JP3890731B2 - Vertically coupled multimode SAW filter - Google Patents

Vertically coupled multimode SAW filter Download PDF

Info

Publication number
JP3890731B2
JP3890731B2 JP06954898A JP6954898A JP3890731B2 JP 3890731 B2 JP3890731 B2 JP 3890731B2 JP 06954898 A JP06954898 A JP 06954898A JP 6954898 A JP6954898 A JP 6954898A JP 3890731 B2 JP3890731 B2 JP 3890731B2
Authority
JP
Japan
Prior art keywords
saw filter
electrode
longitudinally coupled
idt
reactance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06954898A
Other languages
Japanese (ja)
Other versions
JPH11251861A (en
Inventor
祐史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP06954898A priority Critical patent/JP3890731B2/en
Publication of JPH11251861A publication Critical patent/JPH11251861A/en
Application granted granted Critical
Publication of JP3890731B2 publication Critical patent/JP3890731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は縦結合多重モードSAWフィルタに関し、特に縦結合多重モードSAWフィルタに特有な通過帯域近傍の高周波側に生ずる減衰傾度の劣化を改善した縦結合多重モードSAWフィルタに関する。
【0002】
【従来の技術】
近年、SAWフィルタは多くの通信分野で用いられ、高性能、小型、量産性等の特徴を有することから携帯電話等の普及の一翼を担っている。
図7は従来の1次−3次縦結合二重モードSAWフィルタ(以下、二重モードSAWフィルタと称す)の電極パターンの構成を示す模式的平面図であって、圧電基板11の主面上に表面波の伝搬方向に沿って3つのIDT電極12、13、14を近接配置すると共に、IDT電極12、13、14の両側に反射器15a、15bを配設したものである。
IDT電極12、13、14はそれぞれ互いに間挿し合う複数本の電極指を有する一対のくし形電極により構成され、IDT電極12の一方のくし形電極は入力端子INに接続し、他方のくし形電極は接地する。そして、IDT電極13、14の一方のくし形電極は互いに連結して出力端子OUTに接続すると共に、他方のくし形電極はそれぞれ接地する。
【0003】
図7に示す二重モードSAWフィルタの動作は、周知のように、IDT電極12、13、14によって励起される複数の表面波が反射器15a、15bの間に閉じ込められ、IDT電極12、13、14の間で音響結合を生ずる結果、1次と3次の2の縦共振モードが強勢に励振されるため、適当な終端を施すことによりこれらの2つのモードを利用した二重モードSAWフィルタとして動作する。なお、該二重モードSAWフィルタの通過帯域幅は1次共振モードと3次共振モードとの周波数差で決まることは周知のことである。
【0004】
例えば、圧電基板として36゜YカットX伝搬LiTaO3を用いて、フィルタの中心周波数を836.5MHz、入力IDT電極12の電極対数を17.5対、出力IDT電極13、14の電極対数をそれぞれ11.5対、グレーティング反射器15a、15bの本数をそれぞれ250本、電極にアルミニウム合金を用いて膜厚を6%λ(λは励起される表面波の波長)とした場合の二重モードSAWフィルタの濾波特性は図8のようになる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の従来の二重モードフィルタにおいては、図8に示した濾波特性から明らかなように通過帯域近傍の高周波側の図中矢印Aで示す阻止域減衰量が劣化しており、低周波側と同等の減衰量が得られてない。即ち、図8の濾波特性において、1dB通過帯域幅の中心周波数をF0とすると、F0−45MHzの低周波側では減衰量が約20dB得られるのに対して、F0+45MHzの高周波側ではその減衰量は約8dBである。このように従来の二重モードフィルタでは、通過帯域近傍の低周波側の減衰量に比べて通過帯域近傍の高周波側おける減衰量は約10dB程度であり大きく劣化している。このような二重モードフィルタを携帯電話等のRFフィルタに用いる場合、高周波側にて減衰量が不十分であるという問題があった。
本発明は上述したような二重モードSAWフィルタの問題を解決するためになされたものであって、広帯域であると共に通過帯域近傍の高周波側における阻止減衰量を大幅に改善したフィルタを提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明に係る縦結合多重モードSAWフィルタの請求項1記載の発明は、圧電基板上に表面波の伝搬方向に沿って複数のIDT電極とその両側に反射器を配置して構成する縦結合多重モードSAWフィルタにおいて、入力IDT電極と出力IDT電極との間にリアクタンス素子を挿入接続し、互いに隣り合うIDT電極の最近接する電極指同士の極性を異ならせ、前記リアクタンス素子の値を0.1pF≦X<1.0pFとしたことを特徴とする縦結合多重モードSAWフィルタである。
