JP2004140738A - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter Download PDF

Info

Publication number
JP2004140738A
JP2004140738A JP2002305558A JP2002305558A JP2004140738A JP 2004140738 A JP2004140738 A JP 2004140738A JP 2002305558 A JP2002305558 A JP 2002305558A JP 2002305558 A JP2002305558 A JP 2002305558A JP 2004140738 A JP2004140738 A JP 2004140738A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
comb
saw resonator
wave filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002305558A
Other languages
Japanese (ja)
Inventor
Yasuhide Onozawa
小野澤 康秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2002305558A priority Critical patent/JP2004140738A/en
Publication of JP2004140738A publication Critical patent/JP2004140738A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a means which improves an attenuation gradient near the passband of a cascaded multiplex mode SAW filter and the amount of stop band attenuation near the passband. <P>SOLUTION: In the surface acoustic wave filter, one or a plurality of cascaded multiplex mode surface acoustic wave filters having a plurality of IDTs and grating reflectors arranged on both sides of the IDTs are cascade-connected, and at least one single-terminal paired SAW resonator is connected in series or parallel to the cascaded multiplex mode surface acoustic wave filters. Further, a comb shaped capacitor is connected in parallel to the single-terminal paired SAW resonator. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、弾性表面波フィルタに関し、特に通過帯域近傍の阻止域減衰量を改善した弾性表面波フィルタに関する。
【0002】
【従来の技術】
近年、弾性表面波フィルタは通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話等に多く用いられる。図8は、従来の縦続接続型1次−3次縦結合弾性表面波フィルタ(以下、二重モードSAWフィルタと称す)の構成を示す電極パターンの平面図であって、圧電基板41の主面上に表面波の伝搬方向に沿って3つのすだれ上のIDT42、43、44を近接配置すると共に、これらの両側にグレーティング反射器45a、45b(以下、反射器と称す)を配置して第一のフィルタとする。IDT42、43、44はそれぞれ互いに間挿し合う複数本の電極指を有する一対のくし型電極により構成され、IDT42の基板41の端部寄りのくし形電極は該電極の外側近傍に設けた電極パッドP1と接続して入力とし、他方のくし形電極は該電極の近傍で基板41の中心部寄りに設けた接地用電極パッドE1に接続する。そして、IDT43、44の基板41の端部寄りのくし形電極は該電極の外側近傍に設けた接地用電極パッドE2、E3にそれぞれ接続する。また、IDT43、44の他方のくし形電極からそれぞれ縦続接続用のリード電極L1を次段に向けて延在する。
【0003】
第1の二重モードSAWフィルタに対し基板中央でほぼ線対称に第2の二重モードSAWフィルタ、即ちIDT46、47、48とその両側に配置した反射器49a、49bからなる二重モードSAWフィルタを表面波の伝搬方向に沿って形成する。そして、IDT46の基板41の中央部寄りのくし形電極は該電極の外側近傍に設けた接地用電極パッドE4と接続し、IDT46の他方のくし形電極は該電極の外側近傍に設けた出力用電極パッドP2と接続する。さらに、IDT47、48の基板41の端部寄りのくし形電極は該電極の外側近傍に設けた接地用電極パッドE5、E6にそれぞれ接続する。また、IDT47、48の他方のくし形電極からそれぞれ縦続接続用のリード電極L2を前段に向けて延在する。
【0004】
第1の二重モードSAWフィルタの一方の出力端子、即ちIDT43の基板41内側のバスバーより延在するリード電極L1に、表面波の伝搬方向に沿ってIDT50とその両側に反射器51a、51bを配置したSAW共振子(以下、SAW共振子A)の一方の端子を直列接続すると共に、二重モードSAWフィルタの他方の出力端子であるIDT44の基板41内側のバスバーより延在するリード電極L1にIDT52と反射器53a、53bを配置したSAW共振子(以下、SAW共振子B)の一方の端子を直列接続する。そして、SAW共振子A、Bのそれぞれ他方の端子からリード電極L2を延在し、第2の二重モードSAWフィルタのIDT47、48の基板41の中心部寄りのバスバーとそれぞれ接続するように構成する。
【0005】
図8に示す二重モードSAWフィルタの動作は、周知のように、IDT42、43、44によって励起される表面波が反射器45a、45bの間に閉じ込められて音響結合し、電極パターンにより1次と3次の2つの縦共振モードが強勢に励振され、これらの2つのモードを利用して二重モードSAWフィルタを構成する。また、SAW共振子A、Bの反共振周波数を二重モードSAWフィルタの通過帯域よりも高周波数側に設定することで、通過帯域の高域側で前記SAW共振子の反共振周波数による減衰極が発生し、通過帯域高域側の減衰傾度及び阻止域減衰量が改善される。
【0006】
図9は、39°YカットX伝搬LiTaO基板上に、中心周波数836.5MHz、通過帯域幅25MHzの二重モードSAWフィルタを形成すべく、アルミニウム合金の膜厚を4100Å、二重モードSAWフィルタのIDT42、46の対数を18.5対、IDT43、44及び47、48の対数をそれぞれ12.5対、反射45a、45b及び49a、49bの本数をそれぞれ120本とし、SAW共振子A、BのIDT50、52の対数をそれぞれ63対、反射器51a、51b及び53a、53bの本数をそれぞれ4本とした場合の二重モードSAWフィルタの通過特性を示す図である。
【発明が解決しようとする課題】
【0007】
近年、更なる通話品質の向上に伴い、市場からの要求仕様が厳しくなってきており、特に通過帯域近傍の阻止域の高減衰化の要求が顕著になってきた。これらの要求に応えるため、例えば特開2000−349590号公報、特開平7−307641号公報、特開平7−30366号公報、特開平7−30367号公報に開示されたように、弾性表面波フィルタに一端子対SAW共振子を接続することで通過帯域近傍の減衰傾度及び阻止域減衰量の改善が行われてきたが、これら従来の弾性表面波フィルタでは通過帯域近傍の阻止域の減衰特性の改善も限界に達し、市場からの要求仕様を満足することが困難になってきた。
【0008】
本発明は、上記問題を解決するためになされたものであって、市場からの様々な特性改善要求の中で特に通過帯域近傍の減衰傾度及び阻止域減衰量を改善した弾性表面波フィルタを提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するために本発明に係る弾性表面波フィルタの請求項1記載の発明は、複数個のIDTとその両側に反射器とを配置した縦結合多重モード弾性表面波フィルタを1個あるいは複数個縦続接続し、前記縦結合多重モード弾性表面波フィルタに少なくとも1個の1端子対SAW共振子を直列に接続した弾性表面波フィルタにおいて、前記1端子対SAW共振子に並列にキャパシタを接続したことを特徴とする弾性表面波フィルタである。
【0010】
