JP3886974B2 - Microelectrode for electrochemical measurement and manufacturing method thereof - Google Patents

Microelectrode for electrochemical measurement and manufacturing method thereof Download PDF

Info

Publication number
JP3886974B2
JP3886974B2 JP2004053174A JP2004053174A JP3886974B2 JP 3886974 B2 JP3886974 B2 JP 3886974B2 JP 2004053174 A JP2004053174 A JP 2004053174A JP 2004053174 A JP2004053174 A JP 2004053174A JP 3886974 B2 JP3886974 B2 JP 3886974B2
Authority
JP
Japan
Prior art keywords
microelectrode
metal wire
fluororesin
wire
fluororesin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004053174A
Other languages
Japanese (ja)
Other versions
JP2005241506A (en
Inventor
有美 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004053174A priority Critical patent/JP3886974B2/en
Publication of JP2005241506A publication Critical patent/JP2005241506A/en
Application granted granted Critical
Publication of JP3886974B2 publication Critical patent/JP3886974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水溶媒中における電池材料の物性、電気化学的特性等の評価に用いられる
電気化学測定用マイクロ電極及びその製造方法に関する。
The present invention relates to a microelectrode for electrochemical measurement used for evaluation of physical properties, electrochemical characteristics and the like of a battery material in a nonaqueous solvent and a method for producing the same.

現在、高度情報化社会が発展し、携帯情報端末が急速に普及するなかで、より小さく、
より軽く、より高出力な高性能二次電池の携帯電源としての重要性はますます増大してい
る。特に、リチウムイオン二次電池は電気自動車や電力貯蔵への応用も期待されており、
さらなる高性能化が急がれている。これらの高機能電池の研究開発においては、新たに開
発された電池材料の物理的、電気化学的特性の評価が不可欠である。
Currently, as the advanced information society has developed and mobile information terminals have spread rapidly,
The importance of lighter and higher output high performance secondary batteries as portable power sources is increasing. In particular, lithium ion secondary batteries are expected to be applied to electric vehicles and power storage,
There is an urgent need for higher performance. In the research and development of these high-performance batteries, it is essential to evaluate the physical and electrochemical characteristics of newly developed battery materials.

従来、リチウムイオン二次電池用電池活物質の電気化学特性の評価は、電池活物質粉末
、導電助剤(カーボンブラックなど)、有機バインダー(ポリフッ化ビニリデンなど)を
混練し、集電体となる金属箔に圧着したシート状コンポジット電極や、実際の電池試作に
よって行われてきた。コンポジット電極での評価は、実際の市販の電池に組み込まれる状
態での評価であるので、非常に重要である。しかしながら、コンポジット電極では、電極
作製時の経験的な要素がその電気化学応答に大きな影響を与え、導電助剤の混合比、電極
の厚さなどによって電気化学応答は大きく変化してしまう。また、実際の電池試作による
評価では、非常に時間がかかってしまう等の問題があった。いずれの評価手法においても
活物質そのものの電気化学特性を正確に知ることは困難であり、初期段階での材料選定法
としては最良とはいえない手法で評価を行っていた。
Conventionally, evaluation of electrochemical characteristics of a battery active material for a lithium ion secondary battery has been performed by kneading a battery active material powder, a conductive additive (such as carbon black), and an organic binder (such as polyvinylidene fluoride) to form a current collector. It has been carried out by sheet-like composite electrodes crimped to metal foil and actual battery trial manufacture. The evaluation with the composite electrode is very important because it is an evaluation in a state where it is incorporated in an actual commercially available battery. However, in the composite electrode, empirical factors at the time of electrode production have a great influence on the electrochemical response, and the electrochemical response varies greatly depending on the mixing ratio of the conductive assistant, the thickness of the electrode, and the like. In addition, there has been a problem that it takes a very long time to evaluate the actual battery prototype. In any of the evaluation methods, it is difficult to accurately know the electrochemical characteristics of the active material itself, and the evaluation was performed by a method that is not the best as a material selection method in the initial stage.

