WO2014077197A1 - Biaxially oriented polyester film and method for producing same - Google Patents

Biaxially oriented polyester film and method for producing same Download PDF

Info

Publication number
WO2014077197A1
WO2014077197A1 PCT/JP2013/080221 JP2013080221W WO2014077197A1 WO 2014077197 A1 WO2014077197 A1 WO 2014077197A1 JP 2013080221 W JP2013080221 W JP 2013080221W WO 2014077197 A1 WO2014077197 A1 WO 2014077197A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
less
polyester film
biaxially stretched
mpa
Prior art date
Application number
PCT/JP2013/080221
Other languages
French (fr)
Japanese (ja)
Inventor
考道 後藤
清水 敏之
中谷 伊志
池畠 良知
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2014546962A priority Critical patent/JP5994864B2/en
Priority to KR1020157010005A priority patent/KR102071745B1/en
Priority to US14/442,769 priority patent/US9688826B2/en
Publication of WO2014077197A1 publication Critical patent/WO2014077197A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0077Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0081Tear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0082Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a polyester film and a method for producing the same. More specifically, the present invention relates to a polyester film excellent in the balance of impact resistance, flexibility, and mechanical strength, and a method for producing the same, which are suitable for applications in which nylon films and other flexible films have been conventionally used.
  • PBT Polybutylene terephthalate
  • the film was stretched in the TD direction at a stretching ratio of 3.5 times or less, and then stretched in the MD direction at a deformation rate of 100000% / min or more to produce a biaxially stretched PBT film.
  • a technique for producing a film without unevenness has been known (see, for example, Patent Document 1).
  • this conventional technique increases only the deformation speed in the MD direction, so the elongation is low, the transparency and the dimensional stability are poor, and the MD and TD directions are balanced.
  • there was a problem that the film was not formed see, for example, Patent Document 1).
  • the PBT film formed by using the tubular simultaneous biaxial stretching method so that the breaking strength in four directions is a specific value or more is said to have little anisotropy and excellent mechanical properties and dimensional stability.
  • the technique has been known (for example, refer to Patent Document 3).
  • this conventional technique has a problem that the thickness accuracy is poor due to the manufacturing method and the puncture strength is low because the plane orientation coefficient does not increase.
  • the conventional biaxially stretched polybutylene terephthalate film did not have sufficient performance for use as a packaging material or a lithium battery exterior material.
  • an object of the present invention is to provide a biaxially stretched polyester film suitable for applications in which nylon films and other flexible films have been used, and a method for producing the same.
  • the present invention comprises a polyester resin composition (A) containing 60% by mass or more of polybutylene terephthalate, MD yield point stress is 70 MPa or less, TD yield point stress is 70 MPa or less, MD breaking strength is 160 MPa or more, A biaxially stretched polyester film characterized in that the TD breaking strength is 160 MPa or more and the MD and TD breaking elongations are 100% or more.
  • the polyester resin (A) comprises a polyester resin (B) other than polybutylene terephthalate.
  • the method for producing a biaxially stretched polyester film is characterized in that it is obtained by biaxially stretching an unstretched polyester sheet having a thickness of 15 to 2500 ⁇ m cast after multilayering the same composition into 60 or more layers. Is preferred.
  • the unstretched polyester sheet is biaxially stretched after being brought into contact with a chill roll of 20 ° C. or less and cooled.
  • an unstretched polyester sheet having a spherulite diameter of 500 nm or less in the unstretched polyester sheet it is preferable to biaxially stretch an unstretched polyester sheet having a spherulite diameter of 500 nm or less in the unstretched polyester sheet.
  • the ratio between the breaking strength of MD and the breaking strength of TD is 1.5 or less, and the ratio of the breaking elongation of MD and the breaking elongation of TD is 1.5 or less.
  • the polyester resin composition (A) used in the present invention contains PBT as a main component, and the PBT content is preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 75% by mass or more. Preferably, it is 80 mass% or more most preferably. If it is less than 60% by mass, impact strength and pinhole resistance are lowered, and the film properties are not sufficient.
  • PBT used as a main constituent component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, and most preferably 100 mol as terephthalic acid as a dicarboxylic acid component. %.
  • 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butane during polymerization. Except for the by-product produced by the ether bond of the diol, it is not included.
  • the polyester resin (A) used in the present invention can contain a polyester resin (B) other than PBT for the purpose of adjusting the film forming property during biaxial stretching and the mechanical properties of the obtained film.
  • polyester resins (B) other than PBT in addition to polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polypropylene terephthalate (PPT), isophthalic acid, orthophthalic acid, PBT resin copolymerized with dicarboxylic acid such as naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, Neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, diethylene
  • the addition amount of the polyester resin other than PBT is preferably 40% by mass or less. If the amount of the polyester resin other than PBT exceeds 40% by mass, the mechanical properties as PBT may be impaired, and impact strength, pinhole resistance, and drawability may be insufficient.
  • the polyester-type and polyamide-type elastomer which copolymerized at least any one of the flexible polyether component, the polycarbonate component, and the polyester component can be added as an additive.
  • the lower limit of the amount of these additives is 0% by mass, and the upper limit is preferably 20% by mass. If it exceeds 20% by mass, the effect may be saturated and transparency may be lowered.
  • the lower limit of the resin melting temperature is preferably 200 ° C, and if it is lower than 200 ° C, the discharge may become unstable.
  • the upper limit of the resin melting temperature is preferably 320 ° C., and if it exceeds 320 ° C., the resin may be deteriorated.
  • the polyester resin may contain a conventionally known additive such as a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, and an ultraviolet absorber as necessary.
  • lubricant type in addition to inorganic lubricants such as silica, calcium carbonate, and alumina, organic lubricants are preferable, silica and calcium carbonate are more preferable, and calcium carbonate is particularly preferable. By these, transparency and slipperiness can be expressed.
  • the lower limit of the lubricant concentration is preferably 100 ppm, and if it is less than 100 ppm, the slipperiness may be lowered.
  • the upper limit of the lubricant concentration is preferably 20000 ppm, and if it exceeds 20000 ppm, the transparency may be lowered.
  • a first point of an example of a suitable method for obtaining the film according to the present invention is to cast a raw material having the same composition in multiple layers during casting. Since PBT has a high crystallization speed, crystallization proceeds even during casting. At this time, when cast as a single layer without forming multiple layers, there is no barrier that can suppress the growth of crystals, so these crystals grow into large spherulites. As a result, the yield stress of the obtained unstretched sheet is high and not only is it easy to break during biaxial stretching, but also the yield stress of the obtained biaxially stretched film is high, resulting in a film with insufficient moldability. End up.
  • the inventors of the present invention can reduce the stretching stress of the unstretched sheet by laminating the same resin and not only enable stable biaxial stretching, but also the obtained biaxially stretched film has low yield. It has been found that by having a stress, a flexible and high breaking strength film can be obtained.
  • a general multilayering apparatus multilayer feed block, static mixer, multilayer multimanifold, etc.
  • extrusion of two or more units A method of laminating thermoplastic resins sent from different flow paths using a machine using a field block, a static mixer, a multi-manifold die, or the like can be used.
  • the object of the present invention is achieved by introducing the multilayering apparatus described above into the melt line from the extruder to the die using only one extruder. It is also possible to fulfill.
  • the lower limit of the die temperature is preferably 200 ° C. If it is less than the above, the discharge may not be stable and the thickness may be uneven.
  • the upper limit of the die temperature is preferably 350 ° C., and if it exceeds the above, the thickness becomes non-uniform, the resin deteriorates, and the appearance may be poor due to die lip contamination.
  • the lower limit of the chill roll temperature is preferably ⁇ 10 ° C., and if it is lower than the above, the effect of suppressing crystallization may be saturated.
  • the upper limit of the chill roll temperature is preferably 20 ° C, and if it exceeds the above, the crystallinity becomes too high and stretching may be difficult.
  • the temperature of the chill roll is within the above range, it is preferable to reduce the humidity of the environment near the chill roll in order to prevent condensation.
  • the surface of the chill roll rises due to the high temperature resin coming into contact with the surface.
  • the chill roll is cooled by flowing cooling water through the pipe inside, but securing a sufficient amount of cooling water, devising the arrangement of the pipe, performing maintenance so that sludge does not adhere to the pipe, etc. It is necessary to reduce the temperature difference in the width direction. In particular, care should be taken when cooling at low temperatures without using a method such as multilayering.
  • the thickness of the unstretched sheet is preferably in the range of 15 to 2500 ⁇ m.
  • Casting in the multilayer structure described above is performed with at least 60 layers, preferably 250 layers or more, more preferably 1000 layers or more.
  • the number of layers is small, the spherulite size of the unstretched sheet is increased, and the effect of reducing the yield stress of the obtained biaxially stretched film is lost as well as the effect of improving the stretchability is small.
  • the spherulite diameter in the unstretched polyester sheet is preferably 500 nm or less.
  • the lower limit of the specific gravity of the central part of the unstretched polyester sheet is preferably 1.25 g / cm3, and if it is less than the above, the effect of improving stretchability may be saturated.
  • the upper limit of the specific gravity at the center is preferably 1.3 g / cm 3, and if it exceeds the above, the crystallinity becomes too high and stretching may be difficult.
  • the stretching method can be simultaneous biaxial stretching or sequential biaxial stretching, but in order to increase the piercing strength, it is necessary to increase the plane orientation coefficient, and in that respect, sequential biaxial stretching is preferable.
  • the lower limit of the stretching temperature in the longitudinal stretching direction (hereinafter referred to as MD) is preferably 40 ° C, more preferably 45 ° C. If it is lower than 40 ° C., breakage may easily occur.
  • the upper limit of the MD stretching temperature is preferably 100 ° C, more preferably 95 ° C. If the temperature exceeds 100 ° C., the orientation is not applied and the mechanical properties may be deteriorated.
  • the lower limit of the MD draw ratio is preferably 2.5 times, and if it is less than the above, the orientation is not applied, so that the mechanical properties and thickness unevenness may deteriorate.
  • the upper limit of the MD stretching ratio is preferably 5 times, and if it exceeds the above, the effect of improving the mechanical strength and thickness unevenness may be saturated.
  • the lower limit of the stretching temperature in the transverse stretching direction (hereinafter referred to as TD) is preferably 40 ° C. If it is less than the above, breakage may easily occur.
  • the upper limit of the TD stretching temperature is preferably 100 ° C., and if it exceeds the above, since the orientation is not applied, the mechanical properties may be deteriorated.
  • the lower limit of the TD stretch ratio is preferably 2.5 times, and if it is less than the above, the orientation is not applied, so that the mechanical properties and thickness unevenness may deteriorate.
  • the upper limit of the TD stretch ratio is preferably 5 times, and if it exceeds the above, the effect of improving the mechanical strength and thickness unevenness may be saturated.
  • the lower limit of the TD heat setting temperature is preferably 150 ° C., and if it is less than the above, the heat shrinkage rate increases, and displacement or shrinkage may occur during processing.
  • the upper limit of the TD heat setting temperature is preferably 250 ° C. If the temperature exceeds the above, the film will melt, and even if it does not melt, it may become brittle.
  • the lower limit of the TD relaxation rate is preferably 0.5%, and if it is less than the above, breakage may easily occur during heat setting.
  • the upper limit of the TD relaxation rate is preferably 10%. If the upper limit is exceeded, sagging may occur and thickness unevenness may occur.