請求項2記載の発明は、複数個のIDTとその両側に反射器とを配置した縦結合多重モード弾性表面波フィルタを1個あるいは複数個縦続接続し、前記縦結合多重モード弾性表面波フィルタに少なくとも1個の1端子対SAW共振子を並列に接続した弾性表面波フィルタにおいて、前記1端子対SAW共振子に並列にキャパシタを接続したことを特徴とする弾性表面波フィルタである。
【0011】
請求項3記載の発明は、請求項1又は2記載の弾性表面波フィルタにおいて、前記キャパシタは圧電基板上にくし形形状の電極を配置したくし形キャパシタであることを特徴とする弾性表面波フィルタである。
【0012】
請求項4記載の発明は、請求項3記載の弾性表面波フィルタにおいて、前記くし形キャパシタは縦結合多重モード弾性表面波フィルタあるいは1端子対SAW共振子と同一の圧電基板上に形成されたものであり、これらとの間で弾性表面波を送受信しないように配置したことを特徴とする弾性表面波フィルタ。
【0013】
請求項5記載の発明は、請求項3乃至4記載の弾性表面波フィルタにおいて、前記くし形キャパシタを同一の圧電基板上に複数個設けた場合にくし形キャパシタ同士での弾性表面波を送受信しないように当該くし形キャパシタを配置したことを特徴とする弾性表面波フィルタ。
【発明の実施の形態】
【0014】
以下、本発明を図面に図示した実施の形態例に基づいて詳細に説明する。 図1は、本発明の第1の実施例に係る二重モードSAWフィルタの構成を示す平面図であって圧電基板1の主面上に表面波の伝搬方向に沿って3つのIDT2、3、4を近接配置すると共にこれらの両側に反射器5a、5bを配設して第1のフィルタとする。IDT2、3、4はそれぞれ互いの間挿し合う複数本の電極指を有する一対のくし形電極により構成され、IDT2の外側のくし形電極は該電極の外側近傍に設けた電極パッドP1と接続して入力とし、他方のくし形電極は該電極の近傍で基板1の中心部寄りに設けた接地用電極パッドE1に接続する。そして、IDT3、4の外側のくし形電極は該電極の外側近傍に設けた接地用電極パッドE2、E3に接続する。またIDT3、4の他方のくし形電極からそれぞれ縦続接続用のリード電極L1を次段に向けて延在する。
【0015】
第1の二重モードSAWフィルタに対し基板中央でほぼ線対称に第2の二重モードSAWフィルタ、即ちIDT6、7、8とその両側に配置した反射器9a、9bとからなる二重モードSAWフィルタを形成する。そして、IDT6の内側のバスバーは該電極の近傍で基板1の中心部寄りに設けた接地用電極パッドE4と接続し、IDT6の外側のバスバーは該電極の外側近傍に設けた出力用電極パッドP2と接続する。さらに、IDT7、8の基板1の端部寄りのバスバーをそれぞれ接地用電極パッドE5、E6と接続する。またIDT7、8の他方のくし形電極からそれぞれ縦続接続用のリード電極L2を前段に向けて延在する。
【0016】
第1の二重モードSAWフィルタの一方の出力端子、即ちIDT3の基板1内側のバスバーより延在するリード電極L1に表面波の伝搬方向に沿ってIDT10とその両側に反射器11a、11bを配置したSAW共振子(以下、SAW共振子C)の一方の端子を直列接続すると共に、第1の二重モードSAWフィルタの他方の出力端子であるIDT4の基板1内側のバスバーより延在するリード電極L1にIDT12と反射器13a、13bを配置したSAW共振子(以下、SAW共振子D)の一方の端子を直列接続する。そして、SAW共振子C、Dのそれぞれ他方の端子からリード電極L2を延在し、第2の二重モードSAWフィルタのIDT7、8の基板1の中心寄りのバスバーとそれぞれ接続するように構成する。
【0017】
SAW共振子C、Dを構成するIDT10、12の互いに間挿し合う電極指のピッチにより規定される波長λrは、IDT2〜4、6〜8の互いに間挿し合う電極指のピッチにより規定される波長λより幾分小さくし、その反共振周波数を縦続接続した第1及び第2の二重モードSAWフィルタの通過帯域近傍の高周波数側に位置するよう設定し、通過帯域高域側に該SAW共振子C、Dの反共振周波数を減衰極とするトラップを構成する。本発明の特徴は、表面波の励振受信がなされないよう表面波の伝搬方向と直交する方向にIDTを配置して構成したくし形キャパシタ14をリード電極L3を介して前記SAW共振子Cに並列接続し、同様にリード電極L4を介してSAW共振子Dにくし形キャパシタ15を並列接続して、弾性表面波フィルタを構成したことである。
【0018】
次に、SAW共振子C、Dのような1端子対SAW共振子とそれに並列接続したキャパシタとの関係について説明する。図2は、1端子対SAW共振子のインピーダンス−周波数特性を示す図であり、破線は1端子対SAW共振子単体の特性であり、実線は1端子対SAW共振子に1pF相当のキャパシタを並列接続したときの特性である。同図に示す通り1端子対SAW共振子にキャパシタを並列に接続することにより、反共振周波数faが共振周波数fr側に移動してfa’となり、共振周波数と反共振周波数の間隔が狭まることがわかる。
【0019】
本願発明者はこの点に着目し、縦結合多重モードSAWフィルタにおいて、該SAWフィルタに直列に1端子対SAW共振子を接続して、通過帯域高域側に該SAW共振子の反共振周波数を減衰極としてトラップを形成する場合、1端子対SAW共振子にキャパシタを並列に接続することで、図3に示すように通過帯域高域側に設定した減衰極が低周波数側に移動し、通過帯域高域側の減衰傾度が更に改善されるのではないかと考えた。
【0020】
図4は、39°YカットX伝搬LiTaO基板上に、中心周波数836.5MHz、通過帯域幅25MHzの二重モードSAWフィルタを形成すべく図1に示すような電極パターンを形成して、くし形キャパシタを1端子対SAW共振子に並列に接続した場合(実線)とくし形キャパシタを設けない従来構造の場合(破線)の実測データの比較を示す図である。この実測データにおいては、実線、破線共にアルミニウム合金の膜厚を4100Å、IDT2を18.5対、IDT3、4をそれぞれ12.5対、反射器5a、5bの本数をそれぞれ120本とし、1端子対SAW共振子のIDT10、12の対数をそれぞれ63対、反射器11a、11b及び13a、13bの本数をそれぞれ4本とし、IDT2、3、4を構成する電極指のピッチで規定される波長λと1端子対SAW共振子を構成する電極指のピッチで規定される波長λrの比(λr/λ)を0.99193と設定した。実線データにおいては、くし形キャパシタ14、15の対数を33対、くし形電極の交差幅を53μmとし、0.85pF相当のキャパシタを1端子対SAW共振子に並列接続した。なお、くし形キャパシタをそれぞれの1端子対SAW共振子C、Dに並列接続しただけの構成にすると、1端子対SAW共振子の共振周波数−反共振周波数間隔が狭まる影響で、フィルタ全体としての通過帯域幅が若干狭くなるため、図4に示した実測データにおいては、くし形キャパシタを並列接続した1端子対SAW共振子は、くし形キャパシタを接続しない1端子対SAW共振子と比較してIDTと反射器の周期を短くし共振周波数を2MHz高くしている。同図から明らかなように、1端子対SAW共振子にくし形キャパシタを並列に接続することで、通過帯域の高域側近傍の減衰傾度及び阻止域減衰量が改善されていることが分かる。
【0021】
くし形キャパシタの電極指配置周期は1端子対SAW共振子のIDTや反射器と必ずしも同等とする必要はなく、所望のリアクタンスが得られればよく、その構造上において他のIDT等の電極パターンと同時に形成することができるので、製造工程において工程が追加されることがない。
【0022】
くし形キャパシタの配置方法においては、図1では、IDTと直交する方向にくし形キャパシタを配置しているが、必ずしも直交にする必要はなくIDTの表面波を送受信しないような方向であればよい。ただし、チップサイズを考慮すると図1に示すIDTに対し直交にくし形キャパシタを配置した構造が望ましい。また、くし形キャパシタをSAWチップ上に複数個設けた場合、くし形キャパシタ同士で表面波が送受信され通過帯域外にスプリアスが発生しないようにくし形キャパシタを配置する必要がある。
【0023】
図5は本発明に係る第2の実施例であり、圧電基板1上に表面波の伝搬方向に沿って3個のIDT21、22、23を近接配置しその両端部に反射器24a、24bを配置した縦結合二重モードSAWフィルタにおいて、IDT21の一方のくし形電極は入力用電極パッドP1に接続し、IDT21の他方のくし形電極は接地用電極パッドE1に接続する。また、IDT22、23の一方のくし形電極はそれぞれ接地用電極パッドE2、E3に接続し、IDT22、23の他方のくし形電極は、1端子対SAW共振子25の片側一方のくし形電極と接続し、SAW共振子25の他方のくし形電極を出力用電極パッドP2と接続する。なお、1端子対SAW共振子25の反共振周波数を前記二重モードSAWフィルタの通過帯域よりも高周波数側に位置するよう設計している。本実施例の特徴は、前記二重モードSAWフィルタに1端子対SAW共振子25を直列接続した構造において、1端子対SAW共振子25にくし形キャパシタ26を並列に接続したことである。
【0024】