これに対して、マイクロ電極の手法を固体電気化学反応の解析に適用した評価手法が開
発されている。例えば、特許文献1には、非水電解液を含む粉体測定用の、直径50μm
の金属細線を絶縁被覆したマイクロ電極を開示している。絶縁材料はガラスやフッ素樹脂
で、「金属細線をガラスキャピラリに挿入して有機接着剤で封入する」ことが開示されて
いる。
On the other hand, an evaluation method in which the microelectrode method is applied to the analysis of solid electrochemical reaction has been developed. For example, Patent Document 1 discloses a diameter of 50 μm for measuring powder containing a non-aqueous electrolyte.
Discloses a microelectrode in which a thin metal wire is insulated. It is disclosed that the insulating material is glass or fluororesin, and “a thin metal wire is inserted into a glass capillary and sealed with an organic adhesive”.

しかしながら、この場合、粘度の比較的高い有機接着剤が金属細線とガラスキャピラリ
の間に均一に浸透するには困難であり特にガラスキャピラリの内壁に接触する金属細線の
表面には有機接着剤が存在しない空隙が生じることがある。この様なマイクロ電極が長時
間放置された場合、この空隙内のガス(空気・有機溶媒)がガラスキャピラリと金属細線
の間に亀裂を発生させながらマイクロ電極の外部に放出される。このマイクロ電極を電解
液等に浸して電極として動作させた場合、亀裂を通って電解液が金属細線と接触し、電解
液中のLiと金属細線が合金化反応を生じ、金属細線が劣化してしまい、電気的絶縁性の不
十分さによってバックグラウンド電流が増加等の問題が生じ、高精度な測定が非常に困難
であった。
特開2003−234256
However, in this case, it is difficult for an organic adhesive having a relatively high viscosity to uniformly penetrate between the fine metal wire and the glass capillary, and there is an organic adhesive particularly on the surface of the fine metal wire contacting the inner wall of the glass capillary. Voids may occur. When such a microelectrode is left for a long time, the gas (air / organic solvent) in the gap is released to the outside of the microelectrode while causing a crack between the glass capillary and the fine metal wire. When this microelectrode is immersed in an electrolytic solution and operated as an electrode, the electrolytic solution comes into contact with the fine metal wire through the crack, Li and the fine metal wire in the electrolytic solution undergo an alloying reaction, and the fine metal wire deteriorates. As a result, problems such as an increase in the background current occur due to insufficient electrical insulation, and highly accurate measurement is very difficult.
JP2003-234256

従来のマイクロ電極で電気化学反応の電極として使用した場合、金属細線が劣化して高
精度な測定が非常に困難であった。
When a conventional microelectrode is used as an electrode for an electrochemical reaction, a fine metal wire is deteriorated, so that highly accurate measurement is very difficult.

本発明は上記問題点に鑑みてなされたもので、金属細線が劣化し難く、高精度な測定が
可能な電気化学測定用マイクロ電極及びその製造方法を提供することを課題とする。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide an electrochemical measurement microelectrode and a method for manufacturing the same, in which a fine metal wire is unlikely to deteriorate and high-precision measurement is possible.

上記目的を達成するために、請求項1の電気化学測定用マイクロ電極は、両端を有し一
端が電気信号の外部出力端子である金属細線と、前記金属細線の他端表面に形成され前記
他端の一部を露出させる第1のフッ素樹脂層と、この第1のフッ素樹脂層に外接するガラス
管と、このガラス管及び前記第1のフッ素樹脂層間に浸漬の後固化された第2のフッ素樹
脂層とを有する事を特徴とする電気化学測定用マイクロ電極。
In order to achieve the above object, an electrochemical measurement microelectrode according to claim 1 is formed on a metal thin wire having both ends and one end being an external output terminal of an electric signal, and the other end surface of the metal thin wire. A first fluororesin layer exposing a part of the end; a glass tube circumscribing the first fluororesin layer; and a second solidified after dipping between the glass tube and the first fluororesin layer. A microelectrode for electrochemical measurement, comprising a fluororesin layer.

