. may be mixed or laminated and stretched, and if necessary, lubricant, antiblocking agent, inorganic extender, antioxidant, ultraviolet absorber, antistatic agent, flame retardant, plasticizer, Additives such as a colorant, a crystallization inhibitor, and a crystallization accelerator may be added. The PBT resin pellets are sufficiently pre-dried so that the moisture content is 0.05 wt% or less, preferably 0.02 wt% or less before heating and melting in order to avoid a decrease in viscosity due to hydrolysis during heating and melting. Is preferably used.

(PBT未延伸原反の製造方法)前記の通り、PBT樹脂を安定的に二軸延伸するには、延伸前未延伸原反の結晶化を極力抑制する必要があり、押出されたPBT溶融体を冷却して製膜する際、該ポリマーの結晶化温度領域をある速度以上で冷却する、すなわち原反冷却速度が重要な因子となる。その原反冷却速度は200℃/秒以上、好ましくは250℃/秒以上、特に好ましくは350℃/秒以上であり、高い冷却速度で製膜された未延伸原反は極めて低い結晶状態を保っているため、延伸時のバブルの安定性が飛躍的に向上する。さらには高速での製膜も可能になることから、生産性も向上する。冷却速度が200℃/秒未満では、得られた未延伸原反の結晶性が高くなり延伸性が低下するばかりでなく、極端な場合には延伸バブルが破裂し、延伸が継続しない場合がある。 (Method for producing PBT unstretched raw fabric) As described above, in order to stably biaxially stretch a PBT resin, it is necessary to suppress crystallization of the unstretched raw fabric before stretching as much as possible, and an extruded PBT melt When the film is cooled to form a film, the crystallization temperature region of the polymer is cooled at a certain rate or more, that is, the raw fabric cooling rate is an important factor. The raw fabric cooling rate is 200 ° C./second or more, preferably 250 ° C./second or more, particularly preferably 350 ° C./second or more, and the unstretched raw film formed at a high cooling rate maintains an extremely low crystalline state. Therefore, the stability of the bubble at the time of stretching is dramatically improved. Furthermore, since the film can be formed at a high speed, productivity is also improved. When the cooling rate is less than 200 ° C./second, not only the crystallinity of the obtained unstretched raw fabric is increased and the stretchability is lowered, but in extreme cases, the stretched bubble may burst and stretching may not continue. .

原反製膜方式は、前記原反冷却速度を満たす方法であれば特に限定されるものでは無いが、急冷製膜の点では内外直接水冷式がもっとも適している。その内外直接水冷式による原反製膜法の概要を以下に説明する。まず、PBT樹脂は210〜270℃の温度に設定された押出機によって溶融混練され、Tダイ製膜の場合は、シート状の溶融樹脂を水槽に浸漬することにより内外とも直接水冷する。一方、環状製膜の場合は、押出機に下向きに取り付けられた環状ダイより下方に押し出され、溶融管状薄膜が成形される。 The raw film forming method is not particularly limited as long as it satisfies the original film cooling rate, but the internal / external direct water cooling method is most suitable in terms of rapid cooling film forming. The outline of the raw film forming method by the internal / external direct water cooling method will be described below. First, the PBT resin is melt-kneaded by an extruder set at a temperature of 210 to 270 ° C., and in the case of T-die film formation, the sheet-like molten resin is immersed in a water tank and directly water-cooled inside and outside. On the other hand, in the case of annular film formation, the molten tubular thin film is formed by being extruded downward from an annular die attached downward to the extruder.

次に環状ダイに連結されている冷却マンドレルに導かれ、冷却マンドレル各ノズルから導入された冷却水が溶融管状薄膜の内側に直接接触して冷却される。同時に、冷却マンドレルと組み合わせて使用される外部冷却槽からも冷却水が流され、溶融管状薄膜の外側にも冷却水が直接接触して冷却される。内部水、および外部水の温度は30℃以下が好ましく、急冷製膜の観点では20℃以下が特に好ましい。30℃より高くなると、原反の白化や冷却水の沸騰による原反外観不良等を招き、延伸も徐々に困難になる。 Next, it is led to a cooling mandrel connected to the annular die, and the cooling water introduced from each nozzle of the cooling mandrel is brought into direct contact with the inside of the molten tubular thin film to be cooled. At the same time, cooling water flows from the external cooling tank used in combination with the cooling mandrel, and the cooling water directly contacts the outside of the molten tubular thin film to be cooled. The temperature of the internal water and the external water is preferably 30 ° C. or less, and particularly preferably 20 ° C. or less from the viewpoint of rapid cooling film formation. When the temperature is higher than 30 ° C., whitening of the raw material or poor appearance of the original material due to boiling of cooling water is caused, and stretching becomes gradually difficult.

上記方法により製膜された未延伸原反の40℃、0.5kg/cm荷重下における伸び率は5%以上である。延伸性の点では、同伸び率が40%以上であることが特に望ましい。伸び率が5%未満であると、延伸バブルの揺れが大きくなるだけで無く、延伸自体が困難な場合さえある。なお、0.5kg/cm荷重は、延伸開始点部分の原反に加わる延伸応力におおよそ相当する張力である。 The unstretched original film formed by the above method has an elongation percentage of 5% or more at 40 ° C. under a load of 0.5 kg / cm. In terms of stretchability, it is particularly desirable that the elongation percentage is 40% or more. If the elongation is less than 5%, not only will the stretching bubble fluctuate, but the stretching itself may be difficult. The 0.5 kg / cm load is a tension approximately corresponding to the stretching stress applied to the original fabric at the stretching start point.