  • the lower limit of the thickness of the biaxially stretched polyester film of the present invention is preferably 3 ⁇ m, more preferably 5 ⁇ m, and even more preferably 8 ⁇ m. If it is less than 3 ⁇ m, the strength as a film may be insufficient.
  • the upper limit of the film thickness is preferably 100 ⁇ m, more preferably 75 ⁇ m, and still more preferably 50 ⁇ m. If it exceeds 100 ⁇ m, it may become too thick and processing for the purpose of the present invention may be difficult.
  • the lower limit of the plane orientation coefficient of the biaxially stretched polyester film of the present invention is preferably 0.1, and if it is less than 0.1, the puncture strength, impact strength, etc. may decrease.
  • the upper limit of the plane orientation coefficient is preferably 0.15, and when it exceeds 0.15, productivity may be lowered and flexibility may be lowered.
  • the plane orientation coefficient can be set within the range by the MD magnification and the heat setting temperature. Further, as the stretching method, sequential biaxial stretching, particularly sequential biaxial stretching in which stretching in the MD direction and then stretching in the TD direction is preferable to simultaneous biaxial stretching.
  • the biaxially stretched polyester film of the present invention is preferably a resin having the same composition throughout the entire thickness direction of the film.
  • a layer of another material may be laminated on the biaxially stretched polyester film of the present invention, and as a method thereof, a method of laminating after forming the biaxially stretched polyester film of the present invention, or a method of laminating during film formation Can be mentioned.
  • the MD yield stress is preferably 70 MPa or less, more preferably 65 MPa or less, and further preferably 60 MPa or less. If it is less than the above, the film is difficult to stretch, which may be disadvantageous in terms of workability such as drawing after bonding with various sealants.
  • the TD yield stress is preferably 70 MPa or less, more preferably 65 MPa or less, and further preferably 60 MPa or less. If it is less than the above, the film is difficult to stretch, which may be disadvantageous in terms of workability such as drawing after bonding with various sealants.
  • the lower limit of the MD breaking strength is preferably 160 MPa, more preferably 180 MPa, and further preferably 200 MPa. If it is less than the above, it tends to break at the time of processing or at the time of drawing after bonding with various sealants and the like, and at the time of dropping the bag, it may become easy to break the bag.
  • the upper limit of the MD breaking strength is preferably 300 MPa. If the above is exceeded, the effect of improving the breaking strength may be saturated.
  • the lower limit of the TD breaking strength is preferably 160 MPa, more preferably 180 MPa, and further preferably 200 MPa.
  • MD breaking elongation can be made into the range with MD magnification and heat setting temperature.
  • the upper limit of the TD breaking strength is preferably 300. If the above is exceeded, the effect of improving the breaking strength may be saturated.
  • the lower limit of the ratio between the MD breaking strength and the TD breaking strength is preferably 0.5, more preferably 0.7, and even more preferably 0.9. If it is less than the above, the deformation balance in the vertical and horizontal directions is biased at the time of drawing, and the thickness of the molded product may become uneven.
  • the TD breaking elongation can be within the range by the MD magnification and the heat setting temperature.
  • the upper limit of the ratio of MD break strength to TD break strength is preferably 1.5, more preferably 1.3, and even more preferably 1.1. If the above is exceeded, the balance of deformation in the vertical and horizontal directions may be biased during drawing, and the thickness of the molded product may become non-uniform.
  • the lower limit of MD breaking elongation and% is preferably 100%, more preferably 110%, and further preferably 120%. If it is less than the above, it may be disadvantageous in terms of workability such as drawing after bonding with various sealants.
  • the upper limit of MD break elongation is preferably 200%, and if it exceeds 200%, the improvement effect may be saturated.
  • the lower limit of the TD elongation at break is preferably 100%, more preferably 110%, and still more preferably 120%. If it is less than the above, it may be disadvantageous in terms of workability such as drawing after bonding with various sealants.
  • the upper limit of TD rupture elongation is preferably 200%. If it exceeds 200%, the improvement effect may be saturated.
  • the lower limit of the ratio of MD break elongation to TD break elongation is preferably 0.5, more preferably 0.7, and even more preferably 0.9. . If it is less than the above, the deformation balance in the vertical and horizontal directions is biased at the time of drawing, and uniform molding cannot be performed, and breakage or pinholes may occur.
  • the upper limit of the ratio of MD break elongation to TD break elongation is preferably 1.5, more preferably 1.3, and even more preferably 1.1. If the above is exceeded, the balance of deformation in the vertical and horizontal directions is biased during drawing, and uniform molding cannot be achieved, and breakage and pinholes may occur.
  • the lower limit of the drawing depth that can be formed uniformly and without breakage is preferably 5 mm or more, more preferably 5.5 mm or more. 6 mm or more is particularly preferable. When the drawability exceeds 5 mm, it is suitable for draw forming for battery exteriors and the like.
  • the lower limit of the piercing strength of the biaxially stretched polyester film of the present invention is preferably 0.8 N / ⁇ m, more preferably 0.9 N / ⁇ m. If it is less than 0.8 N / ⁇ m, the strength at the time of processing or forming a bag may be insufficient.
  • the upper limit of the piercing strength is preferably 1.5 N / ⁇ m, and if it exceeds 1.5 N / ⁇ m, the improvement effect is saturated.
  • the piercing strength can be within the range by the MD magnification and the heat setting temperature.
  • the lower limit of the impact strength (impact resistance) of the biaxially stretched polyester film of the present invention is preferably 0.075 J / ⁇ m, more preferably 0.08 J / ⁇ m. When it is less than 0.075 J / ⁇ m, the strength may be insufficient when used as a bag.
  • the upper limit of impact strength (impact resistance) is preferably 0.2 J / ⁇ m, and if it exceeds 0.2 J / ⁇ m, the improvement effect will be saturated.
  • the biaxially stretched polyester film of the present invention is more suitable for use as a packaging material or an exterior material by having the following film properties.
  • the lower limit of the MD elastic modulus of the biaxially stretched polyester film of the present invention is preferably 1 GPa, more preferably 1.2 GPa, still more preferably 1.4 GPa. If it is less than the above, it tends to be stretched and pitch deviation may occur during processing such as printing and lamination.
  • the upper limit of the MD elastic modulus is preferably 3 GPa, more preferably 2.8 GPa, and still more preferably 2.6 GPa. Exceeding the above may be disadvantageous in terms of workability such as drawing after bonding with various sealants.
  • the lower limit of the TD elastic modulus of the biaxially stretched polyester film of the present invention is preferably 1 GPa, more preferably 1.2 GPa, and further preferably 1.4 GPa.
  • the upper limit of the TD elastic modulus is preferably 3 GPa, more preferably 2.8 GPa, and still more preferably 2.6 GPa. Exceeding the above may be disadvantageous in terms of workability such as drawing after bonding with various sealants.
  • the lower limit of the moisture absorption rate of the biaxially stretched polyester film of the present invention is preferably 0.1%, and if it is less than the above, the improvement effect will be saturated.
  • the upper limit of the moisture absorption rate is preferably 1%, and if it exceeds the above, a change in moisture absorption dimension may easily occur.
  • the lower limit of the MD heat shrinkage rate of the film is preferably 0.1%, and if it is less than the above, the improvement effect is saturated and it becomes mechanically brittle.
  • the upper limit of the MD thermal shrinkage is preferably 4%, and if it exceeds the above, pitch deviation may occur due to a dimensional change during processing such as printing.
  • the lower limit of the TD heat shrinkage rate of the biaxially stretched polyester film of the present invention is preferably 0.1%, and if it is less than the above, the improvement effect is saturated and it may become mechanically brittle.
  • the upper limit of the TD heat shrinkage rate is preferably 3%, and if it exceeds the above, shrinkage in the width direction may occur due to a dimensional change during processing such as printing.
  • the haze of the biaxially stretched polyester film of the present invention is preferably 20% or less, more preferably 18% or less, further preferably 15% or less, and particularly preferably 10% or less. If it is less than the above, the transparency is poor and the appearance quality of the molded product may be lowered.
  • the lower limit of the number of pinholes generated by the gelboflex tester of the biaxially stretched polyester film of the present invention is preferably 0 (pieces, CPP lamination, after 2000 times).
  • the upper limit of the gelbo is preferably 10 (pieces, CPP lamination, after 2000 times), more preferably 5 (pieces, CPP lamination, after 1000 times). If it exceeds 10 (pieces, CPP lamination, after 2000 times), holes may be easily formed when used as a bag.
  • the biaxially stretched polyester film of the present invention has low moisture absorption, the resulting distortion is small and the fragrance retention is excellent.
  • the obtained film roll and aluminum foil (8079 material, thickness 40 ⁇ m) were urethane adhesive (TM-509, CAT10L, Toyo Morton Co., Ltd., 33.6: 4.0: 62.4 (mass ratio). ) was dry laminated to produce a film / aluminum foil laminate.
  • the obtained laminate was placed in a die set mold (convex shape 90 mm ⁇ 50 mm) so that the polyester film was on the outside, and was pressed at 23 ° C. with a press to perform drawing.
  • the drawing depth at the time of molding was increased by 0.2 mm, and the maximum depth at which the laminate was not damaged was taken as the drawing depth.
  • the film according to the present invention is cut into a size of 20.3 cm (8 inches) ⁇ 27.9 cm (11 inches), and the rectangular test film after the cutting is subjected to a condition of a temperature of 23 ° C. and a relative humidity of 50%. Conditioned for 24 hours or longer. Thereafter, the rectangular test film is wound to form a cylindrical shape having a length of 20.32 cm (8 inches). Then, one end of the cylindrical film is fixed to the outer periphery of a disk-shaped fixed head of a gelbo flex tester (manufactured by Rigaku Kogyo Co., Ltd., NO.901 type) (conforming to MIL-B-131C standard).
  • a gelbo flex tester manufactured by Rigaku Kogyo Co., Ltd., NO.901 type
  • the other end of the tester was fixed to the outer periphery of a disk-shaped movable head of a tester facing the fixed head at a distance of 17.8 cm (7 inches). Then, the movable head is rotated 440 ° while approaching the fixed head in the direction of 7.6 cm (3.5 inches) along the axis of both heads opposed in parallel, and then 6.4 cm (without rotation) 2.5-inch)
  • a one-cycle bending test in which the movement is performed in the reverse direction and the movable head is returned to the initial position is performed continuously for 2000 cycles at a rate of 40 cycles per minute. Repeated. Implementation was at 5 ° C.
  • Example 1 Using a single screw extruder, add a masterbatch containing PBT (Mitsubishi Engineering Plastics Novaduran 5020, melting point 220 ° C.) and calcium carbonate as a lubricant as a polyester resin composition (A), and blend to a lubricant concentration of 2000 ppm. The melted product was melted at 270 ° C., and then the melt line was introduced into a 12-element static mixer. Thereby, the PBT melt was divided and laminated to obtain a multilayer melt made of the same raw material. It was cast from a T-die at 270 ° C. and adhered to a cooling roll at 10 ° C. by an electrostatic adhesion method to obtain an unstretched sheet.
  • PBT Mitsubishi Engineering Plastics Novaduran 5020, melting point 220 ° C.
  • A polyester resin composition
  • Example 1 it carried out like Example 1 except having changed the raw material composition and the film forming conditions into the biaxially stretched film described in Table 1.
  • PBT Mitsubishi Engineering Plastic Novaduran 5020, melting point 220 ° C.
  • ecoflex manufactured by BASF, polybutylene adipate butylene terephthalate copolymer
  • GS390 manufactured by Toyobo Co., Ltd., copolymerization component: polybutylene terephthalate, polycaprolactone
  • Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
  • Example 1 it carried out like Example 1 except having changed the raw material composition and the film forming conditions into the biaxially stretched film described in Table 2.
  • PBT Mitsubishi Engineering Plastic Novaduran 5020, melting point 220 ° C.
  • ecoflex manufactured by BASF, polybutylene adipate butylene terephthalate copolymer
  • Table 2 shows the film forming conditions, physical properties, and evaluation results of the obtained film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Provided are a biaxially oriented polyester film suited to uses for which nylon film and other flexible films have been used, and a method for producing the same. A biaxially oriented polyester film characterized by comprising a polyester resin composition (A) containing 60 mass% or more polybutylene terephthalate, and by having an MD yield point stress of 70 MPa or lower, a TD yield point stress of 70 MPa or lower, an MD breaking strength of 160 MPa or higher, a TD breaking strength of 160 MPa or higher, and an MD and TD breaking elongation of 100% or higher.