請求項2の電気化学測定用マイクロ電極は、請求項1において、前記金属細線が、ステ
ンレス、Ni、Fe、Cu、Mo、及びWよりなる群から選ばれる1種または2種以上の
合金である事を特徴とする。
The electrochemical measurement microelectrode according to claim 2 is the microelectrode for electrochemical measurements according to claim 1, wherein the thin metal wire is one or two or more alloys selected from the group consisting of stainless steel, Ni, Fe, Cu, Mo, and W. It is characterized by things.

請求項3の電気化学測定用マイクロ電極の製造方法は、両端を有し一端が電気信号の外
部出力端子である金属細線に対し、この金属細線の他端の一部が露出する様に第1のフッ
素樹脂層を形成する工程と、この第1のフッ素樹脂層に外接するガラス管を形成する工程
と、このガラス管及び前記第1のフッ素樹脂層間に浸漬した後固化させる第2のフッ素樹
脂層を形成する工程とを有する事を特徴とする。
According to a third aspect of the present invention, there is provided a method for producing a microelectrode for electrochemical measurement, wherein the first end is exposed so that a part of the other end of the fine metal wire is exposed with respect to the fine metal wire having both ends and one end being an external output terminal for an electrical signal. A step of forming a fluororesin layer, a step of forming a glass tube circumscribing the first fluororesin layer, and a second fluororesin that is solidified after being immersed between the glass tube and the first fluororesin layer. And a step of forming a layer.

請求項4の電気化学測定用マイクロ電極の製造方法は、請求項3において、前記金属細
線が、ステンレス、Ni、Fe、Cu、Mo、及びWよりなる群から選ばれる1種または
2種以上の合金である事を特徴とする。
The method for producing a microelectrode for electrochemical measurement according to claim 4 is the method according to claim 3, wherein the thin metal wire is one or more selected from the group consisting of stainless steel, Ni, Fe, Cu, Mo, and W. It is characterized by being an alloy.

以上詳述したように、本発明によれば、金属細線が劣化し難く、高精度な測定が可能な
電気化学測定用マイクロ電極及びその製造方法を提供できる。
As described above in detail, according to the present invention, it is possible to provide a microelectrode for electrochemical measurement and a method for manufacturing the same, in which a fine metal wire is hardly deteriorated and high-precision measurement is possible.

非水溶媒中で電池材料の電気化学的特性の評価を行う場合、特に、Liに対して0V付
近に長期間保持して測定を行う場合には、マイクロ電極は電解液の染み上がりがもたらす
バックグラウンド電流の上昇を抑制するために、
(1)電極先端以外は絶縁物で被覆し完璧にシールする必要がある。
When evaluating the electrochemical characteristics of battery materials in a non-aqueous solvent, especially when performing measurements while maintaining a voltage near 0 V for a long period of time, the microelectrode is a back-up of the electrolyte. To suppress the rise in ground current,
(1) Except for the electrode tip, it must be covered with an insulator and completely sealed.

さらに、マイクロ電極の材料である金属細線のLiとの合金化、微粉化による電解液の
染み上がりがもたらすバックグラウンド電流の上昇を避けるために、
(2)Liと合金化し難い材料を用いてマイクロ電極を作製しなければならない。
Furthermore, in order to avoid an increase in the background current caused by alloying with Li of a fine metal wire, which is a material of the microelectrode, and soaking up of the electrolyte due to micronization,
(2) The microelectrode must be fabricated using a material that is difficult to alloy with Li.

Liと合金化しないような金属材料はバーナーで熱すると酸化してしまうので、ガラス
と熱溶着することは出来ない。
Since a metal material that does not alloy with Li is oxidized when heated by a burner, it cannot be thermally welded to glass.

