JP3890512B2 - Spherical salt and method for producing the same - Google Patents

Spherical salt and method for producing the same Download PDF

Info

Publication number
JP3890512B2
JP3890512B2 JP26648395A JP26648395A JP3890512B2 JP 3890512 B2 JP3890512 B2 JP 3890512B2 JP 26648395 A JP26648395 A JP 26648395A JP 26648395 A JP26648395 A JP 26648395A JP 3890512 B2 JP3890512 B2 JP 3890512B2
Authority
JP
Japan
Prior art keywords
salt
particles
spherical
flame
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26648395A
Other languages
Japanese (ja)
Other versions
JPH0986923A (en
Inventor
康光 渡辺
嘉人 横山
良成 池上
芳樹 清水
義之 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ako Kasei Co Ltd
Unitika Ltd
Original Assignee
Ako Kasei Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ako Kasei Co Ltd, Unitika Ltd filed Critical Ako Kasei Co Ltd
Priority to JP26648395A priority Critical patent/JP3890512B2/en
Publication of JPH0986923A publication Critical patent/JPH0986923A/en
Application granted granted Critical
Publication of JP3890512B2 publication Critical patent/JP3890512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、塩化ナトリウムまたは塩化カリウムを主成分とする球状塩及びその製造方法に関するものである。
【0002】
【従来の技術】
天然に露出する岩塩、天日塩またはイオン交換膜法で生成されている塩もすべて、その結晶形は通常立方晶である。用途により、使いやすさから流動性の良い塩が求められており、塩の流動性は結晶粒子表面の水分と結晶粒子間の接触面積の大きさによって定まると考えられる。そして、湿潤塩より乾燥塩の方が、小粒子より大粒子の方が、粒度分布が不均一より均一な方が、立方晶より粒形の方が流動性が良く、固結が少なく、良い塩といえる。ところが一定の雰囲気温度、湿度で一定の粒度、粒度分布が求められる場合、面と面との接触となる立方晶より、点と点との接触となる球形塩がさらさらとした塩となり、固結が少なく流動性が優れていることは明らかである。そのため球状塩をつくりだすためのいろんな方法が試みられている。
従来、微粒の塩を多数集めて凝集化させて粒状化した顆粒塩あるいは塩化ナトリウムの過飽和水溶液からのモノリシック粒子の球形塩の製造方法(特開平2-83002 号公報) などが知られるが、前者は多孔質の粒の集合体であり、かさ高く、後者は生産性が悪く、いづれも経済性に欠けるという問題点があった。
【0003】
【問題を解決するための手段】
本発明者らは、鋭意研究の結果、市販の塩化ナトリウムや塩化カリウムの粒子を特定の条件で高温処理することにより融解球状化する現象を見いだし、本発明を完成するに至った。すなわち、本発明では塩化ナトリウム又は塩化カリウムの粒子を浮遊状態で高温の火焔あるいは高温ガスに、 1000 1300 ℃で短時間接触させて、部分溶解と同時に粒子の表面張力により球状化を行い、冷却固化させて得られる真球に近い粒子である粒径0.01〜1.0mmの球状塩とその製造方法を提供するものである。
【0004】
粒径が0.01mm以下の球状塩を製造しようとする場合、原料粒子が細かいと、火焔あるいは高温ガス中で完全に分散させることが困難であり、溶融粒子同士の接触により、粒径が肥大して目標より大粒径の球状塩となりやすい。これを防止するためには、火焔あるいは高温ガス中に少量づつ原料塩を投入する必要があり、経済性に欠ける欠陥がある。逆に粒径が1.0 mm以上の球状塩を製造しようとする場合、粒径が1.0 mm以上の原料粒子をより高温の火焔あるいは高温ガスに接触させるか、あるいは塩粒子の火焔ならびに高温ガスとの接触時間を長時間にする必要があり、塩の気化にともなう蒸気の発生が激しく、設備技術の上で限界がある。
【0005】
本発明の球状塩とその製造法の詳細について、第1図に示す製造装置を参照にして説明する。火焔あるいは高温ガス形成のための燃料は液体燃料、気体燃料を問わないが、出来るだけクリーンな燃料が求められ、望ましくは天然ガス、LPG、ブタンガス等気体燃料3が用いられる。同時に燃焼の補助のために塩供給管1に空気2を高圧で吹き込む、炉体5の内部の火焔6、あるいは高温ガス7の温度は 1000 1300 ℃に保持され、空気圧送された原料の塩粒子は、塩供給管1を通じ、高温の火焔の中心部に送り込まれる。塩粒子が浮遊状態で火焔6、あるいは高温ガス7にさらされている時間は0.1秒程度必要であり、接触時間が不十分の場合は球状塩の歩溜まりが悪く、比較的小さな粒径、例えば0.01〜0.1mm程度の球状塩が得られる。火焔あるいは高温ガスの温度が800℃以下の場合も同様の粒径の塩粒子しか得られない。
【0006】
こうした球状塩の生成の程度は、塩化ナトリウム又は塩化カリウムで殆ど変わりはないが、塩化ナトリウムと塩化カリウムとからなる混合塩の場合は、融点が単独の立方晶の結晶に比べて 680〜750 ℃と約 100℃ほど低いので、球状塩の歩溜まりは若干よくなる傾向がある。
火焔あるいは高温ガスで処理され球状化した塩粒子を回収するための第1補集容器8に溜められる。また、塩粒子の中で、比較的粒径の小さいものは、移送管4に冷却用空気10を吹き込んで 100℃程度に冷却され、サイクロン11を経てバックフィルター12で補集される。0.05mm程度以下の球状塩は下部の第2補集容器9に集められる。
炉体5の構造は、横型、縦型を問わないが、求める球状化塩の粒径に応じて、適宜、採用すればよい。
【0007】
【作用】
塩化ナトリウムまたは塩化カリウムの粒子を浮遊状態で燃焼バーナーの火焔あるいは高温ガスに、 1000 1300 ℃で短時間接触させることにより、塩粒子の部分融解と同時に粒子の表面張力により球状化が進行し、冷却固化した塩の粒子は真球に近いガラス様の粒径0.01〜1.0mmの単一粒子が製造できる。粒径が0.01mm以下の球状塩を製造するときには、原料粒子が細かいと、火焔あるいは高温ガス中で完全に分散させることが困難であり、溶融粒子同士の接触により、粒径が肥大して目標より大粒径の球状塩となりやすい。逆に粒径が1.0mm以上の球状塩を製造しようとすると、粒径が1.0mm以上の原料塩粒子をより高温の火焔あるいは高温ガスに接触させるか、あるいは塩粒子の火焔ならびに高温ガスとの接触時間を長時間にする必要がある。従来技術に見られる微粒の塩を集めて、凝集化させて生成した顆粒塩では、バインダー成分を含む多孔体が形成されるが、本発明により得られた球状塩は、特定粒径の結晶粒が溶融あるいは半溶融し球状化したもので、純度は原料の塩分純度に保持されており、モノシリックな単一構造体からなる球状塩が形成される。本発明の球状塩は、粒子内部に空隙がほとんどなく、粒子表面は平滑性を有し、真球に近いビーズ状となっている。
【0008】
【発明の実施の形態】
以下に実施例をあげて、本発明を詳細に説明する。
【0009】
【実施例1】
燃料にブタンガス3及び高圧空気2を使用したバーナーにより、炉体5の内部の火焔温度を 1,000℃に保持した後、火焔6の中心部に塩供給管1を通じて市販の塩化ナトリウムの粒体を吹き込む。炉体5の下部の第1補集容器8に球状化した、塩化ナトリウム粒子が溜められた。ここで得られた塩粒子のうち、粒子径が0.01〜0.3mm の小さい粒子は球状化されており、粒子径が 0.3〜0.5mm の大きい粒子も角が丸みを帯び、球状化されている。
【0010】
【実施例2】
実施例1と同じ装置を使用し、燃料にブタンガスを使用したバーナーにより、炉体内部の火焔温度を 1,300℃に保持した後、火焔の中心部に塩供給管を通じて市販の塩化ナトリウムの粒体を吹き込む。炉体の下部より球状化した塩化ナトリウム粒子が取り出された。得られた粒子は 0.2〜0.5mm の比較的小粒のものはすべて、 0.5〜1.0mm の大粒のものもほとんど球状化されていた。
【0011】
【実施例3】