請求項2記載の発明は、圧電基板上に表面波の伝搬方向に沿って複数のIDT電極とその両側に反射器を配置して構成する縦結合多重モードSAWフィルタにおいて、入力IDT電極と出力IDT電極との間にリアクタンス素子を挿入接続し、互いに隣り合うIDT電極の最近接する電極指同士の極性を同じとし、前記リアクタンス素子の値を10nH≦X≦240nHとしたことを特徴とする縦結合多重モードSAWフィルタである。
請求項3に記載の発明は、前記リアクタンス素子が前記IDT電極と同一基板上に前記IDT電極と同一プロセスにて形成した導電性パターンであることを特徴とする請求項1又は2に記載の縦結合多重モードSAWフィルタである。
請求項4記載の発明は、 前記フィルタ素子を保持するパッケージ内に前記リアクタンス素子を形成することを特徴とする請求項1乃至3のいずれかに記載の縦結合多重モードSAWフィルタである。
【0007】
【発明の実施の形態】
以下本発明を図面に示した実施の形態に基づいて詳細に説明する。
二重モードSAWフィルタにおいて、通過帯域近傍の高周波側の減衰量が低周波側のそれに比べて著しく劣るのは、圧電基板上に配置した複数のIDT電極間のトランスバーサル特性に起因して必然的に発生する特性であり、これを根本的に解消する手段は未だ見出されていない。
【0008】
図1は本発明に係る通過帯域近傍の高周波側の減衰量を改善した二重モードSAWフィルタの電極パターンの構成を示す平面図である。同図に示すように圧電基板1の主面上に表面波の伝搬方向に沿って3つのIDT電極2、3、4を近接配置すると共に、IDT電極2、3、4の両側に反射器5a、5bを配設し、前記IDT電極2、3、4はそれぞれ互いに間挿し合う複数本の電極指を有する一対のくし形電極により構成され、IDT電極2の一方のくし形電極は入力端子INに接続し、他方のくし形電極は接地する。一方、IDT電極3、4の一方のくし形電極は互いに連結して出力端子OUTに接続すると共に、他方のくし形電極はそれぞれ接地する点については従来と同様な構成である。
【0009】
本発明の特徴的な構成はIDT電極2の入力端子IN側に接続するくし形電極と、IDT電極3、4の出力端子OUTに接続するくし形電極とからそれぞれリード電極6a、6bを延在し、該リード電極を圧電基板上に形成したリアクタンス素子7に接続する点にある。ここで、リアクタンス素子7はIDT電極と同じ材料にて同じプロセスで構成した導電性パターンであって、容量が必要であればIDT型電極等の構成とすればよく、インダクタンスが必要であれば渦巻き状等の周知の平面コイル構造を適宜採用する。
【0010】
図1に示す二重モードSAWフィルタの動作は、周知のように、IDT電極2、3、4によって励起される複数の表面波が反射器5a、5bの間に閉じ込められ、IDT電極2、3、4の間で音響結合を生ずる結果、1次と3次の2の縦共振モードが強勢に励振されるため、適当な終端を施すことによりこれらの2つのモードを利用した二重モードSAWフィルタとして動作する。
【0011】
通常の低周波フィルタ例えば、モノリシッククリスタルフィルタ等において、入出力端子間に並列に容量を挿入して、減衰極を形成することが知られている。本願発明者はこの知見に基づき、図1に示す構成の二重モードSAWフィルタにおいても、入出力端子(IN−OUT)間に並列にリアクタンス素子7を挿入すれば二重モードSAWフィルタの濾波特性上に減衰極が形成され、この減衰極によって二重モードSAWフィルタ特有の通過域より高域側の阻止域における減衰量の改善が可能となるとの推測に基づき種々の実験を行った。
【0012】
例えば圧電基板に36゜YカットX伝搬LiTaO3を用い、フィルタの中心周波数を900MHz、入力IDT電極2の電極対数を17.5対、出力IDT電極3、4の電極対数をそれぞれ11.5対、グレーティング反射器5a、5bの本数を250本、電極にアルミニウム合金を用いてその膜厚を6%λとして、入出力IDT電極間に挿入するリアクタンス素子7を種々の値に設定して実験をおこなったところ、例えばリアクタンス素子として容量値0.3pFの容量を挿入接続した場合の二重モードSAWフィルタの濾波特性は図3に示す通りである。
【0013】
1dBの通過帯域幅の中心周波数をF0として、F0+45MHz近傍の阻止減衰量と入出力間に挿入するリアクタンス素子7の値との関係は図2のようになった。横軸を容量値(pF)とし、縦軸を阻止減衰量(dB)とした。図2から明らかなように通過帯域が良好な状態を維持しつつ、 F0+45MHz近傍の周波数領域での減衰量が大きく改善されるのはリアクタンス値が容量成分となった場合であり、容量Cが値は0.1pF≦C<1.0pFで特に良好な減衰特性が得られることが分かった。
また、300MHz帯、1.5GHz帯の周波数でも同様の検討を行った結果、周波数帯によらず容量Cの値は上記範囲内であることを確認した。
【0014】
図3から明らかなように通過帯域近傍の高周波側の減衰量及び急峻度が、従来の二重モードSAWフィルタに比べて大幅に改善されていることが分かる。このように通過帯域近傍の高周波側の減衰量及び急峻度が改善されたフィルタであれば、通過帯域近傍において高減衰量が要求される携帯電話等のRFフィルタの要求を満たすことができる。
【0015】
次に、図4は本発明の他の実施例で、図1と同一機能を果たす部分は同じ符号を付し、その説明は省略する。入力IDT電極2の両側のIDT電極8、9の構成を、図1に示したIDT電極3、4の極性と180度変えたものある。
図4に示す電極パターンの二重モードSAWフィルタについて、リアクタンス素子7を容量あるいはインダクタンスとした場合に、二重モードSAWフィルタの濾波特性上に減衰極を形成するかどうか実験的に調べた。
その結果、この場合はリアクタンス素子7がインダクタンスであればフィルタの特性上に減衰極が形成されることが分かった。
【0016】
例えば圧電基板に36゜YカットX伝搬LiTaO3を用い、フィルタの中心周波数を836MHz、入力IDT電極2の電極対数を18.5対、出力IDT電極3、4の電極対数をそれぞれ11.5対、グレーティング反射器5a、5bの本数を250本、電極にアルミニウム合金を用いてその膜厚を6%λ、入出力IDT電極間に挿入するインダクタンとして、例えばリアクタンス素子の値を140nHとした場合の二重モードSAWフィルタの濾波特性は図6に示す通りである。