そこで、本発明では(1)、(2)の条件を満たすマイクロ電極を以下の手順により作
製した。作製手順を簡単に図1に示す。まず、前もって金属細線1をフッ素樹脂溶液2で
ディップコートする。フッ素樹脂溶液2に金属細線1を浸漬、ディップコーティングし、
その後100℃空気中で約5分間乾燥させるという手順を5回から20回、より好ましく
は10回から15回繰り返す。こうして第1のフッ素樹脂層3を形成した金属細線1を1
00℃空気中で約1時間乾燥さた後、ガラスキャピラリー4内に挿入する。この後、金属
細線1が挿入されているガラスキャピラリー4の先端を金属細線1まで約1mm残してカ
ットし、さらにこの金属細線1が挿入されたガラスキャピラリー4先端部をフッ素樹脂溶
液2に浸漬、ディップコーティングし、その後100℃空気中で約5分間乾燥させるとい
う手順を5回から20回、より好ましくは10回から15回繰り返すことにより金属細線
1とガラスキャピラリー4の間のスペース及び第1のフッ素樹脂層3の表面及びガラスキ
ャピラリー4の表面に第2のフッ素樹脂層5を形成する。この後、200℃で12時間真
空乾燥させる。最後に、このマイクロ電極のガラスキャピラリー4の先端をマイクログラ
インダーで研磨して先端に金属細線1を露出させて完成である。
Therefore, in the present invention, a microelectrode satisfying the conditions (1) and (2) was produced by the following procedure. The production procedure is simply shown in FIG. First, the fine metal wire 1 is dip coated with the fluororesin solution 2 in advance. Immerse the fine metal wire 1 in the fluororesin solution 2 and dip coat it.
Thereafter, the procedure of drying in air at 100 ° C. for about 5 minutes is repeated 5 to 20 times, more preferably 10 to 15 times. In this way, the thin metal wire 1 on which the first fluororesin layer 3 is formed is 1
After being dried in air at 00 ° C. for about 1 hour, it is inserted into the glass capillary 4. Thereafter, the tip of the glass capillary 4 in which the fine metal wire 1 is inserted is cut to leave about 1 mm to the fine metal wire 1, and the tip of the glass capillary 4 in which the fine metal wire 1 is inserted is further immersed in the fluororesin solution 2. By repeating the procedure of dip coating and then drying in air at 100 ° C. for about 5 minutes 5 to 20 times, more preferably 10 to 15 times, the space between the metal wire 1 and the glass capillary 4 and the first A second fluororesin layer 5 is formed on the surface of the fluororesin layer 3 and the surface of the glass capillary 4. Thereafter, it is vacuum dried at 200 ° C. for 12 hours. Finally, the tip of the glass capillary 4 of the microelectrode is polished with a micro grinder, and the fine metal wire 1 is exposed at the tip.

本発明に用いられる金属細1は、Liと合金化し難い金属、例えばステンレス、Ni、
Fe、Cu、Mo、Wよりなる群から選んだ1種または2種以上の合金などが0V〜3V
vs. Li/Li+ の電位領域で電気化学的に不活性であるという点から好ましい。非水
電解質二次電池負極用カーボン材料の電気化学特性の評価を行う場合にはステンレスを用
いることがバックグラウンド電流が最も小さいという点からより好ましい。
The metal fine 1 used in the present invention is a metal that is difficult to alloy with Li, such as stainless steel, Ni,
One or two or more alloys selected from the group consisting of Fe, Cu, Mo, and W are 0V to 3V.
vs. Li / Li + is preferable in that it is electrochemically inactive in the potential region. When evaluating the electrochemical characteristics of the carbon material for a non-aqueous electrolyte secondary battery negative electrode, it is more preferable to use stainless steel because the background current is the smallest.

金属細線の直径は、電極の小型化、電極強度、弾性度の観点から5μm以上50μm以
下が好ましく、より好ましい範囲は10μm以上30μmである。その理由は、評価対象
となる電池材料の粒径とマイクロ電極の直径のバランスが最も測定しやすい範囲になるか
らである。
The diameter of the fine metal wire is preferably 5 μm or more and 50 μm or less, and more preferably 10 μm or more and 30 μm from the viewpoint of miniaturization of the electrode, electrode strength, and elasticity. The reason is that the balance between the particle size of the battery material to be evaluated and the diameter of the microelectrode is in a range that is most easily measured.