(二軸延伸PBTフィルムの製造方法)PBT未延伸原反は、25℃以下、好ましくは20℃以下の雰囲気温度に保ちつつ延伸ゾーンまで搬送する必要があり、当該温度管理下では滞留時間に関係無く、製膜直後の未延伸原反の結晶性を維持することが出来る。この延伸開始点までの結晶化制御は、前記未延伸原反の製膜技術とともに、PBT樹脂の二軸延伸を安定して行う上で重要なポイントと言える。 (Manufacturing method of biaxially stretched PBT film) The unstretched PBT raw fabric needs to be transported to a stretching zone while maintaining an atmospheric temperature of 25 ° C. or lower, preferably 20 ° C. or lower. And the crystallinity of the unstretched original fabric immediately after film formation can be maintained. Control of crystallization up to the starting point of stretching can be said to be an important point in stably performing biaxial stretching of the PBT resin together with the film forming technique of the unstretched raw material.

同時二軸延伸法は、例えばチューブラー方式やテンター方式が挙げられるが、縦横の強度バランスの点で、チューブラー法が特に好ましい。図1はチューブラー法同時二軸延伸装置の概略図である。延伸ゾーンに導かれた未延伸原反1は、一対の低速ニップロール2間に挿通された後、中に空気を圧入しながら延伸用ヒーター3で加熱するとともに、延伸終了点に冷却ショルダーエアーリング4よりエアーを吹き付けることにより、チューブラー法によるMD、およびTD同時二軸延伸フィルム7を得た。延伸倍率は、延伸安定性や得られた二軸延伸PBTフィルムの強度物性、透明性、および厚み均一性を考慮すると、MD、およびTDそれぞれ2.7〜4.0倍の範囲であることが好ましい。延伸倍率が2.7倍未満である場合、得られた二軸延伸PBTフィルムの引張強度や衝撃強度が不十分となり好ましくない。また4.0倍超の場合、延伸により過度な分子鎖のひずみが発生するため、延伸加工時に破断やパンクが頻繁に発生し、安定的に生産出来ない。延伸温度は、40〜80℃の範囲が好ましく、特に好ましくは45〜65℃である。前記の高い冷却速度で製造した未延伸原反は、結晶性が低いため、比較的低温域の延伸温度で安定して延伸可能である。80℃を超える高温延伸では、延伸バブルの揺れが激しくなり、大きな延伸ムラが発生して厚み精度の良好なフィルムは得られない。一方、40℃未満の延伸温度では、低温延伸による過度な延伸配向結晶化が発生し、フィルムの白化等を招き、場合によって延伸バブルが破裂し延伸継続困難となる。このように二軸延伸加工を施すことにより、特に強度物性が飛躍的に向上し、かつ異方性が少ない二軸延伸PBTフィルムを得ることが出来る。 Examples of the simultaneous biaxial stretching method include a tubular method and a tenter method, but the tubular method is particularly preferable from the viewpoint of balance of strength in the vertical and horizontal directions. FIG. 1 is a schematic view of a tubular method simultaneous biaxial stretching apparatus. The unstretched original fabric 1 guided to the stretching zone is inserted between a pair of low-speed nip rolls 2 and then heated with a stretching heater 3 while air is being pressed into it. By blowing air more, MD by the tubular method and TD simultaneous biaxially stretched film 7 were obtained. The draw ratio may be in the range of 2.7 to 4.0 times each of MD and TD, taking into account the stretching stability and the strength properties, transparency, and thickness uniformity of the obtained biaxially stretched PBT film. preferable. When the draw ratio is less than 2.7, the tensile strength and impact strength of the obtained biaxially stretched PBT film are not preferable. In addition, when it exceeds 4.0 times, excessive molecular chain distortion occurs due to stretching, and thus breakage and puncture frequently occur during stretching, and stable production cannot be achieved. The stretching temperature is preferably in the range of 40 to 80 ° C, particularly preferably 45 to 65 ° C. Since the unstretched original fabric manufactured at the high cooling rate has low crystallinity, it can be stably stretched at a relatively low stretching temperature. In high-temperature stretching exceeding 80 ° C., stretching bubbles are vigorously shaken and large stretching unevenness occurs, and a film having good thickness accuracy cannot be obtained. On the other hand, when the stretching temperature is less than 40 ° C., excessive stretch-oriented crystallization occurs due to low-temperature stretching, leading to whitening of the film and the like. By performing the biaxial stretching process in this way, a biaxially stretched PBT film having particularly improved strength properties and little anisotropy can be obtained.

得られた二軸延伸PBTフィルムを熱ロール方式またはテンター方式、あるいはそれらを組み合わせた熱処理設備に任意の時間投入し、180〜240℃、特に好ましくは190〜210℃で熱処理を行うことにより、熱寸法安定性に優れた二軸延伸PBTフィルムを得ることができる。熱処理温度が220℃よりも高い場合は、ボーイング現象が大きくなり過ぎて幅方向での異方性が増加する、または結晶化度が高くなり過ぎるため強度物性が低下してしまう。一方、熱処理温度が185℃よりも低い場合は、フィルムの熱寸法安定性が大きく低下するため、ラミネートや印刷加工時にフィルムが縮み易くなり、実用上問題が生じる。 The obtained biaxially stretched PBT film is heated in a heat roll system or a tenter system, or a heat treatment facility combining them for an arbitrary time, and heat treatment is performed at 180 to 240 ° C., particularly preferably 190 to 210 ° C. A biaxially stretched PBT film excellent in dimensional stability can be obtained. When the heat treatment temperature is higher than 220 ° C., the bowing phenomenon becomes too large and the anisotropy in the width direction increases, or the crystallinity becomes too high, resulting in a decrease in strength properties. On the other hand, when the heat treatment temperature is lower than 185 ° C., the thermal dimensional stability of the film is greatly reduced, so that the film is easily shrunk at the time of lamination or printing, which causes a practical problem.