【0017】
二重モードSAWフィルタのリアクタンス素子7の値と、フィルタの阻止減衰量との関係を実験的に求めると図5のようになる。同図において、横軸はインダクタンス(nH)であり、縦軸はF0+45MHzにおける減衰量である。
二重モードSAWフィルタの通過帯域を良好な状態に保ちながら、中心周波数F0に対しF0−45MHzからF0+45MHzまでの範囲内で阻止減衰量が大きくなるインダクタンスLの値は、10nH≦L≦240nHであることが分かった。
【0018】
図6から明らかなように通過帯域近傍の高周波側の減衰量及び急峻度が、従来の二重モードSAWフィルタに比べて大幅に改善されていることが分かる。このように通過帯域近傍の高周波側の減衰量及び減衰傾度が大きなRFフィルタであれば、携帯電話等のRFフィルタとして、その要求する規格を満たすことができる。
【0019】
また、入力IDT電極2と出力IDT電極3、4との間に形成するリアクタンス素子7を二重モードSAWフィルタを形成した同一圧電基板上ではなく、前記フィルタを保持するパッケージ内に形成しても同様な効果が得られることは明白である。
【0020】
尚、以上の説明でIDT電極3個で構成する1次−3次縦結合二重モードSAWフィルタを例として説明したが、本発明はこれのみに限定されるものではなく、IDT電極を複数個用いて構成する縦結合多重モードSAWフィルタに適用できることはいうまでもない。たた、以上でも説明したように入出力端子に発生する極性により、入出力端子に挿入するリアクタンスを容量にするかインダクタンスにするかが決まることになる。
【0021】
以上本の説明で圧電基板として36゜YカットX伝搬LiTaO3を例に説明したが、他の切断角度例えば42゜YカットX伝搬LiTaO3等に適用できることは云うまでもない。また、圧電基板はタンタル酸リチウムに限るものではなく、64゜YカットX伝搬LiNbO3、45゜XカットZ伝搬四硼酸リチウム(Li2B4O7) 、STカット水晶、ランガサイト等の如何なる圧電材料にも適用できることは云うまでもない。
また、上記1次−3次縦結合二重モードSAWフィルタを縦続して、さらに減衰量を多くすることも可能である。
【0022】
【発明の効果】
本発明は以上説明したように構成したので、縦結合多重モードSAWフィルタにおいて通過帯域近傍の高周波側における阻止減衰量と減衰傾度度とを大幅に改善することが可能となり、このようなRFフィルタを無線通信機器のRFフィルタとして用いれば無線機の特性を改善する上で著しい効果を発揮する。
【図面の簡単な説明】
【図1】本発明に係わる縦結合二重モードSAWフィルタの電極パターンの構成を示す図である。
【図2】入出力電極間に挿入するリアクタンスの値と通過帯域近傍の高周波側における阻止減衰量との関係を示す図である。
【図3】本発明の電極構成を用いて試作した縦結合二重モードSAWフィルタの濾波特性図である。
【図4】本発明に係わる他の縦結合二重モードSAWフィルタの電極構成を示す図である。
【図5】入出力電極間に挿入するリアクタンスの値と通過帯域近傍の高周波側における阻止減衰量との関係を示す図である。
【図6】図4に示す電極パターンを用いて構成した縦結合二重モードSAWフィルタの濾波特性である。
【図7】従来の1次−3次縦結合二重モードSAWフィルタの電極構成を示す図である。
【図8】従来の1次−3次縦結合二重モードSAWフィルタの濾波特性例である。
【符号の説明】
1・・圧電基板
2、3、4・・IDT電極
5a、5b・・(グレーティング)反射器
6a、6b・・リード電極
7・・リアクタンス素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a longitudinally coupled multimode SAW filter, and more particularly to a longitudinally coupled multimode SAW filter in which deterioration of the attenuation gradient occurring on the high frequency side near the passband characteristic of the longitudinally coupled multimode SAW filter is improved.
[0002]
[Prior art]
In recent years, SAW filters have been used in many communication fields, and have played a role in widespread use of mobile phones and the like because of their characteristics such as high performance, small size, and mass productivity.
FIG. 7 is a schematic plan view showing a configuration of an electrode pattern of a conventional primary-third-order longitudinally coupled double mode SAW filter (hereinafter referred to as a dual mode SAW filter), on the main surface of the piezoelectric substrate 11. Further, three IDT electrodes 12, 13, and 14 are arranged close to each other along the propagation direction of the surface wave, and reflectors 15a and 15b are arranged on both sides of the IDT electrodes 12, 13, and 14.