Description

二軸延伸ポリエステルフィルムおよびその製造方法Biaxially stretched polyester film and method for producing the same
 本発明は、ポリエステルフィルムおよびその製造方法に関する。更に詳しくは、従来、ナイロンフィルムやその他の柔軟なフィルムが用いられてきた用途に適した、耐衝撃性や屈曲性、力学強度のバランスに優れたポリエステルフィルムおよびその製造方法に関する。 The present invention relates to a polyester film and a method for producing the same. More specifically, the present invention relates to a polyester film excellent in the balance of impact resistance, flexibility, and mechanical strength, and a method for producing the same, which are suitable for applications in which nylon films and other flexible films have been conventionally used.
 ポリブチレンテレフタレート(以下、PBT)は、力学特性、耐衝撃性はもとより、ガスバリア性、耐薬品性に優れることから、従来より、エンジニアリングプラスチックとして用いられており、特に結晶化速度の速さの点から生産性の良さからも有用な材料として用いられている。しかしながら、PBTは結晶化速度が大きく、二軸延伸が困難であるとされてきた。これは、延伸過程での配向により結晶化が起こり、延伸が困難となるためである。 Polybutylene terephthalate (hereinafter referred to as PBT) has been used as an engineering plastic since it has excellent gas barrier properties and chemical resistance as well as mechanical properties and impact resistance. In particular, it has a high crystallization speed. Therefore, it is used as a useful material because of its good productivity. However, PBT has a high crystallization speed and has been considered difficult to biaxially stretch. This is because crystallization occurs due to orientation in the stretching process, and stretching becomes difficult.
 そこで、延伸倍率を3.5倍以下としてTD方向に延伸した後、100000%/min以上の変形速度でMD方向に延伸して二軸延伸PBTフィルムを製造することにより、均一に延伸された厚みムラのないフィルムを製造するという技術が知られていた(例えば特許文献1参照)。しかし、かかる従来技術は実施例の結果からも分かるように、MD方向の変形速度のみを大きくすることから伸度が低く、透明性や寸法安定性に劣り、MD方向とTD方向でバランスの取れたフィルムとならないという問題点があった(例えば、特許文献1参照。)。 Therefore, the film was stretched in the TD direction at a stretching ratio of 3.5 times or less, and then stretched in the MD direction at a deformation rate of 100000% / min or more to produce a biaxially stretched PBT film. A technique for producing a film without unevenness has been known (see, for example, Patent Document 1). However, as can be seen from the results of the examples, this conventional technique increases only the deformation speed in the MD direction, so the elongation is low, the transparency and the dimensional stability are poor, and the MD and TD directions are balanced. However, there was a problem that the film was not formed (see, for example, Patent Document 1).
 未延伸のPBTフィルムにおいては、突き刺し変位を特定の範囲とすることにより、リチウムイオン電池の外装用といった絞り成形を行う用途に対して優れた加工適性を有するという技術が知られていた(例えば、特許文献2参照。)。
 しかし、かかる従来技術は未延伸であるためPBTの配向が弱く、力学特性や耐衝撃性の観点から、本来のPBTの特性を十分に引き出せていないという問題点があった。
 これに対して、PBTの本来有する特性を活かすため、二軸延伸化により面配向を高めてフィルムとしての力学特性や耐衝撃性の向上を目的とした検討が過去40年以上なされてきた。過去のPBTフィルムについての検討について幾つか考察する。
In an unstretched PBT film, a technology has been known that has excellent processing suitability for applications such as drawing for lithium ion battery exteriors by setting the stab displacement to a specific range (for example, (See Patent Document 2).
However, since this conventional technique is unstretched, the orientation of the PBT is weak, and there is a problem that the original characteristics of the PBT cannot be sufficiently extracted from the viewpoint of mechanical characteristics and impact resistance.
On the other hand, in order to make use of the inherent properties of PBT, studies have been made over the past 40 years for the purpose of improving the plane orientation by biaxial stretching and improving the mechanical properties and impact resistance of the film. Some discussions on past PBT films are discussed.
 例えば、チューブラー同時二軸延伸法を用いて、4方向の破断強度が特定の値以上となるよう製膜されたPBTフィルムにより、異方性が少なく、機械的性質や寸法安定性に優れるという技術が知られていた(例えば、特許文献3参照。)。
 しかし、かかる従来技術はその製造方法に起因して厚み精度が悪く、また、面配向係数が高くならないことから、突き刺し強度が低いという問題点があった。
For example, the PBT film formed by using the tubular simultaneous biaxial stretching method so that the breaking strength in four directions is a specific value or more is said to have little anisotropy and excellent mechanical properties and dimensional stability. The technique has been known (for example, refer to Patent Document 3).
However, this conventional technique has a problem that the thickness accuracy is poor due to the manufacturing method and the puncture strength is low because the plane orientation coefficient does not increase.
 また、PBTのほかにポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)などの二種類の樹脂をそれぞれ単独で交互に多数積層することにより、高剛性でかつ高温下での寸法安定性や成形性に優れるという技術が知られていた(例えば特許文献4参照)。
 しかし、かかる従来技術はPBT以外にPETやPENの樹脂からなる層を積層しているため、延伸温度はPBTよりもTgの高いPETやPENの延伸温度での延伸となるため、PBTは高温での延伸となっており、本来のPBTフィルムの特徴を引き出すことになっていない上、フィルム中の樹脂組成が二種類であることから、製膜時のトリミング屑などを再度原料に添加して再利用することが困難で経済性の面で不利という問題点があった。
In addition to PBT, two types of resins, such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), are laminated in turn, each with high rigidity and high dimensional stability and moldability at high temperatures. Has been known (see, for example, Patent Document 4).
However, since this conventional technique has a layer made of a resin such as PET or PEN in addition to PBT, the stretching temperature is stretching at a stretching temperature of PET or PEN having a Tg higher than that of PBT. In addition, the characteristics of the original PBT film are not drawn, and there are two types of resin compositions in the film. It was difficult to use and disadvantageous in terms of economy.
 上述のように、従来の二軸延伸ポリブチレンテレフタレートフィルムは、包装用材料やリチウム電池の外装材料として使用するには十分な性能を有していなかった。 As described above, the conventional biaxially stretched polybutylene terephthalate film did not have sufficient performance for use as a packaging material or a lithium battery exterior material.
特開昭51-146572号公報Japanese Patent Laid-Open No. 51-146572 特開2012-77292号公報JP 2012-77292 A 特開2012-146636号公報JP 2012-146636 A WO2004/108408号公報WO2004 / 108408 publication
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、ナイロンフィルムやその他の柔軟なフィルムが用いられてきた用途に適した二軸延伸ポリエステルフィルムおよびその製造方法を提供することにある。 The present invention has been made against the background of the problems of the prior art. That is, an object of the present invention is to provide a biaxially stretched polyester film suitable for applications in which nylon films and other flexible films have been used, and a method for producing the same.
 本発明者は、かかる目的を達成するために鋭意検討した結果、本発明の完成に至った。 The inventor has intensively studied to achieve this object, and as a result, the present invention has been completed.
 すなわち本発明は、ポリブチレンテレフタレートを60質量%以上含むポリエステル樹脂組成物(A)からなり、MDの降伏点応力が70MPa以下、TDの降伏点応力が70MPa以下、MDの破断強度が160MPa以上、TDの破断強度が160MPa以上、MDおよびTDの破断伸度が100%以上であることを特徴とする二軸延伸ポリエステルフィルムである。 That is, the present invention comprises a polyester resin composition (A) containing 60% by mass or more of polybutylene terephthalate, MD yield point stress is 70 MPa or less, TD yield point stress is 70 MPa or less, MD breaking strength is 160 MPa or more, A biaxially stretched polyester film characterized in that the TD breaking strength is 160 MPa or more and the MD and TD breaking elongations are 100% or more.
 また、この場合において、前記ポリエステル樹脂(A)が、ポリブチレンテレフタレート以外のポリエステル樹脂(B)を含んでなることが好適である。 In this case, it is preferable that the polyester resin (A) comprises a polyester resin (B) other than polybutylene terephthalate.
 また、同一の組成を60層以上に多層化させた後にキャスティングされた厚み15~2500μmの未延伸ポリエステルシートを二軸延伸することにより得ることを特徴とする前記二軸延伸ポリエステルフィルムの製造方法が好適である。 The method for producing a biaxially stretched polyester film is characterized in that it is obtained by biaxially stretching an unstretched polyester sheet having a thickness of 15 to 2500 μm cast after multilayering the same composition into 60 or more layers. Is preferred.
 この場合において、未延伸ポリエステルシートを20℃以下のチルロールに接触させて冷却した後に二軸延伸することが好適である。 In this case, it is preferable that the unstretched polyester sheet is biaxially stretched after being brought into contact with a chill roll of 20 ° C. or less and cooled.
 さらにまた、この場合において、未延伸ポリエステルシート中の球晶径が500nm以下である未延伸ポリエステルシートを二軸延伸することが好適である。 Furthermore, in this case, it is preferable to biaxially stretch an unstretched polyester sheet having a spherulite diameter of 500 nm or less in the unstretched polyester sheet.
 さらにまた、この場合において、MDの破断強度とTDの破断強度の比が1.5以下、MDの破断伸度とTDの破断伸度の比が1.5以下であることが好適である。 Furthermore, in this case, it is preferable that the ratio between the breaking strength of MD and the breaking strength of TD is 1.5 or less, and the ratio of the breaking elongation of MD and the breaking elongation of TD is 1.5 or less.
 さらにまた、この場合において、未延伸ポリエステルシートを逐次二軸延伸することが好適である。 Furthermore, in this case, it is preferable to sequentially biaxially stretch the unstretched polyester sheet.
 本発明により、ナイロンフィルムやその他の柔軟なフィルムが用いられてきた用途に適した二軸延伸ポリエステルフィルムを得ることができる。 According to the present invention, it is possible to obtain a biaxially stretched polyester film suitable for applications in which nylon films and other flexible films have been used.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に用いられるポリエステル樹脂組成物(A)は、PBTを主たる構成成分とするものであり、PBTの含有率60質量%以上が好ましく、さらには70質量%以上、特には75質量%以上が好ましく、最も好ましくは80質量%以上である。60質量%未満であるとインパクト強度および耐ピンホール性が低下してしまい、フィルム特性としては十分なものでなくなってしまう。
 主たる構成成分として用いるPBTは、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。
The polyester resin composition (A) used in the present invention contains PBT as a main component, and the PBT content is preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 75% by mass or more. Preferably, it is 80 mass% or more most preferably. If it is less than 60% by mass, impact strength and pinhole resistance are lowered, and the film properties are not sufficient.
PBT used as a main constituent component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, and most preferably 100 mol as terephthalic acid as a dicarboxylic acid component. %. As the glycol component, 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butane during polymerization. Except for the by-product produced by the ether bond of the diol, it is not included.
 本発明に用いられるポリエステル樹脂(A)は二軸延伸時の製膜性や得られたフィルムの力学特性を調整する目的でPBT以外のポリエステル樹脂(B)を含有することができる。
 PBT以外のポリエステル樹脂(B)としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリプロピレンテレフタレート(PPT)などのポリエステル樹脂のほか、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸などのジカルボン酸が共重合されたPBT樹脂や、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール、ポリカーボネートジオール等のジオール成分が共重合されたPBT樹脂挙げられる。
The polyester resin (A) used in the present invention can contain a polyester resin (B) other than PBT for the purpose of adjusting the film forming property during biaxial stretching and the mechanical properties of the obtained film.
As polyester resins (B) other than PBT, in addition to polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polypropylene terephthalate (PPT), isophthalic acid, orthophthalic acid, PBT resin copolymerized with dicarboxylic acid such as naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, Neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol, It includes PBT resins diol component such as polycarbonate diol is copolymerized.
 これらPBT以外のポリエステル樹脂の添加量としては、40質量%以下が好ましい。PBT以外のポリエステル樹脂の添加量が40質量%を超えると、PBTとしての力学特性が損なわれ、インパクト強度や耐ピンホール性、絞り成形性が不十分となることがある。 The addition amount of the polyester resin other than PBT is preferably 40% by mass or less. If the amount of the polyester resin other than PBT exceeds 40% by mass, the mechanical properties as PBT may be impaired, and impact strength, pinhole resistance, and drawability may be insufficient.
 また、添加剤として、屈曲時の耐ピンホール性を改善するために、柔軟なポリエーテル成分、ポリカーボネート成分、ポリエステル成分の少なくともいずれかを共重合したポリエステル系およびポリアミド系エラストマーが添加できる。
 これらの添加剤の添加量の下限は0質量%であり、上限は20質量%であることが好ましい。20質量%を超えると効果が飽和するほか、透明性が低下するなどが起こることがある。
Moreover, in order to improve the pinhole resistance at the time of a bending, the polyester-type and polyamide-type elastomer which copolymerized at least any one of the flexible polyether component, the polycarbonate component, and the polyester component can be added as an additive.
The lower limit of the amount of these additives is 0% by mass, and the upper limit is preferably 20% by mass. If it exceeds 20% by mass, the effect may be saturated and transparency may be lowered.
 樹脂溶融温度の下限は好ましくは200℃であり、200℃未満であると吐出が不安定化となることがある。樹脂溶融温度の上限は好ましくは320℃であり、320℃を越えると樹脂の劣化が起こることがある。 The lower limit of the resin melting temperature is preferably 200 ° C, and if it is lower than 200 ° C, the discharge may become unstable. The upper limit of the resin melting temperature is preferably 320 ° C., and if it exceeds 320 ° C., the resin may be deteriorated.
 前記ポリエステル樹脂は必要に応じ、従来公知の添加剤、例えば、滑剤、安定剤、着色剤、酸化防止剤、静電防止剤、紫外線吸収剤等を含有していてもよい。 The polyester resin may contain a conventionally known additive such as a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, and an ultraviolet absorber as necessary.
 滑剤種としてはシリカ、炭酸カルシウム、アルミナなどの無機系滑材のほか、有機系滑剤が好ましく、シリカ、炭酸カルシウムがより好ましく、特に炭酸カルシウムが好ましい。これらにより透明性と滑り性と発現することができる。 As the lubricant type, in addition to inorganic lubricants such as silica, calcium carbonate, and alumina, organic lubricants are preferable, silica and calcium carbonate are more preferable, and calcium carbonate is particularly preferable. By these, transparency and slipperiness can be expressed.
 滑剤濃度の下限は好ましくは100ppmであり、100ppm未満であると滑り性が低下となることがある。滑剤濃度の上限は好ましくは20000ppmであり、20000ppmを越えると透明性が低下することがある。 The lower limit of the lubricant concentration is preferably 100 ppm, and if it is less than 100 ppm, the slipperiness may be lowered. The upper limit of the lubricant concentration is preferably 20000 ppm, and if it exceeds 20000 ppm, the transparency may be lowered.
 本発明にかかるフィルムを得るための好適な方法の一例の第一のポイントとして、キャスト時に同一の組成の原料を多層化してキャストすることが挙げられる。