本発明の二軸延伸PBTフィルムの厚みは、特に制限されるものでは無いが、一般コンバーティングフィルムとして用いる場合は5〜50μm、好ましくは10〜20μmである。 The thickness of the biaxially stretched PBT film of the present invention is not particularly limited, but when used as a general converting film, it is 5 to 50 μm, preferably 10 to 20 μm.

二軸延伸PBTフィルムの4方向(0°(MD)、45°、90°(TD)、135°)における引張破断強度は、いずれも200MPa以上であることが好ましく、これにより耐ピンホール性や耐衝撃性、耐突刺し性、および二次加工適性等の特性が格段に向上する。さらに、異方性を小さくするためには、4方向(0°(MD)、45°、90°(TD)、135°)の引張破断強度のうち、最大値と最小値の比が1.5以下に調整することが好ましく、特に好ましくは1.3以下である。一方、引張破断伸度は50%以上150%以下であり、好ましくは70%以上140%以下、特に好ましくは80%以上120%以下である。150%より大きい、あるいは50%より小さい場合、印刷や他基材と貼り合わせる際の張力により、フィルムの破断や伸び等が発生しやすくなるため好ましくない。このような特性をもつフィルムは、上述した製造方法により安定して得られる。 The tensile strength at break in the four directions (0 ° (MD), 45 °, 90 ° (TD), 135 °) of the biaxially stretched PBT film is preferably 200 MPa or more. Properties such as impact resistance, puncture resistance, and suitability for secondary processing are significantly improved. Furthermore, in order to reduce the anisotropy, the ratio of the maximum value to the minimum value is 1. out of the tensile rupture strengths in four directions (0 ° (MD), 45 °, 90 ° (TD), 135 °). It is preferable to adjust to 5 or less, and particularly preferably 1.3 or less. On the other hand, the tensile elongation at break is from 50% to 150%, preferably from 70% to 140%, particularly preferably from 80% to 120%. If it is larger than 150% or smaller than 50%, it is not preferable because breakage or elongation of the film is likely to occur due to tension during printing or bonding to another substrate. A film having such characteristics can be stably obtained by the production method described above.

本発明の二軸延伸PBTフィルムは、単独で用いることも可能だが、一種または二種以上の他基材と貼り合わせるコンバーティングフィルムとして用いることが出来る。代表的なものとして、二軸延伸ナイロン6フィルム、二軸延伸ポリプロピレンフィルム、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸エチレン−ビニルアルコール系フィルム、二軸延伸ポリエチレンナフタレートフィルム、二軸延伸ポリスチレンフィルム、二軸延伸芳香族ポリアミドフィルム、二軸延伸ポリ塩化ビニリデンフィルム、二軸延伸ポリビニルアルコールフィルム、各種コートフィルム、各種蒸着フィルム、未延伸ポリエチレン系フィルム、未延伸ポリプロピレン系フィルム、未延伸ポリ塩化ビニルフィルム、エチレン−酢酸ビニルフィルム、アイオノマーフィルム、その他エチレンコポリマー系フィルム、未延伸ポリビニルアルコールフィルム、未延伸ナイロン6フィルム、アルミ箔、銅箔、ステンレス箔、紙、不織布、発泡ポリスチレンが挙げられる。 Although the biaxially stretched PBT film of the present invention can be used alone, it can be used as a converting film to be bonded to one or more other base materials. Typical examples include biaxially stretched nylon 6 film, biaxially stretched polypropylene film, biaxially stretched polyethylene terephthalate film, biaxially stretched ethylene-vinyl alcohol film, biaxially stretched polyethylene naphthalate film, biaxially stretched polystyrene film, Biaxially stretched aromatic polyamide film, biaxially stretched polyvinylidene chloride film, biaxially stretched polyvinyl alcohol film, various coat films, various vapor deposition films, unstretched polyethylene film, unstretched polypropylene film, unstretched polyvinyl chloride film, Ethylene-vinyl acetate film, ionomer film, other ethylene copolymer film, unstretched polyvinyl alcohol film, unstretched nylon 6 film, aluminum foil, copper foil, stainless steel foil, paper, Cloth, and foam polystyrene.

また、本発明の二軸延伸PBTフィルムは、グラビア印刷、フレキソ印刷、オフセット印刷といった既知の印刷方法により印刷を施して用いることも出来る。 In addition, the biaxially stretched PBT film of the present invention can be used after being printed by a known printing method such as gravure printing, flexographic printing, or offset printing.

本発明の二軸延伸PBTフィルムは、特に食品包装用フィルム、リチウムイオン2次電池用、医薬PTP用等の冷間(常温)成形用フィルム、および食品等の容器成形貼り合わせ用フィルムとして好適に用いることが出来る。 The biaxially stretched PBT film of the present invention is particularly suitable as a film for food packaging, a cold (room temperature) molding film for lithium ion secondary batteries, a pharmaceutical PTP, and the like, and a film for container molding and bonding of foods and the like. Can be used.