同様に燃料にブタンガスを使用したバーナーにより、炉体内部の火焔温度を 1,200℃に保持した後、火焔の中心部に塩供給管を通じて市販の塩化カリウムの粒体を吹き込む。炉体の下部より球状化した塩化カリウムが取り出された。得られた塩粒子のうち、粒子径が 0.1〜0.5mm のものは全量、 0.5〜1.0mm の大粒のものも大半球状化されていた。
【0012】
【比較例1】
燃料にブタンガスを使用したバーナーにより、炉体内部の火焔温度を 750℃とし、火焔の中心部に塩供給管を通じて細かく粉砕された塩化ナトリウム粒体を吹き込む。炉内の下部ならびにサイクロンより球状化した塩化ナトリウムが取り出された。補集された粒子のうち粒子径が0.01〜0.10mmの小粒のものは球状化しているが、 0.1〜0.2mm 程度の比較的大きめのものは球状化が不十分であった。
【0013】
【発明の効果】
塩化ナトリウム又は塩化カリウムの塩の粒子を、浮遊状態で高温の火焔、あるいは高温ガスに接触させることにより、球状化を行う本発明の製造法は、実用性、経済性に優れ、得られた球状塩の応用範囲は広い。
また、本法で得られた球状塩は、従来の塩のように正方晶からくる面接触ではなく、球状のため互いの粒子は点接触しているので、手触りはさらさらしており、流動性に優れた塩となることが明らかになった。
本発明の球状塩は湿度の高い雰囲気にあっても固結し難く、流れの良い使いやすい調味料用食卓塩となり、また葬祭用に使用されたとき、さらさらしているので、払い落しやすく、衣服を汚すことがない。
【図面の簡単な説明】
【図1】本発明の球状塩の製造装置を示す。
【図2】実施例1で得られた球状塩の粒子構造の顕微鏡写真である。
【図3】実施例2で得られた球状塩の粒子構造の顕微鏡写真である。
【図4】実施例3で得られた球状塩の粒子構造の顕微鏡写真である。
【図5】比較例1で得られた球状塩の粒子構造の顕微鏡写真である。
【符号の説明】
1 塩供給管
2 空気
3 燃料ガス
4 移送管
5 炉体
6 火焔
7 高温ガス
8 第1補集器
9 第2補集器
10 冷却用空気
11 サイクロン
12 バッグフィルター
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spherical salt mainly composed of sodium chloride or potassium chloride and a method for producing the same.
[0002]
[Prior art]
All naturally exposed rock salts, solar salts or salts produced by the ion exchange membrane method are usually cubic. Depending on the application, a salt with good fluidity is required for ease of use, and the fluidity of the salt is considered to be determined by the moisture on the crystal particle surface and the contact area between the crystal particles. The dry salt is better than the wet salt, the larger particles are smaller than the small particles, the particle size distribution is more uniform than the non-uniform, and the cubic shape is more fluid and less consolidated than the cubic crystals. It can be said to be salt. However, when a constant particle size and particle size distribution are required at a constant atmospheric temperature and humidity, the spherical salt that is in contact between the points becomes a freer salt than the cubic crystal that is in contact between the surfaces. It is clear that the fluidity is small and the fluidity is excellent. Therefore, various methods for producing spherical salts have been tried.
Conventionally, a method for producing a granular salt obtained by collecting and agglomerating a large amount of fine salt, or a spherical salt of monolithic particles from a supersaturated aqueous solution of sodium chloride (Japanese Patent Laid-Open No. 2-83002) is known. Is an aggregate of porous grains and is bulky, and the latter has a problem of poor productivity and lacks economic efficiency.
[0003]
[Means for solving problems]
As a result of diligent research, the present inventors have found a phenomenon in which melted spheroids are formed by high-temperature treatment of commercially available sodium chloride or potassium chloride particles under specific conditions, and the present invention has been completed. That is, in the present invention, sodium chloride or potassium chloride particles are brought into contact with a high-temperature flame or high-temperature gas in a suspended state for a short time at 1000 to 1300 ° C, and spheroidized by the surface tension of the particles simultaneously with partial dissolution. A spherical salt having a particle diameter of 0.01 to 1.0 mm, which is a particle close to a true sphere obtained by solidification, and a method for producing the same are provided.
[0004]
When trying to produce a spherical salt with a particle size of 0.01 mm or less, if the raw material particles are fine, it is difficult to disperse them completely in a flame or high-temperature gas, and the particle size increases due to contact between the molten particles. It tends to be a spherical salt with a larger particle size than the target. In order to prevent this, it is necessary to put raw material salt in small quantities in the flame or high-temperature gas, and there is a defect that is not economical. Conversely, when trying to produce a spherical salt with a particle size of 1.0 mm or more, contact the raw material particles with a particle size of 1.0 mm or more with a hotter flame or hot gas, It is necessary to make the contact time long, and steam generation due to salt vaporization is severe, and there is a limit in equipment technology.