 PBTは結晶化速度が速いため、キャスト時にも結晶化が進行する。このとき、多層化せずに単層でキャストした場合には、結晶の成長を抑制しうるような障壁が存在しないために、これらの結晶はサイズの大きな球晶へと成長してしまう。その結果、得られた未延伸シートの降伏応力が高くなり、二軸延伸時に破断しやすくなるばかりでなく、得られた二軸延伸フィルムの降伏応力も高く、成形性が不十分なフィルムとなってしまう。
 一方で本発明者らは同一の樹脂を多層積層することで、未延伸シートの延伸応力を低減でき、安定した二軸延伸が可能となるばかりでなく、得られた二軸延伸フィルムも低い降伏応力を有することで、柔軟かつ破断強度の高いフィルムを得ることができるということを見出した。
A first point of an example of a suitable method for obtaining the film according to the present invention is to cast a raw material having the same composition in multiple layers during casting.
Since PBT has a high crystallization speed, crystallization proceeds even during casting. At this time, when cast as a single layer without forming multiple layers, there is no barrier that can suppress the growth of crystals, so these crystals grow into large spherulites. As a result, the yield stress of the obtained unstretched sheet is high and not only is it easy to break during biaxial stretching, but also the yield stress of the obtained biaxially stretched film is high, resulting in a film with insufficient moldability. End up.
On the other hand, the inventors of the present invention can reduce the stretching stress of the unstretched sheet by laminating the same resin and not only enable stable biaxial stretching, but also the obtained biaxially stretched film has low yield. It has been found that by having a stress, a flexible and high breaking strength film can be obtained.
 この原因については推測であるが、同一の樹脂積層する場合においても層の界面が存在し、その界面により結晶化が加速され、一方、層を越えた大きな結晶の成長は抑制されることにより、球晶のサイズが小さくなるものと考えられる。
 多層化により球晶のサイズを小さくするための具体的な方法として、一般的な多層化装置(多層フィードブロック、スタティックミキサー、多層マルチマニホールドなど)を用いることができ、例えば、二台以上の押出機を用いて異なる流路から送り出された熱可塑性樹脂をフィールドブロックやスタティックミキサー、マルチマニホールドダイ等を用いて多層に積層する方法等を使用することができる。なお、本発明のように同一の組成で多層化する場合、一台の押出機のみを用いて、押出機からダイまでのメルトラインに上述の多層化装置を導入することで本発明の目的を果たすことも可能である。
Although it is speculated about this cause, even when the same resin is laminated, the interface of the layer exists, and the crystallization is accelerated by the interface, while the growth of large crystals beyond the layer is suppressed, It is considered that the size of the spherulite is reduced.
As a specific method for reducing the size of spherulites by multilayering, a general multilayering apparatus (multilayer feed block, static mixer, multilayer multimanifold, etc.) can be used. For example, extrusion of two or more units A method of laminating thermoplastic resins sent from different flow paths using a machine using a field block, a static mixer, a multi-manifold die, or the like can be used. In addition, when multilayering with the same composition as in the present invention, the object of the present invention is achieved by introducing the multilayering apparatus described above into the melt line from the extruder to the die using only one extruder. It is also possible to fulfill.
 本発明にかかるフィルムを得るための好適な方法の一例の第二のポイントとしてはキャスティング時に未延伸シートの結晶化度を小さくすることが必要である。このための具体的な方法としては、低温でのチルロールへのキャスティングが挙げられる。また、チルロールに接しない面の冷却のため、タッチロールを設置して冷却効率を高めることも可能である。 As a second point of an example of a suitable method for obtaining the film according to the present invention, it is necessary to reduce the crystallinity of the unstretched sheet during casting. As a specific method for this purpose, casting on a chill roll at a low temperature can be mentioned. Moreover, in order to cool the surface which does not contact a chill roll, it is also possible to install a touch roll and to improve cooling efficiency.
 ダイ温度の下限は好ましくは200℃であり、上記未満であると吐出が安定せず、厚みが不均一となることがある。ダイ温度の上限は好ましくは350℃であり、上記を越えると厚みが不均一となるほか、樹脂の劣化が起こり、ダイリップ汚れなどで外観不良となることがある。 The lower limit of the die temperature is preferably 200 ° C. If it is less than the above, the discharge may not be stable and the thickness may be uneven. The upper limit of the die temperature is preferably 350 ° C., and if it exceeds the above, the thickness becomes non-uniform, the resin deteriorates, and the appearance may be poor due to die lip contamination.
 チルロール温度の下限は好ましくは-10℃であり、上記未満であると結晶化抑制の効果が飽和することがある。チルロール温度の上限は好ましくは20℃であり、上記を越えると結晶化度が高くなりすぎて延伸が困難となることがある。またチルロールの温度を上記の範囲とする場合、結露防止のためチルロール付近の環境の湿度を下げておくことが好ましい。 The lower limit of the chill roll temperature is preferably −10 ° C., and if it is lower than the above, the effect of suppressing crystallization may be saturated. The upper limit of the chill roll temperature is preferably 20 ° C, and if it exceeds the above, the crystallinity becomes too high and stretching may be difficult. When the temperature of the chill roll is within the above range, it is preferable to reduce the humidity of the environment near the chill roll in order to prevent condensation.
 キャスティングでは、表面に高温の樹脂が接触するためチルロール表面の温度が上昇する。通常、チルロールは内部に配管を通して冷却水を流して冷却するが、充分な冷却水量を確保する、配管の配置を工夫する、配管にスラッジが付着しないようメンテナンスを行う、などして、チルロール表面の幅方向の温度差を少なくする必要がある。特に、多層化などの方法を用いずに低温で冷却する場合には注意が必要である。
 このとき、未延伸シートの厚みは15~2500μmの範囲が好適である。
In casting, the surface of the chill roll rises due to the high temperature resin coming into contact with the surface. Normally, the chill roll is cooled by flowing cooling water through the pipe inside, but securing a sufficient amount of cooling water, devising the arrangement of the pipe, performing maintenance so that sludge does not adhere to the pipe, etc. It is necessary to reduce the temperature difference in the width direction. In particular, care should be taken when cooling at low temperatures without using a method such as multilayering.
At this time, the thickness of the unstretched sheet is preferably in the range of 15 to 2500 μm.
 上述における多層構造でのキャストは、少なくとも60層以上、好ましくは250層以上、更に好ましくは1000層以上で行う。層数が少ないと、未延伸シートの球晶サイズが大きくなり、延伸性の改善効果が小さいのみならず得られた二軸延伸フィルムの降伏応力を下げる効果が失われる。
 このとき、未延伸ポリエステルシート中の球晶径が500nm以下であることが好適である。
Casting in the multilayer structure described above is performed with at least 60 layers, preferably 250 layers or more, more preferably 1000 layers or more. When the number of layers is small, the spherulite size of the unstretched sheet is increased, and the effect of reducing the yield stress of the obtained biaxially stretched film is lost as well as the effect of improving the stretchability is small.
At this time, the spherulite diameter in the unstretched polyester sheet is preferably 500 nm or less.
 上記の未延伸ポリエステルシートの中央部の比重の下限は好ましくは1.25g/cm3であり、上記未満であると延伸性を改善する効果が飽和することがある。中央部の比重の上限は好ましくは1.3g/cm3であり、上記を越えると結晶化度が高くなりすぎて延伸が困難となることがある。 The lower limit of the specific gravity of the central part of the unstretched polyester sheet is preferably 1.25 g / cm3, and if it is less than the above, the effect of improving stretchability may be saturated. The upper limit of the specific gravity at the center is preferably 1.3 g / cm 3, and if it exceeds the above, the crystallinity becomes too high and stretching may be difficult.
 次に延伸方法について説明する。延伸方法は、同時二軸延伸でも逐次二軸延伸でも可能であるが、突き刺し強度を高めるためには、面配向係数を高めておく必要があり、その点においては逐次二軸延伸が好ましい。 Next, the stretching method will be described. The stretching method can be simultaneous biaxial stretching or sequential biaxial stretching, but in order to increase the piercing strength, it is necessary to increase the plane orientation coefficient, and in that respect, sequential biaxial stretching is preferable.
 縦延伸方向(以下、MD)の延伸温度の下限は好ましくは40℃であり、より好ましくは45℃である。40℃未満であると破断が起こりやすくなることがある。MD延伸温度の上限は好ましくは100℃であり、より好ましくは95℃である。100℃を越えると配向がかからないため力学特性が低下することがある。 The lower limit of the stretching temperature in the longitudinal stretching direction (hereinafter referred to as MD) is preferably 40 ° C, more preferably 45 ° C. If it is lower than 40 ° C., breakage may easily occur. The upper limit of the MD stretching temperature is preferably 100 ° C, more preferably 95 ° C. If the temperature exceeds 100 ° C., the orientation is not applied and the mechanical properties may be deteriorated.
 MD延伸倍率の下限は好ましくは2.5倍であり、上記未満であると配向がかからないため力学特性や厚みムラが悪くなることがある。MD延伸倍率の上限は好ましくは5倍であり、上記を越えると力学強度や厚みムラ改善の効果が飽和することがある。 The lower limit of the MD draw ratio is preferably 2.5 times, and if it is less than the above, the orientation is not applied, so that the mechanical properties and thickness unevenness may deteriorate. The upper limit of the MD stretching ratio is preferably 5 times, and if it exceeds the above, the effect of improving the mechanical strength and thickness unevenness may be saturated.
 横延伸方向(以下、TD)の延伸温度の下限は好ましくは40℃であり、上記未満であると破断が起こりやすくなることがある。TD延伸温度の上限は好ましくは100℃であり、上記を越えると配向がかからないため力学特性が低下することがある。 The lower limit of the stretching temperature in the transverse stretching direction (hereinafter referred to as TD) is preferably 40 ° C. If it is less than the above, breakage may easily occur. The upper limit of the TD stretching temperature is preferably 100 ° C., and if it exceeds the above, since the orientation is not applied, the mechanical properties may be deteriorated.
 TD延伸倍率の下限は好ましくは2.5倍であり、上記未満であると配向がかからないため力学特性や厚みムラが悪くなることがある。TD延伸倍率の上限は好ましくは5倍であり、上記を越えると力学強度や厚みムラ改善の効果が飽和することがある。 The lower limit of the TD stretch ratio is preferably 2.5 times, and if it is less than the above, the orientation is not applied, so that the mechanical properties and thickness unevenness may deteriorate. The upper limit of the TD stretch ratio is preferably 5 times, and if it exceeds the above, the effect of improving the mechanical strength and thickness unevenness may be saturated.
 TD熱固定温度の下限は好ましくは150℃であり、上記未満であると熱収縮率が大きくなり、加工時のズレや縮みが起こることがある。TD熱固定温度の上限は好ましくは250℃であり、上記を越えるとフィルムが融けてしまうほか、融けない場合でも脆くなることがある。 The lower limit of the TD heat setting temperature is preferably 150 ° C., and if it is less than the above, the heat shrinkage rate increases, and displacement or shrinkage may occur during processing. The upper limit of the TD heat setting temperature is preferably 250 ° C. If the temperature exceeds the above, the film will melt, and even if it does not melt, it may become brittle.
 TDリラックス率の下限は好ましくは0.5%であり、上記未満であると熱固定時に破断が起こりやすくなることがある。TDリラックス率の上限は好ましくは10%であり、上記を越えるとたるみなどが生じて厚みムラが発生することがある。 The lower limit of the TD relaxation rate is preferably 0.5%, and if it is less than the above, breakage may easily occur during heat setting. The upper limit of the TD relaxation rate is preferably 10%. If the upper limit is exceeded, sagging may occur and thickness unevenness may occur.
 本発明の二軸延伸ポリエステルフィルムの厚みの下限は好ましくは3μmであり、より好ましくは5μmであり、さらに好ましくは8μmである。3μm未満であるとフィルムとしての強度が不足することがある。フィルム厚みの上限は好ましくは100μmであり、より好ましくは75μmであり、さらに好ましくは50μmである。100μmを越えると厚くなりすぎて本発明の目的における加工が困難となることがある。 The lower limit of the thickness of the biaxially stretched polyester film of the present invention is preferably 3 μm, more preferably 5 μm, and even more preferably 8 μm. If it is less than 3 μm, the strength as a film may be insufficient. The upper limit of the film thickness is preferably 100 μm, more preferably 75 μm, and still more preferably 50 μm. If it exceeds 100 μm, it may become too thick and processing for the purpose of the present invention may be difficult.
 本発明の二軸延伸ポリエステルフィルムの面配向係数の下限は好ましくは0.1であり、0.1未満であると突き刺し強度、衝撃強度などが低下することがある。面配向係数の上限は好ましくは0.15であり、0.15を越えると生産性の低下のほか、屈曲性などの低下が見られる場合がある。面配向係数はMD倍率、熱固定温度により、範囲内とすることが出来る。また、延伸方法として同時二軸延伸よりも逐次二軸延伸、特に、MD方向に延伸した後TD方向に延伸する逐次二軸延伸が好適である。 The lower limit of the plane orientation coefficient of the biaxially stretched polyester film of the present invention is preferably 0.1, and if it is less than 0.1, the puncture strength, impact strength, etc. may decrease. The upper limit of the plane orientation coefficient is preferably 0.15, and when it exceeds 0.15, productivity may be lowered and flexibility may be lowered. The plane orientation coefficient can be set within the range by the MD magnification and the heat setting temperature. Further, as the stretching method, sequential biaxial stretching, particularly sequential biaxial stretching in which stretching in the MD direction and then stretching in the TD direction is preferable to simultaneous biaxial stretching.
 本発明の二軸延伸ポリエステルフィルムはフィルムの厚み方向の全域に亘って同一組成の樹脂であることが好ましい。
 また、本発明の二軸延伸ポリエステルフィルムに他素材の層を積層して良く、その方法として、本発明の二軸延伸ポリエステルフィルムを製膜した後に貼り合わせるか、製膜中に貼り合わせる方法が挙げられる。
The biaxially stretched polyester film of the present invention is preferably a resin having the same composition throughout the entire thickness direction of the film.
In addition, a layer of another material may be laminated on the biaxially stretched polyester film of the present invention, and as a method thereof, a method of laminating after forming the biaxially stretched polyester film of the present invention, or a method of laminating during film formation Can be mentioned.
(フィルム特性)
 本発明の二軸延伸ポリエステルフィルムにおいては、MD降伏応力としては70MPa以下が好ましく、65MPa以下がより好ましく、60MPa以下がさらに好ましい。上記未満であるとフィルムが伸びにくくなり各種シーラントなどと張り合わせた後での絞り加工などの加工性の面で不利となることがある。
 本発明の二軸延伸ポリエステルフィルムにおいては、TD降伏応力としては70MPa以下が好ましく、65MPa以下がより好ましく、60MPa以下がさらに好ましい。上記未満であるとフィルムが伸びにくくなり各種シーラントなどと張り合わせた後での絞り加工などの加工性の面で不利となることがある。
(Film characteristics)
In the biaxially stretched polyester film of the present invention, the MD yield stress is preferably 70 MPa or less, more preferably 65 MPa or less, and further preferably 60 MPa or less. If it is less than the above, the film is difficult to stretch, which may be disadvantageous in terms of workability such as drawing after bonding with various sealants.
In the biaxially stretched polyester film of the present invention, the TD yield stress is preferably 70 MPa or less, more preferably 65 MPa or less, and further preferably 60 MPa or less. If it is less than the above, the film is difficult to stretch, which may be disadvantageous in terms of workability such as drawing after bonding with various sealants.