以下に実施例および比較例を用いて、本発明を具体的に説明する。
<実施例1> (二軸延伸PBTフィルムの製造)
140℃で5時間熱風乾燥機にて乾燥したPBT樹脂ペレット(ホモタイプ、融点=224℃、IV値=1.26dl/g)を押出機中、シリンダーおよびダイ温度210〜260℃の各条件で溶融混練して溶融管状薄膜を環状ダイより下方に押し出した。引き続き、冷却マンドレルの外径を通しカラプサロールで折り畳んだ後、引取ニップロールにより1.2m/minの速度で製膜引取りを行った。溶融管状薄膜に直接接触する冷却水の温度は内側、外側ともに20℃であり、原反冷却速度は416℃/秒であった。未延伸原反の厚みは130μm、折径は143mmであり、PBT樹脂中にはあらかじめ滑剤としてステアリン酸マグネシウムを1000ppm添加した。以上の条件で製膜した未延伸原反1を20℃の雰囲気中で低速ニップロール2まで搬送し、図1に示す構造のチューブラー同時二軸延伸装置にて縦横同時二軸延伸を行った。延伸倍率はMDが3.0倍、TDが2.8倍であり、延伸温度は60℃であった。次に、この二軸延伸フィルム7を熱ロール式、およびテンター式熱処理設備にそれぞれ投入し、210℃で熱処理を施すことにより本発明の二軸延伸PBTフィルムを得た。なお、二軸延伸PBTフィルムの厚みは15μmであった。
The present invention will be specifically described below with reference to examples and comparative examples.
<Example 1> (Production of biaxially stretched PBT film)
PBT resin pellets (homotype, melting point = 224 ° C., IV value = 1.26 dl / g) dried in a hot air dryer at 140 ° C. for 5 hours were melted in an extruder under conditions of cylinder and die temperatures of 210 to 260 ° C. The molten tubular thin film was extruded downward from the annular die by kneading. Subsequently, after folding through the outer diameter of the cooling mandrel with a calapsa roll, the film was drawn with a take-up nip roll at a speed of 1.2 m / min. The temperature of the cooling water in direct contact with the molten tubular thin film was 20 ° C. on both the inner side and the outer side, and the raw fabric cooling rate was 416 ° C./second. The unstretched raw material had a thickness of 130 μm and a folding diameter of 143 mm, and 1000 ppm of magnesium stearate was previously added to the PBT resin as a lubricant. The unstretched original fabric 1 formed into a film on the above conditions was conveyed to the low-speed nip roll 2 in 20 degreeC atmosphere, and the vertical and horizontal simultaneous biaxial stretching was performed with the tubular simultaneous biaxial stretching apparatus of the structure shown in FIG. The draw ratio was 3.0 times for MD and 2.8 times for TD, and the draw temperature was 60 ° C. Next, this biaxially stretched film 7 was put into a heat roll type and a tenter type heat treatment facility, respectively, and heat treated at 210 ° C. to obtain a biaxially stretched PBT film of the present invention. The biaxially stretched PBT film had a thickness of 15 μm.

(原反冷却速度の測定方法)前記原反冷却速度は下記に示した式により算出した。溶融薄膜、および原反温度は接触式の放射温度計にて測定した。また、冷却開始点は溶融薄膜が冷却水、または冷却装置に接触する部分、冷却終了点は未延伸原反の温度が30℃に到達する部分をいう。
原反冷却速度(℃/秒)=(冷却開始点直前の溶融薄膜温度−冷却終了点の原反温度)(℃)/(冷却開始点〜冷却終了点間距離)(m)×冷却開始点〜冷却終了点間の原反の通過速度(m/秒)
(Measuring method of raw fabric cooling rate) The raw fabric cooling rate was calculated by the following formula. The molten thin film and the raw fabric temperature were measured with a contact-type radiation thermometer. The cooling start point is the part where the molten thin film comes into contact with the cooling water or the cooling device, and the cooling end point is the part where the temperature of the unstretched original fabric reaches 30 ° C.
Raw fabric cooling rate (° C./sec)=(molten film temperature immediately before the cooling start point−raw temperature of cooling end point) (° C.) / (Distance between cooling start point to cooling end point) (m) × cooling start point ~ Raw material passage speed between cooling end points (m / sec)

(延伸バブルの安定性)延伸時のバブル安定性は、目視にて下記4段階で評価した。
◎: 延伸バブルの揺れがほとんど無く安定性に優れ、連続生産も十分可能。
○: 延伸バブルの揺れがやや見られるが、連続生産性に支障が無い。
△: 延伸バブルの揺れ大きく、長時間の連続生産は困難。
×: 短時間で延伸バブルの破裂やフィルムの破断が発生。
(Stability of stretched bubble) The bubble stability during stretching was visually evaluated in the following four stages.
A: There is almost no shaking of the stretched bubble, excellent stability, and continuous production is also possible.
○: The stretching bubble is slightly shaken, but there is no problem in continuous productivity.
Δ: Stretched bubble is greatly shaken and continuous production for a long time is difficult.
X: The stretched bubble bursts or the film breaks in a short time.