The IDT electrodes 12, 13, and 14 are each composed of a pair of comb-shaped electrodes having a plurality of electrode fingers that are interleaved with each other. One comb-shaped electrode of the IDT electrode 12 is connected to the input terminal IN, and the other comb-shaped electrode. The electrode is grounded. One of the comb electrodes of the IDT electrodes 13 and 14 are connected to each other and connected to the output terminal OUT, and the other comb electrodes are grounded.
[0003]
As is well known, the operation of the dual mode SAW filter shown in FIG. 7 is performed by confining a plurality of surface waves excited by the IDT electrodes 12, 13, and 14 between the reflectors 15a and 15b. As a result, the first and third longitudinal resonance modes are vigorously excited. Therefore, a dual mode SAW filter using these two modes by applying appropriate terminations. Works as. It is well known that the pass bandwidth of the dual mode SAW filter is determined by the frequency difference between the primary resonance mode and the tertiary resonance mode.
[0004]
For example, 36 ° Y cut X propagation LiTaO 3 is used as the piezoelectric substrate, the filter center frequency is 836.5 MHz, the number of electrode pairs of the input IDT electrode 12 is 17.5 pairs, the number of electrode pairs of the output IDT electrodes 13 and 14 is 11.5 pairs, The filtering characteristics of the dual mode SAW filter when the number of grating reflectors 15a and 15b is 250 and the thickness of the electrode is 6% λ (λ is the wavelength of the excited surface wave) using an aluminum alloy as an electrode is as follows. As shown in FIG.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional dual mode filter, as is clear from the filtering characteristics shown in FIG. 8, the stopband attenuation indicated by the arrow A in the high frequency side near the passband is deteriorated, and the low frequency Attenuation equivalent to the side is not obtained. That is, in filtering characteristics of FIG. 8, when the center frequency of 1dB passband width is F 0, while the attenuation amount is obtained about 20dB at the low frequency side of the F 0 -45MHz, in the high-frequency side of the F 0 + 45 MHz is The attenuation is about 8 dB. As described above, in the conventional dual mode filter, the attenuation on the high frequency side in the vicinity of the pass band is about 10 dB as compared with the attenuation on the low frequency side in the vicinity of the pass band. When such a dual mode filter is used for an RF filter such as a cellular phone, there is a problem that the amount of attenuation is insufficient on the high frequency side.