[0005]
The details of the spherical salt of the present invention and the production method thereof will be described with reference to the production apparatus shown in FIG. The fuel for forming the flame or the high-temperature gas may be liquid fuel or gaseous fuel, but the fuel that is as clean as possible is required, and the gaseous fuel 3 such as natural gas, LPG, or butane gas is preferably used. At the same time, air 2 is blown into the salt supply pipe 1 at high pressure to assist combustion, and the temperature of the flame 6 inside the furnace body 5 or the hot gas 7 is maintained at 1000 to 1300 ° C., and the salt of the raw material fed pneumatically The particles are fed into the center of the hot flame through the salt supply pipe 1. It takes about 0.1 second for the salt particles to be exposed to the flame 6 or the high temperature gas 7 in a floating state. When the contact time is insufficient, the yield of the spherical salt is poor and a relatively small particle size, for example, A spherical salt of about 0.01 to 0.1 mm is obtained. Even when the temperature of the flame or hot gas is 800 ° C. or lower, only salt particles having the same particle size can be obtained.
[0006]
The degree of formation of such a spherical salt is almost the same with sodium chloride or potassium chloride, but in the case of a mixed salt consisting of sodium chloride and potassium chloride, the melting point is 680 to 750 ° C compared to a single cubic crystal. The yield of spherical salt tends to be slightly better.
It is stored in the first collection container 8 for recovering spheroidized salt particles treated with a flame or high temperature gas. Further, among the salt particles, those having a relatively small particle diameter are cooled to about 100 ° C. by blowing cooling air 10 into the transfer pipe 4, and collected by the back filter 12 through the cyclone 11. Spherical salt of about 0.05 mm or less is collected in the lower second collection container 9.
The structure of the furnace body 5 may be a horizontal type or a vertical type, but may be appropriately selected depending on the desired particle size of the spheroidized salt.
[0007]
[Action]
By bringing sodium chloride or potassium chloride particles into contact with a combustion burner flame or high-temperature gas in a floating state at a temperature of 1000 to 1300 ° C for a short time , spheroidization progresses due to the partial melting of the salt particles and the surface tension of the particles. The cooled and solidified salt particles can produce single particles having a glass-like particle size of 0.01 to 1.0 mm, which is close to a true sphere. When producing a spherical salt with a particle size of 0.01 mm or less, if the raw material particles are fine, it is difficult to completely disperse them in a flame or high-temperature gas. It tends to be a spherical salt with a larger particle size. Conversely, when trying to produce a spherical salt with a particle size of 1.0 mm or more, the raw material salt particles with a particle size of 1.0 mm or more are brought into contact with a hotter flame or hot gas, or the salt particle flame and hot gas are in contact with each other. The contact time needs to be long. In the granular salt produced by collecting and aggregating fine salt found in the prior art, a porous body containing a binder component is formed, but the spherical salt obtained by the present invention is a crystal grain having a specific particle size. Is melted or semi-molten and spheroidized, and the purity is maintained at the salt purity of the raw material, and a spherical salt composed of a monolithic single structure is formed. The spherical salt of the present invention has almost no voids inside the particle, the particle surface has smoothness, and has a bead shape close to a true sphere.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to examples.