 本発明の二軸延伸ポリエステルフィルムにおいては、MD破断強度の下限は好ましくは160MPaであり、より好ましくは180MPaであり、さらに好ましくは200MPaである。上記未満であると加工時や各種シーラントなどと貼り合わせた後での絞り成形時に破断しやすくなるのに加え、落袋時に破袋し易くなるとなることがある。
 MD破断強度の上限は好ましくは300MPaである。上記を越えると破断強度改善の効果が飽和するとなることがある。
 本発明の二軸延伸ポリエステルフィルムにおいては、TD破断強度の下限は好ましくは160MPaであり、より好ましくは180MPaであり、さらに好ましくは200MPaである。上記未満であると加工時や各種シーラントなどと貼り合わせた後での絞り成形時に破断しやすくなるのに加え、落袋時に破袋し易くなるとなることがある。MD破断伸度はMD倍率、熱固定温度により、範囲内とすることが出来る。
 TD破断強度の上限は好ましくは300である。上記を越えると破断強度改善の効果が飽和するとなることがある。
 本発明の二軸延伸ポリエステルフィルムにおいては、MD破断強度とTD破断強度の比の下限は好ましくは0.5であり、より好ましくは0.7であり、さらに好ましくは0.9である。上記未満であると絞り成形時に縦横の変形バランスが偏り、成形品の厚みが不均一となるとなることがある。TD破断伸度はMD倍率、熱固定温度により、範囲内とすることが出来る。
In the biaxially stretched polyester film of the present invention, the lower limit of the MD breaking strength is preferably 160 MPa, more preferably 180 MPa, and further preferably 200 MPa. If it is less than the above, it tends to break at the time of processing or at the time of drawing after bonding with various sealants and the like, and at the time of dropping the bag, it may become easy to break the bag.
The upper limit of the MD breaking strength is preferably 300 MPa. If the above is exceeded, the effect of improving the breaking strength may be saturated.
In the biaxially stretched polyester film of the present invention, the lower limit of the TD breaking strength is preferably 160 MPa, more preferably 180 MPa, and further preferably 200 MPa. If it is less than the above, it tends to break at the time of processing or at the time of drawing after bonding with various sealants and the like, and at the time of dropping the bag, it may become easy to break the bag. MD breaking elongation can be made into the range with MD magnification and heat setting temperature.
The upper limit of the TD breaking strength is preferably 300. If the above is exceeded, the effect of improving the breaking strength may be saturated.
In the biaxially stretched polyester film of the present invention, the lower limit of the ratio between the MD breaking strength and the TD breaking strength is preferably 0.5, more preferably 0.7, and even more preferably 0.9. If it is less than the above, the deformation balance in the vertical and horizontal directions is biased at the time of drawing, and the thickness of the molded product may become uneven. The TD breaking elongation can be within the range by the MD magnification and the heat setting temperature.
 MD破断強度とTD破断強度の比の上限は好ましくは1.5であり、より好ましくは1.3であり、さらに好ましくは1.1である。上記を越えると絞り成形時に縦横の変形バランスが偏り、成形品の厚みが不均一となることがある。 The upper limit of the ratio of MD break strength to TD break strength is preferably 1.5, more preferably 1.3, and even more preferably 1.1. If the above is exceeded, the balance of deformation in the vertical and horizontal directions may be biased during drawing, and the thickness of the molded product may become non-uniform.
 本発明の二軸延伸ポリエステルフィルムにおいては、MD破断伸度、%の下限は好ましくは100%であり、より好ましくは110%であり、さらに好ましくは120%である。上記未満であると各種シーラントなどと張り合わせた後での絞り加工などの加工性の面で不利となることがある。
 MD破断伸度上限は好ましくは200%であり、200%を越えると改善の効果が飽和するとなることがある。
 TD破断伸度下限は好ましくは100%であり、より好ましくは110%であり、さらに好ましくは120%である。上記未満であると各種シーラントなどと張り合わせた後での絞り加工などの加工性の面で不利となることがある。
 TD破断伸度上限は好ましくは200%であり、200%を越えると改善の効果が飽和するとなることがある。
In the biaxially stretched polyester film of the present invention, the lower limit of MD breaking elongation and% is preferably 100%, more preferably 110%, and further preferably 120%. If it is less than the above, it may be disadvantageous in terms of workability such as drawing after bonding with various sealants.
The upper limit of MD break elongation is preferably 200%, and if it exceeds 200%, the improvement effect may be saturated.
The lower limit of the TD elongation at break is preferably 100%, more preferably 110%, and still more preferably 120%. If it is less than the above, it may be disadvantageous in terms of workability such as drawing after bonding with various sealants.
The upper limit of TD rupture elongation is preferably 200%. If it exceeds 200%, the improvement effect may be saturated.
 本発明の二軸延伸ポリエステルフィルムにおいては、MD破断伸度とTD破断伸度の比の下限は好ましくは0.5であり、より好ましくは0.7であり、さらに好ましくは0.9である。上記未満であると絞り成形時に縦横の変形バランスが偏り、均一な成形が出来ず破断やピンホールが発生することがある。
 MD破断伸度とTD破断伸度の比の上限は好ましくは1.5であり、より好ましくは1.3であり、さらに好ましくは1.1である。上記を越えると絞り成形時に縦横の変形バランスが偏り、均一な成形が出来ず破断やピンホールが発生することがある。
In the biaxially stretched polyester film of the present invention, the lower limit of the ratio of MD break elongation to TD break elongation is preferably 0.5, more preferably 0.7, and even more preferably 0.9. . If it is less than the above, the deformation balance in the vertical and horizontal directions is biased at the time of drawing, and uniform molding cannot be performed, and breakage or pinholes may occur.
The upper limit of the ratio of MD break elongation to TD break elongation is preferably 1.5, more preferably 1.3, and even more preferably 1.1. If the above is exceeded, the balance of deformation in the vertical and horizontal directions is biased during drawing, and uniform molding cannot be achieved, and breakage and pinholes may occur.
 上記範囲の降伏点応力、破断強度、破断伸度を有する二軸延伸ポリエステルフィルムを得るには、好適には同一の樹脂組成物を多層積層する方法が挙げられる。 In order to obtain a biaxially stretched polyester film having yield point stress, rupture strength, and rupture elongation within the above ranges, a method of laminating the same resin composition in a multilayer manner is preferable.
 本発明の二軸延伸ポリエステルフィルムとアルミ箔とをラミネートした積層体を絞り成形した際に、均一にかつ破断なく成形できる絞り深さの下限としては5mm以上が好ましく、5.5mm以上がさらに好ましく、6mm以上が特に好ましい。
 絞り成形性が5mmを上回ると、電池外装用などでの絞り成形に適したものとなる。
When the laminate obtained by laminating the biaxially stretched polyester film and the aluminum foil of the present invention is drawn, the lower limit of the drawing depth that can be formed uniformly and without breakage is preferably 5 mm or more, more preferably 5.5 mm or more. 6 mm or more is particularly preferable.
When the drawability exceeds 5 mm, it is suitable for draw forming for battery exteriors and the like.
 本発明の本発明の二軸延伸ポリエステルフィルムの突き刺し強度の下限は好ましくは0.8N/μmであり、より好ましくは0.9N/μmである。0.8N/μm未満であると加工時や袋としたときの強度が不足することがある。突き刺し強度の上限は好ましくは1.5N/μmであり、1.5N/μmを越えると改善の効果が飽和することとなる。突き刺し強度はMD倍率、熱固定温度により、範囲内とすることが出来る。 The lower limit of the piercing strength of the biaxially stretched polyester film of the present invention is preferably 0.8 N / μm, more preferably 0.9 N / μm. If it is less than 0.8 N / μm, the strength at the time of processing or forming a bag may be insufficient. The upper limit of the piercing strength is preferably 1.5 N / μm, and if it exceeds 1.5 N / μm, the improvement effect is saturated. The piercing strength can be within the range by the MD magnification and the heat setting temperature.
 本発明の本発明の二軸延伸ポリエステルフィルムのインパクト強度(耐衝撃性)の下限は好ましくは0.075J/μmであり、より好ましくは0.08J/μmである。0.075J/μm未満であると袋として用いる際に強度が不足することがある。インパクト強度(耐衝撃性)の上限は好ましくは0.2J/μmであり、0.2J/μmを越えると改善の効果が飽和することとなる。 The lower limit of the impact strength (impact resistance) of the biaxially stretched polyester film of the present invention is preferably 0.075 J / μm, more preferably 0.08 J / μm. When it is less than 0.075 J / μm, the strength may be insufficient when used as a bag. The upper limit of impact strength (impact resistance) is preferably 0.2 J / μm, and if it exceeds 0.2 J / μm, the improvement effect will be saturated.
 本発明の二軸延伸ポリエステルフィルムはさらに下記フィルム特性を有することにより、包装材料や外装材として使用するのより好適なものとなる。 The biaxially stretched polyester film of the present invention is more suitable for use as a packaging material or an exterior material by having the following film properties.
 本発明の本発明の二軸延伸ポリエステルフィルムのMD弾性率の下限は好ましくは1GPaであり、より好ましくは1.2GPaであり、さらに好ましくは1.4GPaである。上記未満であると伸びやすく印刷やラミなどの加工時にピッチずれなどが起こるとなることがある。
 MD弾性率の上限は好ましくは3GPaであり、より好ましくは2.8GPaであり、さらに好ましくは2.6GPaである。上記を越えると各種シーラントなどと張り合わせた後での絞り加工などの加工性の面で不利となることがある。
 本発明の二軸延伸ポリエステルフィルムのTD弾性率の下限は好ましくは1GPaであり、より好ましくは1.2GPaであり、さらに好ましくは1.4GPaである。上記未満であると伸びやすく、加工時に問題が起こるとなることがある。
 TD弾性率の上限は好ましくは3GPaであり、より好ましくは2.8GPaであり、さらに好ましくは2.6GPaである。上記を越えると各種シーラントなどと張り合わせた後での絞り加工などの加工性の面で不利となることがある。
The lower limit of the MD elastic modulus of the biaxially stretched polyester film of the present invention is preferably 1 GPa, more preferably 1.2 GPa, still more preferably 1.4 GPa. If it is less than the above, it tends to be stretched and pitch deviation may occur during processing such as printing and lamination.
The upper limit of the MD elastic modulus is preferably 3 GPa, more preferably 2.8 GPa, and still more preferably 2.6 GPa. Exceeding the above may be disadvantageous in terms of workability such as drawing after bonding with various sealants.
The lower limit of the TD elastic modulus of the biaxially stretched polyester film of the present invention is preferably 1 GPa, more preferably 1.2 GPa, and further preferably 1.4 GPa. If it is less than the above, it tends to stretch and problems may occur during processing.
The upper limit of the TD elastic modulus is preferably 3 GPa, more preferably 2.8 GPa, and still more preferably 2.6 GPa. Exceeding the above may be disadvantageous in terms of workability such as drawing after bonding with various sealants.
 本発明の二軸延伸ポリエステルフィルムの吸湿率の下限は好ましくは0.1%であり、上記未満であると改善の効果が飽和することとなる。吸湿率の上限は好ましくは1%であり、上記を越えると吸湿寸法変化などが起こりやすくなることがある。 The lower limit of the moisture absorption rate of the biaxially stretched polyester film of the present invention is preferably 0.1%, and if it is less than the above, the improvement effect will be saturated. The upper limit of the moisture absorption rate is preferably 1%, and if it exceeds the above, a change in moisture absorption dimension may easily occur.
 本発明の二軸延伸ポリエステルフィルムにおいては、フィルムのMD熱収縮率の下限は好ましくは0.1%であり、上記未満であると改善の効果が飽和するほか、力学的に脆くなってしまうことがある。MD熱収縮率の上限は好ましくは4%であり、上記を越えると印刷などの加工時の寸法変化により、ピッチズレなどが起こることがある。 In the biaxially stretched polyester film of the present invention, the lower limit of the MD heat shrinkage rate of the film is preferably 0.1%, and if it is less than the above, the improvement effect is saturated and it becomes mechanically brittle. There is. The upper limit of the MD thermal shrinkage is preferably 4%, and if it exceeds the above, pitch deviation may occur due to a dimensional change during processing such as printing.
 本発明の二軸延伸ポリエステルフィルムのTD熱収縮率の下限は好ましくは0.1%であり、上記未満であると改善の効果が飽和するほか、力学的に脆くなってしまうことがある。TD熱収縮率の上限は好ましくは3%であり、上記を越えると印刷などの加工時の寸法変化により、幅方向での縮みなどが起こることがある。 The lower limit of the TD heat shrinkage rate of the biaxially stretched polyester film of the present invention is preferably 0.1%, and if it is less than the above, the improvement effect is saturated and it may become mechanically brittle. The upper limit of the TD heat shrinkage rate is preferably 3%, and if it exceeds the above, shrinkage in the width direction may occur due to a dimensional change during processing such as printing.
 本発明の二軸延伸ポリエステルフィルムのヘイズとしては20%以下が好ましく、18%以下がより好ましく、15%以下がさらに好ましく、特に10%以下が好ましい。上記未満であると透明性が悪く、成形品の外観品位が低下するとなることがある。 The haze of the biaxially stretched polyester film of the present invention is preferably 20% or less, more preferably 18% or less, further preferably 15% or less, and particularly preferably 10% or less. If it is less than the above, the transparency is poor and the appearance quality of the molded product may be lowered.
 本発明の二軸延伸ポリエステルフィルムのゲルボフレックステスターによる発生するピンホール数の下限は好ましくは0(個、CPPラミ、2000回後)である。ゲルボの上限は好ましくは10(個、CPPラミ、2000回後)であり、より好ましくは5(個、CPPラミ、1000回後)である。10(個、CPPラミ、2000回後)を越えると袋として用いた場合に穴が開きやすくなることがある。 The lower limit of the number of pinholes generated by the gelboflex tester of the biaxially stretched polyester film of the present invention is preferably 0 (pieces, CPP lamination, after 2000 times). The upper limit of the gelbo is preferably 10 (pieces, CPP lamination, after 2000 times), more preferably 5 (pieces, CPP lamination, after 1000 times). If it exceeds 10 (pieces, CPP lamination, after 2000 times), holes may be easily formed when used as a bag.
 本発明の二軸延伸ポリエステルフィルムは吸湿が小さいので、それによる歪みが小さく、保香性にも優れる。 Since the biaxially stretched polyester film of the present invention has low moisture absorption, the resulting distortion is small and the fragrance retention is excellent.
 次に、実施例により本発明をさらに詳細に説明するが、本発明は以下の例に限定されるものではない。なお、フィルムの評価は次の測定法によって行った。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples. The film was evaluated by the following measurement method.
[製膜性]
 二軸延伸フィルムの製膜性を次の基準で評価した。○および△であれば、生産性が良いと判断した。
○:破断無く製膜でき、連続生産が可能であった
△:製膜性が多少不安定で、稀に破断が発生するが、連続生産可能なレベル。
×:頻繁に破断が発生し、連続生産が困難であった。
[Film forming properties]
The film forming property of the biaxially stretched film was evaluated according to the following criteria. If it was (circle) and (triangle | delta), it was judged that productivity was good.
○: The film could be formed without breakage and continuous production was possible. Δ: The film-formability was somewhat unstable and the breakage occurred rarely, but it was a level where continuous production was possible.
X: Breaking frequently occurred and continuous production was difficult.
[力学特性(降伏応力値、初期弾性率、破断強度、破断伸度)]
 JIS K 7113に準ずる。フィルムの長手方向および幅方向に幅10mm、長さ100mmの試料を、剃刀を用いて切り出して試料とした。23℃、65%RHの雰囲気下で12時間放置したあと、測定は23℃、65%RHの雰囲気下、チャック間距離100mm、引っ張り速度200mm/分の条件で行い、5回の測定結果の平均値を用いた。測定装置としては島津製作所社製オートグラフAG5000Aを用いた。
[Mechanical properties (yield stress value, initial elastic modulus, breaking strength, breaking elongation)]