(未延伸原反の40℃、0.5kg/cm荷重下における伸び率の評価方法)SIIナノテクノロジー製−EXSTAR6220を使用し、−20℃に冷却した前記製膜直後の未延伸原反を、チャック間10mm、1400mN/3mm試験巾の一定荷重下で、0〜200℃の温度範囲を10℃/分ピッチで昇温し、各温度における未延伸原反の伸び率を連続的に測定した。未延伸原反伸び率の温度カーブより求めた40℃での伸び率は43%であった。 (Evaluation method of elongation rate of unstretched raw fabric at 40 ° C. under a load of 0.5 kg / cm) Using SEX nanotechnology-EXSTAR 6220, the unstretched raw fabric immediately after film formation cooled to −20 ° C. Under a constant load of 10 mm between chucks and 1400 mN / 3 mm test width, the temperature range of 0 to 200 ° C. was increased at a pitch of 10 ° C./min, and the elongation ratio of the unstretched raw fabric at each temperature was continuously measured. The elongation at 40 ° C. determined from the temperature curve of the unstretched original fabric elongation was 43%.

(二軸延伸PBTフィルムの引張破断強伸度の評価方法) 二軸延伸PBTフィルムの引張破断強伸度は、オリエンテック製―テンシロン(RTC−1210−A)を使用し、試料幅15mm、チャック間100mm、引張速度200mm/minの条件で、0℃(MD)方向/45°方向/90°(TD)方向/135°方向の4方向についてそれぞれ測定を行った。得られた応力−ひずみ曲線に基づいて求めた、各方向での引張破断強度、破断伸度、および4方向の引張破断強度のうち最大値と最小値の比を表1に示した。 (Evaluation Method of Tensile Breaking Strength and Elongation of Biaxially Stretched PBT Film) The tensile breaking strength and elongation of the biaxially stretched PBT film are made by Orientec-Tensilon (RTC-1210-A), sample width is 15 mm, chuck Measurements were made in four directions of 0 ° C. (MD) direction / 45 ° direction / 90 ° (TD) direction / 135 ° direction under the conditions of a distance of 100 mm and a tensile speed of 200 mm / min. Table 1 shows the ratio of the maximum value to the minimum value among the tensile rupture strength in each direction, the rupture elongation, and the tensile rupture strength in four directions, which were obtained based on the obtained stress-strain curve.

<実施例2〜6、比較例1〜3> 実施例1において、延伸倍率を表1に記載した条件に変えた以外は実施例1と同様に行った。 <Examples 2-6, Comparative Examples 1-3> In Example 1, it carried out like Example 1 except having changed the draw ratio into the conditions described in Table 1.

<実施例7〜9、比較例4〜7> 実施例1において、未延伸原反の製膜方式、または原反冷却速度を表1に記載した条件に変えた以外は実施例1と同様に行った。 <Examples 7 to 9, Comparative Examples 4 to 7> In Example 1, except that the film forming method of the unstretched original fabric or the cooling rate of the original fabric was changed to the conditions described in Table 1, the same as in Example 1. went.

<実施例10、比較例8> 実施例1において、未延伸原反製膜時の内部、および外部冷却水温度を表1に記載した条件に変えた以外は実施例1と同様に行った。 <Example 10, comparative example 8> In Example 1, it carried out similarly to Example 1 except having changed the internal and external cooling water temperature at the time of unstretched original film formation into the conditions described in Table 1.

表1に示すように、押出されたPBT樹脂溶融体を200℃/秒以上の極めて高い冷却速度で急冷製膜し、40℃、0.5kg/cm荷重下における伸び率が5%以上の未延伸原反をチューブラー法で縦横同時二軸延伸することにより、延伸バブルの揺れがほとんど無く安定性に優れ、連続運転も十分可能なレベルに生産性が向上した。また、得られた二軸延伸PBTフィルムは、異方性が少なく、かつ引張破断強度が高く、引張破断伸度が低いという特徴を有していることが分かった。 As shown in Table 1, the extruded PBT resin melt was rapidly formed into a film at an extremely high cooling rate of 200 ° C./second or more, and the elongation rate at 40 ° C. under a load of 0.5 kg / cm was 5% or more. By stretching the stretched fabric biaxially and transversely by the tubular method, productivity is improved to a level where there is almost no shaking of stretched bubbles and stability is sufficient, and continuous operation is sufficiently possible. Moreover, it was found that the obtained biaxially stretched PBT film had characteristics that there was little anisotropy, high tensile breaking strength, and low tensile breaking elongation.

Figure 2012121241
Figure 2012121241

本発明の二軸延伸PBTフィルムが利用される分野、および用途としては、異方性が少なく、機械的性質や寸法安定性が良好で、一種または二種以上の他基材とラミネート、あるいは印刷等の二次加工適性に優れていることから、乾燥食品、水物食品、保香食品、レトルト食品等の一般食品包装用コンバーティングフィルムとして利用可能である。また、引張強度等の機械的強度が高く、張出し成形、または深絞り成形などの冷間(常温)成形性にも優れており、かつ防湿性、耐酸性が良好なため、水分や酸素の侵入を極度に嫌う電解液を使用したリチウムイオン二次電池の電池ケース用外装材の主要基材、およびそれ以外の一次電池、二次電池などにおいても使用可能である。さらには弁当容器、トレー、丼容器他、多様な形状の容器向けに深絞りが可能な熱成形用包材の主要基材としても好適に用いることが出来る。 Fields and applications in which the biaxially stretched PBT film of the present invention is used include low anisotropy, good mechanical properties and dimensional stability, and lamination or printing with one or more other substrates. Therefore, it can be used as a converting film for packaging general foods such as dried foods, marine foods, incense foods, and retort foods. In addition, it has high mechanical strength such as tensile strength, excellent cold formability such as stretch forming or deep drawing, and good moisture resistance and acid resistance, so moisture and oxygen can penetrate. It can also be used in a main base material for a battery case exterior material of a lithium ion secondary battery that uses an electrolyte solution that dislikes extremely, and other primary batteries and secondary batteries. Furthermore, it can be suitably used as a main base material for packaging materials for thermoforming that can be deep-drawn for various shapes of containers such as lunch boxes, trays, baskets and the like.