第2の実施例においても、1端子対SAW共振子にくし形キャパシタを並列に接続することで第1の実施例と同様に通過帯域の高域側近傍の減衰傾度及び阻止域減衰量が改善される。なお、図5においては二重モードSAWフィルタの出力側に1端子対SAW共振子を1個直列接続した構造であるが、二重モードSAWフィルタに1端子対SAW共振子を複数個直列接続した構造、あるいは二重モードSAWフィルタの入出力側に1端子対SAW共振子を直列接続した構造においても、同様な効果が得られるのは明らかである。
【0025】
図6は、本発明に係る第3の実施例であり、二重モードSAWフィルタは図5の構成と同じであるため、図5と同じ符号を用いている。本実施例の特徴は、二重モードSAWフィルタの出力側に1端子対SAW共振子27を並列に接続した構造において、1端子対SAW共振子27にくし形キャパシタ28を並列に接続し、1端子対SAW共振子27の共振周波数を二重モードSAWフィルタの通過帯域よりも低周波数側に位置するよう設計したことである。
【0026】
第3の実施例においては、二重モードSAWフィルタに1端子対SAW共振子が並列に接続された構造において、1端子対SAW共振子にくし形キャパシタを並列に接続することで通過帯域の低域側近傍の減衰傾度及び阻止域減衰量が改善される。なお、図6においては二重モードSAWフィルタの出力側に1端子対SAW共振子を1個並列接続した構造であるが、二重モードSAWフィルタに1端子対SAW共振子を複数個並列接続した構造、あるいは二重モードSAWフィルタの入出力側に1端子対SAW共振子を並列接続した構造においても同様な効果が得られるのは明らかである。
【0027】
図7は、本発明に係る第4の実施例である。本実施例の特徴は、二重モードSAWフィルタの入力側において1端子対SAW共振子29を直列に接続し、前記二重モードSAWフィルタの出力側において1端子対SAW共振子31を並列に接続した構造において、1端子対SAW共振子29、31にくし形キャパシタ30、32がそれぞれ並列に接続しており、1端子対SAW共振子29の反共振周波数を二重モードSAWフィルタの通過帯域よりも高周波数側に位置するよう設計し、且つ1端子対SAW共振子31の共振周波数を二重モードSAWフィルタの通過帯域よりも低周波数側に位置するよう設計したことである。
【0028】
第4の実施例においては、二重モードSAWフィルタの入力側に直列に1端子対SAW共振子を接続し、該二重モードSAWフィルタの出力側に並列に1端子対SAW共振子を接続した構造において、前記1端子対SAW共振子に並列にくし形キャパシタを接続することで通過帯域の低域側近傍および高域側近傍の両側の減衰傾度及び阻止域減衰量が改善される。なお、図6においては二重モードSAWフィルタの入力側に1端子対SAW共振子を1個直列接続し、出力側に1端子対SAW共振子を1個並列接続した構造であるが、1端子対SAW共振子を複数個直列接続あるいは並列接続した場合も同様な効果が得られるのは明らかである。
【0029】
以上のように、本発明の特徴は、多重モード縦結合SAWフィルタに1端子対SAW共振子を接続した弾性表面波フィルタにおいて、前記1端子対SAW共振子にくし形キャパシタを接続することによって、くし形キャパシタを設けない時と比較して通過帯域近傍の減衰傾度を急峻にしたことである。
【0030】
以上では、1次−3次縦結合二重モードSAWフィルタを1段あるいは2段縦続接続した例を用いて説明したが、本発明はこれのみに限ることなく2段以上縦続接続した多重モードSAWフィルタ等に適用できることは言うまでもない。また、圧電基板に39°YカットX伝搬LiTaO基板を用いて説明したが他のカットでもよく、また、他の圧電材料、例えばニオブ酸リチウム、水晶、ランガサイト、四方酸リチウム等に適用できることは言うまでもない。
【0031】
【発明の効果】
本発明に係る弾性表面波フィルタは、以上説明した如く構成したので下記の優れた効果を奏する。請求項1又は2記載の発明は、複数個のIDTとその両側に反射器とを配置した縦結合多重モード弾性表面波フィルタを1個或いは複数個縦続接続し、前記縦結合多重モード弾性表面波フィルタに少なくとも1個の1端子対SAW共振子を直列あるいは並列に接続した弾性表面波フィルタにおいて、前記1端子対SAW共振子に並列にキャパシタを接続することにより、通過帯域近傍の減衰傾度を急峻にすることができるという優れた効果を奏する。
【0032】
請求項3記載の発明は、前記キャパシタが圧電基板上にくし形形状の電極を配置したくし形キャパシタであり、SAWチップの主面上に電極パターンを形成する際に同時に形成できるので、製造工程において工程が追加されないという優れた効果を奏する。
【0033】
請求項4乃至5記載の発明は、前記くし形キャパシタが隣接するIDT及び他のくし形キャパシタ同士の表面波を送受信しないよう配置されているので、通過帯域外でスプリアスが発生しないという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る第1の実施例の縦続接続型1次−3次縦結合二重モードSAWフィルタの構成を示す平面図である。
【図2】1端子対SAW共振子単体と該SAW共振子にくし形キャパシタを並列接続した場合のインピーダンス−周波数特性の比較を示した図である。
【図3】縦続接続型1次−3次縦結合二重モードSAWフィルタに用いるSAW共振子の反共振周波数とフィルタの減衰極の関係を示す図である。
【図4】本発明に係る縦続接続型1次−3次縦結合二重モードSAWフィルタのフィルタ特性と従来のフィルタ特性との比較を示した実測データの図である。
【図5】本発明に係る第2の実施例の縦続接続形1次−3次縦結合二重モードSAWフィルタの構成を示す平面図である。
【図6】本発明に係る第3の実施例の縦続接続形1次−3次縦結合二重モードSAWフィルタの構成を示す平面図である。
【図7】本発明に係る第4の実施例の縦続接続形1次−3次縦結合二重モードSAWフィルタの構成を示す平面図である。
【図8】従来の縦続接続型1次−3次縦結合二重モードSAWフィルタの構成を示す平面図である。
【図9】従来の縦続接続型1次−3次縦結合二重モードSAWフィルタのフィルタ特性を示す図である。
【符号の説明】
1、41・・圧電基板
2、3、4、6、7、8、10、12、21、22、23、42、43、44、46、47、48、50、52・・IDT電極
5a、5b、9a、9b、11a、11b、13a、13b、24a、24b、45a、45b、49a、49b、51a、51b、53a、53b・・グレーティング反射器
P1、P2・・入出力用電極パッド
E1、E2、E3、E4、E5、E6・・接地用電極パッド
L1、L2、L3、L4・・リード電極
14、15、26、28、30、32・・くし形キャパシタ
25、27、29、31、A、B、C、D・・1端子対SAW共振子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface acoustic wave filter, and more particularly to a surface acoustic wave filter with improved stopband attenuation near a pass band.
[0002]
[Prior art]
2. Description of the Related Art In recent years, surface acoustic wave filters have been widely used in the field of communications and have excellent characteristics such as high performance, small size, and mass productivity, and thus are particularly frequently used in mobile phones and the like. FIG. 8 is a plan view of an electrode pattern showing a configuration of a conventional cascade-connected primary-tertiary longitudinally coupled surface acoustic wave filter (hereinafter, referred to as a dual mode SAW filter). The IDTs 42, 43, 44 on the three screens are arranged close to each other along the propagation direction of the surface wave, and grating reflectors 45a, 45b (hereinafter, referred to as reflectors) are arranged on both sides of the IDTs. Filter. Each of the IDTs 42, 43, and 44 is constituted by a pair of comb-shaped electrodes having a plurality of