以下、本発明を実施例によって具体的に詳細に説明する。
(実施例1)
マイクロ電極の材料である金属細線に直径20μmのステンレス(SUS304)細線を選択
し、図1に沿った以下の手順でマイクロ電極を作製した。まず、 SUS304線1をフッ素樹
脂溶液2でディップコーティングを行う。このフッ素樹脂コートは10回繰り返す。こうし
てフッ素樹脂コートしたSUS304線1を、ガラスキャピラリー4内に挿入する。この後、SU
S304線1が挿入されているガラスキャピラリー4の先端をフッ素樹脂溶液2でコートする
ことにより、SUS304線1とガラスガラスキャピラリー4の間のスペースをなくす。このガ
ラスキャピラリー4のフッ素樹脂コートは10回繰り返す。
Hereinafter, the present invention will be described in detail by way of examples.
Example 1
A stainless steel (SUS304) fine wire having a diameter of 20 μm was selected as a metal fine wire that is a material of the microelectrode, and a microelectrode was produced by the following procedure according to FIG. First, the SUS304 wire 1 is dip coated with the fluororesin solution 2. This fluororesin coating is repeated 10 times. The SUS304 wire 1 thus coated with the fluororesin is inserted into the glass capillary 4. After this, SU
By coating the tip of the glass capillary 4 into which the S304 wire 1 is inserted with the fluororesin solution 2, the space between the SUS304 wire 1 and the glass glass capillary 4 is eliminated. This fluororesin coating of the glass capillary 4 is repeated 10 times.

この後マイクロ電極を200℃で12時間真空乾燥させ、最後に、ガラスキャピラリー
4の先端をマイクログラインダーで研磨して先端にSUS304線1を露出させる。このように
して作製したステンレス製マイクロ電極の先端部の模式図を図2に示す。断面のみにステ
ンレスが露出し、その周辺は第1のフッ素樹脂層3、ガラスキャピラリー4、第2のフッ
素樹脂層5の三層この順番に積層にならない場合も当然ながら含む)で絶縁されているの
が分かる。
Thereafter, the microelectrode is vacuum-dried at 200 ° C. for 12 hours. Finally, the tip of the glass capillary 4 is polished with a micro grinder to expose the SUS304 wire 1 at the tip. FIG. 2 shows a schematic diagram of the tip of the stainless steel microelectrode thus produced. Stainless steel is exposed only in the cross section, and the periphery thereof is insulated by three layers of the first fluororesin layer 3, the glass capillary 4, and the second fluororesin layer 5, which are naturally not laminated in this order). I understand.

即ち、第2のフッ素樹脂層5はガラスキャピラリー4の外周に存在し、また第1のフッ
素樹脂層3とガラスキャピラリー4の隙間や亀裂にも存在する。場合によっては、SUS304
線1と第1のフッ素樹脂層3の隙間や亀裂にも存在する。この第2のフッ素樹脂層5が、
第1のフッ素樹脂層3とガラスキャピラリー4の隙間や亀裂、或いはSUS304線1と第1の
フッ素樹脂層3の隙間や亀裂に存在することによって、SUS304線1が露出する所定の先端
部分以外が空気或いは液体に接触する心配は無くなる。
That is, the second fluororesin layer 5 exists on the outer periphery of the glass capillary 4 and also exists in a gap or a crack between the first fluororesin layer 3 and the glass capillary 4. In some cases, SUS304
There are also gaps and cracks between the line 1 and the first fluororesin layer 3. The second fluororesin layer 5 is
Except for a predetermined tip portion where the SUS304 wire 1 is exposed by being present in a gap or crack between the first fluororesin layer 3 and the glass capillary 4 or a gap or crack between the SUS304 wire 1 and the first fluororesin layer 3. There is no need to worry about contact with air or liquid.