According to JIS K 7113. A sample having a width of 10 mm and a length of 100 mm in the longitudinal direction and the width direction of the film was cut out using a razor as a sample. After standing for 12 hours in an atmosphere of 23 ° C. and 65% RH, the measurement was performed in an atmosphere of 23 ° C. and 65% RH under the conditions of a distance between chucks of 100 mm and a pulling speed of 200 mm / min. Values were used. As a measuring device, an autograph AG5000A manufactured by Shimadzu Corporation was used.
[球晶サイズ]
 キャストで得られた未延伸シートを採取し、光散乱測定装置(大塚電子:Dyna-3000)を用いて各未延伸シートのHv光散乱パターンを測定した。測定の中心角を0°、20°、60°と変更したときに得られたHv光散乱パターンを用い、散乱パターンの広がりから球晶半径を決定した。単位は[nm]である。
[Spherulite size]
The unstretched sheet obtained by casting was collected, and the Hv light scattering pattern of each unstretched sheet was measured using a light scattering measuring device (Otsuka Electronics: Dyna-3000). Using the Hv light scattering pattern obtained when the central angle of measurement was changed to 0 °, 20 °, and 60 °, the spherulite radius was determined from the spread of the scattering pattern. The unit is [nm].
[厚み]
 JIS-Z-1702準拠の方法で測定した。
[Thickness]
It was measured by a method according to JIS-Z-1702.
[面配向]
 ロールサンプルから幅方向で10点サンプルを採取した。そのサンプルについてJIS K 7142-1996 5.1(A法)により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手方向の屈折率(nx)、幅方向の屈折率(ny)、厚み方向の屈折率(nz)を測定し、下記式によって面配向係数(ΔP)を算出した。なお、得られた面配向係数の平均値を面配向係数とした。
ΔP=(nx+ny)/2-nz
幅方向の面配向係数差は、上記の10点のサンプルの最大値と最小値の差とした。
[Plane orientation]
A 10-point sample was taken from the roll sample in the width direction. According to JIS K 7142-1996 5.1 (Method A), the refractive index in the film longitudinal direction (nx), the refractive index in the width direction (ny), and the refractive index in the thickness direction using an Abbe refractometer with the sodium D line as the light source The ratio (nz) was measured, and the plane orientation coefficient (ΔP) was calculated by the following formula. In addition, the average value of the obtained plane orientation coefficient was made into the plane orientation coefficient.
ΔP = (nx + ny) / 2−nz
The difference in the plane orientation coefficient in the width direction was the difference between the maximum value and the minimum value of the above 10 samples.
[絞り成形性]
 得られたフィルムロールとアルミ箔(8079材、厚み40μm)をウレタン系接着剤(東洋モートン社製、TM-509、CAT10L、酢酸エチルを33.6:4.0:62.4(質量比))を使用してドライラミネートし、フィルム/アルミ箔積層体を作製した。得られた積層体をポリエステルフィルムが外側になるよう、ダイセット金型(凸部形状90mm×50mm)に設置し、プレス機により23℃下で加圧し、絞り成形を行った。成形時の絞り深さを0.2mm単位で深くしていき、上記積層体が破損しない最大の深さを絞り深さとした。
[Drawing formability]
The obtained film roll and aluminum foil (8079 material, thickness 40 μm) were urethane adhesive (TM-509, CAT10L, Toyo Morton Co., Ltd., 33.6: 4.0: 62.4 (mass ratio). ) Was dry laminated to produce a film / aluminum foil laminate. The obtained laminate was placed in a die set mold (convex shape 90 mm × 50 mm) so that the polyester film was on the outside, and was pressed at 23 ° C. with a press to perform drawing. The drawing depth at the time of molding was increased by 0.2 mm, and the maximum depth at which the laminate was not damaged was taken as the drawing depth.
[突き刺し強度]
 食品衛生法における「食品、添加物等の規格基準 第3:器具及び容器包装」(昭和57年厚生省告示第20号)の「2.強度等試験法」に準拠して測定した。先端部直径0.7mmの針を、突刺し速度50mm/分でフィルムに突き刺し、針がフィルムを貫通する際の強度を測定して、突き刺し強度とした。測定は常温(23℃)で行い、単位は[N/μm]である。
[Puncture strength]
It was measured in accordance with “2. Test methods for strength, etc.” in “Standards for Foods, Additives, etc. 3: Equipment and Containers and Packaging” in the Food Sanitation Law (Ministry of Health and Welfare Notification No. 20 of 1982). A needle having a tip diameter of 0.7 mm was pierced into the film at a piercing speed of 50 mm / min, and the strength when the needle penetrated the film was measured to obtain the piercing strength. The measurement is performed at room temperature (23 ° C.), and the unit is [N / μm].
[インパクト強度]
 株式会社東洋精機製作所製のインパクトテスターを用い、23℃の雰囲気下における フィルムの衝撃打ち抜きに対する強度を測定した。衝撃球面は、直径1/2インチのものを用いた。単位は[J/μm]である。
[Impact strength]
Using an impact tester manufactured by Toyo Seiki Seisakusho Co., Ltd., the strength against impact punching of the film in an atmosphere at 23 ° C. was measured. An impact spherical surface having a diameter of 1/2 inch was used. The unit is [J / μm].
[熱収縮率]
 ポリエステルフィルムの熱収縮率は試験温度150℃、加熱時間15分間とした以外は、JIS-C-2318記載の寸法変化試験法で測定した。
 ナイロンフィルムの熱収縮率は試験温度160℃、加熱時間10分間とした以外は、JIS-C-2318記載の寸法変化試験法で測定した。単位は[%]である。
[Heat shrinkage]
The thermal shrinkage of the polyester film was measured by the dimensional change test method described in JIS-C-2318 except that the test temperature was 150 ° C. and the heating time was 15 minutes.
The thermal shrinkage of the nylon film was measured by the dimensional change test method described in JIS-C-2318 except that the test temperature was 160 ° C. and the heating time was 10 minutes. The unit is [%].
[ヘイズ]
 JIS-K-7105に準ずる方法で、試料をヘイズメーター(日本電色製、NDH2000)を用いて異なる箇所3ヶ所について測定し、その平均値をヘイズとした。
 単位は[%]である。
[Haze]
The sample was measured at three different locations using a haze meter (Nippon Denshoku, NDH2000) by a method according to JIS-K-7105, and the average value was defined as haze.
The unit is [%].
[耐ピンホール性]
 本願発明にかかるフィルムを、20.3cm(8インチ)×27.9cm(11インチ)の大きさに切断し、その切断後の長方形テストフィルムを、温度23℃の相対湿度50%の条件下に、24時間以上放置してコンディショニングした。しかる後、その長方形テストフィルムを巻架して長さ20.32cm(8インチ)の円筒状にする。そして、その円筒状フィルムの一端を、ゲルボフレックステスター(理学工業社製、NO.901型)(MIL-B-131Cの規格に準拠)の円盤状固定ヘッドの外周に固定し、円筒状フィルムの他端を、固定ヘッドと17.8cm(7インチ)隔てて対向したテスターの円盤状可動ヘッドの外周に固定した。そして、可動ヘッドを固定ヘッドの方向に、平行に対向した両ヘッドの軸に沿って7.6cm(3.5インチ)接近させる間に440゜回転させ、続いて回転させることなく6.4cm(2.5インチ)直進させた後、それらの動作を逆向きに実行させて可動ヘッドを最初の位置に戻すという1サイクルの屈曲テストを、1分間あたり40サイクルの速度で、連続して2000サイクル繰り返した。実施は5℃で行った。しかる後に、テストしたフィルムの固定ヘッドおよび可動ヘッドの外周に固定した部分を除く17.8cm(7インチ)×27.9cm(11インチ)内の部分に生じたピンホール数を計測した(すなわち、497cm2 (77平方インチ)当たりのピンホール数を計測した)。
[Pinhole resistance]
The film according to the present invention is cut into a size of 20.3 cm (8 inches) × 27.9 cm (11 inches), and the rectangular test film after the cutting is subjected to a condition of a temperature of 23 ° C. and a relative humidity of 50%. Conditioned for 24 hours or longer. Thereafter, the rectangular test film is wound to form a cylindrical shape having a length of 20.32 cm (8 inches). Then, one end of the cylindrical film is fixed to the outer periphery of a disk-shaped fixed head of a gelbo flex tester (manufactured by Rigaku Kogyo Co., Ltd., NO.901 type) (conforming to MIL-B-131C standard). The other end of the tester was fixed to the outer periphery of a disk-shaped movable head of a tester facing the fixed head at a distance of 17.8 cm (7 inches). Then, the movable head is rotated 440 ° while approaching the fixed head in the direction of 7.6 cm (3.5 inches) along the axis of both heads opposed in parallel, and then 6.4 cm (without rotation) 2.5-inch) A one-cycle bending test in which the movement is performed in the reverse direction and the movable head is returned to the initial position is performed continuously for 2000 cycles at a rate of 40 cycles per minute. Repeated. Implementation was at 5 ° C. Thereafter, the number of pinholes generated in a portion within 17.8 cm (7 inches) × 27.9 cm (11 inches) excluding the portion fixed to the outer periphery of the fixed head and the movable head of the tested film was measured (ie, The number of pinholes per 77 square inches was measured).
[実施例1]
 一軸押出機を用い、ポリエステル樹脂組成物(A)としてPBT(三菱エンジニアリングプラスチック製ノバデュラン5020、融点220℃)と滑剤としての炭酸カルシウムを含むマスターバッチを添加し、滑剤濃度として2000ppmとなるように配合したものを270℃で溶融させた後、メルトラインを12エレメントのスタティックミキサーに導入した。これにより、PBT溶融体の分割・積層を行い、同一の原料からなる多層溶融体を得た。270℃のT-ダイスからキャストし、10℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。冷却ロールの表面温度について、幅方向に10cm間隔で測定(熱電対)したところ、そのばらつきは3℃以下であった。次いで、60℃で縦方向に3.2倍ロール延伸し、次いで、テンターに通して80℃で横方向に3.9倍延伸し、200℃で3秒間の緊張熱処理と1秒間で3%の緩和処理を実施した後、両端部を切断除去して厚みが12μmのPBTフィルムを得た。
 得られたフィルムの製膜条件、物性および評価結果を表1に示した。
[Example 1]
Using a single screw extruder, add a masterbatch containing PBT (Mitsubishi Engineering Plastics Novaduran 5020, melting point 220 ° C.) and calcium carbonate as a lubricant as a polyester resin composition (A), and blend to a lubricant concentration of 2000 ppm. The melted product was melted at 270 ° C., and then the melt line was introduced into a 12-element static mixer. Thereby, the PBT melt was divided and laminated to obtain a multilayer melt made of the same raw material. It was cast from a T-die at 270 ° C. and adhered to a cooling roll at 10 ° C. by an electrostatic adhesion method to obtain an unstretched sheet. When the surface temperature of the cooling roll was measured at 10 cm intervals in the width direction (thermocouple), the variation was 3 ° C. or less. Next, the film was stretched 3.2 times in the machine direction at 60 ° C., then stretched 3.9 times in the transverse direction at 80 ° C. through a tenter, tension heat treatment at 200 ° C. for 3 seconds and 3% in 1 second. After the relaxation treatment, both end portions were cut and removed to obtain a PBT film having a thickness of 12 μm.
Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
[実施例2~9]
 実施例1において、原料組成、製膜条件を表1に記載した二軸延伸フィルムに変えた以外は実施例1と同様に行った。
(PBT:三菱エンジニアリングプラスチック製ノバデュラン5020、融点220℃)(ecoflex:BASF社製、ポリブチレンアジペートブチレンテレフタレート共重合体)
(GS390:東洋紡社製、共重合成分:ポリブチレンテレフタレート、ポリカプロラクトン)
 得られたフィルムの製膜条件、物性および評価結果を表1に示した。
[Examples 2 to 9]
In Example 1, it carried out like Example 1 except having changed the raw material composition and the film forming conditions into the biaxially stretched film described in Table 1.
(PBT: Mitsubishi Engineering Plastic Novaduran 5020, melting point 220 ° C.) (ecoflex: manufactured by BASF, polybutylene adipate butylene terephthalate copolymer)
(GS390: manufactured by Toyobo Co., Ltd., copolymerization component: polybutylene terephthalate, polycaprolactone)
Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
[比較例1~4]
  実施例1において、原料組成、製膜条件を表2に記載した二軸延伸フィルムに変えた以外は実施例1と同様に行った。
(PBT:三菱エンジニアリングプラスチック製ノバデュラン5020、融点220℃)(ecoflex:BASF社製、ポリブチレンアジペートブチレンテレフタレート共重合体)
 得られたフィルムの製膜条件、物性および評価結果を表2に示した。
[Comparative Examples 1 to 4]
In Example 1, it carried out like Example 1 except having changed the raw material composition and the film forming conditions into the biaxially stretched film described in Table 2.
(PBT: Mitsubishi Engineering Plastic Novaduran 5020, melting point 220 ° C.) (ecoflex: manufactured by BASF, polybutylene adipate butylene terephthalate copolymer)
Table 2 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
[比較例5]
 ポリエステル樹脂としてPBT(三菱エンジニアリングプラスチック製ノバデュラン5020、融点220℃)およびポリエチレンテレフタレート(固有粘度0.65)を用い、PBTおよびPETをそれぞれ押出し機を用いて280℃で溶融し、1201層のフィードブロックにて合流させることでPBT/PET交互多層溶融体を得た。この交互積層体を280℃のダイスからキャストし、20℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。得られた未延伸シートを表2に示した製膜条件にて二軸延伸し、PBT/PET交互積層二軸延伸フィルムを得た。
 得られたフィルムの物性および評価結果を表2に示した。
[Comparative Example 5]
PBT (Mitsubishi Engineering Plastics Novaduran 5020, melting point 220 ° C.) and polyethylene terephthalate (intrinsic viscosity 0.65) are used as the polyester resin, and PBT and PET are melted at 280 ° C. using an extruder, respectively. To obtain a PBT / PET alternating multilayer melt. This alternate laminate was cast from a die at 280 ° C. and adhered to a cooling roll at 20 ° C. by an electrostatic adhesion method to obtain an unstretched sheet. The obtained unstretched sheet was biaxially stretched under the film forming conditions shown in Table 2 to obtain a PBT / PET alternately laminated biaxially stretched film.
The physical properties and evaluation results of the obtained film are shown in Table 2.
[比較例6]
  ポリエステル樹脂としてPBT(三菱エンジニアリングプラスチック製ノバデュラン5020、融点220℃)を用い、一軸押出し機を用いて280℃で溶融し、270℃のダイスからキャストし、15℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。厚みは20μmとなるように、巻き取り速度を調整して製膜した。
  得られたフィルムの物性および評価結果を表2に示した。
[Comparative Example 6]
PBT (Mitsubishi Engineering Plastics Novaduran 5020, melting point 220 ° C) is used as the polyester resin, melted at 280 ° C using a single screw extruder, cast from a 270 ° C die, and electrostatically attached to a 15 ° C cooling roll. It was made to adhere and the unstretched sheet was obtained. The film was formed by adjusting the winding speed so that the thickness was 20 μm.
The physical properties and evaluation results of the obtained film are shown in Table 2.
[比較例7]
 代表的なインフレーション二軸延伸PBTフィルムとして市販されている関西化学工業性PBTフィルム社製のものを使用した。
 得られたフィルムの物性および評価結果を表2に示した。
[Comparative Example 7]
The thing made by the Kansai Chemical Industrial PBT film company marketed as a typical inflation biaxially-stretched PBT film was used.
The physical properties and evaluation results of the obtained film are shown in Table 2.
[比較例8]
 東洋紡製エステルフィルムE5100-12μmを使用した。
 得られたフィルムの物性および評価結果を表2に示した。
[Comparative Example 8]
An ester film E5100-12 μm manufactured by Toyobo was used.
The physical properties and evaluation results of the obtained film are shown in Table 2.
[比較例9]
 東洋紡製ナイロンフィルムN1100-15μmを使用した。
 得られたフィルムの物性および評価結果を表2に示した。
[Comparative Example 9]
A nylon film N1100-15 μm manufactured by Toyobo was used.
The physical properties and evaluation results of the obtained film are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 本発明により、ナイロンフィルムやその他の柔軟なフィルムが用いられてきた、レトルト食品包装用途やリチウムイオン電池の外装材のような絞り成形が行われる用途に適した二軸延伸ポリエステルフィルムを得ることができ、産業界に大きく寄与することが期待される。 According to the present invention, it is possible to obtain a biaxially stretched polyester film suitable for uses such as retort food packaging applications and draw forming such as lithium ion battery exterior materials, in which nylon films and other flexible films have been used. It is expected to contribute greatly to the industry.