electrode fingers interposed therebetween, and a comb-shaped electrode near an end of the substrate 41 of the IDT 42 is an electrode pad provided near the outside of the electrode. The other comb-shaped electrode is connected to a ground electrode pad E1 provided near the center of the substrate 41 in the vicinity of the electrode. Then, the comb-shaped electrodes of the IDTs 43 and 44 near the ends of the substrate 41 are connected to grounding electrode pads E2 and E3 provided near the outside of the electrodes. Further, lead electrodes L1 for cascade connection extend from the other comb-shaped electrodes of the IDTs 43 and 44 to the next stage.
[0003]
The second double mode SAW filter, which is substantially line-symmetric with respect to the first double mode SAW filter at the center of the substrate, that is, a double mode SAW filter including IDTs 46, 47 and 48 and reflectors 49a and 49b disposed on both sides thereof. Are formed along the propagation direction of the surface wave. The IDT 46 has a comb-shaped electrode near the center of the substrate 41 connected to a grounding electrode pad E4 provided near the outside of the electrode, and the other comb-shaped electrode of the IDT 46 used for an output provided near the outside of the electrode. Connect to electrode pad P2. Further, the comb-shaped electrodes of the IDTs 47 and 48 near the end of the substrate 41 are connected to grounding electrode pads E5 and E6 provided near the outside of the electrodes. Further, lead electrodes L2 for cascade connection extend from the other comb-shaped electrodes of the IDTs 47 and 48 toward the front stage.
[0004]
An IDT 50 and reflectors 51a and 51b on both sides thereof are provided along one output terminal of the first dual mode SAW filter, that is, a lead electrode L1 extending from a bus bar inside the substrate 41 of the IDT 43 along the propagation direction of the surface wave. One terminal of the disposed SAW resonator (hereinafter, SAW resonator A) is connected in series, and the other output terminal of the dual mode SAW filter is connected to the lead electrode L1 extending from the bus bar inside the substrate 41 of the IDT 44. One terminal of a SAW resonator (hereinafter, SAW resonator B) in which the IDT 52 and the reflectors 53a and 53b are arranged is connected in series. The lead electrodes L2 extend from the other terminals of the SAW resonators A and B, respectively, and are respectively connected to bus bars near the center of the substrate 41 of the IDTs 47 and 48 of the second dual mode SAW filter. I do.
[0005]
As is well known, the operation of the dual mode SAW filter shown in FIG. 8 is that the surface waves excited by the IDTs 42, 43, and 44 are confined between the reflectors 45a and 45b and acoustically coupled, and the first order is formed by the electrode pattern. , And two longitudinal resonance modes of the third order are strongly excited, and a dual-mode SAW filter is constructed using these two modes. Further, by setting the anti-resonance frequencies of the SAW resonators A and B to be higher than the pass band of the dual mode SAW filter, the attenuation pole due to the anti-resonance frequency of the SAW resonator is higher in the pass band. Is generated, and the attenuation gradient and the amount of attenuation in the stop band on the high band side of the pass band are improved.
[0006]
FIG. 9 shows a case where a dual mode SAW filter having a thickness of 4100 ° and a thickness of an aluminum alloy is formed on a 39 ° Y-cut X-propagation LiTaO 3 substrate to form a dual mode SAW filter having a center frequency of 836.5 MHz and a pass bandwidth of 25 MHz. 18.5 pairs of IDTs 42 and 46, 12.5 pairs of IDTs 43, 44 and 47 and 48, and 120 reflections 45a and 45b and 49a and 49b, respectively, and SAW resonators A and B FIG. 7 is a diagram showing pass characteristics of a dual mode SAW filter when the number of IDTs 50 and 52 is 63 pairs and the number of reflectors 51a and 51b and 53a and 53b is 4 each.