1 未延伸原反
2 低速ニップロール
3 延伸用ヒーター
4 冷却ショルダーエアーリング
5 カラプサロール
6 高速ニップロール
7 二軸延伸フィルム
DESCRIPTION OF SYMBOLS 1 Unstretched raw fabric 2 Low speed nip roll 3 Stretching heater 4 Cooling shoulder air ring 5 Carapsa roll 6 High speed nip roll 7 Biaxially stretched film

Claims (11)

4方向(0°(MD)、45°、90°(TD)、135°)すべての引張破断強度が200MPa以上、引張破断伸度が50%以上150%以下であることを特徴とする二軸延伸ポリブチレンテレフタレートフィルム。 Biaxial, characterized in that all four directions (0 ° (MD), 45 °, 90 ° (TD), 135 °) have a tensile breaking strength of 200 MPa or more and a tensile breaking elongation of 50% to 150%. Stretched polybutylene terephthalate film. 4方向(0°(MD)、45°、90°(TD)、135°)の引張破断強度のうち、最大値と最小値の比が1.5以下であることを特徴とする請求項1に記載の二軸延伸ポリブチレンテレフタレートフィルム。 The ratio between the maximum value and the minimum value among the tensile rupture strengths in four directions (0 ° (MD), 45 °, 90 ° (TD), 135 °) is 1.5 or less. 2. A biaxially stretched polybutylene terephthalate film described in 1. ポリブチレンテレフタレート樹脂を溶融押出した直後に200℃/秒以上の冷却速度で急冷製膜して得られた未延伸原反を縦横それぞれ2.7〜4.0倍同時二軸延伸することにより得られる、請求項1または2に記載の二軸延伸ポリブチレンテレフタレートフィルム。 Immediately after melt-extrusion of polybutylene terephthalate resin, it is obtained by simultaneously biaxially stretching the unstretched raw material obtained by rapid cooling and film formation at a cooling rate of 200 ° C./second or more in the longitudinal and lateral directions. The biaxially stretched polybutylene terephthalate film according to claim 1 or 2. 前記冷却速度が250℃/秒以上であることを特徴とする請求項3に記載の二軸延伸ポリブチレンテレフタレートフィルム。 The biaxially stretched polybutylene terephthalate film according to claim 3, wherein the cooling rate is 250 ° C./second or more. 前記冷却速度が350℃/秒以上であることを特徴とする請求項3に記載の二軸延伸ポリブチレンテレフタレートフィルム。 The biaxially stretched polybutylene terephthalate film according to claim 3, wherein the cooling rate is 350 ° C./second or more. 前記未延伸原反の40℃、0.5kg/cm荷重下における伸び率が5%以上であることを特徴とする請求項3〜5のいずれか一項に記載の二軸延伸ポリブチレンテレフタレートフィルム。 The biaxially stretched polybutylene terephthalate film according to any one of claims 3 to 5, wherein an elongation percentage of the unstretched raw fabric at 40 ° C under a load of 0.5 kg / cm is 5% or more. . 前記未延伸原反の40℃、0.5kg/cm荷重下における伸び率が30%以上であることを特徴とする請求項3〜5のいずれか一項に記載の二軸延伸ポリブチレンテレフタレートフィルム。 The biaxially stretched polybutylene terephthalate film according to any one of claims 3 to 5, wherein the elongation ratio of the unstretched raw fabric at 40 ° C under a load of 0.5 kg / cm is 30% or more. . 前記急冷製膜が、膜状に溶融押出された直後のポリブチレンテレフタレートの両面に30℃以下の水を直接接触させることによるものである、請求項3〜7のいずれか一項に記載の二軸延伸ポリブチレンテレフタレートフィルム。 8. The method according to claim 3, wherein the rapid cooling film formation is performed by bringing water at 30 ° C. or less into direct contact with both surfaces of polybutylene terephthalate immediately after being melt-extruded into a film shape. Axial stretched polybutylene terephthalate film. 下記(a)のいずれか一種または二種以上と貼り合わせて用いられることを特徴とする請求項1〜8のいずれか一項に記載の二軸延伸ポリブチレンテレフタレートフィルム。
(a)二軸延伸ナイロン6フィルム、二軸延伸ポリプロピレンフィルム、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸エチレン−ビニルアルコール系フィルム、二軸延伸ポリエチレンナフタレートフィルム、二軸延伸ポリスチレンフィルム、二軸延伸芳香族ポリアミドフィルム、二軸延伸ポリ塩化ビニリデンフィルム、二軸延伸ポリビニルアルコールフィルム、各種コートフィルム、各種蒸着フィルム、未延伸ポリエチレン系フィルム、未延伸ポリプロピレン系フィルム、未延伸ポリ塩化ビニルフィルム、エチレン−酢酸ビニルフィルム、アイオノマーフィルム、その他エチレンコポリマー系フィルム、未延伸ポリビニルアルコールフィルム、未延伸ナイロン6フィルム、アルミ箔、銅箔、ステンレス箔、紙、不織布、発泡ポリスチレン。
The biaxially stretched polybutylene terephthalate film according to any one of claims 1 to 8, wherein the biaxially stretched polybutylene terephthalate film is used in combination with any one or two or more of the following (a).
(A) Biaxially stretched nylon 6 film, biaxially stretched polypropylene film, biaxially stretched polyethylene terephthalate film, biaxially stretched ethylene-vinyl alcohol film, biaxially stretched polyethylene naphthalate film, biaxially stretched polystyrene film, biaxially stretched Aromatic polyamide film, biaxially stretched polyvinylidene chloride film, biaxially stretched polyvinyl alcohol film, various coated films, various deposited films, unstretched polyethylene film, unstretched polypropylene film, unstretched polyvinyl chloride film, ethylene-acetic acid Vinyl film, ionomer film, other ethylene copolymer film, unstretched polyvinyl alcohol film, unstretched nylon 6 film, aluminum foil, copper foil, stainless steel foil, paper, nonwoven fabric, foamed poly Styrene.
印刷して使用されることを特徴とする請求項1〜9のいずれか一項に記載の二軸延伸ポリブチレンテレフタレートフィルム。 The biaxially stretched polybutylene terephthalate film according to any one of claims 1 to 9, which is used by printing. 食品包装用、絞り成形用の基材として使用されることを特徴とする請求項1〜10のいずれか一項に記載の二軸延伸ポリブチレンテレフタレートフィルム。
The biaxially stretched polybutylene terephthalate film according to any one of claims 1 to 10, which is used as a base material for food packaging or drawing.
JP2010274362A 2010-12-09 2010-12-09 Biaxially stretched polybutylene terephthalate film Active JP6032780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274362A JP6032780B2 (en) 2010-12-09 2010-12-09 Biaxially stretched polybutylene terephthalate film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274362A JP6032780B2 (en) 2010-12-09 2010-12-09 Biaxially stretched polybutylene terephthalate film