Claims (7)

  1.  ポリブチレンテレフタレートを60質量%以上含むポリエステル樹脂組成物(A)からなり、MDの降伏点応力が70MPa以下、TDの降伏点応力が70MPa以下、MDの破断強度が160MPa以上、TDの破断強度が160MPa以上、MDおよびTDの破断伸度が100%以上であることを特徴とする二軸延伸ポリエステルフィルム。 It consists of a polyester resin composition (A) containing 60% by mass or more of polybutylene terephthalate. The yield point stress of MD is 70 MPa or less, the yield point stress of TD is 70 MPa or less, the fracture strength of MD is 160 MPa or more, and the fracture strength of TD is A biaxially stretched polyester film characterized by having a breaking elongation of 160 MPa or more and MD and TD of 100% or more.
  2.  前記ポリエステル樹脂(A)が、ポリブチレンテレフタレート以外のポリエステル樹脂(B)を含んでなることを特徴とする、請求項1に記載の二軸延伸ポリエステルフィルム。 The biaxially stretched polyester film according to claim 1, wherein the polyester resin (A) comprises a polyester resin (B) other than polybutylene terephthalate.
  3.  同一の組成を60層以上に多層化させた後にキャスティングされた厚み15~2500μmの未延伸ポリエステルシートを二軸延伸することにより得られることを特徴とする請求項1または2に記載の二軸延伸ポリエステルフィルムの製造方法。 3. The biaxial stretching according to claim 1, wherein the biaxial stretching is obtained by biaxially stretching an unstretched polyester sheet having a thickness of 15 to 2500 μm cast after multilayering the same composition into 60 layers or more. A method for producing a polyester film.
  4.  未延伸ポリエステルシートを20℃以下のチルロールに接触させて冷却した後に二軸延伸することにより得られることを特徴とする請求項1または2に記載の二軸延伸ポリエステルフィルム。 3. The biaxially stretched polyester film according to claim 1, wherein the unstretched polyester sheet is obtained by bringing a non-stretched polyester sheet into contact with a chill roll of 20 ° C. or less and cooling and then biaxially stretching.
  5.  未延伸ポリエステルシート中の球晶径が500nm以下である未延伸ポリエステルシートを二軸延伸することにより得られることを特徴とする請求項1または2に記載の二軸延伸ポリエステルフィルムの製造方法。 3. The method for producing a biaxially stretched polyester film according to claim 1, wherein the unstretched polyester sheet is obtained by biaxially stretching an unstretched polyester sheet having a spherulite diameter of 500 nm or less.
  6.  前記MDの破断強度と前記TDの破断強度の比が1.5以下、前記MDの破断伸度と前記TDの破断伸度の比が1.5以下である請求項1または2に記載の二軸延伸ポリエステルフィルム。 The ratio of the breaking strength of the MD and the breaking strength of the TD is 1.5 or less, and the ratio of the breaking elongation of the MD and the breaking elongation of the TD is 1.5 or less. Axial stretched polyester film.
  7.  前記未延伸ポリエステルシートを逐次二軸延伸することにより得られることを特徴とする請求項4~6に記載の二軸延伸ポリエステルフィルムの製造方法。 The method for producing a biaxially stretched polyester film according to any one of claims 4 to 6, which is obtained by sequentially biaxially stretching the unstretched polyester sheet.
PCT/JP2013/080221 2012-11-16 2013-11-08 Biaxially oriented polyester film and method for producing same WO2014077197A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014546962A JP5994864B2 (en) 2012-11-16 2013-11-08 Biaxially stretched polyester film and method for producing the same
KR1020157010005A KR102071745B1 (en) 2012-11-16 2013-11-08 Biaxially oriented polyester film and method for producing same
US14/442,769 US9688826B2 (en) 2012-11-16 2013-11-08 Biaxially stretched polyester film and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-252150 2012-11-16
JP2012252150 2012-11-16

Publications (1)

Publication Number Publication Date
WO2014077197A1 true WO2014077197A1 (en) 2014-05-22

Family

ID=50731109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080221 WO2014077197A1 (en) 2012-11-16 2013-11-08 Biaxially oriented polyester film and method for producing same

Country Status (6)

Country Link
US (1) US9688826B2 (en)
JP (1) JP5994864B2 (en)
KR (1) KR102071745B1 (en)
MY (1) MY161714A (en)
TW (1) TWI605927B (en)
WO (1) WO2014077197A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256110A (en) * 2012-05-14 2013-12-26 Toyobo Co Ltd Polyester film and method for producing the same
WO2015178390A1 (en) * 2014-05-21 2015-11-26 東洋紡株式会社 Biaxially stretched polybutylene terephthalate film, manufacturing method therefor, and gas barrier laminate film
WO2016171173A1 (en) * 2015-04-24 2016-10-27 東洋紡株式会社 Biaxially stretched polyester film, and production method therefor
JP2016191009A (en) * 2015-03-31 2016-11-10 興人フィルム&ケミカルズ株式会社 Easily-tearable biaxial orientation polybutylene terephthalate film
JP2016203630A (en) * 2015-04-24 2016-12-08 東洋紡株式会社 Biaxially oriented polyester film and manufacturing method therefor
JP2017067821A (en) * 2015-09-28 2017-04-06 東レ株式会社 Optical polyester film and polarizing plate using the same, and transparent conductive film
JP2017066405A (en) * 2015-10-02 2017-04-06 ユニチカ株式会社 Polyester film and method for producing the same
WO2017126563A1 (en) * 2016-01-22 2017-07-27 東洋紡株式会社 Biaxially-stretched polyester film, laminate and packaging bag
WO2017170332A1 (en) * 2016-03-30 2017-10-05 東洋紡株式会社 Laminate for vacuum insulation material
KR20170140293A (en) 2015-04-24 2017-12-20 도요보 가부시키가이샤 Biaxially oriented polyester film and method for producing the same
JP2018053949A (en) * 2016-09-27 2018-04-05 凸版印刷株式会社 Sheathing material for vacuum heat insulation material
WO2018074365A1 (en) * 2016-10-20 2018-04-26 凸版印刷株式会社 Exterior material for power storage device and power storage device in which same is used
JP2018110090A (en) * 2017-01-06 2018-07-12 凸版印刷株式会社 Exterior material for power storage device and power storage device using the same
JP2018167578A (en) * 2017-03-29 2018-11-01 大日本印刷株式会社 Laminate and bag composed of the laminate
JP2018167577A (en) * 2017-03-29 2018-11-01 大日本印刷株式会社 Laminate and bag composed of laminate
JP2018167573A (en) * 2017-03-29 2018-11-01 大日本印刷株式会社 Laminate and bag composed of laminate
JP2018171715A (en) * 2017-03-31 2018-11-08 ユニチカ株式会社 Polyester film, laminate, and production method for polyester film
JP2018172454A (en) * 2017-03-31 2018-11-08 ユニチカ株式会社 Polyester film, laminate, and production method for polyester film
JP2018172455A (en) * 2017-03-31 2018-11-08 ユニチカ株式会社 Polyester film, laminate, and production method for polyester film
JPWO2017170333A1 (en) * 2016-03-30 2019-02-07 東洋紡株式会社 Battery packaging laminate
JP2019187717A (en) * 2018-04-24 2019-10-31 花王株式会社 Underpants-type disposable diaper
JP2019536851A (en) * 2016-10-21 2019-12-19 中国石油化工股▲ふん▼有限公司 Polyester composition and method for preparing the same
JP2020168511A (en) * 2020-07-14 2020-10-15 花王株式会社 Underpants type disposable diaper
US11535437B2 (en) 2016-04-01 2022-12-27 Toppan Printing Co., Ltd. Gas barrier film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110447123B (en) * 2017-03-21 2022-07-08 大日本印刷株式会社 Battery packaging material, method for producing same, polybutylene terephthalate film for battery packaging material, and battery
EP3659939B1 (en) * 2017-07-26 2023-08-30 Toyobo Co., Ltd. Packaging bag using polybutylene terephthalate film
KR102612318B1 (en) 2019-02-26 2023-12-12 도요보 가부시키가이샤 Biaxially oriented polyester film and method for producing the biaxially oriented polyester film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266519A (en) * 2002-01-11 2003-09-24 Toyobo Co Ltd Method for manufacturing resin film
JP2003268131A (en) * 2002-01-11 2003-09-25 Toyobo Co Ltd Polyester film
JP2007196635A (en) * 2006-01-30 2007-08-09 Toyobo Co Ltd Plastic film roll and its manufacturing method
JP2010106265A (en) * 2008-10-01 2010-05-13 Fujifilm Corp Film and process for production of the same
JP2012121241A (en) * 2010-12-09 2012-06-28 Kohjin Co Ltd Biaxially-stretched polybutylene terephthalate film
JP2013256110A (en) * 2012-05-14 2013-12-26 Toyobo Co Ltd Polyester film and method for producing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146572A (en) 1975-06-12 1976-12-16 Asahi Chemical Ind Two dimensional elongation poly butylene terephthalate films
US4341827A (en) * 1979-09-05 1982-07-27 Bethlehem Steel Corporation Biaxially oriented thermoplastic polymer film and method of manufacture
JPH0216029A (en) * 1988-07-04 1990-01-19 Unitika Ltd Polyester biaxially oriented film
JP2528984B2 (en) * 1990-01-29 1996-08-28 株式会社日立製作所 Neutron flux monitor Guide tube Water resistant plug
JPH05200860A (en) * 1992-01-29 1993-08-10 Okura Ind Co Ltd Heat-resistant bag
CN1324074C (en) 2002-01-11 2007-07-04 东洋纺织株式会社 Polyester films
KR101110140B1 (en) 2003-06-04 2012-01-31 도레이 카부시키가이샤 Multilayer film and biaxially oriented polyester film
CN101223031B (en) * 2005-07-15 2014-01-08 东丽电池隔膜株式会社 Polyolefin multilayer microporous membrane and battery separator
JP5267817B2 (en) * 2008-12-03 2013-08-21 東洋紡株式会社 Thermoplastic resin stretched multilayer film with layered compound highly oriented in plane
JP5866878B2 (en) 2010-09-08 2016-02-24 東レ株式会社 Polybutylene terephthalate film
JP6032786B2 (en) 2010-12-24 2016-11-30 興人フィルム&ケミカルズ株式会社 Battery case packaging material for cold forming containing biaxially stretched polybutylene terephthalate film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266519A (en) * 2002-01-11 2003-09-24 Toyobo Co Ltd Method for manufacturing resin film
JP2003268131A (en) * 2002-01-11 2003-09-25 Toyobo Co Ltd Polyester film
JP2007196635A (en) * 2006-01-30 2007-08-09 Toyobo Co Ltd Plastic film roll and its manufacturing method
JP2010106265A (en) * 2008-10-01 2010-05-13 Fujifilm Corp Film and process for production of the same
JP2012121241A (en) * 2010-12-09 2012-06-28 Kohjin Co Ltd Biaxially-stretched polybutylene terephthalate film
JP2013256110A (en) * 2012-05-14 2013-12-26 Toyobo Co Ltd Polyester film and method for producing the same

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256110A (en) * 2012-05-14 2013-12-26 Toyobo Co Ltd Polyester film and method for producing the same
WO2015178390A1 (en) * 2014-05-21 2015-11-26 東洋紡株式会社 Biaxially stretched polybutylene terephthalate film, manufacturing method therefor, and gas barrier laminate film
JP2016191009A (en) * 2015-03-31 2016-11-10 興人フィルム&ケミカルズ株式会社 Easily-tearable biaxial orientation polybutylene terephthalate film
KR20170139607A (en) 2015-04-24 2017-12-19 도요보 가부시키가이샤 Biaxially oriented polyester film and method for producing the same
JP2016203630A (en) * 2015-04-24 2016-12-08 東洋紡株式会社 Biaxially oriented polyester film and manufacturing method therefor
KR102183791B1 (en) 2015-04-24 2020-11-27 도요보 가부시키가이샤 Biaxially stretched polyester film and its manufacturing method
TWI676558B (en) * 2015-04-24 2019-11-11 日商東洋紡股份有限公司 Gas barrier film
WO2016171173A1 (en) * 2015-04-24 2016-10-27 東洋紡株式会社 Biaxially stretched polyester film, and production method therefor
KR20170140293A (en) 2015-04-24 2017-12-20 도요보 가부시키가이샤 Biaxially oriented polyester film and method for producing the same
JPWO2016171173A1 (en) * 2015-04-24 2018-02-15 東洋紡株式会社 Biaxially stretched polyester film and method for producing the same
EP3287258A4 (en) * 2015-04-24 2018-12-19 Toyobo Co., Ltd. Biaxially stretched polyester film, and production method therefor
US20180099451A1 (en) * 2015-04-24 2018-04-12 Toyobo Co., Ltd. Biaxially stretched polyester film, and production method therefor
JP2017067821A (en) * 2015-09-28 2017-04-06 東レ株式会社 Optical polyester film and polarizing plate using the same, and transparent conductive film
JP2017066405A (en) * 2015-10-02 2017-04-06 ユニチカ株式会社 Polyester film and method for producing the same
JPWO2017126563A1 (en) * 2016-01-22 2018-11-08 東洋紡株式会社 Biaxially stretched polyester film, laminate and packaging bag
WO2017126563A1 (en) * 2016-01-22 2017-07-27 東洋紡株式会社 Biaxially-stretched polyester film, laminate and packaging bag
JPWO2017170332A1 (en) * 2016-03-30 2019-02-14 東洋紡株式会社 Laminate for vacuum insulation
WO2017170332A1 (en) * 2016-03-30 2017-10-05 東洋紡株式会社 Laminate for vacuum insulation material
JPWO2017170333A1 (en) * 2016-03-30 2019-02-07 東洋紡株式会社 Battery packaging laminate
US11535437B2 (en) 2016-04-01 2022-12-27 Toppan Printing Co., Ltd. Gas barrier film
JP7062354B2 (en) 2016-09-27 2022-05-06 凸版印刷株式会社 Exterior material for vacuum heat insulating material
JP2018053949A (en) * 2016-09-27 2018-04-05 凸版印刷株式会社 Sheathing material for vacuum heat insulation material
WO2018074365A1 (en) * 2016-10-20 2018-04-26 凸版印刷株式会社 Exterior material for power storage device and power storage device in which same is used
US11205814B2 (en) 2016-10-20 2021-12-21 Toppan Printing Co., Ltd. Power storage device packaging material and power storage device using the packaging material
EP3531464A4 (en) * 2016-10-20 2019-10-23 Toppan Printing Co., Ltd. Exterior material for power storage device and power storage device in which same is used
JP7171556B2 (en) 2016-10-21 2022-11-15 中国石油化工股▲ふん▼有限公司 Polyester composition and method for its preparation
JP2019536851A (en) * 2016-10-21 2019-12-19 中国石油化工股▲ふん▼有限公司 Polyester composition and method for preparing the same
JP2022024056A (en) * 2017-01-06 2022-02-08 凸版印刷株式会社 Exterior material for power storage device and power storage device including the same
JP2018110090A (en) * 2017-01-06 2018-07-12 凸版印刷株式会社 Exterior material for power storage device and power storage device using the same
JP7474734B2 (en) 2017-01-06 2024-04-25 Toppanホールディングス株式会社 Exterior material for power storage device and power storage device using same
JP7056174B2 (en) 2017-03-29 2022-04-19 大日本印刷株式会社 Laminated body and bag composed of the laminated body
JP7056175B2 (en) 2017-03-29 2022-04-19 大日本印刷株式会社 Laminated body and bag composed of the laminated body
JP2018167573A (en) * 2017-03-29 2018-11-01 大日本印刷株式会社 Laminate and bag composed of laminate
JP2018167577A (en) * 2017-03-29 2018-11-01 大日本印刷株式会社 Laminate and bag composed of laminate
JP2018167578A (en) * 2017-03-29 2018-11-01 大日本印刷株式会社 Laminate and bag composed of the laminate
JP2021119237A (en) * 2017-03-31 2021-08-12 ユニチカ株式会社 Polyester film, laminate, and production method for polyester film
JP2018172455A (en) * 2017-03-31 2018-11-08 ユニチカ株式会社 Polyester film, laminate, and production method for polyester film
JP7026374B2 (en) 2017-03-31 2022-02-28 ユニチカ株式会社 Laminated body and its manufacturing method
JP2018172454A (en) * 2017-03-31 2018-11-08 ユニチカ株式会社 Polyester film, laminate, and production method for polyester film
JP2018171715A (en) * 2017-03-31 2018-11-08 ユニチカ株式会社 Polyester film, laminate, and production method for polyester film
JP2019187717A (en) * 2018-04-24 2019-10-31 花王株式会社 Underpants-type disposable diaper
JP2020168511A (en) * 2020-07-14 2020-10-15 花王株式会社 Underpants type disposable diaper
JP7117350B2 (en) 2020-07-14 2022-08-12 花王株式会社 pants type disposable diaper

Also Published As

Publication number Publication date
JP5994864B2 (en) 2016-09-21
US20150299406A1 (en) 2015-10-22
JPWO2014077197A1 (en) 2017-01-05
MY161714A (en) 2017-05-15
KR20150087193A (en) 2015-07-29
TWI605927B (en) 2017-11-21
KR102071745B1 (en) 2020-01-30
TW201420316A (en) 2014-06-01
US9688826B2 (en) 2017-06-27

Similar Documents

Publication Publication Date Title
JP5994864B2 (en) Biaxially stretched polyester film and method for producing the same
JP6202146B2 (en) Production method of polyester film
KR102276626B1 (en) Biaxially stretched polyester film and manufacturing method thereof
JP6874277B2 (en) Biaxially stretched polyester film and its manufacturing method
KR102183791B1 (en) Biaxially stretched polyester film and its manufacturing method
WO2015072163A1 (en) Biaxially stretched polyester film and method for producing same
JPWO2017170333A1 (en) Battery packaging laminate
US20200172725A1 (en) Biaxially oriented polyester film
WO2013027476A1 (en) Biaxially oriented, laminated polyamide resin film
KR20200079562A (en) Polyamide film and method for manufacturing the same
US20200079955A1 (en) Biaxially oriented polyester film
JP6826785B2 (en) Biaxially oriented polyester film and method for producing biaxially oriented polyester film
JP7444177B2 (en) Biaxially oriented polyester films and laminates
CN116438077A (en) Biaxially oriented polyester film and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014546962

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157010005

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14442769

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201503565

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13855081

Country of ref document: EP

Kind code of ref document: A1