このステンレス製マイクロ電極のバックグラウンド電流をサイクリックボルタンメトリ
ー (CV、 掃引速度:10mV/s) により1M LiClO4/EC+PC溶液中で測
定した結果を図3 に示す。0V〜3V vs. Li/Li+ の電位領域でほとんど電流は流
れない (1nA 以下) ということが確認できる。従って、ステンレス製マイクロ電極自
体はこの電位領域でほとんど電気化学反応をせず、安定に動作することが確認された。さ
らに、Liに対して0Vに120時間保持した。その時得られた電流値の計時変化を表1
に示す。120時間後にも電流値の増加がなく、安定な電極であるということが確認され
た。
(実施例2〜実施例6)
マイクロ電極の材料である金属細線に直径20μmのステンレス(SUS304)細線以外の
金属細線を選択したことを除き、実施例1と同様にしてマイクロ電極を作製し、得られた
マイクロ電極に対して実施例1と同様にLiに対して0Vに120時間保持した。その時
得られた電流値の計時変化を表1に示す。
(比較例1)
マイクロ電極の製造工程において、ガラスキャピラリー挿入前の、金属細線へのフッ素
樹脂コートでの絶縁を行わないことを除き、実施例1と同様にしてマイクロ電極を作製し
、得られたマイクロ電極に対して実施例1と同様にLiに対して0Vに120時間保持し
た。その時得られた電流値の計時変化を表1に示す。
(比較例2)
マイクロ電極の製造工程において、金属細線のガラスキャピラリーでの絶縁を行わない
ことを除き、実施例1と同様にしてマイクロ電極を作製し、得られたマイクロ電極に対し
て実施例1と同様にLiに対して0Vに120時間保持した。その時得られた電流値の計
時変化を表1に示す。
(比較例3)
マイクロ電極の製造工程において、あらかじめフッ素樹脂コートした金属細線のガラス
キャピラリー挿入後のフッ素樹脂コートでの絶縁を行わないことを除き、実施例1と同様
にしてマイクロ電極を作製し、得られたマイクロ電極に対して実施例1と同様にLiに対
して0Vに120時間保持した。その時得られた電流値の計時変化を表1に示す。
FIG. 3 shows the results of measuring the background current of this stainless steel microelectrode in a 1M LiClO 4 / EC + PC solution by cyclic voltammetry (CV, sweep rate: 10 mV / s). It can be confirmed that almost no current flows (less than 1 nA) in the potential region of 0 V to 3 V vs. Li / Li + . Therefore, it was confirmed that the stainless steel microelectrode itself hardly operated in this potential region and operated stably. Furthermore, it was kept at 0 V for 120 hours with respect to Li. Table 1 shows changes in the current value obtained at that time.
Shown in Even after 120 hours, the current value did not increase, and it was confirmed that the electrode was stable.
(Example 2 to Example 6)
A microelectrode was prepared in the same manner as in Example 1 except that a metal wire other than a stainless steel (SUS304) wire having a diameter of 20 μm was selected as the metal wire used as the material of the microelectrode. As in Example 1, it was maintained at 0 V for 120 hours with respect to Li. Table 1 shows the time variation of the current value obtained at that time.
(Comparative Example 1)
In the microelectrode manufacturing process, a microelectrode was produced in the same manner as in Example 1 except that the metal thin wire was not insulated with a fluororesin coat before inserting the glass capillary. In the same manner as in Example 1, it was maintained at 0 V for 120 hours with respect to Li. Table 1 shows the time variation of the current value obtained at that time.
(Comparative Example 2)
In the manufacturing process of the microelectrode, a microelectrode was produced in the same manner as in Example 1 except that the insulation of the thin metal wire with a glass capillary was not performed. Was maintained at 0 V for 120 hours. Table 1 shows the time variation of the current value obtained at that time.
(Comparative Example 3)
In the microelectrode manufacturing process, a microelectrode was produced in the same manner as in Example 1 except that the insulation with the fluororesin coat after inserting the glass capillary of the fine metal wire previously coated with the fluororesin was not performed. The electrode was held at 0 V with respect to Li for 120 hours as in Example 1. Table 1 shows the time variation of the current value obtained at that time.