Publications (2)

Publication Number Publication Date
JP2012121241A true JP2012121241A (en) 2012-06-28
JP6032780B2 JP6032780B2 (en) 2016-11-30

Family

ID=46503239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274362A Active JP6032780B2 (en) 2010-12-09 2010-12-09 Biaxially stretched polybutylene terephthalate film

Country Status (1)

Country Link
JP (1) JP6032780B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172214A1 (en) * 2012-05-14 2013-11-21 東洋紡株式会社 Polyester film and method for producing same
JP2014015233A (en) * 2012-07-09 2014-01-30 Kohjin Holdings Co Ltd Packaging material for filling liquid including biaxially stretched polybutylene terephthalate film
WO2014077197A1 (en) * 2012-11-16 2014-05-22 東洋紡株式会社 Biaxially oriented polyester film and method for producing same
CN104369491A (en) * 2013-08-12 2015-02-25 苏州维艾普新材料股份有限公司 PA/VMPET/Al/PE membrane material and preparation method thereof
JP2016104565A (en) * 2015-12-01 2016-06-09 興人フィルム&ケミカルズ株式会社 Biaxial oriented polybutylene terephthalate-based film and battery case packaging material for cold molding using the same
JP2017094746A (en) * 2017-01-26 2017-06-01 興人フィルム&ケミカルズ株式会社 Packaging material for filling liquid containing biaxially-stretched polybutylene terephthalate-based film
JP2019038577A (en) * 2017-08-25 2019-03-14 興人フィルム&ケミカルズ株式会社 Packaging container and method for using packaging container
JP2020111004A (en) * 2019-01-15 2020-07-27 興人フィルム&ケミカルズ株式会社 Lid material for deep draw packaging including biaxially stretched polybutylene terephthalate-based film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4980178A (en) * 1972-12-06 1974-08-02
JPS4937825B1 (en) * 1970-12-29 1974-10-12
JPS51146572A (en) * 1975-06-12 1976-12-16 Asahi Chemical Ind Two dimensional elongation poly butylene terephthalate films
JPS5379969A (en) * 1976-12-24 1978-07-14 Unitika Ltd Production of biaxially stretched film
JPS6044319A (en) * 1983-08-22 1985-03-09 Idemitsu Petrochem Co Ltd Manufacture of sheet or film of crystalline thermoplastic resin
JPH05261809A (en) * 1992-03-23 1993-10-12 Okura Ind Co Ltd Manufacture of biaxially oriented polybutylene terephthalate film
JPH05269843A (en) * 1992-03-30 1993-10-19 Okura Ind Co Ltd In-mold transferring substrate film
JP2000123800A (en) * 1998-10-15 2000-04-28 Showa Alum Corp Wrapping material for battery case
JP2007294381A (en) * 2006-03-31 2007-11-08 Dainippon Printing Co Ltd Packaging material for battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937825B1 (en) * 1970-12-29 1974-10-12
JPS4980178A (en) * 1972-12-06 1974-08-02
JPS51146572A (en) * 1975-06-12 1976-12-16 Asahi Chemical Ind Two dimensional elongation poly butylene terephthalate films
JPS5379969A (en) * 1976-12-24 1978-07-14 Unitika Ltd Production of biaxially stretched film
JPS6044319A (en) * 1983-08-22 1985-03-09 Idemitsu Petrochem Co Ltd Manufacture of sheet or film of crystalline thermoplastic resin
JPH05261809A (en) * 1992-03-23 1993-10-12 Okura Ind Co Ltd Manufacture of biaxially oriented polybutylene terephthalate film
JPH05269843A (en) * 1992-03-30 1993-10-19 Okura Ind Co Ltd In-mold transferring substrate film
JP2000123800A (en) * 1998-10-15 2000-04-28 Showa Alum Corp Wrapping material for battery case
JP2007294381A (en) * 2006-03-31 2007-11-08 Dainippon Printing Co Ltd Packaging material for battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172214A1 (en) * 2012-05-14 2013-11-21 東洋紡株式会社 Polyester film and method for producing same
JP2013256110A (en) * 2012-05-14 2013-12-26 Toyobo Co Ltd Polyester film and method for producing the same
JP2014015233A (en) * 2012-07-09 2014-01-30 Kohjin Holdings Co Ltd Packaging material for filling liquid including biaxially stretched polybutylene terephthalate film
JP5994864B2 (en) * 2012-11-16 2016-09-21 東洋紡株式会社 Biaxially stretched polyester film and method for producing the same
WO2014077197A1 (en) * 2012-11-16 2014-05-22 東洋紡株式会社 Biaxially oriented polyester film and method for producing same
JPWO2014077197A1 (en) * 2012-11-16 2017-01-05 東洋紡株式会社 Biaxially stretched polyester film and method for producing the same
US9688826B2 (en) 2012-11-16 2017-06-27 Toyobo Co., Ltd. Biaxially stretched polyester film and method for producing same
CN104369491A (en) * 2013-08-12 2015-02-25 苏州维艾普新材料股份有限公司 PA/VMPET/Al/PE membrane material and preparation method thereof
JP2016104565A (en) * 2015-12-01 2016-06-09 興人フィルム&ケミカルズ株式会社 Biaxial oriented polybutylene terephthalate-based film and battery case packaging material for cold molding using the same
JP2017094746A (en) * 2017-01-26 2017-06-01 興人フィルム&ケミカルズ株式会社 Packaging material for filling liquid containing biaxially-stretched polybutylene terephthalate-based film
JP2019038577A (en) * 2017-08-25 2019-03-14 興人フィルム&ケミカルズ株式会社 Packaging container and method for using packaging container
JP7029250B2 (en) 2017-08-25 2022-03-03 興人フィルム&ケミカルズ株式会社 How to use the packaging container and the packaging container
JP2020111004A (en) * 2019-01-15 2020-07-27 興人フィルム&ケミカルズ株式会社 Lid material for deep draw packaging including biaxially stretched polybutylene terephthalate-based film
JP7217455B2 (en) 2019-01-15 2023-02-03 興人フィルム&ケミカルズ株式会社 Lid material for deep drawing packaging containing biaxially oriented polybutylene terephthalate film