[0009]
[Example 1]
Using a burner using butane gas 3 and high-pressure air 2 as fuel, the flame temperature inside the furnace 5 is maintained at 1,000 ° C., and then commercial sodium chloride particles are blown into the center of the flame 6 through the salt supply pipe 1. . The spheroidized sodium chloride particles were stored in the first collection container 8 at the bottom of the furnace body 5. Among the obtained salt particles, small particles having a particle diameter of 0.01 to 0.3 mm are spheroidized, and large particles having a particle diameter of 0.3 to 0.5 mm are rounded and spheroidized.
[0010]
[Example 2]
Using the same equipment as in Example 1, with the burner using butane gas as the fuel, the flame temperature inside the furnace was kept at 1,300 ° C, and then commercial sodium chloride granules were placed in the center of the flame through a salt supply pipe. Infuse. Spherical sodium chloride particles were taken out from the lower part of the furnace body. The particles obtained were all relatively small particles of 0.2 to 0.5 mm, and large particles of 0.5 to 1.0 mm were almost spheroidized.
[0011]
[Example 3]
Similarly, after maintaining the flame temperature inside the furnace body at 1,200 ° C with a burner using butane gas as fuel, commercial potassium chloride granules are blown into the center of the flame through a salt supply pipe. Spherical potassium chloride was taken out from the lower part of the furnace body. Of the obtained salt particles, those with a particle size of 0.1 to 0.5 mm were all spheroidized, and most of those with a particle size of 0.5 to 1.0 mm were spheroidized.
[0012]
[Comparative Example 1]
With a burner using butane gas as the fuel, the flame temperature inside the furnace is set to 750 ° C, and finely crushed sodium chloride particles are blown into the center of the flame through a salt supply pipe. Spherical sodium chloride was taken out from the lower part of the furnace and from the cyclone. Among the collected particles, small particles having a particle size of 0.01 to 0.10 mm were spheroidized, but relatively large particles of about 0.1 to 0.2 mm were insufficiently spheroidized.
[0013]
【The invention's effect】
The manufacturing method of the present invention in which particles of sodium chloride or potassium chloride salt are brought into spheroidization by bringing them into contact with a high-temperature flame or high-temperature gas in a suspended state is excellent in practicality and economy, and the obtained spherical shape. The application range of salt is wide.
In addition, the spherical salt obtained by this method is not a surface contact that comes from tetragonal crystals like conventional salts, but because the particles are in point contact with each other due to the spherical shape, the touch is smooth and fluid. It became clear that it became an excellent salt.
The spherical salt of the present invention is hard to consolidate even in a high humidity atmosphere, and it is easy to use as a table salt for seasonings, and when used for funerals, it is free flowing, so it is easy to wipe off, Does not stain clothes.
[Brief description of the drawings]
FIG. 1 shows an apparatus for producing a spherical salt of the present invention.
2 is a photomicrograph of the particle structure of the spherical salt obtained in Example 1. FIG.
3 is a photomicrograph of the particle structure of the spherical salt obtained in Example 2. FIG.
4 is a photomicrograph of the particle structure of the spherical salt obtained in Example 3. FIG.
5 is a photomicrograph of the particle structure of the spherical salt obtained in Comparative Example 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Salt supply pipe 2 Air 3 Fuel gas 4 Transfer pipe 5 Furnace 6 Flame 7 Hot gas 8 1st collector 9 2nd collector 10 Cooling air 11 Cyclone 12 Bag filter