[Problems to be solved by the invention]
[0007]
In recent years, with the further improvement of communication quality, the required specifications from the market have become strict, and in particular, the need for higher attenuation in the stop band near the passband has become remarkable. To meet these demands, for example, as disclosed in JP-A-2000-349590, JP-A-7-307641, JP-A-7-30366, and JP-A-7-30367, Although a one-port SAW resonator is connected to the filter, the attenuation gradient near the pass band and the attenuation of the stop band have been improved. However, in these conventional surface acoustic wave filters, the attenuation characteristics of the stop band near the pass band have been improved. Improvement has reached its limit, and it has become difficult to satisfy the required specifications from the market.
[0008]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a surface acoustic wave filter having improved attenuation gradient and attenuation in a stop band, particularly in the vicinity of a pass band, among various characteristics improvement requests from the market. The purpose is to do.
[Means for Solving the Problems]
[0009]
In order to achieve the above object, a surface acoustic wave filter according to the present invention according to claim 1 comprises one or more longitudinally coupled multimode surface acoustic wave filters in which a plurality of IDTs and reflectors are arranged on both sides thereof. In a surface acoustic wave filter in which a plurality of cascade-connected and at least one one-port SAW resonator are connected in series to the longitudinally-coupled multi-mode surface acoustic wave filter, a capacitor is connected in parallel to the one-port SAW resonator. This is a surface acoustic wave filter characterized by the following.
[0010]
According to a second aspect of the present invention, one or a plurality of longitudinally coupled multimode surface acoustic wave filters having a plurality of IDTs and reflectors disposed on both sides thereof are cascaded, and the longitudinally coupled multimode surface acoustic wave filter is connected to the longitudinally coupled multimode surface acoustic wave filter. A surface acoustic wave filter in which at least one one-port SAW resonator is connected in parallel, wherein a capacitor is connected in parallel to the one-port SAW resonator.
[0011]
According to a third aspect of the present invention, in the surface acoustic wave filter according to the first or second aspect, the capacitor is a comb-shaped capacitor in which a comb-shaped electrode is arranged on a piezoelectric substrate. It is.
[0012]
According to a fourth aspect of the present invention, in the surface acoustic wave filter according to the third aspect, the comb capacitor is formed on the same piezoelectric substrate as the longitudinally coupled multi-mode surface acoustic wave filter or the one-port SAW resonator. Wherein a surface acoustic wave filter is arranged so as not to transmit / receive a surface acoustic wave to / from these.
[0013]
According to a fifth aspect of the present invention, in the surface acoustic wave filter according to the third or fourth aspect, when a plurality of the comb capacitors are provided on the same piezoelectric substrate, no surface acoustic waves are transmitted and received between the comb capacitors. A surface acoustic wave filter comprising the comb capacitor.
BEST MODE FOR CARRYING OUT THE INVENTION
[0014]
Hereinafter, the present invention will be described in detail based on an embodiment illustrated in the drawings. FIG. 1 is a plan view showing a configuration of a dual mode SAW filter according to a first embodiment of the present invention, in which three IDTs 2, 3 and 3 are arranged on a main surface of a piezoelectric substrate 1 along a propagation direction of a surface wave. 4 are arranged close to each other, and reflectors 5a and 5b are arranged on both sides thereof to form a first filter. Each of the IDTs 2, 3, and 4 is constituted by a pair of comb-shaped electrodes having a plurality of electrode fingers interposed therebetween, and the comb-shaped electrode outside the IDT 2 is connected to an electrode pad P1 provided near the outside of the electrode. The other comb-shaped electrode is connected to a grounding electrode pad E1 provided near the center of the substrate 1 near the electrode. The comb electrodes outside the IDTs 3 and 4 are connected to ground electrode pads E2 and E3 provided near the outside of the electrodes. Further, lead electrodes L1 for cascade connection are respectively extended from the other comb-shaped electrodes of the IDTs 3 and 4 toward the next stage.
[0015]
The second double mode SAW filter, which is substantially line-symmetric with respect to the first double mode SAW filter at the center of the substrate, that is, a double mode SAW including IDTs 6, 7, 8 and reflectors 9a, 9b disposed on both sides thereof. Form a filter. The bus bar inside the IDT 6 is connected to the ground electrode pad E4 provided near the center of the substrate 1 near the electrode, and the bus bar outside the IDT 6 is connected to the output electrode pad P2 provided near the outside of the electrode. Connect with Further, the bus bars near the ends of the substrate 1 of the IDTs 7 and 8 are connected to the grounding electrode pads E5 and E6, respectively. Further, lead electrodes L2 for cascade connection are respectively extended from the other comb-shaped electrodes of the IDTs 7 and 8 toward the front stage.
[0016]
IDT 10 and reflectors 11a and 11b are arranged on one output terminal of the first dual mode SAW filter, that is, on lead electrode L1 extending from the bus bar inside substrate 1 of IDT 3 along the propagation direction of the surface wave. Lead terminal extending from a bus bar inside the substrate 1 of the IDT 4 which is the other output terminal of the first dual mode SAW filter, while connecting one terminal of the SAW resonator (hereinafter, referred to as SAW resonator C) in series. One terminal of a SAW resonator (hereinafter, SAW resonator D) in which the IDT 12 and the reflectors 13a and 13b are arranged in L1 is connected in series. The lead electrodes L2 extend from the other terminals of the SAW resonators C and D, respectively, and are connected to bus bars near the center of the substrate 1 of the IDTs 7 and 8 of the second dual mode SAW filter. .
[0017]
The wavelength λr defined by the pitch of the interdigitated electrode fingers of the IDTs 10 and 12 constituting the SAW resonators C and D is the wavelength defined by the pitch of the interdigitated electrode fingers of the IDTs 2 to 4 and 6 to 8. λ, the anti-resonance frequency is set so as to be located on the high frequency side near the pass band of the first and second dual mode SAW filters connected in cascade, and the SAW resonance A trap having an anti-resonance frequency of the daughters C and D as an attenuation pole is configured. A feature of the present invention is that a comb capacitor 14 in which an IDT is arranged in a direction orthogonal to a propagation direction of a surface wave so that excitation reception of the surface wave is not performed is parallel to the SAW resonator C via a lead electrode L3. The SAW resonator is connected in parallel with the SAW resonator D via the lead electrode L4 to form a SAW filter.
[0018]
Next, the relationship between a one-port SAW resonator such as the SAW resonators C and D and a capacitor connected in parallel to the SAW resonator will be described. FIG. 2 is a diagram showing the impedance-frequency characteristics of the one-port SAW resonator. The broken line shows the characteristics of the one-port SAW resonator alone, and the solid line shows a capacitor equivalent to 1 pF in parallel with the one-port SAW resonator. This is the characteristic when connected. By connecting a capacitor to the one-port SAW resonator in parallel as shown in the figure, the anti-resonance frequency fa moves to the resonance frequency fr side and becomes fa ′, and the interval between the resonance frequency and the anti-resonance frequency is reduced. Understand.