Also Published As

Publication number Publication date
JP6032780B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6032780B2 (en) Biaxially stretched polybutylene terephthalate film
JP5888860B2 (en) Biaxially stretched polybutylene terephthalate film and battery case packaging material for cold forming using the same
JP5956115B2 (en) Retort packaging material containing biaxially stretched polybutylene terephthalate film
JP6032786B2 (en) Battery case packaging material for cold forming containing biaxially stretched polybutylene terephthalate film
JP5888933B2 (en) Easy tear biaxially stretched polybutylene terephthalate film
JP2008044209A (en) Biaxially stretched nylon film, laminated packaging material and forming method of biaxially stretched nylon film
WO2017170333A1 (en) Laminate for battery packages
JP2006045317A (en) Heat-shrinkable polyester film and formed piece and vessel produced by using the same
JP6271118B2 (en) Gas barrier biaxially stretched polybutylene terephthalate film
JP2016104565A (en) Biaxial oriented polybutylene terephthalate-based film and battery case packaging material for cold molding using the same
JP6588720B2 (en) Easy tear biaxially stretched polybutylene terephthalate film
JP5825800B2 (en) Laminated sheet for thermoforming containing biaxially stretched polybutylene terephthalate film
JP6050574B2 (en) Press-through pack packaging material for cold forming containing biaxially stretched polybutylene terephthalate film
JP2015107585A (en) Multilayer film, multilayer film package material, draw molded article, and battery
JP5292943B2 (en) Easy tear polyester film
JP5937317B2 (en) Balloon packaging containing biaxially stretched polybutylene terephthalate film
JP2023084429A (en) Biaxially stretched polyamide film
JP2016053167A (en) Biaxially stretched polybutylene terephthalate-based film and battery case packaging material for cold molding using the same
JP5863393B2 (en) Laminated metal sheet for cans containing biaxially stretched polybutylene terephthalate film
JP2021161151A (en) Biaxial oriented film
JP2007182509A (en) Biaxially stretched polyester film for molding transfer
JP2006028210A (en) Polyester resin composition, and heat-shrinkable polyester film, molded article and container composed of the resin composition
JP2022100971A (en) Biaxially stretched polybutylene terephthalate film
KR100260077B1 (en) Coextruded polymer film having thermal adhesiveness and the preparation thereof
JP7194925B2 (en) Vacuum forming or vacuum pressure forming packaging material comprising biaxially oriented polybutylene terephthalate film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161021

R150 Certificate of patent or registration of utility model

Ref document number: 6032780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A59 Written plea

Free format text: JAPANESE INTERMEDIATE CODE: A59

Effective date: 20161114

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250