The present invention has been made to solve the above-described problems of the dual-mode SAW filter, and provides a filter that has a wide band and greatly improves the amount of blocking attenuation on the high-frequency side near the pass band. With the goal.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the longitudinally coupled multimode SAW filter according to the present invention comprises a plurality of IDT electrodes and reflectors on both sides thereof on the piezoelectric substrate along the propagation direction of the surface wave. In the longitudinally coupled multimode SAW filter configured as described above, a reactance element is inserted and connected between the input IDT electrode and the output IDT electrode, and the polarities of the electrode fingers closest to each other adjacent to each other are made different from each other. Is a longitudinally coupled multimode SAW filter characterized in that 0.1 pF ≦ X <1.0 pF.
According to a second aspect of the present invention, there is provided a longitudinally coupled multimode SAW filter configured by arranging a plurality of IDT electrodes along a propagation direction of a surface wave on a piezoelectric substrate and reflectors on both sides thereof, and an input IDT electrode and an output IDT. A reactance element is inserted and connected between the electrodes, the polarities of closest electrode fingers of adjacent IDT electrodes are the same, and the value of the reactance element is 10 nH ≦ X ≦ 240 nH It is a mode SAW filter.
According to a third aspect of the present invention, the reactance element is a conductive pattern formed on the same substrate as the IDT electrode by the same process as the IDT electrode. It is a combined multimode SAW filter.
The invention according to claim 4 is the longitudinally coupled multi-mode SAW filter according to any one of claims 1 to 3, wherein the reactance element is formed in a package holding the filter element.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
In the dual mode SAW filter, the attenuation amount on the high frequency side in the vicinity of the pass band is significantly inferior to that on the low frequency side due to the transversal characteristics between a plurality of IDT electrodes arranged on the piezoelectric substrate. However, no means for fundamentally eliminating this characteristic has been found yet.
[0008]
FIG. 1 is a plan view showing the configuration of an electrode pattern of a dual mode SAW filter with improved attenuation on the high frequency side near the passband according to the present invention. As shown in the figure, three IDT electrodes 2, 3, 4 are arranged close to each other along the surface wave propagation direction on the main surface of the piezoelectric substrate 1, and reflectors 5 a are provided on both sides of the IDT electrodes 2, 3, 4. 5b, and the IDT electrodes 2, 3 and 4 are each composed of a pair of comb electrodes having a plurality of electrode fingers interleaved with each other, and one comb electrode of the IDT electrode 2 is connected to the input terminal IN. And the other comb electrode is grounded. On the other hand, one of the comb electrodes of the IDT electrodes 3 and 4 is connected to the output terminal OUT and connected to the output terminal OUT, and the other comb electrode is grounded in the same manner as in the prior art.
[0009]
The characteristic configuration of the present invention is that lead electrodes 6a and 6b extend from a comb electrode connected to the input terminal IN side of the IDT electrode 2 and a comb electrode connected to the output terminal OUT of the IDT electrodes 3 and 4, respectively. The lead electrode is connected to the reactance element 7 formed on the piezoelectric substrate. Here, the reactance element 7 is a conductive pattern composed of the same material as the IDT electrode and in the same process. If the capacitance is required, it may be configured as an IDT type electrode or the like. A well-known planar coil structure such as a shape is appropriately adopted.
[0010]
As is well known, the operation of the dual mode SAW filter shown in FIG. 1 is performed by confining a plurality of surface waves excited by the IDT electrodes 2, 3, 4 between the reflectors 5 a, 5 b. As a result of the acoustic coupling between the first and second longitudinal resonance modes, the first and third longitudinal resonance modes are vigorously excited. Therefore, a dual mode SAW filter using these two modes by applying appropriate terminations. Works as.
[0011]
In an ordinary low-frequency filter such as a monolithic crystal filter, it is known to form an attenuation pole by inserting a capacitor in parallel between input and output terminals. Based on this knowledge, the inventor of the present application can also filter the filtering characteristics of the dual mode SAW filter by inserting the reactance element 7 in parallel between the input and output terminals (IN-OUT) in the dual mode SAW filter having the configuration shown in FIG. Various experiments were conducted based on the assumption that an attenuation pole was formed on the top, and that the attenuation in the stop band higher than the pass band unique to the dual mode SAW filter could be improved by this attenuation pole.