[0019]
The inventor of the present application pays attention to this point, and in a longitudinally coupled multimode SAW filter, a one-port SAW resonator is connected in series to the SAW filter, and the anti-resonance frequency of the SAW resonator is shifted to a higher pass band side. When a trap is formed as an attenuation pole, a capacitor is connected in parallel to the one-port SAW resonator, so that the attenuation pole set on the high band side of the pass band moves to the low frequency side as shown in FIG. We thought that the attenuation gradient on the high band side might be further improved.
[0020]
FIG. 4 shows an electrode pattern as shown in FIG. 1 formed on a 39 ° Y-cut X-propagation LiTaO 3 substrate to form a dual-mode SAW filter having a center frequency of 836.5 MHz and a pass bandwidth of 25 MHz. FIG. 7 is a diagram showing a comparison of measured data when a capacitor is connected in parallel to a one-terminal SAW resonator (solid line) and when a conventional structure without a comb capacitor is used (broken line). In the actual measurement data, the thickness of the aluminum alloy is 4100 ° for both the solid line and the broken line, IDT2 is 18.5 pairs, IDT3 and IDT4 are 12.5 pairs, and the number of reflectors 5a and 5b is 120 each. The number of IDTs 10 and 12 of the SAW resonator is 63, and the number of reflectors 11a, 11b and 13a, 13b is 4. The wavelength λ defined by the pitch of the electrode fingers constituting the IDTs 2, 3, and 4 And the ratio (λr / λ) of the wavelength λr defined by the pitch of the electrode fingers constituting the one-terminal SAW resonator was set to 0.99193. In the solid line data, the number of comb-shaped capacitors 14 and 15 is 33, the cross width of the comb-shaped electrodes is 53 μm, and a capacitor corresponding to 0.85 pF is connected in parallel to the one-terminal SAW resonator. If the comb capacitor is simply connected in parallel to the one-port SAW resonators C and D, the filter as a whole filter is affected by the narrowing of the resonance frequency-anti-resonance frequency interval of the one-port SAW resonator. Since the pass band width is slightly narrowed, in the measured data shown in FIG. 4, the one-port SAW resonator having the comb capacitors connected in parallel is compared with the one-port SAW resonator having no comb capacitors connected. The period of the IDT and the reflector is shortened, and the resonance frequency is increased by 2 MHz. As can be seen from the figure, by connecting the comb capacitor in parallel to the one-port SAW resonator, the attenuation gradient and the stopband attenuation near the high band side of the passband are improved.
[0021]
The electrode finger arrangement period of the comb capacitor is not necessarily required to be equal to that of the IDT or the reflector of the one-port SAW resonator, as long as a desired reactance can be obtained. Since they can be formed at the same time, no additional steps are required in the manufacturing process.
[0022]
In the method of arranging the comb capacitors, in FIG. 1, the comb capacitors are arranged in a direction orthogonal to the IDT. However, it is not always necessary to make them orthogonal and any direction may be used so long as the surface waves of the IDT are not transmitted and received. . However, in consideration of the chip size, a structure in which comb capacitors are arranged orthogonally to the IDT shown in FIG. 1 is desirable. Also, when a plurality of comb capacitors are provided on the SAW chip, it is necessary to arrange the comb capacitors so that surface waves are transmitted and received between the comb capacitors and no spurious is generated outside the pass band.
[0023]
FIG. 5 shows a second embodiment according to the present invention, in which three IDTs 21, 22, and 23 are arranged close to each other along the propagation direction of a surface acoustic wave on a piezoelectric substrate 1, and reflectors 24a and 24b are provided at both ends thereof. In the longitudinally coupled dual mode SAW filter arranged, one comb-shaped electrode of the IDT 21 is connected to the input electrode pad P1, and the other comb-shaped electrode of the IDT 21 is connected to the ground electrode pad E1. Also, one of the IDTs 22 and 23 is connected to the ground electrode pads E2 and E3, respectively, and the other of the IDTs 22 and 23 is connected to one side of the one-terminal SAW resonator 25 on one side. Then, the other comb-shaped electrode of the SAW resonator 25 is connected to the output electrode pad P2. The anti-resonance frequency of the one-port SAW resonator 25 is designed to be higher than the pass band of the dual mode SAW filter. A feature of this embodiment is that in the structure in which the one-port SAW resonator 25 is connected in series to the dual mode SAW filter, a comb capacitor 26 is connected in parallel to the one-port SAW resonator 25.
[0024]
Also in the second embodiment, by connecting the comb capacitor in parallel to the one-port SAW resonator, the attenuation gradient and the stop band attenuation near the high band side of the pass band are improved as in the first embodiment. Is done. Although FIG. 5 shows a structure in which one one-port SAW resonator is connected in series to the output side of the dual-mode SAW filter, a plurality of one-port SAW resonators are connected in series to the dual-mode SAW filter. It is apparent that the same effect can be obtained by the structure or the structure in which the one-port SAW resonator is connected in series to the input / output side of the dual mode SAW filter.
[0025]
FIG. 6 shows a third embodiment according to the present invention. Since the dual mode SAW filter has the same configuration as that of FIG. 5, the same reference numerals as in FIG. 5 are used. The feature of this embodiment is that in a structure in which a one-port SAW resonator 27 is connected in parallel to the output side of a dual-mode SAW filter, a comb-shaped capacitor 28 is connected in parallel to the one-port SAW resonator 27. The design is such that the resonance frequency of the terminal pair SAW resonator 27 is positioned lower than the pass band of the dual mode SAW filter.
[0026]
In the third embodiment, in a structure in which a one-port SAW resonator is connected in parallel to a dual-mode SAW filter, a low pass band is achieved by connecting a comb capacitor in parallel to the one-port SAW resonator. The attenuation gradient near the band side and the amount of attenuation in the stop band are improved. Although FIG. 6 shows a structure in which one one-port SAW resonator is connected in parallel to the output side of the dual-mode SAW filter, a plurality of one-port SAW resonators are connected in parallel to the dual-mode SAW filter. It is apparent that the same effect can be obtained also in the structure or the structure in which the one-port SAW resonator is connected in parallel to the input / output side of the dual mode SAW filter.
[0027]
FIG. 7 shows a fourth embodiment according to the present invention. This embodiment is characterized in that a one-port SAW resonator 29 is connected in series on the input side of a dual-mode SAW filter, and a one-port SAW resonator 31 is connected in parallel on the output side of the dual-mode SAW filter. In this structure, the comb capacitors 30 and 32 are connected in parallel to the one-port SAW resonators 29 and 31, respectively, and the anti-resonance frequency of the one-port SAW resonator 29 is set higher than the pass band of the dual mode SAW filter. Are designed to be located on the high frequency side, and the resonance frequency of the one-port SAW resonator 31 is located on the lower frequency side than the pass band of the dual mode SAW filter.