Figure 0003886974
Figure 0003886974

上記表1に示すように、非水溶媒中における電気化学測定用マイクロ電極において、マ
イクロ電極材料である金属細線をフッ素樹脂、ガラス、フッ素樹脂の順に絶縁層をコート
し、フッ素樹脂、ガラス、フッ素樹脂の三層構造からなる電気的絶縁層を形成させること
により、より絶縁性の高い電気的絶縁層を形成することが可能であることが分かった。
As shown in Table 1 above, in the microelectrode for electrochemical measurement in a non-aqueous solvent, a metal fine wire as a microelectrode material is coated with an insulating layer in the order of fluororesin, glass and fluororesin, and fluororesin, glass, fluororesin It has been found that it is possible to form an electrically insulating layer with higher insulation by forming an electrically insulating layer having a three-layer structure of resin.

また、以上の実施例には挙げていないが、実施例1で説明した金属細線として、Liと
合金化し難い金属、例えばFe、W、或いはステンレス、Ni、Fe、Cu、Mo、及び
Wよりなる群から選ばれる2種以上の合金に代えその他の構成は実施例1と同一にしたも
のでも実施例1と同一の効果を期待することができる。
Although not mentioned in the above embodiment, the metal thin wire described in Embodiment 1 is made of a metal that is difficult to alloy with Li, such as Fe, W, or stainless steel, Ni, Fe, Cu, Mo, and W. The same effect as in Example 1 can be expected even if the other structure is the same as that in Example 1 in place of two or more kinds of alloys selected from the group.

本発明を実施するための最良の形態のマイクロ電極の作製手順の工程順説明図。The process order explanatory drawing of the preparation procedure of the microelectrode of the best form for implementing this invention. 本を実施するための最良の形態のマイクロ電極先端部の模式図。The schematic diagram of the microelectrode front-end | tip part of the best form for implementing a book. 本発明の一例であるマイクロ電極の非水溶媒中でのサイクリックボルタモグラム。The cyclic voltammogram in the nonaqueous solvent of the microelectrode which is an example of this invention.

符号の説明Explanation of symbols

1…金属細線
2…フッ素樹脂溶液
3…第1のフッ素樹脂層
4…ガラスキャピラリー
5…第2のフッ素樹脂層
DESCRIPTION OF SYMBOLS 1 ... Metal fine wire 2 ... Fluorine resin solution 3 ... 1st fluorine resin layer 4 ... Glass capillary 5 ... 2nd fluorine resin layer

Claims (4)

両端を有し一端が電気信号の外部出力端子である金属細線と、この金属細線の他端表面に
形成され前記他端の一部を露出させる第1のフッ素樹脂層と、この第1のフッ素樹脂層に外
接するガラス管と、このガラス管及び前記第1のフッ素樹脂層間に浸漬の後固化される第
2のフッ素樹脂層とを有する事を特徴とする電気化学測定用マイクロ電極。
A metal thin wire having both ends and one end being an external output terminal of an electric signal, a first fluororesin layer formed on the other end surface of the metal thin wire and exposing a part of the other end, and the first fluorine A microelectrode for electrochemical measurement, comprising: a glass tube circumscribing a resin layer; and a second fluororesin layer that is solidified after being immersed between the glass tube and the first fluororesin layer.
前記金属細線が、ステンレス、Ni、Fe、Cu、Mo、及びWよりなる群から選ばれる
1種または2種以上の合金である事を特徴とする請求項1記載の電気化学測定用マイクロ
電極。
2. The microelectrode for electrochemical measurements according to claim 1, wherein the thin metal wire is one or more alloys selected from the group consisting of stainless steel, Ni, Fe, Cu, Mo, and W. 3.
両端を有し一端が電気信号の外部出力端子である金属細線に対し、この金属細線の他端の
一部が露出する様に第1のフッ素樹脂層を形成する工程と、この第1のフッ素樹脂層に外接
するガラス管を形成する工程と、このガラス管及び前記第1のフッ素樹脂層間に浸漬した
後固化させる第2のフッ素樹脂層を形成する工程とを有する事を特徴とする電気化学測定
用マイクロ電極の製造方法。
Forming a first fluororesin layer so that a part of the other end of the fine metal wire is exposed with respect to the fine metal wire having both ends and one end being an external output terminal of an electrical signal; An electrochemical process comprising: forming a glass tube circumscribing the resin layer; and forming a second fluororesin layer that is solidified after being immersed between the glass tube and the first fluororesin layer. A method for producing a microelectrode for measurement.
前記金属細線が、ステンレス、Ni、Fe、Cu、Mo、及びWよりなる群から選ばれる
1種または2種以上の合金である事を特徴とする請求項3記載の電気化学測定用マイクロ
電極の製造方法。

4. The microelectrode for electrochemical measurements according to claim 3, wherein the thin metal wire is one or more alloys selected from the group consisting of stainless steel, Ni, Fe, Cu, Mo, and W. Production method.