[0012]
For example, 36 ° Y cut X propagation LiTaO 3 is used for the piezoelectric substrate, the filter center frequency is 900 MHz, the input IDT electrode 2 has 17.5 electrode pairs, and the output IDT electrodes 3 and 4 have 11.5 electrode pairs. The experiment was performed by setting the number of the grating reflectors 5a and 5b to 250, using the aluminum alloy for the electrode and the film thickness of 6% λ, and setting the reactance element 7 inserted between the input and output IDT electrodes to various values. As a result, for example, the filtering characteristics of the dual-mode SAW filter when a capacitance of 0.3 pF is inserted and connected as the reactance element are as shown in FIG.
[0013]
As F 0 the center frequency of 1dB passband width, the relationship between the value of the reactance element 7 to be inserted between input and output F 0 + 45 MHz blocking attenuation in the vicinity was as shown in FIG 2. The horizontal axis is the capacitance value (pF), and the vertical axis is the blocking attenuation (dB). As is clear from FIG. 2, the attenuation in the frequency region near F 0 +45 MHz is greatly improved when the reactance value becomes a capacitance component while maintaining a good passband. However, it was found that particularly good attenuation characteristics can be obtained when the value is 0.1 pF ≦ C <1.0 pF.
In addition, as a result of performing the same examination at the frequencies of 300 MHz band and 1.5 GHz band, it was confirmed that the value of the capacitance C was within the above range regardless of the frequency band.
[0014]
As is apparent from FIG. 3, it can be seen that the attenuation and steepness on the high frequency side in the vicinity of the pass band are greatly improved as compared with the conventional dual mode SAW filter. Thus, a filter with improved attenuation and steepness on the high frequency side in the vicinity of the pass band can satisfy the requirements of an RF filter such as a mobile phone that requires high attenuation in the vicinity of the pass band.
[0015]
Next, FIG. 4 shows another embodiment of the present invention, and parts having the same functions as those in FIG. The configuration of the IDT electrodes 8 and 9 on both sides of the input IDT electrode 2 is changed by 180 degrees from the polarity of the IDT electrodes 3 and 4 shown in FIG.
With respect to the dual mode SAW filter having the electrode pattern shown in FIG. 4, it was experimentally examined whether or not an attenuation pole is formed on the filtering characteristics of the dual mode SAW filter when the reactance element 7 has a capacitance or inductance.
As a result, in this case, it was found that if the reactance element 7 is an inductance, an attenuation pole is formed on the characteristics of the filter.
[0016]
For example, 36 ° Y cut X propagation LiTaO 3 is used for the piezoelectric substrate, the filter center frequency is 836 MHz, the input IDT electrode 2 has 18.5 electrode pairs, the output IDT electrodes 3 and 4 have 11.5 electrode pairs, and a grating reflector. Double mode when the number of 5a, 5b is 250, the electrode is made of aluminum alloy, the film thickness is 6% λ, and the inductance is inserted between the input / output IDT electrodes, for example, the value of the reactance element is 140 nH The filtering characteristics of the SAW filter are as shown in FIG.
[0017]
FIG. 5 shows an experimental relationship between the value of the reactance element 7 of the dual mode SAW filter and the blocking attenuation amount of the filter. In the figure, the horizontal axis represents inductance (nH), and the vertical axis represents the attenuation at F 0 +45 MHz.
While keeping the pass band of the double mode SAW filters in good condition, the inductance L of blocking attenuation in the range becomes large with respect to the center frequency F 0 from F 0 -45MHz to F 0 + 45 MHz is, 10 nH ≦ L It was found that ≦ 240 nH.
[0018]
As can be seen from FIG. 6, the attenuation and steepness on the high frequency side in the vicinity of the pass band are greatly improved as compared with the conventional dual mode SAW filter. Thus, if the RF filter has a large attenuation amount and attenuation gradient on the high frequency side in the vicinity of the pass band, the required standard can be satisfied as an RF filter for a mobile phone or the like.
[0019]
Further, the reactance element 7 formed between the input IDT electrode 2 and the output IDT electrodes 3 and 4 may be formed not in the same piezoelectric substrate on which the dual mode SAW filter is formed but in the package holding the filter. It is clear that a similar effect can be obtained.