[0028]
In the fourth embodiment, a one-port SAW resonator is connected in series to the input side of a dual-mode SAW filter, and a one-port SAW resonator is connected in parallel to the output side of the dual-mode SAW filter. In the structure, by connecting a comb capacitor in parallel with the one-port SAW resonator, the attenuation gradient and the amount of attenuation in the stop band on both sides near the low band side and near the high band side of the pass band are improved. FIG. 6 shows a structure in which one one-port SAW resonator is connected in series to the input side of the dual-mode SAW filter and one one-port SAW resonator is connected in parallel to the output side. Obviously, the same effect can be obtained when a plurality of SAW resonators are connected in series or in parallel.
[0029]
As described above, a feature of the present invention is that, in a surface acoustic wave filter in which a one-port SAW resonator is connected to a multimode longitudinally coupled SAW filter, a comb capacitor is connected to the one-port SAW resonator. This means that the attenuation gradient near the pass band is steeper than when no comb capacitor is provided.
[0030]
Although the above description has been made with reference to the example in which the first-order and third-order longitudinally coupled dual-mode SAW filters are cascaded in one or two stages, the present invention is not limited to this. It goes without saying that the present invention can be applied to filters and the like. Also, the explanation has been made using the 39 ° Y-cut X-propagation LiTaO 3 substrate as the piezoelectric substrate, but other cuts may be used, and the present invention can be applied to other piezoelectric materials such as lithium niobate, quartz, langasite, and lithium tetraquarate. Needless to say.
[0031]
【The invention's effect】
The surface acoustic wave filter according to the present invention has the following excellent effects because it is configured as described above. The invention according to claim 1 or 2, wherein one or a plurality of longitudinally coupled multimode surface acoustic wave filters having a plurality of IDTs and reflectors arranged on both sides thereof are connected in cascade, and the longitudinally coupled multimode surface acoustic wave filter is provided. In a surface acoustic wave filter in which at least one one-port SAW resonator is connected in series or in parallel to a filter, by connecting a capacitor in parallel with the one-port SAW resonator, the attenuation gradient near the pass band is steep. It has an excellent effect that it can be made.
[0032]
According to a third aspect of the present invention, since the capacitor is a comb-shaped capacitor having a comb-shaped electrode disposed on a piezoelectric substrate, the capacitor can be formed simultaneously when an electrode pattern is formed on a main surface of a SAW chip. Has an excellent effect that no step is added.
[0033]
According to the fourth and fifth aspects of the present invention, since the comb capacitors are arranged so as not to transmit and receive surface waves between adjacent IDTs and other comb capacitors, an excellent effect that spurious noise is not generated outside the pass band. To play.
[Brief description of the drawings]
FIG. 1 is a plan view showing a configuration of a cascaded first-third-order longitudinally-coupled dual-mode SAW filter according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a comparison of impedance-frequency characteristics when a one-port SAW resonator alone and a comb capacitor are connected in parallel to the SAW resonator.
FIG. 3 is a diagram illustrating a relationship between an anti-resonance frequency of a SAW resonator used in a cascade-connected primary-tertiary-order longitudinally coupled dual-mode SAW filter and an attenuation pole of the filter.
FIG. 4 is a graph of measured data showing a comparison between the filter characteristics of a cascaded primary-tertiary-order longitudinally coupled dual-mode SAW filter according to the present invention and conventional filter characteristics.
FIG. 5 is a plan view showing a configuration of a cascaded primary-third-order longitudinally coupled dual mode SAW filter according to a second embodiment of the present invention.
FIG. 6 is a plan view showing a configuration of a cascaded primary-third-order longitudinally coupled dual-mode SAW filter according to a third embodiment of the present invention.
FIG. 7 is a plan view showing a configuration of a cascaded primary-third-order longitudinally coupled dual-mode SAW filter according to a fourth embodiment of the present invention.
FIG. 8 is a plan view showing the configuration of a conventional cascaded primary-tertiary-order longitudinally coupled dual-mode SAW filter.
FIG. 9 is a diagram showing filter characteristics of a conventional cascade-connected primary-tertiary-order longitudinally coupled dual-mode SAW filter.
[Explanation of symbols]
1, 41 ··· piezoelectric substrate 2, 3, 4, 6, 7, 8, 10, 12, 21, 22, 23, 42, 43, 44, 46, 47, 48, 50, 52 ··· IDT electrode 5a 5b, 9a, 9b, 11a, 11b, 13a, 13b, 24a, 24b, 45a, 45b, 49a, 49b, 51a, 51b, 53a, 53b, grating reflectors P1, P2, input / output electrode pads E1, E2, E3, E4, E5, E6... Ground electrode pads L1, L2, L3, L4... Lead electrodes 14, 15, 26, 28, 30, 32. A, B, C, D: 1 port pair SAW resonator

Claims (5)

複数個のIDTとその両側にグレーティング反射器とを配置した縦結合多重モード弾性表面波フィルタを1個あるいは複数個縦続接続し、前記縦結合多重モード弾性表面波フィルタに少なくとも1個の1端子対SAW共振子を直列に接続した弾性表面波フィルタにおいて、前記1端子対SAW共振子に並列にキャパシタを接続したことを特徴とする弾性表面波フィルタ。One or a plurality of longitudinally coupled multimode surface acoustic wave filters having a plurality of IDTs and grating reflectors disposed on both sides thereof are connected in cascade, and the longitudinally coupled multimode surface acoustic wave filter has at least one terminal pair. A surface acoustic wave filter in which SAW resonators are connected in series, wherein a capacitor is connected in parallel to the one-port SAW resonator. 複数個のIDTとその両側にグレーティング反射器とを配置した縦結合多重モード弾性表面波フィルタを1個あるいは複数個縦続接続し、前記縦結合多重モード弾性表面波フィルタに少なくとも1個の1端子対SAW共振子を並列に接続した弾性表面波フィルタにおいて、前記1端子対SAW共振子に並列にキャパシタを接続したことを特徴とする弾性表面波フィルタ。One or a plurality of longitudinally coupled multimode surface acoustic wave filters having a plurality of IDTs and grating reflectors disposed on both sides thereof are connected in cascade, and the longitudinally coupled multimode surface acoustic wave filter has at least one terminal pair. A surface acoustic wave filter in which SAW resonators are connected in parallel, wherein a capacitor is connected in parallel to the one-port SAW resonator. 請求項1又は2記載の弾性表面波フィルタにおいて、前記キャパシタは圧電基板上にくし形形状の電極を配置したくし形キャパシタであることを特徴とする弾性表面波フィルタ。3. The surface acoustic wave filter according to claim 1, wherein the capacitor is a comb capacitor having a comb-shaped electrode disposed on a piezoelectric substrate. 請求項3記載の弾性表面波フィルタにおいて、前記くし形キャパシタは縦結合多重モード弾性表面波フィルタあるいは1端子対SAW共振子と同一の圧電基板上に形成されたものであり、これらとの間で弾性表面波を送受信しないように配置したことを特徴とする弾性表面波フィルタ。4. The surface acoustic wave filter according to claim 3, wherein the comb capacitor is formed on the same piezoelectric substrate as the longitudinally coupled multimode surface acoustic wave filter or the one-port SAW resonator. A surface acoustic wave filter characterized by being arranged so as not to transmit and receive surface acoustic waves. 請求項3乃至4記載の弾性表面波フィルタにおいて、前記くし形キャパシタを同一の圧電基板上に複数個設けた場合にくし形キャパシタ同士で弾性表面波を送受信しないように当該くし形キャパシタを配置したことを特徴とする弾性表面波フィルタ。5. The surface acoustic wave filter according to claim 3, wherein when a plurality of the comb capacitors are provided on the same piezoelectric substrate, the comb capacitors are arranged so as not to transmit and receive surface acoustic waves between the comb capacitors. A surface acoustic wave filter characterized by the above-mentioned.