Claims (2)

塩化ナトリウム及び/又は塩化カリウムの粒子を浮遊状態で燃焼バーナーの火焔あるいは高温ガスに、 1000 1300 ℃で接触させて融解球状化した粒径0.01〜1.0mm の球状塩。A spherical salt having a particle size of 0.01 to 1.0 mm, in which particles of sodium chloride and / or potassium chloride are floated in contact with a flame of a combustion burner or a high-temperature gas at 1000 to 1300 ° C. in a floating state. 塩化ナトリウム及び/又は塩化カリウムの粒子を浮遊状態で燃焼バーナーの火焔あるいは高温ガスに、 1000 1300 ℃で接触させ、融解球状化することを特徴とする粒径0.01〜1.0mm の球状塩の製造方法。Sodium chloride and / or particles of potassium chloride into a flame or hot gas burner in suspension, are contacted with 1000 ~ 1300 ° C., producing spherical salt particle size 0.01~1.0mm characterized by melting spheroidizing Method.
JP26648395A 1995-09-20 1995-09-20 Spherical salt and method for producing the same Expired - Lifetime JP3890512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26648395A JP3890512B2 (en) 1995-09-20 1995-09-20 Spherical salt and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26648395A JP3890512B2 (en) 1995-09-20 1995-09-20 Spherical salt and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0986923A JPH0986923A (en) 1997-03-31
JP3890512B2 true JP3890512B2 (en) 2007-03-07