JP2004053174A 2004-02-27 2004-02-27 Microelectrode for electrochemical measurement and manufacturing method thereof Expired - Fee Related JP3886974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053174A JP3886974B2 (en) 2004-02-27 2004-02-27 Microelectrode for electrochemical measurement and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053174A JP3886974B2 (en) 2004-02-27 2004-02-27 Microelectrode for electrochemical measurement and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005241506A JP2005241506A (en) 2005-09-08
JP3886974B2 true JP3886974B2 (en) 2007-02-28

Family

ID=35023382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053174A Expired - Fee Related JP3886974B2 (en) 2004-02-27 2004-02-27 Microelectrode for electrochemical measurement and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3886974B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015506A (en) * 2011-07-06 2013-01-24 Hiranuma Sangyo Kk Ammoniac nitrogen measurement method of coulometric titration system, and device thereof
JP2014002015A (en) * 2012-06-18 2014-01-09 Asahi Glass Co Ltd Microscopic metal electrode and method for manufacturing the same
CN114076786A (en) * 2020-08-17 2022-02-22 国家能源投资集团有限责任公司 Carbon fiber microelectrode and preparation method and application thereof
CN112083041B (en) * 2020-09-15 2021-06-01 中国科学院大连化学物理研究所 Online testing method for resin content of catalyst layer of fuel cell

Also Published As

Publication number Publication date
JP2005241506A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP6187069B2 (en) Lithium battery
US10615452B2 (en) High voltage rechargeable magnesium cell
CN110635170B (en) Method and system for manufacturing nonaqueous electrolyte secondary battery
Schnabel et al. Enhanced interfacial stability of Si anodes for Li-ion batteries via surface SiO2 coating
JP5551033B2 (en) Lithium primary battery
JP2019036391A (en) All-solid battery and negative electrode
JP2017517842A5 (en)
JP2012033365A (en) Reference electrode, manufacturing method thereof, and electrochemical cell
JP2009081103A (en) Positive electrode active material, and lithium secondary battery
JP2009193728A (en) All-solid battery and its manufacturing method
JPWO2014007215A1 (en) All solid state secondary battery
KR101947565B1 (en) Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electricity storage component using same
JP3886974B2 (en) Microelectrode for electrochemical measurement and manufacturing method thereof
Danis et al. Anodic stripping voltammetry at nanoelectrodes: trapping of Mn2+ by crown ethers
Gagnon The Triangular Voltage Sweep Method for Determining Double‐Layer Capacity of Porous Electrodes: IV. Porous Carbon in Potassium Hydroxide
Hansen et al. Size-dependent physicochemical and mechanical interactions in battery paste anodes of Si-microwires revealed by Fast-Fourier-Transform Impedance Spectroscopy
JP2014017056A (en) Inspection method of lithium ion secondary battery
Chiku et al. Determination of the rate-determining step in the electrochemical oxidation of Li metal at the Li negative electrode/Li2S–P2S5 solid electrolyte interface
US11901520B2 (en) Lithium-ion cell for an energy storage unit of a motor vehicle, and method for production thereof
Zheng et al. Biomimetic Nanostructuring of Copper Thin Films Enhances Adhesion to the Negative Electrode Laminate in Lithium‐Ion Batteries
US20070266554A1 (en) Electrochemical cell with moderate-rate discharging capability and method of production
JP3870707B2 (en) Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same
CN216850062U (en) Reference electrode and three-electrode battery
JP2012022835A (en) Power storage device
JP2005326311A (en) Ion conductivity measuring method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

LAPS Cancellation because of no payment of annual fees