JP2002305558A 2002-10-21 2002-10-21 Surface acoustic wave filter Withdrawn JP2004140738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305558A JP2004140738A (en) 2002-10-21 2002-10-21 Surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305558A JP2004140738A (en) 2002-10-21 2002-10-21 Surface acoustic wave filter

Publications (1)

Publication Number Publication Date
JP2004140738A true JP2004140738A (en) 2004-05-13

Family

ID=32452627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305558A Withdrawn JP2004140738A (en) 2002-10-21 2002-10-21 Surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP2004140738A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735484B1 (en) * 2005-11-25 2007-07-03 삼성전기주식회사 Serial two track double mode coupled saw filter
JP2008085885A (en) * 2006-09-28 2008-04-10 Murata Mfg Co Ltd Compound surface acoustic wave device
US7394336B2 (en) 2005-05-16 2008-07-01 Murata Manufacturing Co. Ltd. Elastic boundary wave apparatus
US7573354B2 (en) * 2005-08-08 2009-08-11 Fujitsu Media Devices Limited Duplexer and ladder type filter
US7683736B2 (en) * 2005-07-28 2010-03-23 Fujitsu Media Devices Limited Resonant circuit, filter, and antenna duplexer
JP5338912B2 (en) * 2009-09-30 2013-11-13 株式会社村田製作所 Elastic wave filter device and duplexer including the same
WO2014196245A1 (en) * 2013-06-04 2014-12-11 京セラ株式会社 Branching filter and communication module
CN109417378A (en) * 2016-06-14 2019-03-01 株式会社村田制作所 Multiplexer, high-frequency front-end circuit and communication device
GB2558838B (en) * 2015-11-13 2022-10-05 Resonant Inc Acoustic wave filter with enhanced rejection
JP7429612B2 (en) 2020-06-26 2024-02-08 NDK SAW devices株式会社 Surface acoustic wave filters and surface acoustic wave devices

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7394336B2 (en) 2005-05-16 2008-07-01 Murata Manufacturing Co. Ltd. Elastic boundary wave apparatus
US7683736B2 (en) * 2005-07-28 2010-03-23 Fujitsu Media Devices Limited Resonant circuit, filter, and antenna duplexer
US7573354B2 (en) * 2005-08-08 2009-08-11 Fujitsu Media Devices Limited Duplexer and ladder type filter
KR100735484B1 (en) * 2005-11-25 2007-07-03 삼성전기주식회사 Serial two track double mode coupled saw filter
JP2008085885A (en) * 2006-09-28 2008-04-10 Murata Mfg Co Ltd Compound surface acoustic wave device
JP5338912B2 (en) * 2009-09-30 2013-11-13 株式会社村田製作所 Elastic wave filter device and duplexer including the same
JPWO2014196245A1 (en) * 2013-06-04 2017-02-23 京セラ株式会社 Duplexer and communication module
CN105191125A (en) * 2013-06-04 2015-12-23 京瓷株式会社 Branching filter and communication module
WO2014196245A1 (en) * 2013-06-04 2014-12-11 京セラ株式会社 Branching filter and communication module
US9912319B2 (en) 2013-06-04 2018-03-06 Kyocera Corporation Duplexer and communication module
CN105191125B (en) * 2013-06-04 2018-04-03 京瓷株式会社 Channel-splitting filter and communication module
GB2558838B (en) * 2015-11-13 2022-10-05 Resonant Inc Acoustic wave filter with enhanced rejection
CN109417378A (en) * 2016-06-14 2019-03-01 株式会社村田制作所 Multiplexer, high-frequency front-end circuit and communication device
JPWO2017217197A1 (en) * 2016-06-14 2019-03-22 株式会社村田製作所 Multiplexer, high frequency front end circuit and communication device
US10637439B2 (en) 2016-06-14 2020-04-28 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front end circuit, and communication device
US10972073B2 (en) 2016-06-14 2021-04-06 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front end circuit, and communication device
US11336261B2 (en) 2016-06-14 2022-05-17 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front end circuit, and communication device
CN109417378B (en) * 2016-06-14 2023-03-14 株式会社村田制作所 Multi-channel modulator, high-frequency front-end circuit, and communication device
JP7429612B2 (en) 2020-06-26 2024-02-08 NDK SAW devices株式会社 Surface acoustic wave filters and surface acoustic wave devices

Similar Documents

Publication Publication Date Title
JP3509771B2 (en) Surface acoustic wave filter device, communication device
JP2012156741A (en) Antenna duplexer
KR100697763B1 (en) Surface acoustic wave device
JP4100249B2 (en) Surface acoustic wave device, communication device
JP2002314366A (en) Surface acoustic wave filter, surface acoustic wave device and communication equipment
JP3853252B2 (en) Surface acoustic wave device
US20040106383A1 (en) Surface acoustic wave device and communication device using the same
JP2004140738A (en) Surface acoustic wave filter
JP2005295203A (en) Duplexer
JP2002232264A (en) Surface acoustic wave filter
US6720847B2 (en) Longitudinally-coupled resonator surface acoustic wave filter and communication apparatus using the same
JP2005159835A (en) Surface acoustic wave filter
JP3915322B2 (en) Surface acoustic wave filter
JP2002111443A (en) Coupled surface acoustic wave filter
JP3393945B2 (en) Vertically coupled dual mode SAW filter
JPH10322161A (en) Vertically-coupled triple mode saw filter
JPH098599A (en) Vertical coupled double mode saw filter
JP4138093B2 (en) Vertically coupled double mode SAW filter
JP2004260402A (en) Surface acoustic wave device and communication device having it
JP2002111444A (en) Coupled surface acoustic wave filter
JP4548305B2 (en) Dual-mode surface acoustic wave filter
JP2000349589A (en) Surface acoustic wave filter
JPH09186553A (en) Surface acoustic wave device and its manufacture
JP7213747B2 (en) Acoustic wave filters, demultiplexers and communication devices
JP2008085885A (en) Compound surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20051003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090410

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090521