Family

ID=17431567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26648395A Expired - Lifetime JP3890512B2 (en) 1995-09-20 1995-09-20 Spherical salt and method for producing the same

Country Status (1)

Country Link
JP (1) JP3890512B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9011963B2 (en) 2012-11-21 2015-04-21 S&P Ingredient Development, Llc Compositions of low sodium salt and methods of making and using
CN107572559A (en) * 2017-08-18 2018-01-12 天津大学 A kind of sodium chloride spherocrystal and preparation method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228292B1 (en) 1998-05-12 2001-05-08 Degussa Ag Process for the preparation of pulverulent heterogeneous substances
CA3024879A1 (en) 2016-05-26 2017-11-30 Allergan, Inc. Production of rounded salt particles
CN107522211B (en) * 2017-08-18 2019-08-09 天津大学 A kind of spherical shape potassium chloride and preparation method thereof
CN108323745A (en) * 2018-03-20 2018-07-27 天津长芦汉沽盐场有限责任公司 A kind of refined crushing washing salt production method of the reparing process containing crystal form
CN110713196B (en) * 2019-12-05 2021-12-31 吉林省光盐健道健康管理集团有限公司 Preparation of low-sodium NaCl K by using melt recrystallization technology+Method for preparing salt
CN111302362B (en) * 2020-04-03 2021-05-07 天津科技大学 Large-particle spherical salt and preparation method thereof
CN112556424A (en) * 2020-11-30 2021-03-26 山东智永化工产业技术研究院有限公司 Method for reducing dust of high-temperature melting oxidation furnace and improving melting rate
CN113999734A (en) * 2021-10-26 2022-02-01 中盐工程技术研究院有限公司 Dish-washing machine special salt for improving soft water efficiency and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9011963B2 (en) 2012-11-21 2015-04-21 S&P Ingredient Development, Llc Compositions of low sodium salt and methods of making and using
CN107572559A (en) * 2017-08-18 2018-01-12 天津大学 A kind of sodium chloride spherocrystal and preparation method thereof
CN107572559B (en) * 2017-08-18 2019-09-20 天津大学 A kind of sodium chloride spherocrystal and preparation method thereof

Also Published As

Publication number Publication date
JPH0986923A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP3890512B2 (en) Spherical salt and method for producing the same
US2461011A (en) Carbon powder method of making glass beads
JPH02296750A (en) Production of hyperfine hollow glass sphere
EP1072557B1 (en) Production of sodium borohydride from sodium borohydride dihydrate in a fluidized bed dryer
CN106219488B (en) A kind of method and device preparing hydrochloric acid and purifying quartz sand
CN109592691A (en) A kind of device and method of gas heating countercurrent spray method production high-purity ultra-fine sphere silicon micro-powder
AU729196B2 (en) Process and plant for producing porous ammonium nitrate
CN103030409A (en) Spherical alpha-alumina for shell manufacturing material for investment casting, and preparation method thereof
JPH0234884B2 (en)
CN110371989A (en) A kind of ultrasonic atomization prepares the production method of ball-shaped silicon micro powder
US2201206A (en) Production of anhydrous magnesium chloride
CN109437210A (en) A kind of combustion gas counter-current produces the device and method of silica flour using quartz tail sand
JP3746111B2 (en) Method for producing sodium silicate cullet
JPH0438690B2 (en)
US3996340A (en) Method of producing aluminum fluoride
JPS6065719A (en) Preparation of lithium aluminate powder
CN109534350A (en) A kind of device and method of adverse current electric heating production high-purity ultra-fine sphere silicon micro-powder
JPS5935037A (en) Method for molding quartz glass
JPS60131864A (en) Reaction-bonded silicon carbide rotary ellipse
CN115108559B (en) Process for producing silicon tetrachloride by comprehensively utilizing superfine silicon powder waste
RU2169702C2 (en) Method of dehydration of synthetic carnallite
WO1996029287A1 (en) Process for the production of granulated potassium chloride
RU2129986C1 (en) Method of producing liquid glass
JPS5964564A (en) Manufacture of natural glass foam bead
JPH05221687A (en) Fine spherular inorganic foam having thick skin shell and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151215

Year of fee payment: 9

EXPY Cancellation because of completion of term