[0020]
In the above description, a primary-third-order longitudinally coupled double mode SAW filter constituted by three IDT electrodes has been described as an example. However, the present invention is not limited to this, and a plurality of IDT electrodes are provided. Needless to say, the present invention can be applied to a longitudinally coupled multimode SAW filter configured by using the same. However, as described above, depending on the polarity generated at the input / output terminal, the reactance inserted into the input / output terminal is determined to be a capacitance or an inductance.
[0021]
In the above description, 36 ° Y-cut X-propagating LiTaO 3 has been described as an example of the piezoelectric substrate, but it goes without saying that it can be applied to other cutting angles such as 42 ° Y-cut X-propagating LiTaO 3 . Also, the piezoelectric substrate is not limited to lithium tantalate, but any of 64 ° Y-cut X-propagating LiNbO 3 , 45 ° X-cut Z-propagating lithium tetraborate (Li 2 B 4 O 7 ), ST-cut quartz, langasite, etc. Needless to say, the present invention can also be applied to piezoelectric materials.
Further, it is possible to further increase the attenuation amount by cascading the first-order to third-order longitudinally coupled double mode SAW filters.
[0022]
【The invention's effect】
Since the present invention is configured as described above, in the longitudinally coupled multimode SAW filter, it becomes possible to greatly improve the amount of stop attenuation and the attenuation gradient on the high frequency side near the passband. If it is used as an RF filter for a wireless communication device, a remarkable effect is exhibited in improving the characteristics of the wireless device.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an electrode pattern of a longitudinally coupled double mode SAW filter according to the present invention.
FIG. 2 is a diagram showing a relationship between a reactance value inserted between input and output electrodes and a blocking attenuation amount on a high frequency side near a pass band.
FIG. 3 is a filtering characteristic diagram of a longitudinally coupled double mode SAW filter experimentally manufactured using the electrode configuration of the present invention.
FIG. 4 is a diagram showing an electrode configuration of another longitudinally coupled double mode SAW filter according to the present invention.
FIG. 5 is a diagram showing the relationship between the value of reactance inserted between input and output electrodes and the amount of blocking attenuation on the high frequency side near the passband.
6 is a filtering characteristic of a longitudinally coupled double mode SAW filter configured using the electrode pattern shown in FIG.
FIG. 7 is a diagram illustrating an electrode configuration of a conventional primary-cubic longitudinally coupled double mode SAW filter.
FIG. 8 is an example of filtering characteristics of a conventional primary-third longitudinally coupled double mode SAW filter.
[Explanation of symbols]
1 .. Piezoelectric substrates 2, 3, 4.. IDT electrodes 5 a and 5 b... (Grating) reflectors 6 a and 6 b... Lead electrode 7.

Claims (4)

圧電基板上に表面波の伝搬方向に沿って複数のIDT電極とその両側に反射器を配置して構成する縦結合多重モードSAWフィルタにおいて、
入力IDT電極と出力IDT電極との間にリアクタンス素子を挿入接続し、
互いに隣り合うIDT電極の最近接する電極指同士の極性を異ならせ、前記リアクタンス素子の値を0.1pF≦X<1.0pFとしたことを特徴とする縦結合多重モードSAWフィルタ。
In a longitudinally coupled multimode SAW filter configured by arranging a plurality of IDT electrodes and reflectors on both sides thereof along the propagation direction of surface waves on a piezoelectric substrate,
A reactance element is inserted and connected between the input IDT electrode and the output IDT electrode,
A longitudinally coupled multimode SAW filter characterized in that the nearest electrode fingers of adjacent IDT electrodes have different polarities, and the value of the reactance element is 0.1 pF ≦ X <1.0 pF.
圧電基板上に表面波の伝搬方向に沿って複数のIDT電極とその両側に反射器を配置して構成する縦結合多重モードSAWフィルタにおいて、
入力IDT電極と出力IDT電極との間にリアクタンス素子を挿入接続し、
互いに隣り合うIDT電極の最近接する電極指同士の極性を同じとし、前記リアクタンス素子の値を10nH≦X≦240nHとしたことを特徴とする縦結合多重モードSAWフィルタ。
In a longitudinally coupled multimode SAW filter configured by arranging a plurality of IDT electrodes and reflectors on both sides thereof along the propagation direction of surface waves on a piezoelectric substrate,
A reactance element is inserted and connected between the input IDT electrode and the output IDT electrode,
A longitudinally coupled multimode SAW filter characterized in that the closest electrode fingers of adjacent IDT electrodes have the same polarity, and the value of the reactance element is 10 nH ≦ X ≦ 240 nH.
前記リアクタンス素子が前記IDT電極と同一基板上に前記IDT電極と同一プロセスにて形成した導電性パターンであることを特徴とする請求項1又は2に記載の縦結合多重モードSAWフィルタ。  3. The longitudinally coupled multimode SAW filter according to claim 1, wherein the reactance element is a conductive pattern formed on the same substrate as the IDT electrode by the same process as the IDT electrode. 前記フィルタ素子を保持するパッケージ内に前記リアクタンス素子を形成することを特徴とする請求項1乃至3のいずれかに記載の縦結合多重モードSAWフィルタ。  The longitudinally coupled multimode SAW filter according to any one of claims 1 to 3, wherein the reactance element is formed in a package holding the filter element.
JP06954898A 1998-03-04 1998-03-04 Vertically coupled multimode SAW filter Expired - Fee Related JP3890731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06954898A JP3890731B2 (en) 1998-03-04 1998-03-04 Vertically coupled multimode SAW filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06954898A JP3890731B2 (en) 1998-03-04 1998-03-04 Vertically coupled multimode SAW filter

Publications (2)

Publication Number Publication Date
JPH11251861A JPH11251861A (en) 1999-09-17
JP3890731B2 true JP3890731B2 (en) 2007-03-07

Family

ID=13405897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06954898A Expired - Fee Related JP3890731B2 (en) 1998-03-04 1998-03-04 Vertically coupled multimode SAW filter

Country Status (1)

Country Link
JP (1) JP3890731B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1263137B1 (en) 2001-05-31 2017-07-26 Skyworks Filter Solutions Japan Co., Ltd. Surface acoustic wave filter, balanced type filter and communication device
JP2003060484A (en) * 2001-08-14 2003-02-28 Murata Mfg Co Ltd Surface acoustic wave device
JP3838128B2 (en) 2002-03-18 2006-10-25 株式会社村田製作所 Surface acoustic wave device and communication device equipped with the same
JP3963862B2 (en) 2003-05-20 2007-08-22 富士通メディアデバイス株式会社 Surface acoustic wave filter and duplexer having the same
JP4627198B2 (en) * 2005-02-25 2011-02-09 京セラキンセキ株式会社 Low pass filter
WO2009025057A1 (en) 2007-08-23 2009-02-26 Fujitsu Limited Branching filter, module including the branching filter, communication device
JP5183459B2 (en) 2008-12-26 2013-04-17 太陽誘電株式会社 Duplexer, duplexer substrate and electronic device
EP2381576B8 (en) * 2008-12-26 2019-01-02 Taiyo Yuden Co., Ltd. Demultiplexer and electronic device

Also Published As

Publication number Publication date
JPH11251861A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
CN111448759B (en) Multiplexer, high frequency front-end circuit and communication device
EP0782255B1 (en) Longitudinal coupling type surface acoustic wave resonator filter
JP2002314366A (en) Surface acoustic wave filter, surface acoustic wave device and communication equipment
US6292071B1 (en) Surface acoustic wave filter for improving flatness of a pass band and a method of manufacturing thereof
JP3890731B2 (en) Vertically coupled multimode SAW filter
US6828879B2 (en) Longitudinal coupled multiple mode surface acoustic wave filter
US20070109075A1 (en) Surface acoustic wave filter
CN117674765A (en) Elastic wave filter and multiplexer
JP3745847B2 (en) Structure of dual mode SAW filter
JP3280617B2 (en) Broadband surface wave filter
JP3915322B2 (en) Surface acoustic wave filter
JPH09181566A (en) Surface acoustic wave resonator filtering device
JP2004140738A (en) Surface acoustic wave filter
JP2817380B2 (en) Vertical dual mode surface acoustic wave filter
JP2002064358A (en) Compound surface acoustic wave filter
JPH05335881A (en) Longitudinal dual mode surface acoustic wave filter
JP2002111443A (en) Coupled surface acoustic wave filter
JPH05251988A (en) Longitudinal coupling dual mode leaky saw filter
JP3890667B2 (en) Vertically coupled double mode SAW filter
JP2002217680A (en) Ladder-type surface acoustic wave filter
JP3397195B2 (en) Edge reflection type surface acoustic wave filter
JP4138093B2 (en) Vertically coupled double mode SAW filter
JPH10322161A (en) Vertically-coupled triple mode saw filter
JP3290165B2 (en) Ladder type surface acoustic wave filter
JP2002111444A (en) Coupled surface acoustic wave filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees