JP2005326311A - Ion conductivity measuring method - Google Patents

Ion conductivity measuring method Download PDF

Info

Publication number
JP2005326311A
JP2005326311A JP2004145448A JP2004145448A JP2005326311A JP 2005326311 A JP2005326311 A JP 2005326311A JP 2004145448 A JP2004145448 A JP 2004145448A JP 2004145448 A JP2004145448 A JP 2004145448A JP 2005326311 A JP2005326311 A JP 2005326311A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrode
voltage electrode
current
ion conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004145448A
Other languages
Japanese (ja)
Inventor
Juka Ba
樹華 馬
Akiko Kuze
晶子 久世
Jun Shiroma
純 城間
Kazuaki Yasuda
和明 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Espec Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Espec Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004145448A priority Critical patent/JP2005326311A/en
Publication of JP2005326311A publication Critical patent/JP2005326311A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion conductivity measuring method having improved stability and reproducibility of a measured value and higher accuracy in a film thickness direction 4-terminal method. <P>SOLUTION: Voltage electrodes 16, 17 are inserted between each solid electrolyte film 11-13 relative to the solid electrolyte films 11-13 laminated and arranged between two current electrodes 14, 15, and while supplying a current in the film thickness direction of the laminated solid electrolyte films 11-13 by the current electrodes 14, 15, ion conductivity of the solid electrolyte film 12 is measured based on the potential difference between the voltage electrodes 16, 17 arranged on both sides of the solid electrolyte film 12 which is a test film. In this case, a wire with good conductivity having the thickness of 1-15 μm (more preferably 5-10 μm) is used as each voltage electrode 16, 17. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、イオン伝導性を有する固体有機電解質膜や固体無機電解質膜、特に燃料電池などに適応可能な高分子固体電解質膜に対し、電気伝導特性の評価を行うためのイオン伝導度測定方法に関するものである。   The present invention relates to an ion conductivity measurement method for evaluating electrical conductivity characteristics of solid organic electrolyte membranes and solid inorganic electrolyte membranes having ion conductivity, particularly polymer solid electrolyte membranes applicable to fuel cells and the like. Is.

近年、プロトン伝導性(イオン伝導性)の高分子膜を電解質として用いる固体高分子電解質型燃料電池の研究が進んでいる。固体高分子電解質型燃料電池は低温で作動し、出力密度が高く、小型化できるという特徴を有しているため、車載用電源、家庭用電源、及び携帯用等の燃料電池として有望視されている。   In recent years, research on solid polymer electrolyte fuel cells using a polymer film of proton conductivity (ion conductivity) as an electrolyte has been advanced. Solid polymer electrolyte fuel cells operate at low temperatures, have high output density, and can be miniaturized, so they are promising as fuel cells for in-vehicle power supplies, household power supplies, and portables. Yes.

現在、PEFC(Polymer Electrolyte Fuel Cell:高分子電解質型燃料電池)に於いて使用されている主なプロトン伝導性膜は、パーフルオロアルキレンを主鎖とし、側鎖とするパーフルオロビニルエーテルの末端にスルホン酸基、カルボン酸基などのイオン交換基を有するフッ素樹脂系膜である。このようなフッ素樹脂系膜としては、Nafion(登録商標)膜、Dow(登録商標)膜、Aciplex(登録商標)膜、及びFlemion(登録商標)膜等が知られている。これらの膜、及び新規に開発された膜の電池性能を評価する時、一つの重要な指標が膜のプロトン伝導度(イオン伝導度)である。   At present, the main proton conductive membranes used in PEFC (Polymer Electrolyte Fuel Cell) are perfluoroalkylene as a main chain and a sulfone at the end of perfluorovinyl ether having a side chain. It is a fluororesin film having an ion exchange group such as an acid group or a carboxylic acid group. As such a fluororesin film, a Nafion (registered trademark) film, a Dow (registered trademark) film, an Aciplex (registered trademark) film, a Flemion (registered trademark) film, and the like are known. When evaluating the battery performance of these and newly developed membranes, one important indicator is the proton conductivity (ion conductivity) of the membrane.

またその他に、高温作動に向いている高温固体酸化物燃料電池、リチウム電池などの二次電池、及び電気化学センサーにおいて、種々の無機または有機高分子膜が用いられている。これらの高分子膜では、酸化物、リチウム等のイオン伝導性が製品の性能を大きく影響するため、そのイオン伝導度を測定するにあたって、安価で、再現性よく、しかも正確に測定を行うことができる測定方法が必要とされている。   In addition, various inorganic or organic polymer films are used in high temperature solid oxide fuel cells suitable for high temperature operation, secondary batteries such as lithium batteries, and electrochemical sensors. In these polymer membranes, the ionic conductivity of oxides, lithium, etc. greatly affects the performance of the product. Therefore, when measuring the ionic conductivity, it is possible to measure at low cost, with good reproducibility, and accurately. There is a need for a measurement method that can be used.

現在、燃料電池用高分子プロトン交換電解質膜の伝導度の測定は、主に膜面方向4端子法(例えば、非特許文献1)にて行われている。   Currently, the measurement of the conductivity of the polymer proton exchange electrolyte membrane for fuel cells is mainly performed by the membrane surface direction four-terminal method (for example, Non-Patent Document 1).

しかしながら、Nafionのような高分子プロトン交換電解質膜においては、該電解質膜の製造および加工過程における延伸、ホットプレス等の工程によって、該電解質膜の膜面方向及び膜厚方向に結晶構造や寸法変化などの異方性が生じるのみでなく、イオン伝導性においても異方性をもたらす可能性がある(例えば、非特許文献2)。また、固体高分子電解質形燃料電池においては、これらの電解質膜が膜厚の方向で使われていることや、新規異方性膜の評価ということを受けると、安定で、再現性良く、しかも高精度に膜厚方向のイオン伝導性を測定できる方法が必要とされている。   However, in a polymer proton exchange electrolyte membrane such as Nafion, the crystal structure and dimensional change in the membrane surface direction and the film thickness direction of the electrolyte membrane by processes such as stretching and hot pressing in the production and processing of the electrolyte membrane. In addition to anisotropy such as the above, there is a possibility that anisotropy may be brought about in ion conductivity (for example, Non-Patent Document 2). In addition, in solid polymer electrolyte fuel cells, these electrolyte membranes are used in the direction of film thickness and are evaluated for new anisotropic membranes. A method capable of measuring ion conductivity in the film thickness direction with high accuracy is required.

このような背景のもと、膜厚方向のイオン伝導度の測定方法(膜厚方向測定法)として、これまで種々の方法が検討され、提案されている。代表的なものとして、従来の膜厚方向2端子法(例えば非特許文献3)と膜厚方向4端子法(例えば非特許文献4)とがある。   Against this background, various methods have been studied and proposed as methods for measuring ion conductivity in the film thickness direction (film thickness direction measurement method). As a typical example, there are a conventional film thickness direction two-terminal method (for example, Non-Patent Document 3) and a film thickness direction four-terminal method (for example, Non-Patent Document 4).

非特許文献3に記載のあるような膜厚方向2端子法では、電極/膜界面の電気多層複雑性(非特許文献5に記載有り)のため、インピーダンス方法によるコール−コールプロット上の多数の半円弧が、温度、湿度の影響に敏感に反応する、又は電極/膜接合体における両電極のずれ等のような作製欠陥の影響を大きく受ける。このため、膜厚方向2端子法では、コール−コールプロットから正確に膜本体抵抗Rbulkを読み出すことが難しいといった問題がある。 In the film thickness direction two-terminal method as described in Non-Patent Document 3, due to the electrical multilayer complexity at the electrode / film interface (described in Non-Patent Document 5), a large number of Cole-Cole plots by the impedance method are used. The semicircular arc is sensitive to the effects of temperature and humidity, or is greatly affected by fabrication defects such as misalignment of both electrodes in the electrode / membrane assembly. For this reason, the film thickness direction two-terminal method has a problem that it is difficult to accurately read out the film body resistance R bulk from the Cole-Cole plot.

また、非特許文献6に記載があるような複数枚重ねの電解質膜に対する膜厚方向2端子測定法では、コール−コールプロット上の少数の読み出し点(5個程度)からフィッティングによって膜本体抵抗Rbulkを読み出すが、読み出し点数が少ないためにフィッティング誤差が大きくなり、精度の良い測定が行えない。 Moreover, in the film thickness direction two-terminal measurement method for a plurality of stacked electrolyte membranes as described in Non-Patent Document 6, membrane body resistance R is obtained by fitting from a small number of readout points (about 5) on the Cole-Cole plot. Although bulk is read out, the number of readout points is small, so the fitting error increases and accurate measurement cannot be performed.

上記膜厚方向2端子測定法に比べ、非特許文献4、非特許文献7等に記載がある膜厚方向4端子法では、精度の良い測定が行えるといった利点がある。   Compared to the film thickness direction two-terminal measurement method, the film thickness direction four-terminal method described in Non-Patent Document 4, Non-Patent Document 7, and the like has an advantage that measurement can be performed with high accuracy.

ここで、膜厚方向4端子法を適用した固体電解質膜に対するイオン伝導度測定方法について、図14(a),(b)を参照して以下に説明する。   Here, an ion conductivity measurement method for the solid electrolyte membrane to which the film thickness direction four-terminal method is applied will be described below with reference to FIGS. 14 (a) and 14 (b).

図14(a)において、イオン伝導度が測定される際の固体電解質膜と測定用の電極との配置関係の側面図を示す。上記配置においては、固体電解質膜101ないし103、電流電極104,105、および電圧電極106,107が図示されている。   FIG. 14A shows a side view of the arrangement relationship between the solid electrolyte membrane and the measurement electrode when the ionic conductivity is measured. In the above arrangement, solid electrolyte membranes 101 to 103, current electrodes 104 and 105, and voltage electrodes 106 and 107 are shown.

固体電解質膜101ないし103は、電流電極104,105の間に積層配置されている。図14(b)は、固体電解質膜101ないし103の積層方向から見た平面図であるが、電流電極104,105は、上記積層方向から見て、その領域が重なるように配置されている。   The solid electrolyte membranes 101 to 103 are stacked between the current electrodes 104 and 105. FIG. 14B is a plan view seen from the stacking direction of the solid electrolyte membranes 101 to 103. The current electrodes 104 and 105 are arranged so that their regions overlap when viewed from the stacking direction.

電圧電極106,107については、電圧電極106が固体電解質膜101,102の間に挿入され、電圧電極107が固体電解質膜102,103の間に挿入されている。また、電圧電極106,107の先端は、上記積層方向から見て、電流電極104,105の配置領域内に存在するように配置されている。上記配置においては、電圧電極106,107の間に存在する固体電解質膜102が、イオン伝導度を測定されるテスト膜となる。   Regarding the voltage electrodes 106 and 107, the voltage electrode 106 is inserted between the solid electrolyte membranes 101 and 102, and the voltage electrode 107 is inserted between the solid electrolyte membranes 102 and 103. Further, the tips of the voltage electrodes 106 and 107 are arranged so as to exist in the arrangement region of the current electrodes 104 and 105 when viewed from the stacking direction. In the above arrangement, the solid electrolyte membrane 102 existing between the voltage electrodes 106 and 107 serves as a test membrane for measuring ionic conductivity.

尚、図14(a)においては、固体電解質膜101ないし103と電圧電極106,107との間は位置関係が明確になるように、固体電解質膜101ないし103の膜間を空けて記載している。但し、実際に測定を行う状態においては、固体電解質膜101ないし103の膜間は接触して配置されている。また、図14(a)においては、積層方向から見て、電圧電極106,107は重なる位置でなくても良い。   In FIG. 14 (a), the solid electrolyte membranes 101 to 103 and the voltage electrodes 106 and 107 are shown with a gap between the solid electrolyte membranes 101 to 103 so that the positional relationship is clear. Yes. However, in the actual measurement state, the solid electrolyte membranes 101 to 103 are disposed in contact with each other. In FIG. 14A, the voltage electrodes 106 and 107 do not have to overlap each other when viewed from the stacking direction.

上記配置においてテスト膜(すなわち固体電解質膜102)のイオン伝導度を測定するには、電流電極104,105によって、積層された固体電解質膜101ないし103に所定のテスト電流を与える。このテスト電流としては、交流波、ステップ波、パルス波等が用いられる。そして、上記テスト電流が与えられた状態で、テスト膜102の膜厚方向における電圧が、電圧電極106,107によって測定される。   In order to measure the ionic conductivity of the test membrane (that is, the solid electrolyte membrane 102) in the above arrangement, a predetermined test current is applied to the stacked solid electrolyte membranes 101 to 103 by the current electrodes 104 and 105. As this test current, an AC wave, a step wave, a pulse wave or the like is used. In the state where the test current is applied, the voltage in the film thickness direction of the test film 102 is measured by the voltage electrodes 106 and 107.

ここで、電圧電極106,107間の距離をL、電流電極104,105の面積をA、測定結果から得られるテスト膜102の抵抗をRとすると、テスト膜102のイオン伝導度σは、下記式(1)より求められる。尚、抵抗Rの値は、電流電極104,105からの入力となる電流値と、電圧電極106,107の出力となる電圧値とから求められる。   Here, when the distance between the voltage electrodes 106 and 107 is L, the area of the current electrodes 104 and 105 is A, and the resistance of the test film 102 obtained from the measurement results is R, the ion conductivity σ of the test film 102 is It is calculated | required from Formula (1). Note that the value of the resistor R is obtained from the current value that is input from the current electrodes 104 and 105 and the voltage value that is output from the voltage electrodes 106 and 107.

σ=L/RA ・・・(1)
Yoshitsugu Sone、他2名「Proton Conductivity of Nafion 117 as Measured by a Four-Elecrode AC Impedance Method」, J. Electrochem. Soc., Vol. 143, No. 4, 1996, 1254 Kevin M. Cable、他2名「Anisotropic Ionic Conductivity in Uniaxially Oriented Perfluorosulfonate Ionomers」, Chem. Mater., 7, 1995, 1601 B. D. Cahan、他1名「AC Impedance Investigations of Proton Conduction in NafionTM」, J.Electrochem. Soc., Vol. 140, No.12, December 1993, p.185-186 Masahiro Watanabe、他3名「Experimental analysis of water behavior in NafionTM electrolyte under fuel cell operation」, Journal of Electroanalytical Chemistry 399, 1995, p.239-241 Arvind Parthasarathy、他3名「The Platinum Microelectrode/Nafion Interface: An Electrochemical Impedance Spectroscopic Analysis of Oxygen Reduction Kinetics and Nafion Characteristics」, J. Electrochem. Soc., Vol. 139, No. 6, 1992, 1634 J. Halim、他4名「Characterization of Perfluorosulfonic Acid Membranes by Conductivity Measurements and Small-angle X-ray Scattering」, Electrochimica Acta, Vol. 39, No. 8/9, 1994, 1303-1307 F N. Buchi、他1名「Investigation of the Transversal Water Profile in Nafion Membranes in Polymer Electrolyte Fuel Cells」, J. Electrochem. Soc., Vol. 148, No. 3, 2001, A183
σ = L / RA (1)
Yoshitsugu Sone and two others "Proton Conductivity of Nafion 117 as Measured by a Four-Elecrode AC Impedance Method", J. Electrochem. Soc., Vol. 143, No. 4, 1996, 1254 Kevin M. Cable and two others "Anisotropic Ionic Conductivity in Uniaxially Oriented Perfluorosulfonate Ionomers", Chem. Mater., 7, 1995, 1601 BD Cahan and 1 other "AC Impedance Investigations of Proton Conduction in NafionTM", J. Electrochem. Soc., Vol. 140, No. 12, December 1993, p.185-186 Masahiro Watanabe and 3 others "Experimental analysis of water behavior in NafionTM electrolyte under fuel cell operation", Journal of Electroanalytical Chemistry 399, 1995, p.239-241 Arvind Parthasarathy and three others "The Platinum Microelectrode / Nafion Interface: An Electrochemical Impedance Spectroscopic Analysis of Oxygen Reduction Kinetics and Nafion Characteristics", J. Electrochem. Soc., Vol. 139, No. 6, 1992, 1634 J. Halim and 4 others "Characterization of Perfluorosulfonic Acid Membranes by Conductivity Measurements and Small-angle X-ray Scattering", Electrochimica Acta, Vol. 39, No. 8/9, 1994, 1303-1307 F N. Buchi and 1 other "Investigation of the Transversal Water Profile in Nafion Membranes in Polymer Electrolyte Fuel Cells", J. Electrochem. Soc., Vol. 148, No. 3, 2001, A183

上述した膜厚方向4端子法は、理論的には膜厚方向2端子法よりも精度の良い測定が行えるものの、従来の膜厚方向4端子法を用いて実際の測定を行った場合には、その測定精度を低下させる要因があり、正確なイオン伝導度を求めることができないという問題があった。   The above-described film thickness direction 4-terminal method can theoretically measure with higher accuracy than the film thickness direction 2-terminal method, but when actual measurement is performed using the conventional film thickness direction 4-terminal method, There is a factor that decreases the measurement accuracy, and there is a problem that accurate ion conductivity cannot be obtained.

具体的には、電解質膜同士の界面における接触状態、あるいは、電解質膜と電圧電極との接触状態または接触面積が測定精度に対して大きな影響を与えることが本願発明者らによって確認されたが、従来の測定方法では、これらについては考慮されていなかった。   Specifically, the present inventors have confirmed that the contact state at the interface between the electrolyte membranes, or the contact state or contact area between the electrolyte membrane and the voltage electrode has a great influence on the measurement accuracy. In the conventional measuring method, these were not considered.

また、上記膜厚方向4端子測定法においては、電流パルス方法でオシロスコープにより膜本体抵抗Rbulkを読み出すが、この場合、読み出し点が直視できず、測定精密性を感知することができないといった問題があり、膜厚方向4端子測定法によるイオン伝導度測定を行うことが難しいという欠点がある。 In the film thickness direction 4-terminal measurement method, the membrane body resistance R bulk is read out by an oscilloscope using a current pulse method. In this case, however, the readout point cannot be directly viewed, and measurement precision cannot be sensed. In addition, there is a drawback that it is difficult to perform ion conductivity measurement by the film thickness direction 4-terminal measurement method.

また、膜厚方向4端子法は、膜面方向4端子法に比べて、より薄い膜厚とより大きい膜面積による小さいセル常数(Cell constant: L/A in σ=L/(RA))を持っており、測定から得られる抵抗値(0.1〜10Ω)が、膜面方向4端子法で得られる抵抗値(1000Ω以上)よりも極めて低くなる。このため、膜同士の間、及び電圧電極と膜との間の接触状態や、電圧電極の太さによる膜接合体内部の不均一性により、抵抗値のばらつきの影響が大きくなり、抵抗値測定の相対誤差が大きくなる。または、電圧電極と膜との間の接触面積によって、膜本体抵抗より大きい界面抵抗および界面容量が発生し、これらによって半円弧がコール−コールプロットに現れて、4端子法における利点を無くし、また、この半円弧の変化が温度、湿度に敏感に反応し、コール−コールプロットにおける実軸との切片から膜本体抵抗を測定することが難しくなるといった問題もある。   Also, the film thickness direction 4-terminal method has a smaller cell constant (Cell constant: L / A in σ = L / (RA)) due to a thinner film thickness and a larger film area than the film surface direction 4-terminal method. The resistance value (0.1 to 10Ω) obtained from the measurement is extremely lower than the resistance value (1000Ω or more) obtained by the film surface direction four-terminal method. For this reason, the influence of variation in resistance value is increased due to the non-uniformity inside the membrane assembly due to the contact state between the membranes and between the voltage electrode and the membrane, and the thickness of the voltage electrode. The relative error of becomes large. Alternatively, the contact area between the voltage electrode and the membrane generates an interfacial resistance and interfacial capacitance that is greater than the membrane body resistance, which causes a semicircular arc to appear in the Cole-Cole plot, eliminating the advantage in the 4-terminal method, and There is also a problem that the change in the semicircular arc is sensitive to temperature and humidity, making it difficult to measure the membrane body resistance from the intercept with the real axis in the Cole-Cole plot.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、膜厚方向4端子法において、測定値安定性、再現性を向上させ、より精度の良いイオン伝導度測定方法を実現することにある。   The present invention has been made in view of the above problems, and its purpose is to improve the measurement value stability and reproducibility in the film thickness direction four-terminal method, and to provide a more accurate ion conductivity measurement method. It is to be realized.

本発明に係るイオン伝導度測定方法は、上記課題を解決するために、2つの電流電極間に積層配置された少なくとも3枚以上の固体電解質膜に対し、各固体電解質膜間に電圧電極を挿入し、上記電流電極によって上記積層された固体電解質膜の膜厚方向に電流を供給しながら、所定の固体電解質膜の両側に配置された電圧電極間の電位差に基づいて、上記所定の固体電解質膜のイオン導電度を測定するイオン伝導度測定方法において、上記電圧電極として被覆層を有さない良導電性線を使用し、該電圧電極の太さが1〜15μm、さらに好適には5〜10μmであることを特徴としている。   In order to solve the above-described problem, the ion conductivity measurement method according to the present invention inserts a voltage electrode between each solid electrolyte membrane with respect to at least three or more solid electrolyte membranes stacked between two current electrodes. The predetermined solid electrolyte membrane based on the potential difference between the voltage electrodes arranged on both sides of the predetermined solid electrolyte membrane while supplying current in the film thickness direction of the laminated solid electrolyte membrane by the current electrode In the ionic conductivity measurement method for measuring the ionic conductivity, a good conductive wire having no coating layer is used as the voltage electrode, and the thickness of the voltage electrode is 1 to 15 μm, more preferably 5 to 10 μm. It is characterized by being.

上記の構成によれば、上記電圧電極の線径を従来よりも細くすることで電圧電極と電解質膜との接触面積を低減させ、これにより、膜厚方向4端子法において、測定値安定性、再現性を向上させ、より精度の良いイオン伝導度測定方法を実施することが可能となった。   According to said structure, the contact area of a voltage electrode and an electrolyte membrane is reduced by making the wire diameter of the said voltage electrode thinner than before, and, thereby, in a film thickness direction 4 terminal method, measurement value stability, It became possible to improve the reproducibility and implement a more accurate ion conductivity measurement method.

また、本発明に係る他のイオン伝導度測定方法は、上記課題を解決するために、2つの電流電極間に積層配置された少なくとも3枚以上の固体電解質膜に対し、各固体電解質膜間に電圧電極を挿入し、上記電流電極によって上記積層された固体電解質膜の膜厚方向に電流を供給しながら、所定の固体電解質膜の両側に配置された電圧電極間の電位差に基づいて、上記所定の固体電解質膜のイオン導電度を測定するイオン伝導度測定方法において、上記電圧電極として絶縁性被覆層を有する良導電性線を使用し、該電圧電極の太さが50〜150μm、さらに好適には50〜100μm、内部の良導電性線の太さが30〜70μmであることを特徴としている。   In addition, in order to solve the above-described problem, another ion conductivity measurement method according to the present invention is provided between at least three solid electrolyte membranes stacked between two current electrodes. While inserting a voltage electrode and supplying a current in the film thickness direction of the stacked solid electrolyte membrane by the current electrode, the predetermined electrode based on the potential difference between the voltage electrodes arranged on both sides of the predetermined solid electrolyte membrane. In the ion conductivity measurement method for measuring the ionic conductivity of the solid electrolyte membrane, a good conductive wire having an insulating coating layer is used as the voltage electrode, and the thickness of the voltage electrode is preferably 50 to 150 μm, more preferably. Is characterized in that the thickness of the internal good conductive line is 30 to 70 μm.

上記の構成によっても、上記電圧電極と電解質膜との接触面積を低減させ、これにより、膜厚方向4端子法において、測定値安定性、再現性を向上させ、より精度の良いイオン伝導度測定方法を実施することが可能となった。   Even with the above configuration, the contact area between the voltage electrode and the electrolyte membrane is reduced, thereby improving the measurement value stability and reproducibility in the film thickness direction four-terminal method, and more accurate ion conductivity measurement. It became possible to carry out the method.

また、上記イオン伝導度測定方法においては、上記電流電極、固体電解質膜、および電圧電極は、ホットプレス、捻じ込み、又はねじ栓などの圧力によるコンパクト手法にて接合され、イオン伝導度の測定は、この測定用電極/膜接合体に対して行われることが好ましい。   In the ion conductivity measurement method, the current electrode, the solid electrolyte membrane, and the voltage electrode are joined by a compact method using pressure such as hot pressing, screwing, or screw plug, and the ion conductivity is measured. The measurement electrode / membrane assembly is preferably performed.

上記の構成によれば、電流電極、固体電解質膜、および電圧電極を、上述の手法にて接合することで、上記電解質膜間の接触状態がより良好となり、さらに精度の良いイオン伝導度測定を実施することができる。   According to the above configuration, by connecting the current electrode, the solid electrolyte membrane, and the voltage electrode by the above-described method, the contact state between the electrolyte membranes becomes better, and more accurate ion conductivity measurement is performed. Can be implemented.

また、上記イオン伝導度測定方法においては、上記電流電極は、交流インピーダンス、電流遮断、電位ステップ、電流、電位パルスの何れかによる入力電流を与えることが好ましい。   In the ion conductivity measuring method, it is preferable that the current electrode gives an input current by any one of AC impedance, current interruption, potential step, current, and potential pulse.

また、上記イオン伝導度測定方法においては、上記電流電極によって入力される電流を導入する役目となる外側の両電解質膜間にある電解質膜が1枚以上20枚以下であることが好ましい。   Further, in the ion conductivity measuring method, it is preferable that the number of electrolyte membranes between the outer electrolyte membranes for introducing the current input by the current electrodes is 1 or more and 20 or less.

また、上記イオン伝導度測定方法においては、上記電流電極、固体電解質膜、および電圧電極は、120〜250℃の範囲の温度、3.84×10〜1.92×10Paの範囲の圧力、さらに好ましくは、150〜200℃の範囲の温度、3.84×10〜1.44×10Paの範囲の圧力にて、ホットプレスにて接合されることが好ましい。 Moreover, in the said ion conductivity measuring method, the said current electrode, a solid electrolyte membrane, and a voltage electrode are the temperature of the range of 120-250 degreeC, and the range of 3.84 * 10 < 6 > -1.92 * 10 < 8 > Pa. It is preferable to join by hot pressing at a pressure, more preferably at a temperature in the range of 150 to 200 ° C., and at a pressure in the range of 3.84 × 10 7 to 1.44 × 10 8 Pa.

また、上記イオン伝導度測定方法においては、上記電流電極、固体電解質膜、および電圧電極は、3〜20Nmの範囲、さらに好ましくは、5〜15Nmの範囲のトルクにて、捻じ込み、またはねじ栓の手法により接合されることが好ましい。   In the ion conductivity measurement method, the current electrode, the solid electrolyte membrane, and the voltage electrode are screwed or screwed with a torque in the range of 3 to 20 Nm, more preferably in the range of 5 to 15 Nm. It is preferable to join by this method.

また、上記イオン伝導度測定方法においては、上記電流電極が、Au、Pt、白金黒、銅などの何れかの金属、またはカーボンである良導電性シートからなることが好ましい。   In the ion conductivity measuring method, the current electrode is preferably made of a highly conductive sheet made of any metal such as Au, Pt, platinum black, copper, or carbon.

また、上記イオン伝導度測定方法においては、上記電圧電極は、電解質膜間の等電位位置に配置されることが好ましい。   In the ionic conductivity measurement method, the voltage electrode is preferably disposed at an equipotential position between the electrolyte membranes.

また、上記イオン伝導度測定方法においては、上記電圧電極は、電解質膜の積層方向から見た電流電極配置領域内に配置される部分にて、その太さが1〜15μmである良導電性裸線が用いられ、該良導電性裸線は上記電流電極配置領域外でそれよりも太い導電性線に接続されていることが好ましい。   In the ionic conductivity measurement method, the voltage electrode is a well-conductive bare electrode having a thickness of 1 to 15 μm at a portion arranged in the current electrode arrangement region as seen from the stacking direction of the electrolyte membrane. Preferably, a wire is used, and the well-conductive bare wire is connected to a thicker conductive wire outside the current electrode arrangement region.

また、上記イオン伝導度測定方法においては、電流電極配置領域内に配置される部分に用いられる細裸線の長さが0.5mmに調整され、該細線の先端が両電流電極の間に0.1〜0.2mm入る程度に配置されて、ホットプレス又は捻じ込み、ねじ栓などの圧力によるコンパクト手法で接合されることが好ましい。   In the ion conductivity measurement method, the length of the thin bare wire used in the portion arranged in the current electrode placement region is adjusted to 0.5 mm, and the tip of the thin wire is 0 between the current electrodes. It is preferable that it is disposed so as to be within a range of 0.1 to 0.2 mm and is joined by a compact method using pressure such as hot pressing, screwing, or screw plugging.

また、上記イオン伝導度測定方法においては、上記電圧電極は、その先端部における絶縁性被覆層を0.1〜0.2mm削った状態で使用されることが好ましい。   Moreover, in the said ion conductivity measuring method, it is preferable to use the said voltage electrode in the state which shaved 0.1-0.2 mm the insulating coating layer in the front-end | tip part.

また、上記イオン伝導度測定方法においては、上記電圧電極は、絶縁性被覆層を有する良導電性線の先端部をその軸線方向に対して斜め、あるいは垂直に切った状態で使用されることが好ましい。   Further, in the ion conductivity measuring method, the voltage electrode may be used in a state where a tip portion of a highly conductive wire having an insulating coating layer is cut obliquely or perpendicularly to the axial direction. preferable.

また、上記イオン伝導度測定方法においては、上記電圧電極が挿入される上記電解質膜の接触面に、該電解質膜材料とそれが溶ける溶媒とからなる溶液を塗布し、積層された上記電解質膜および電圧電極を真空乾燥させた後、上記接合体を製造する、上記電解質膜を該電解質膜が溶ける溶媒にて膨張させ、積層された上記電解質膜および電圧電極を真空乾燥させた後、上記接合体を製造する、あるいは、上記電圧電極の先端に、上記電解質膜材料とそれが溶ける溶媒とからなる溶液にて小球を作り、該小球の溶媒を乾燥させてから、さらに、積層された上記電解質膜および電圧電極を真空乾燥させた後、上記接合体を製造することが好ましい。   Further, in the ion conductivity measuring method, a solution composed of the electrolyte membrane material and a solvent in which the electrolyte membrane material is dissolved is applied to a contact surface of the electrolyte membrane into which the voltage electrode is inserted, and the laminated electrolyte membrane and After the voltage electrode is vacuum dried, the joined body is manufactured. The electrolyte membrane is expanded with a solvent in which the electrolyte membrane is dissolved, and the laminated electrolyte membrane and the voltage electrode are vacuum dried, and then the joined body. Or, at the tip of the voltage electrode, make small spheres with a solution composed of the electrolyte membrane material and a solvent in which the electrolyte membrane material dissolves, dry the solvent of the spheres, and then stack the above It is preferable to manufacture the joined body after the electrolyte membrane and the voltage electrode are vacuum dried.

上記の構成によれば、上記電圧電極と電解質膜との接触状態が良好となり、さらに精度の良いイオン伝導度測定を実施することができる。   According to said structure, the contact state of the said voltage electrode and electrolyte membrane becomes favorable, and more accurate ion conductivity measurement can be implemented.

本発明に係るイオン伝導度測定方法は、以上のように、電圧電極と電解質膜との接触面積を低減させることで電圧電極と電解質膜との接触性を向上させ、電圧電極と電解質膜との間で従来よりも良好な接触状態を得ることができ、膜厚方向4端子法において、測定値安定性、再現性を向上させ、より精度の良いイオン伝導度測定方法を実施可能とするといった効果を奏する。   As described above, the ion conductivity measurement method according to the present invention improves the contact between the voltage electrode and the electrolyte membrane by reducing the contact area between the voltage electrode and the electrolyte membrane. Can achieve a better contact state than before, and can improve the stability and reproducibility of measured values in the film thickness direction four-terminal method, enabling the implementation of a more accurate ion conductivity measurement method. Play.

本発明の一実施形態について図1ないし図13に基づいて説明すると以下の通りである。本発明は、イオン伝導性を有する固体有機電解質膜や固体無機電解質膜、特に燃料電池などに適応可能な高分子固体電解質膜に対して、電気伝導特性の評価を行うためのイオン伝導度測定方法を、膜厚方向4端子法によって行うものである。特に、本願発明は、膜厚方向4端子法によるイオン伝導度測定において、さらなる精度の向上を目的としている。   An embodiment of the present invention will be described below with reference to FIGS. The present invention relates to an ion conductivity measuring method for evaluating electrical conductivity characteristics of a solid organic electrolyte membrane or solid inorganic electrolyte membrane having ion conductivity, particularly a polymer solid electrolyte membrane applicable to a fuel cell or the like. Is performed by the film thickness direction four-terminal method. In particular, the present invention aims to further improve accuracy in ion conductivity measurement by the film thickness direction four-terminal method.

本発明に基づく、膜厚方向4端子法を用いたイオン伝導度測定方法は、少なくとも3枚以上の高分子電解質膜と、2つの電流電極と、少なくとも2つ以上の電圧電極とを積層して配置される電極/電解質膜接合体に対して実施される。先ずは、この接合体における電解質膜と電極との配置関係を図1(a),(b)を参照して説明する。   According to the present invention, an ionic conductivity measurement method using a film thickness direction four-terminal method includes laminating at least three polymer electrolyte membranes, two current electrodes, and at least two voltage electrodes. This is performed on the electrode / electrolyte membrane assembly to be arranged. First, the positional relationship between the electrolyte membrane and the electrode in this joined body will be described with reference to FIGS. 1 (a) and 1 (b).

上記接合体は、図1(a)に示すように、固体電解質膜11ないし13、電流電極14,15、および電圧電極16,17から構成されており、固体電解質膜11ないし13は、電流電極14,15の間に積層配置されている。また、電圧電極16,17については、電圧電極16が固体電解質膜11,12の間に挿入され、電圧電極17が固体電解質膜12,13の間に挿入されている。つまり、電圧電極は、2枚の固体電解質膜の各膜間に挿入される。   As shown in FIG. 1A, the joined body is composed of solid electrolyte membranes 11 to 13, current electrodes 14 and 15, and voltage electrodes 16 and 17, and the solid electrolyte membranes 11 to 13 are current electrodes. 14 and 15 are stacked. Regarding the voltage electrodes 16 and 17, the voltage electrode 16 is inserted between the solid electrolyte membranes 11 and 12, and the voltage electrode 17 is inserted between the solid electrolyte membranes 12 and 13. That is, the voltage electrode is inserted between each of the two solid electrolyte membranes.

尚、図1(a)では、固体電解質膜を3枚積層した構成を例示しているため、電圧電極の本数は2本であるが、固体電解質膜をN枚積層した構成では、電圧電極の本数は(N−1)本となる。また、上記接合体においては、2本の電圧電極の間に挟まれる電解質膜(ここでは、固体電解質膜12)が、イオン伝導度を測定されるテスト膜となる。ここで、上記接合体における両外側の電解質膜は、該接合体に交流電流を導入する役目で配置されており、これら両外側の電解質膜の間に配置されるテスト膜は1〜20枚程度とすることができる。このとき、上記テスト膜に対して、1枚毎、或いは数枚毎にイオン伝導度を測定することも可能であり、これによって測定誤差を下げさせ、測定精密度を更に向上させることができる。   FIG. 1A illustrates a configuration in which three solid electrolyte membranes are stacked, so the number of voltage electrodes is two. However, in a configuration in which N solid electrolyte membranes are stacked, the voltage electrode The number is (N-1). In the above-mentioned joined body, an electrolyte membrane (here, solid electrolyte membrane 12) sandwiched between two voltage electrodes serves as a test membrane for measuring ionic conductivity. Here, the electrolyte membranes on both outer sides of the joined body are arranged for the purpose of introducing an alternating current into the joined body, and about 1 to 20 test membranes are arranged between the electrolyte membranes on both outer sides. It can be. At this time, it is also possible to measure the ionic conductivity for each of the test films or for every several sheets, thereby reducing the measurement error and further improving the measurement accuracy.

図1(b)は、固体電解質膜11ないし13の積層方向から見た平面図であるが、電流電極14,15は、上記積層方向から見て、その領域が重なるように配置されている。また、電圧電極16,17の先端は、上記積層方向から見て、電流電極14,15の配置領域内に存在するように配置されている。尚、図1(b)においては、積層方向から見て、電圧電極16,17は重なる位置でなくても良い。   FIG. 1B is a plan view of the solid electrolyte membranes 11 to 13 as viewed from the stacking direction, and the current electrodes 14 and 15 are arranged so that their regions overlap when viewed from the stacking direction. Further, the tips of the voltage electrodes 16 and 17 are arranged so as to exist in the arrangement region of the current electrodes 14 and 15 when viewed from the stacking direction. In FIG. 1B, the voltage electrodes 16 and 17 do not have to overlap each other when viewed from the stacking direction.

尚、図1(a)においては、固体電解質膜11ないし13と電圧電極16,17との間は位置関係が明確になるように、固体電解質膜11ないし13の膜間を空けて記載している。但し、実際に測定を行う状態においては、固体電解質膜11ないし13の膜間は接触して配置されている。上記接合体は、上記電解質膜および電極を上述の配置で重ね合わせたものを、ホットプレス、捻じ込み、又はねじ栓などの圧力によるコンパクト手法で接合して得られる。   In FIG. 1A, the solid electrolyte membranes 11 to 13 and the voltage electrodes 16 and 17 are illustrated with a space between the solid electrolyte membranes 11 to 13 so that the positional relationship is clear. Yes. However, in the actual measurement state, the solid electrolyte membranes 11 to 13 are arranged in contact with each other. The joined body is obtained by joining the electrolyte membrane and the electrode in the above-described arrangement by a compact method using pressure such as hot pressing, screwing, or screw plug.

上記接合体に対してテスト膜(すなわち固体電解質膜12)のイオン伝導度を測定するには、電流電極14,15によって、積層された固体電解質膜11ないし13に所定のテスト電流を与える。このテスト電流としては、交流インピーダンス(正弦波)、電流遮断、電位ステップ(ステップ波)、電流、電位パルス(パルス波)等が用いられる。そして、上記テスト電流が与えられた状態で、テスト膜12の膜厚方向における電圧が、電圧電極16,17によって測定される。   In order to measure the ionic conductivity of the test membrane (that is, the solid electrolyte membrane 12) with respect to the joined body, a predetermined test current is applied to the laminated solid electrolyte membranes 11 to 13 by the current electrodes 14 and 15. As this test current, AC impedance (sine wave), current interruption, potential step (step wave), current, potential pulse (pulse wave), etc. are used. In the state where the test current is applied, the voltage in the film thickness direction of the test film 12 is measured by the voltage electrodes 16 and 17.

上記電流電極14,15としては、Au、Pt、白金黒、銅、アルミニウム、ニッケル、チタン、ステンレス鋼などの金属、あるいはカーボンなどの良導電性シートを用いることが好適である。   As the current electrodes 14 and 15, it is preferable to use a metal such as Au, Pt, platinum black, copper, aluminum, nickel, titanium, and stainless steel, or a highly conductive sheet such as carbon.

また、上記電圧電極16,17は、金属やカーボンなどの良導電性線からなり、テフロン(登録商標)や樹脂等の絶縁性被覆層を有していても有していなくてもよい。上記電圧電極16,17は、電解質膜間の等電位位置に配置され、各膜間の電位信号をサンプリングし取り出す。また上記電圧電極16,17の先端は、電流電極の配置領域における中心付近にあることが好ましく、電流電極の円形又は四角形等の形によって、それと相応しい円形又は四角形等の形で配置される。   The voltage electrodes 16 and 17 are made of a highly conductive wire such as metal or carbon, and may or may not have an insulating coating layer such as Teflon (registered trademark) or resin. The voltage electrodes 16 and 17 are disposed at equipotential positions between the electrolyte membranes, and sample and extract potential signals between the membranes. The tips of the voltage electrodes 16 and 17 are preferably near the center of the current electrode arrangement region, and are arranged in a circular or square shape corresponding to the circular or square shape of the current electrode.

上述したように、本発明は、膜厚方向4端子法によるイオン伝導度測定において、さらなる精度の向上を目的としているが、電解質膜同士の界面における接触状態、あるいは、電解質膜と電圧電極との接触状態および接触面積が、測定精度を低下させる原因として存在していることは、既に述べたとおりである。   As described above, the present invention aims to further improve the accuracy in ion conductivity measurement by the film thickness direction four-terminal method, but the contact state at the interface between the electrolyte membranes or the electrolyte membrane and the voltage electrode As described above, the contact state and the contact area exist as causes for reducing the measurement accuracy.

例えば、従来の膜厚方向4端子法では、電圧電極に用いる導電性線において、その太さに対する考慮はされておらず、電圧電極には数十μm程度の線が用いられていた。例えば、非特許文献4では、25μmの導電性線を電圧電極として使用している。   For example, in the conventional film thickness direction 4-terminal method, the thickness of the conductive wire used for the voltage electrode is not considered, and a wire of about several tens of μm is used for the voltage electrode. For example, in Non-Patent Document 4, a 25 μm conductive wire is used as a voltage electrode.

しかしながら、電解質膜間に挿入される電圧電極の径が大きいと、電解質膜間において隙間が発生し、かつ、電圧電極と電解質膜との間の接触面積が大きくなり、この隙間および大きくなる接触面積からの抵抗と電気容量による半円弧が測定値のばらつきの要因となる。このため、本発明においては、図1に示す接合体において、電解質膜間における隙間を最小とすると共に、電圧電極と電解質膜との接触面積を低減させて、良好な接触面が得られるように、電圧電極16,17として用いられる導電性線を従来よりも細くする手法を試みた。その結果、被覆層を有さない金属やカーボンなどの良導電性線を用いる場合では、その太さが1〜15μm、好ましく5〜10μmで、良好な結果が得られることがわかった。   However, when the diameter of the voltage electrode inserted between the electrolyte membranes is large, a gap is generated between the electrolyte membranes, and the contact area between the voltage electrode and the electrolyte membrane increases, and this gap and the increased contact area. The semi-circular arc due to the resistance and electric capacity from this causes the variation of the measured value. Therefore, in the present invention, in the joined body shown in FIG. 1, the gap between the electrolyte membranes is minimized, and the contact area between the voltage electrode and the electrolyte membrane is reduced so that a good contact surface can be obtained. An attempt was made to make the conductive wires used as the voltage electrodes 16 and 17 thinner than before. As a result, it was found that when a good conductive wire such as metal or carbon having no coating layer is used, the thickness is 1 to 15 μm, preferably 5 to 10 μm, and good results are obtained.

また、テフロン(登録商標)や樹脂等の絶縁性被覆層を有する金属やカーボンなどの良導電性線を用いる場合では、その太さが50〜150μm、好ましく50〜100μm、内部導電線の太さが30〜70μmで、良好な結果が得られることがわかった。   In the case of using a highly conductive wire such as Teflon (registered trademark) or a resin having an insulating coating layer such as resin or carbon, the thickness is 50 to 150 μm, preferably 50 to 100 μm, and the thickness of the internal conductive wire. 30-70 μm, it was found that good results were obtained.

尚、図1(a)においては、固体電解質膜11ないし13と電圧電極16,17との間は位置関係が明確になるように、固体電解質膜11ないし13の膜間を空けて記載している。但し、実際に測定を行う状態においては、固体電解質膜11ないし13の膜間は接触して配置されている。上記接合体は、接合して得られる。   In FIG. 1A, the solid electrolyte membranes 11 to 13 and the voltage electrodes 16 and 17 are illustrated with a space between the solid electrolyte membranes 11 to 13 so that the positional relationship is clear. Yes. However, in the actual measurement state, the solid electrolyte membranes 11 to 13 are arranged in contact with each other. The joined body is obtained by joining.

また、上述の接合体では、電解質膜同士の界面における接触状態、あるいは、電解質膜と電圧電極との接触状態を良好にするため、上記電解質膜および電極をホットプレス、捻じ込み、又はねじ栓などのコンパクト手法で接合する。この接合をホットプレスにて行う場合の好適条件は、温度が120〜250℃、好ましくは150〜200℃で、圧力が3.84×10〜1.92×10Pa、好ましくは3.84×10〜1.44×10Paである。 Moreover, in the above-mentioned joined body, in order to improve the contact state at the interface between the electrolyte membranes or the contact state between the electrolyte membrane and the voltage electrode, the electrolyte membrane and the electrode are hot pressed, screwed, screw plugs, etc. Join with the compact method. Suitable conditions for performing this joining by hot pressing are a temperature of 120 to 250 ° C., preferably 150 to 200 ° C., and a pressure of 3.84 × 10 6 to 1.92 × 10 8 Pa, preferably 3. It is 84 * 10 < 7 > -1.44 * 10 < 8 > Pa.

また、この接合を捻じ込み、またはねじ栓にて行う場合の好適条件は、温度が120〜250℃、好ましくは150〜200℃で、トルクが3〜20Nm、好ましくは5〜15Nmである。   Moreover, as for the suitable conditions in the case of performing this joining by screwing or performing with a screw plug, temperature is 120-250 degreeC, Preferably it is 150-200 degreeC, A torque is 3-20 Nm, Preferably it is 5-15 Nm.

前述の、捻じ込み、ねじ栓などの圧力による重ねコンパクト方法においては、特定のセルに対し、前記の条件によって、接合体のホットプレスとセルへの組み立てとが一貫して実施されることになり、2次操作による接合体内部の電圧電極の不安定化(電極のズレ等)を回避でき、好適である。   In the above-described overlap compact method by pressure such as screwing and screw plug, the hot pressing of the joined body and the assembly into the cell are performed consistently for a specific cell according to the above-described conditions. It is preferable because instability of the voltage electrode inside the joined body due to the secondary operation (displacement of the electrode, etc.) can be avoided.

また、上記説明では、電解質膜同士の界面における接触状態、あるいは、電解質膜と電圧電極との接触状態および接触面積が測定精度に大きな影響を与えることを説明したが、これ以外に、電流電極と電解質膜との間の接触状態が不良であっても測定結果にバラツキが生じる。電流電極と電解質膜との間の接触状態を良好にする手法としては、電解質膜/電極接合体を重ねる段階において、電流電極となる導電性シートにおける電解質膜と接触する側に、上記電解質膜材料とそれを溶かす溶媒とからなる溶液を塗布して乾燥させる手法を取ることができる。上記手法によって、電流電極/電解質膜間の接触性を向上させ、電流電極間の電界を均一にし、正確で再現性の良い測定値を得ることができ、好適である。   In the above description, the contact state at the interface between the electrolyte membranes, or the contact state between the electrolyte membrane and the voltage electrode and the contact area have a great influence on the measurement accuracy. Even if the contact state with the electrolyte membrane is poor, the measurement results vary. As a method for improving the contact state between the current electrode and the electrolyte membrane, the electrolyte membrane material is formed on the side in contact with the electrolyte membrane in the conductive sheet that becomes the current electrode in the step of stacking the electrolyte membrane / electrode assembly. And a solution comprising a solvent that dissolves it and drying it. The above method is preferable because it can improve the contact between the current electrode / electrolyte membrane, make the electric field between the current electrodes uniform, and obtain an accurate and reproducible measurement value.

本発明は、電圧電極と電解質膜との間の接触面積を低下させ、電圧電極と電解質膜及びテスト膜同士間の接触性を緊密にさせ、それによって電圧電極と電解質膜との間の界面電気容量、抵抗の影響を抑え、インピーダンス方法によるコール−コールプロット上の半円弧を抑圧する。これにより、本発明では、膜厚方向4端子法による測定精度を向上させることができる。   The present invention reduces the contact area between the voltage electrode and the electrolyte membrane, and closes the contact between the voltage electrode, the electrolyte membrane, and the test membrane, thereby interfacial electricity between the voltage electrode and the electrolyte membrane. Suppresses the influence of capacitance and resistance, and suppresses the semicircular arc on the Cole-Cole plot by the impedance method. Thereby, in this invention, the measurement precision by a film thickness direction 4 terminal method can be improved.

電圧電極と電解質膜との間の接触面積を低下させるための手法としては、例えば、電圧電極において以下に示すような構成とすることが考えられる。   As a method for reducing the contact area between the voltage electrode and the electrolyte membrane, for example, the following configuration of the voltage electrode can be considered.

先ず、上記電圧電極が被覆層を有さない場合、すなわち電圧電極として金属やカーボンなどの良導電性の裸線を用いる場合には、図2に示すように、該電圧電極の先端部が両電流電極の間に0.1〜0.2mm入る程度に配置された状態で、ホットプレス又は捻じ込み、ねじ栓などの圧力によるコンパクト手法で電解質膜/電極接合体を製造することが好ましい。   First, when the voltage electrode does not have a coating layer, that is, when a well-conductive bare wire such as metal or carbon is used as the voltage electrode, as shown in FIG. It is preferable to manufacture the electrolyte membrane / electrode assembly by a compact method using a pressure such as hot pressing, screwing, screw plug, or the like in a state where the current electrode is placed in a range of 0.1 to 0.2 mm.

また、本発明に係る上記接合体では、電圧電極において従来よりも十分に細い線が用いられるため、その抵抗値が大きくなる。これを改善するためには、図3に示すように、上記電圧電極において電流電極間に挿入される部分のみの線径を細くし、この細線部分からなる電圧電極をリボン線や太線等の導電性線と接続して外部に引き出すことが考えられる。   Moreover, in the said joined body which concerns on this invention, since a sufficiently thin line | wire is used conventionally in a voltage electrode, the resistance value becomes large. In order to improve this, as shown in FIG. 3, only the portion of the voltage electrode inserted between the current electrodes is thinned, and the voltage electrode composed of the thin line portion is made conductive such as a ribbon line or a thick line. It can be considered to connect to the sex wire and pull out to the outside.

尚、上記電圧電極において細線とリボン線とを接続する構成においては、この接続部分における接触性も良好にする必要がある。このため、上記構成においては、上記細線を上記太線(例えば、φ100μmの白金線、又は幅0.15cm、厚み10μmの白金リボン)に巻き付け、この巻き付け部分を、上記電解質膜材料とそれを溶かす溶媒とからなる溶液で作った1〜5μmの厚みを有する薄膜で包んで、ホットプレスで固定し、電圧電極と外部ケーブルとの接触性を改善することができる。   In addition, in the structure which connects a thin wire | line and a ribbon wire in the said voltage electrode, it is necessary to also make the contact property in this connection part favorable. For this reason, in the above configuration, the thin wire is wound around the thick wire (for example, a platinum wire having a diameter of 100 μm or a platinum ribbon having a width of 0.15 cm and a thickness of 10 μm), and the wound portion is used as the solvent for the electrolyte membrane material and the solvent. It is possible to improve the contact between the voltage electrode and the external cable by wrapping with a thin film having a thickness of 1 to 5 μm made of a solution consisting of

電圧電極として上述のような太/細複合線を使う場合には、図4に示すように、細線の先端を0.5mmの長さに調整し、電流電極より1mm以上のマージンを有する電解質膜の間に、該細線の先端を両電流電極の間に0.1〜0.2mm入る程度に配置して、ホットプレス又は捻じ込み、ねじ栓などの圧力によるコンパクト手法で電解質膜/電極接合体を製造する。   When using the thick / thin composite wire as described above as the voltage electrode, as shown in FIG. 4, the tip of the thin wire is adjusted to a length of 0.5 mm, and the electrolyte membrane has a margin of 1 mm or more from the current electrode. In between, the tip of the thin wire is placed so as to be 0.1 to 0.2 mm between the two current electrodes, and the electrolyte membrane / electrode assembly is compacted by a pressure such as hot pressing or screwing or screw plug. Manufacturing.

また、電圧電極として、テフロン(登録商標)、樹脂等の絶縁性被覆層を有する金属やカーボンなどの良導電性線を使う場合には、0.1〜0.2mmの導電性線が露出するようにその先端における絶縁性被覆層を削って使用することができる(図5参照)。このとき、良導電性線が露出された電圧電極の先端は、電解質膜間の等電位位置、好ましくは、電流電極の中心と中心付近の位置に配置され、電解質膜/電極接合体が製造される。   In addition, when a highly conductive wire such as Teflon (registered trademark) or a metal having an insulating coating layer such as resin or carbon is used as the voltage electrode, a conductive wire of 0.1 to 0.2 mm is exposed. Thus, the insulating coating layer at the tip can be shaved and used (see FIG. 5). At this time, the tip of the voltage electrode from which the good conductive line is exposed is disposed at an equipotential position between the electrolyte membranes, preferably at the center of the current electrode and the position near the center, and the electrolyte membrane / electrode assembly is manufactured. The

また、上記電圧電極として、テフロン(登録商標)、樹脂等の絶縁性被覆層を有する金属やカーボンなどの良導電性線を使う場合、その先端における絶縁性被覆層を削る代わりに、絶縁性被覆層を有する線を斜め(図6参照)あるいは垂直(図7参照)に切り、その切断面において内部の良導電性線を露出させる構成としても良い。この場合も、良導電性線が露出された電圧電極の先端は、電解質膜間の等電位位置、好ましくは、電流電極の中心と中心付近の位置に配置され、電解質膜/電極接合体が製造される。   In addition, when using a highly conductive wire such as Teflon (registered trademark) or a resin having an insulating coating layer such as resin or carbon as the voltage electrode, instead of scraping the insulating coating layer at the tip, the insulating coating layer is used. A line having a layer may be cut obliquely (see FIG. 6) or vertically (see FIG. 7), and the internal good conductive line may be exposed at the cut surface. In this case as well, the tip of the voltage electrode from which the good conductive line is exposed is disposed at an equipotential position between the electrolyte membranes, preferably at the center of the current electrode and in the vicinity of the center, and the electrolyte membrane / electrode assembly is manufactured. Is done.

上記電解質膜/電極接合体を製造するにおいて、電流電極と電解質膜との間の接触状態を良好にするために、電流電極と電解質膜との接触面に溶液を塗布することについては上述したが、さらに、電圧電極と電解質膜、及び電解質膜同士間の接触性を向上させるために、上記溶液を用いることもできる。   In manufacturing the electrolyte membrane / electrode assembly, as described above, the solution is applied to the contact surface between the current electrode and the electrolyte membrane in order to improve the contact state between the current electrode and the electrolyte membrane. Furthermore, in order to improve the contact between the voltage electrode, the electrolyte membrane, and the electrolyte membrane, the above solution can also be used.

この場合、例えば、上記電解質膜/電極接合体を製造する段階において、電解質膜材料とそれを溶かす溶媒からなる5wt%の溶液を1〜5μl、好ましくは1〜2μlを、電解質膜に気泡を生じさせないように均一に塗りながら、テフロン(登録商標)シート、ガラススライド等で電解質膜および電極を図1の順序に挟んでクリップで固定し、80℃で48時間真空乾燥させた後、前記ホットプレス、捻じ込み、又はねじ栓などの圧力によるコンパクト手法で電解質膜/電極接合体を製造するといった手法を取ることができる。   In this case, for example, in the stage of manufacturing the electrolyte membrane / electrode assembly, 1 to 5 μl, preferably 1 to 2 μl, of a 5 wt% solution composed of the electrolyte membrane material and a solvent for dissolving the electrolyte membrane material is generated in the electrolyte membrane. 1), apply the electrolyte membrane and electrodes with a Teflon (registered trademark) sheet, glass slide, etc. in the order shown in FIG. 1 and fix them with a clip. After vacuum drying at 80 ° C. for 48 hours, the hot press Alternatively, a method of manufacturing an electrolyte membrane / electrode assembly by a compact method using pressure such as screwing or screw plugging can be employed.

あるいは、上記電解質膜/電極接合体を製造する段階において、電圧電極となる導電性線を、上記溶媒で膨張された電解質膜の間に挿入し、さらに電解質膜間の気泡を手で中心から外へ押した後、テフロン(登録商標)シート、ガラススライド等で電解質膜および電極を図1の順序に挟んでクリップで固定し、80℃で48時間真空乾燥させた後、前記ホットプレス、捻じ込み、又はねじ栓などの圧力によるコンパクト手法で電解質膜/電極接合体を製造するといった手法を取ることができる。   Alternatively, in the step of manufacturing the electrolyte membrane / electrode assembly, a conductive wire to be a voltage electrode is inserted between the electrolyte membranes expanded with the solvent, and air bubbles between the electrolyte membranes are removed from the center by hand. After pressing, the electrolyte membrane and electrode are sandwiched in the order of FIG. 1 with a Teflon (registered trademark) sheet, glass slide, etc., fixed with a clip, vacuum dried at 80 ° C. for 48 hours, and then hot-pressed and twisted. Alternatively, a method of manufacturing an electrolyte membrane / electrode assembly by a compact method using pressure such as a screw plug can be employed.

さらにあるいは、上記電解質膜/電極接合体を製造する段階において、上記電圧電極の先端に上記溶液による小球を作り、室温にて溶媒を風乾させてから、更に室温にて1時間真空乾燥させた後、この電圧電極の先端を電解質膜の間の等電位位置に配置し、前記ホットプレス、捻じ込み、又はねじ栓などの圧力によるコンパクト手法で電解質膜/電極接合体を製造するといった手法を取ることができる。上記電圧電極の先端において小球を作るための溶液は、例えば、電解質膜材料とそれを溶かす溶媒からなる5wt%の溶液0.01〜0.05μl、好ましくは0.01〜0.02μlに対し、その溶媒を揮発させて作った約60wt%の溶液を用いることができる。   Further alternatively, in the step of manufacturing the electrolyte membrane / electrode assembly, a small sphere made of the solution is formed at the tip of the voltage electrode, the solvent is air-dried at room temperature, and further vacuum-dried at room temperature for 1 hour. Thereafter, the tip of the voltage electrode is disposed at an equipotential position between the electrolyte membranes, and an electrolyte membrane / electrode assembly is manufactured by a compact method using pressure such as hot pressing, screwing, or screw plug. be able to. The solution for forming small spheres at the tip of the voltage electrode is, for example, 0.01 to 0.05 μl, preferably 0.01 to 0.02 μl of a 5 wt% solution comprising an electrolyte membrane material and a solvent for dissolving the electrolyte membrane material. A solution of about 60 wt% made by volatilizing the solvent can be used.

以下、本発明を下記の実施例を挙げて詳細に説明するが、下記実施例は本発明を限定するものではない。   Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples do not limit the present invention.

〔実施例1〕
外径φ100μmのポリエステル被覆銅線を約4cmの長さで2本用意し、これを電圧電極とした。この電圧電極の先端部分では0.1〜0.2mmの被覆層を削って内部の良導電性線を露出させ、電圧電極は、テスト膜(Nafion117)の両面に1本ずつ配置されるように電解質膜間に挿入された。また、上記2本の電圧電極は、先端の部分が縦に0.05cm隔てられた状態で、線本体が横に反対方向に平行に置かれるように配置した。上記電解質膜および電圧電極は、20kg/cmの圧力でプレスされ、固定された。
[Example 1]
Two polyester-coated copper wires having an outer diameter of φ100 μm having a length of about 4 cm were prepared and used as voltage electrodes. At the tip of this voltage electrode, the 0.1 to 0.2 mm covering layer is scraped to expose the internal conductive wires, and one voltage electrode is arranged on each side of the test membrane (Nafion 117). Inserted between electrolyte membranes. Further, the two voltage electrodes were arranged such that the wire main body was placed in parallel in the opposite direction in a state where the tip portion was separated by 0.05 cm vertically. The electrolyte membrane and the voltage electrode were pressed and fixed at a pressure of 20 kg / cm 2 .

電流電極としては、厚み10μmの白金箔で四角形のシートを2枚用意し、その上に5wt%のNafion溶液を20μl/cmで均一に塗布して、室温にて1時間真空乾燥させた。 As current electrodes, two square sheets of platinum foil having a thickness of 10 μm were prepared, and a 5 wt% Nafion solution was uniformly applied thereto at 20 μl / cm 2 and vacuum-dried at room temperature for 1 hour.

乾燥された四角形の白金箔シート、すなわち電流電極は、前述した3枚重ねの電解質膜の両面に配置され、150℃、800kg/cmで10分ホットプレスすることで、イオン伝導度測定用電解質膜/電極接合体が製造された。尚、上記電流電極は、電圧電極である両被覆銅線の先端の中心点を、四角形のシートの中心点に重ね合わせて配置されている。 The dried square platinum foil sheet, that is, the current electrode is disposed on both surfaces of the above-described three-layered electrolyte membrane, and hot-pressed at 150 ° C. and 800 kg / cm 2 for 10 minutes, so that the electrolyte for ion conductivity measurement A membrane / electrode assembly was produced. The current electrodes are arranged such that the center points of the tips of both coated copper wires, which are voltage electrodes, are superimposed on the center point of a rectangular sheet.

前記電解質膜/電極接合体を特定の伝導度測定セルに組み立てて、30℃、30%RHの環境におき、Solartron Instruments社のSI 1260 Impedance analyzerとSI 1287 Electrochemical interfaceとを使って、振幅10mV、周波数5MHz〜0.1Hzの交流信号で、両電圧電極間のテスト膜のイオン伝導度を測定した。そのコール−コール(Z’−Z”)、及びボード(log|Z|-log Frequencyとtheta-log Frequency)プロット結果を図8(a)〜(c)に示す。   The electrolyte membrane / electrode assembly is assembled in a specific conductivity measurement cell, placed in an environment of 30 ° C. and 30% RH, and using an Solar 1100 SI 1260 Impedance analyzer and SI 1287 Electrochemical interface, an amplitude of 10 mV, The ionic conductivity of the test membrane between the two voltage electrodes was measured with an AC signal having a frequency of 5 MHz to 0.1 Hz. The call-call (Z′-Z ″) and board (log | Z | -log Frequency and theta-log Frequency) plot results are shown in FIGS.

〔実施例2〕
外径φ10μmの白金線を約1cmの長さで切って、これを厚み10μmの白金箔から切った0.15×4cmの白金リボンに巻き付けて、この巻き付け部分を5wt%のNafion溶液で作った3μmの厚みを有する薄膜で包んで、150℃、400kg/cmでホットプレスして固定したものを電圧電極とした。さらに、前記太/細複合線による電圧電極では、その先端におけるφ10μmの細白金線を0.05cmの長さに調整した。
[Example 2]
A platinum wire having an outer diameter of φ10 μm was cut to a length of about 1 cm, and this was wound around a 0.15 × 4 cm platinum ribbon cut from a platinum foil having a thickness of 10 μm, and this wound portion was made of a 5 wt% Nafion solution. A voltage electrode was formed by wrapping with a thin film having a thickness of 3 μm and fixing by hot pressing at 150 ° C. and 400 kg / cm 2 . Further, in the voltage electrode using the thick / thin composite wire, a thin platinum wire of φ10 μm at the tip thereof was adjusted to a length of 0.05 cm.

前記調整された太/細複合線から電圧電極を2本用意して、該電圧電極は、テスト膜(Nafion117)の両面に1本ずつ配置されるように電解質膜間に挿入された。また、上記2本の電圧電極は、先端の部分が縦に0.05cm隔てられた状態で、線本体が横に同方向に平行に置かれるように配置した。上記電解質膜および電圧電極は、20kg/cmの圧力でプレスされ、固定された。 Two voltage electrodes were prepared from the adjusted thick / thin composite wire, and the voltage electrodes were inserted between the electrolyte membranes so as to be arranged one on each side of the test membrane (Nafion 117). Further, the two voltage electrodes were arranged such that the wire main body was placed in parallel in the same direction in a state where the tip portions were separated by 0.05 cm vertically. The electrolyte membrane and the voltage electrode were pressed and fixed at a pressure of 20 kg / cm 2 .

電流電極としては、厚み10μmの白金箔で四角形のシートを2枚用意し、その上に5wt%のNafion溶液を20μl/cmで均一に塗布して、室温にて1時間真空乾燥させた。 As current electrodes, two square sheets of platinum foil having a thickness of 10 μm were prepared, and a 5 wt% Nafion solution was uniformly applied thereto at 20 μl / cm 2 and vacuum-dried at room temperature for 1 hour.

乾燥された四角形の白金箔シート、すなわち電流電極は、前述した3枚重ねの電解質膜の両面に配置され、150℃、800kg/cmで10分ホットプレスすることで、イオン伝導度測定用電解質膜/電極接合体が製造された。尚、上記電流電極は、両電圧電極を四角形シートの両対辺の中心線と平行にさせ、両電圧電極の先端の中心点を四角形シートの両対辺の中心線に沿わせて、両電圧電極の先端が四角形シート内に0.1〜0.2mmぐらい入るように重ね合わせて配置されている。 The dried square platinum foil sheet, that is, the current electrode is disposed on both surfaces of the above-described three-layered electrolyte membrane, and hot-pressed at 150 ° C. and 800 kg / cm 2 for 10 minutes, so that the electrolyte for ion conductivity measurement A membrane / electrode assembly was produced. The current electrodes have both voltage electrodes parallel to the center lines of both sides of the square sheet, and the center points of the tips of both voltage electrodes are along the center lines of both sides of the square sheet. The front ends are arranged so as to overlap each other in a square sheet by about 0.1 to 0.2 mm.

前記電解質膜/電極接合体を特定の伝導度測定セルに組み立てて、30℃、30%RHの環境におき、Solartron Instruments社のSI 1260 Impedance analyzerとSI 1287 Electrochemical interfaceとを使って、振幅10mV、周波数5MHz〜0.1Hzの交流信号で、両電圧電極間のテスト膜のイオン伝導度を測定した。そのコール−コール(Z’−Z”)、及びボード(log|Z|-log Frequencyとtheta-log Frequency)プロット結果を図9(a)〜(c)に示す。   The electrolyte membrane / electrode assembly is assembled in a specific conductivity measurement cell, placed in an environment of 30 ° C. and 30% RH, and using an Solar 1100 SI 1260 Impedance analyzer and SI 1287 Electrochemical interface, an amplitude of 10 mV, The ionic conductivity of the test membrane between the two voltage electrodes was measured with an AC signal having a frequency of 5 MHz to 0.1 Hz. The call-call (Z′-Z ″) and board (log | Z | -log Frequency and theta-log Frequency) plot results are shown in FIGS.

〔実施例3〕
外径φ100μmのポリエステル被覆銅線を約4cmの長さで2本用意し、その一端を斜めに切ったものを電圧電極とした。さらに、0.02μl,5wt%のNafion溶液から溶媒を揮発させて作った約60wt%の溶液で、上記電圧電極の斜めに切られた一端に壁厚み約20μmの小球を作り、室温にて溶媒を風乾させてから、更に室温にて1時間真空乾燥させた。
Example 3
Two polyester-coated copper wires having an outer diameter of 100 μm were prepared with a length of about 4 cm, and one end thereof was obliquely cut to form a voltage electrode. Furthermore, a small sphere having a wall thickness of about 20 μm is formed at one end of the voltage electrode obliquely cut with a solution of about 60 wt% prepared by volatilizing the solvent from 0.02 μl, 5 wt% Nafion solution, and at room temperature. The solvent was air-dried and then vacuum-dried at room temperature for 1 hour.

先端にNafion小球を付けられた前記の電圧電極は、テスト膜(Nafion117)の両面に1本ずつ配置されるように電解質膜間に挿入された。また、上記2本の電圧電極は、先端の部分が縦に0.05cm隔てられた状態で、線本体が横に反対方向に平行に置かれるように配置した。上記電解質膜および電圧電極は、20kg/cmの圧力でプレスされ、固定された。 The voltage electrodes with Nafion spheres attached to the tip were inserted between the electrolyte membranes so that one was placed on each side of the test membrane (Nafion 117). Further, the two voltage electrodes were arranged such that the wire main body was placed in parallel in the opposite direction in a state where the tip portion was separated by 0.05 cm vertically. The electrolyte membrane and the voltage electrode were pressed and fixed at a pressure of 20 kg / cm 2 .

電流電極としては、厚み20μmの白金箔で四角形のシートを2枚用意し、その上に5wt%のNafion溶液を20μl/cmで均一に塗布して、室温にて1時間真空乾燥させた。 As a current electrode, two square sheets of 20 μm-thick platinum foil were prepared, and a 5 wt% Nafion solution was uniformly applied thereon at 20 μl / cm 2 and vacuum-dried at room temperature for 1 hour.

乾燥された四角形の白金箔シート、すなわち電流電極は、前述した3枚重ねの電解質膜の両面に配置され、150℃、800kg/cmで10分ホットプレスすることで、イオン伝導度測定用電解質膜/電極接合体が製造された。尚、上記電流電極は、電圧電極である両被覆銅線の先端の中心点を、四角形のシートの中心点に重ね合わせて配置されている。 The dried rectangular platinum foil sheet, that is, the current electrode, is disposed on both surfaces of the above-described three-layer electrolyte membrane, and hot-pressed at 150 ° C. and 800 kg / cm 2 for 10 minutes, so that the electrolyte for ion conductivity measurement A membrane / electrode assembly was produced. The current electrodes are arranged such that the center points of the tips of both coated copper wires, which are voltage electrodes, are superimposed on the center point of a rectangular sheet.

前記電解質膜/電極接合体を特定の伝導度測定セルに組み立てて、30℃、30%RHの環境におき、Solartron Instruments社のSI 1260 Impedance analyzerとSI 1287 Electrochemical interfaceとを使って、振幅10mV、周波数5MHz〜0.1Hzの交流信号で、両電圧電極間のテスト膜のイオン伝導度を測定した。そのコール−コール(Z’−Z”)、及びボード(log|Z|-log Frequencyとtheta-log Frequency)プロット結果を図10(a)〜(c)に示す。また、その抵抗値から計算された膜厚方向イオン伝導度を膜面4端子法で得られたデータと合わせて、図11に示す。   The electrolyte membrane / electrode assembly is assembled in a specific conductivity measurement cell, placed in an environment of 30 ° C. and 30% RH, and using an Solar 1100 SI 1260 Impedance analyzer and SI 1287 Electrochemical interface, an amplitude of 10 mV, The ionic conductivity of the test membrane between the two voltage electrodes was measured with an AC signal having a frequency of 5 MHz to 0.1 Hz. The call-call (Z′-Z ″) and board (log | Z | -log Frequency and theta-log Frequency) plot results are shown in FIGS. 10 (a) to 10 (c) and calculated from the resistance values. The film thickness direction ion conductivity is shown in FIG. 11 together with the data obtained by the film surface four-terminal method.

さらに、本発明に対する比較例の幾つかを以下に示す。   Further, some comparative examples for the present invention are shown below.

〔比較例1〕
外径φ100μmの白金線を約4cmの長さで2本用意し、これを電圧電極とした。上記電圧電極は、テスト膜(Nafion117)の両面に1本ずつ配置されるように電解質膜間に挿入された。また、上記2本の電圧電極は、先端の部分が縦に0.05cm隔てられた状態で、線本体が横に反対方向に平行に置かれるように配置した。上記電解質膜および電圧電極は、20kg/cmの圧力でプレスされ、固定された。
[Comparative Example 1]
Two platinum wires having an outer diameter of φ100 μm having a length of about 4 cm were prepared and used as voltage electrodes. The voltage electrodes were inserted between the electrolyte membranes so that one voltage electrode was placed on each side of the test membrane (Nafion 117). Further, the two voltage electrodes were arranged such that the wire main body was placed in parallel in the opposite direction in a state where the tip portion was separated by 0.05 cm vertically. The electrolyte membrane and the voltage electrode were pressed and fixed at a pressure of 20 kg / cm 2 .

電流電極としては、厚み10μmの白金箔で四角形のシートを2枚用意し、その上に5wt%のNafion溶液を20μl/cmで均一に塗布して、室温にて1時間真空乾燥させた。 As current electrodes, two square sheets of platinum foil having a thickness of 10 μm were prepared, and a 5 wt% Nafion solution was uniformly applied thereto at 20 μl / cm 2 and vacuum-dried at room temperature for 1 hour.

乾燥された四角形の白金箔シート、すなわち電流電極は、前述した3枚重ねの電解質膜の両面に配置され、150℃、800kg/cmで10分ホットプレスすることで、イオン伝導度測定用電解質膜/電極接合体が製造された。尚、上記電流電極は、電圧電極である白金線の先端の中心点を、四角形のシートの中心点に重ね合わせて配置されている。 The dried square platinum foil sheet, that is, the current electrode is disposed on both surfaces of the above-described three-layered electrolyte membrane, and hot-pressed at 150 ° C. and 800 kg / cm 2 for 10 minutes, so that the electrolyte for ion conductivity measurement A membrane / electrode assembly was produced. The current electrode is arranged such that the center point of the tip end of the platinum wire as the voltage electrode is overlapped with the center point of the rectangular sheet.

前記電解質膜/電極接合体を特定の伝導度測定セルに組み立てて、30℃、30%RHの環境におき、Solartron Instruments社のSI 1260 Impedance analyzerとSI 1287 Electrochemical interfaceとを使って、振幅10mV、周波数5MHz〜0.1Hzの交流信号で、両電圧電極間のテスト膜のイオン伝導度を測定した。そのコール−コール(Z’−Z”)、及びボード(log|Z|-log Frequencyとtheta-log Frequency)プロット結果を図12(a)〜(c)に示す。   The electrolyte membrane / electrode assembly is assembled in a specific conductivity measurement cell, placed in an environment of 30 ° C. and 30% RH, and using an Solar 1100 SI 1260 Impedance analyzer and SI 1287 Electrochemical interface, an amplitude of 10 mV, The ionic conductivity of the test membrane between the two voltage electrodes was measured with an AC signal having a frequency of 5 MHz to 0.1 Hz. The call-call (Z′-Z ″) and board (log | Z | -log Frequency and theta-log Frequency) plot results are shown in FIGS.

〔比較例2〕
外径φ180μm(内径φ127μm)のテフロン(登録商標)被覆白金線を約4cmの長さで2本用意し、その一端を斜めに切ったものを電圧電極とした。先端を斜めに切られた前記の電圧電極は、テスト膜(Nafion117)の両面に1本ずつ配置されるように電解質膜間に挿入された。また、上記2本の電圧電極は、先端の部分が縦に0.05cm隔てられた状態で、線本体が横に反対方向に平行に置かれるように配置した。上記電解質膜および電圧電極は、20kg/cmの圧力でプレスされ、固定された。
[Comparative Example 2]
Two Teflon (registered trademark) -coated platinum wires having an outer diameter of φ180 μm (inner diameter of φ127 μm) were prepared with a length of about 4 cm, and one end of which was obliquely cut was used as a voltage electrode. The voltage electrodes, whose tips were cut obliquely, were inserted between the electrolyte membranes so as to be arranged one by one on both sides of the test membrane (Nafion 117). Further, the two voltage electrodes were arranged such that the wire main body was placed in parallel in the opposite direction in a state where the tip portion was separated by 0.05 cm vertically. The electrolyte membrane and the voltage electrode were pressed and fixed at a pressure of 20 kg / cm 2 .

電流電極としては、厚み10μmの白金箔で四角形のシートを2枚用意し、その上に5wt%のNafion溶液を20μl/cmで均一に塗布して、室温にて1時間真空乾燥させた。 As current electrodes, two square sheets of platinum foil having a thickness of 10 μm were prepared, and a 5 wt% Nafion solution was uniformly applied thereto at 20 μl / cm 2 and vacuum-dried at room temperature for 1 hour.

乾燥された四角形の白金箔シート、すなわち電流電極は、前述した3枚重ねの電解質膜の両面に配置され、150℃、200kg/cmで10分ホットプレスすることで、イオン伝導度測定用電解質膜/電極接合体が製造された。尚、上記電流電極は、電圧電極である両被覆白金線の先端の中心点を、四角形のシートの中心点に重ね合わせて配置されている。 The dried rectangular platinum foil sheet, that is, the current electrode is disposed on both surfaces of the above-described three-layered electrolyte membrane, and hot-pressed at 150 ° C. and 200 kg / cm 2 for 10 minutes, so that the electrolyte for ion conductivity measurement A membrane / electrode assembly was produced. The current electrode is arranged such that the center point of the tips of both coated platinum wires, which are voltage electrodes, is superimposed on the center point of the rectangular sheet.

前記電解質膜/電極接合体を特定の伝導度測定セルに組み立てて、30℃、30%RHの環境におき、Solartron Instruments社のSI 1260 Impedance analyzerとSI 1287 Electrochemical interfaceとを使って、振幅10mV、周波数5MHz〜0.1Hzの交流信号で、両電圧電極間のテスト膜のイオン伝導度を測定した。この場合、電圧電極と電解質膜間の接触が悪く、測定装置がオーバーロードすることが生じたため、コール−コールプロットが乱れ、測定ができなかった。   The electrolyte membrane / electrode assembly is assembled in a specific conductivity measurement cell, placed in an environment of 30 ° C. and 30% RH, and using an Solar 1100 SI 1260 Impedance analyzer and SI 1287 Electrochemical interface, an amplitude of 10 mV, The ionic conductivity of the test membrane between the two voltage electrodes was measured with an AC signal having a frequency of 5 MHz to 0.1 Hz. In this case, the contact between the voltage electrode and the electrolyte membrane was poor, and the measuring device was overloaded, so that the Cole-Cole plot was disturbed and measurement could not be performed.

〔比較例3〕
外径φ180μm(内径φ127μm)のテフロン(登録商標)被覆白金線を約4cmの長さで2本用意し、その一端を斜めに切ったものを電圧電極とした。さらに、0.02μl,5wt%のNafion溶液から溶媒を揮発させて作った約60wt%の溶液で、上記電圧電極の斜めに切られた一端に壁厚み約20μmの小球を作り、室温にて溶媒を風乾させてから、更に室温にて1時間真空乾燥させた。
[Comparative Example 3]
Two Teflon (registered trademark) -coated platinum wires having an outer diameter of φ180 μm (inner diameter of φ127 μm) were prepared with a length of about 4 cm, and one end of which was obliquely cut was used as a voltage electrode. Furthermore, a small sphere having a wall thickness of about 20 μm is formed at one end of the voltage electrode obliquely cut with a solution of about 60 wt% prepared by volatilizing the solvent from 0.02 μl, 5 wt% Nafion solution, and at room temperature. The solvent was air-dried and then vacuum-dried at room temperature for 1 hour.

先端にNafion小球を付けられた前記の電圧電極は、テスト膜(Nafion117)の両面に1本ずつ配置されるように電解質膜間に挿入された。また、上記2本の電圧電極は、先端の部分が縦に0.05cm隔てられた状態で、線本体が横に反対方向に平行に置かれるように配置した。上記電解質膜および電圧電極は、20kg/cmの圧力でプレスされ、固定された。 The voltage electrodes with Nafion spheres attached to the tip were inserted between the electrolyte membranes so that one was placed on each side of the test membrane (Nafion 117). Further, the two voltage electrodes were arranged such that the wire main body was placed in parallel in the opposite direction in a state where the tip portion was separated by 0.05 cm vertically. The electrolyte membrane and the voltage electrode were pressed and fixed at a pressure of 20 kg / cm 2 .

電流電極としては、厚み10μmの白金箔で四角形のシートを2枚用意し、その上に5wt%のNafion溶液を20μl/cmで均一に塗布して、室温にて1時間真空乾燥させた。 As current electrodes, two square sheets of platinum foil having a thickness of 10 μm were prepared, and a 5 wt% Nafion solution was uniformly applied thereto at 20 μl / cm 2 and vacuum-dried at room temperature for 1 hour.

乾燥された四角形の白金箔シート、すなわち電流電極は、前述した3枚重ねの電解質膜の両面に配置され、150℃、200kg/cmで10分ホットプレスすることで、イオン伝導度測定用電解質膜/電極接合体が製造された。尚、上記電流電極は、電圧電極である両被覆白金線の先端の中心点を、四角形のシートの中心点に重ね合わせて配置されている。 The dried rectangular platinum foil sheet, that is, the current electrode is disposed on both surfaces of the above-described three-layered electrolyte membrane, and hot-pressed at 150 ° C. and 200 kg / cm 2 for 10 minutes, so that the electrolyte for ion conductivity measurement A membrane / electrode assembly was produced. The current electrode is arranged such that the center point of the tips of both coated platinum wires, which are voltage electrodes, is superimposed on the center point of the rectangular sheet.

前記電解質膜/電極接合体を特定の伝導度測定セルに組み立てて、30℃、30%RHの環境におき、Solartron Instruments社のSI 1260 Impedance analyzerとSI 1287 Electrochemical interfaceとを使って、振幅10mV、周波数5MHz〜0.1Hzの交流信号で、両電圧電極間のテスト膜のイオン伝導度を測定した。そのコール−コール(Z’−Z”)、及びボード(log|Z|-log Frequencyとtheta-log Frequency)プロット結果を図13(a)〜(c)に示す。   The electrolyte membrane / electrode assembly is assembled in a specific conductivity measurement cell, placed in an environment of 30 ° C. and 30% RH, and using an Solar 1100 SI 1260 Impedance analyzer and SI 1287 Electrochemical interface, an amplitude of 10 mV, The ionic conductivity of the test membrane between the two voltage electrodes was measured with an AC signal having a frequency of 5 MHz to 0.1 Hz. The call-call (Z′-Z ″) and board (log | Z | -log Frequency and theta-log Frequency) plot results are shown in FIGS.

ここで、先ずは、上記実施例1,2および比較例1を比較する。   Here, first, Examples 1 and 2 and Comparative Example 1 are compared.

比較例1においては、φ100μmの裸白金線を電圧電極としているが、この場合、図12(a)に示すように、コール−コールプロットにおいて三つの半円弧が出ており、集中点が殆どないので、テスト膜本体の抵抗を読み出せない。   In Comparative Example 1, a bare platinum wire having a diameter of 100 μm is used as the voltage electrode. In this case, as shown in FIG. 12A, three semicircular arcs appear in the Cole-Cole plot, and there are almost no concentrated points. Therefore, the resistance of the test membrane body cannot be read.

これに対し、実施例1においては、0.1〜0.2mmの被覆層を削った外径φ100μmのポリエステル被覆銅線を電圧電極としており、この場合、図8(a)に示すように、コール−コールプロットに集中点が存在し、テスト膜本体の抵抗を読み出すことができる。   On the other hand, in Example 1, a polyester-coated copper wire having an outer diameter of φ100 μm obtained by cutting a coating layer of 0.1 to 0.2 mm is used as a voltage electrode. In this case, as shown in FIG. A concentration point exists in the Cole-Cole plot, and the resistance of the test membrane body can be read out.

さらに、実施例2においては、φ10μmの細白金線と白金リボンとからなる太/細複合線を電圧電極としており、この場合、図9(a)に示すように、コール−コールプロットにおいて実施例1の場合よりもさらに狭い範囲で集中点が存在し、テスト膜本体の抵抗をさらに高精度に読み出すことができる。   Furthermore, in Example 2, a thick / thin composite wire composed of a fine platinum wire having a diameter of 10 μm and a platinum ribbon is used as a voltage electrode. In this case, as shown in FIG. Concentration points exist in a narrower range than in the case of 1, and the resistance of the test film body can be read with higher accuracy.

上記実施例1,2および比較例1の比較結果により、電圧電極と電解質膜との間の接触面積が、膜厚方向4端子法によるイオン伝導度の測定において、その測定精度に大きく影響することが分かった。   According to the comparison results of Examples 1 and 2 and Comparative Example 1, the contact area between the voltage electrode and the electrolyte membrane greatly affects the measurement accuracy in the measurement of ion conductivity by the film thickness direction 4-terminal method. I understood.

続いて、上記実施例3および比較例2,3を比較する。比較例2においては、電解質膜/電極接合体を150℃、200kg/cmのホットプレスにて作製しているが、電圧電極と電解質膜間の接触が悪く、測定装置が時々オーバーロードするため、コール−コールプロットが乱れて、測定ができなかった。 Subsequently, Example 3 and Comparative Examples 2 and 3 are compared. In Comparative Example 2, the electrolyte membrane / electrode assembly was produced by hot pressing at 150 ° C. and 200 kg / cm 2 , but the contact between the voltage electrode and the electrolyte membrane was poor, and the measuring device sometimes overloaded. The Cole-Cole plot was disturbed and measurement was not possible.

これに対し、比較例3においては、電圧電極(外径φ180μmのテフロン(登録商標)被覆白金線)の先端に壁厚約20μmのNafion小球を作ることによって、電圧電極と電解質膜間との接触が改善され、図13に示すように、測定が可能であった。   On the other hand, in Comparative Example 3, a Nafion sphere having a wall thickness of about 20 μm is formed at the tip of the voltage electrode (Teflon (registered trademark) -coated platinum wire having an outer diameter of φ180 μm), thereby forming a gap between the voltage electrode and the electrolyte membrane. The contact was improved and measurement was possible as shown in FIG.

さらに、実施例3においては、電圧電極を外径φ100μmのポリエステル被覆銅線とし、さらに、その先端において比較例3と同様にNafion小球を付けたものを用いた。このように電圧電極の線径を細くすることで、電圧電極と電解質膜との接触面積と接触安定性が大きく改善され、その界面の電気容量と接触抵抗の影響が大きく低下される。このため、図10(a)に示すように、コール−コールプロットにおいて比較例3の場合よりもさらに狭い範囲で集中点が存在し、テスト膜本体の抵抗をさらに高精度に読み出すことができる。   Furthermore, in Example 3, the voltage electrode was a polyester-coated copper wire having an outer diameter of φ100 μm, and the tip thereof was provided with Nafion globules in the same manner as in Comparative Example 3. By reducing the wire diameter of the voltage electrode in this way, the contact area and contact stability between the voltage electrode and the electrolyte membrane are greatly improved, and the influence of the capacitance and contact resistance at the interface is greatly reduced. For this reason, as shown in FIG. 10 (a), in the Cole-Cole plot, there are concentrated points in a narrower range than in the case of Comparative Example 3, and the resistance of the test film body can be read out with higher accuracy.

さらに、前記図11を参照すれば、Nafion117に於いて、30℃、30%RHの環境における測定で、膜面方向4端子法から得た結果とほぼ一致しているイオン伝導度測定値が与えられており、本発明の有効性が示された。   Further, referring to FIG. 11, in the Nafion 117, the measurement in an environment of 30 ° C. and 30% RH gives an ion conductivity measurement value almost in agreement with the result obtained from the film surface direction four-terminal method. The effectiveness of the present invention has been demonstrated.

本発明の実施形態を示すものであり、図1(a)は膜厚方向4端子法における電極/電解質膜接合体を示す側面図であり、図1(b)は膜厚方向4端子法における電極/電解質膜接合体を示す平面図である。FIG. 1A shows an embodiment of the present invention, FIG. 1A is a side view showing an electrode / electrolyte membrane assembly in a film thickness direction 4-terminal method, and FIG. It is a top view which shows an electrode / electrolyte membrane assembly. 上記接合体における電流電極と電圧電極との配置関係の一例を示す平面図である。It is a top view which shows an example of arrangement | positioning relationship between the current electrode and voltage electrode in the said conjugate | zygote. 上記接合体における電流電極と電圧電極との配置関係の他の一例を示す平面図である。It is a top view which shows another example of the arrangement | positioning relationship between the current electrode and voltage electrode in the said conjugate | zygote. 上記接合体における電流電極と電圧電極と電解質膜との配置関係の一例を示す平面図である。It is a top view which shows an example of the arrangement | positioning relationship between the current electrode in the said conjugate | zygote, a voltage electrode, and an electrolyte membrane. 上記電圧電極に被覆層を有する導電性線を用いた場合の上記電圧電極の先端部分の一例を示す図である。It is a figure which shows an example of the front-end | tip part of the said voltage electrode at the time of using the electroconductive wire which has a coating layer for the said voltage electrode. 上記電圧電極に被覆層を有する導電性線を用いた場合の上記電圧電極の先端部分の他の一例を示す図である。It is a figure which shows another example of the front-end | tip part of the said voltage electrode at the time of using the electroconductive wire which has a coating layer for the said voltage electrode. 上記電圧電極に被覆層を有する導電性線を用いた場合の上記電圧電極の先端部分のさらに他の一例を示す図である。It is a figure which shows another example of the front-end | tip part of the said voltage electrode at the time of using the electroconductive wire which has a coating layer for the said voltage electrode. 図8(a)〜(c)は、実施例1におけるコール−コール(Z’−Z”)、及びボード(log|Z|-log Frequencyとtheta-log Frequency)プロット結果を示すグラフである。FIGS. 8A to 8C are graphs showing the results of call-call (Z′-Z ″) and board (log | Z | -log Frequency and theta-log Frequency) plots in Example 1. FIG. 図9(a)〜(c)は、実施例2におけるコール−コール(Z’−Z”)、及びボード(log|Z|-log Frequencyとtheta-log Frequency)プロット結果を示すグラフである。FIGS. 9A to 9C are graphs showing the results of call-call (Z′-Z ″) and board (log | Z | -log Frequency and theta-log Frequency) plots in Example 2. FIG. 図10(a)〜(c)は、実施例3におけるコール−コール(Z’−Z”)、及びボード(log|Z|-log Frequencyとtheta-log Frequency)プロット結果を示すグラフである。FIGS. 10A to 10C are graphs showing the results of call-call (Z′-Z ″) and board (log | Z | -log Frequency and theta-log Frequency) plots in Example 3. FIG. 実施例3において、測定された抵抗値から計算された膜厚方向イオン伝導度を、従来の膜面4端子法で得られたデータと比較するグラフである。In Example 3, it is a graph which compares the film thickness direction ion conductivity calculated from the measured resistance value with the data obtained by the conventional film surface 4 terminal method. 図12(a)〜(c)は、比較例1におけるコール−コール(Z’−Z”)、及びボード(log|Z|-log Frequencyとtheta-log Frequency)プロット結果を示すグラフである。12A to 12C are graphs showing the results of plotting Cole-Cole (Z′-Z ″) and board (log | Z | -log Frequency and theta-log Frequency) in Comparative Example 1. FIG. 図13(a)〜(c)は、比較例3におけるコール−コール(Z’−Z”)、及びボード(log|Z|-log Frequencyとtheta-log Frequency)プロット結果を示すグラフである。FIGS. 13A to 13C are graphs showing the results of call-call (Z′-Z ″) and board (log | Z | -log Frequency and theta-log Frequency) plots in Comparative Example 3. FIG. 従来技術を示すものであり、図14(a)は膜厚方向4端子法における電極/電解質膜接合体を示す側面図であり、図14(b)は膜厚方向4端子法における電極/電解質膜接合体の構成を示す平面図である。FIG. 14 (a) is a side view showing an electrode / electrolyte membrane assembly in the film thickness direction 4-terminal method, and FIG. 14 (b) is an electrode / electrolyte in the film thickness direction 4-terminal method. It is a top view which shows the structure of a membrane assembly.

符号の説明Explanation of symbols

11〜13 固体電解質膜
14,15 電流電極
16,17 電圧電極
11-13 Solid electrolyte membranes 14, 15 Current electrodes 16, 17 Voltage electrodes

Claims (21)

2つの電流電極間に積層配置された少なくとも3枚以上の固体電解質膜に対し、各固体電解質膜間に電圧電極を挿入し、上記電流電極によって上記積層された固体電解質膜の膜厚方向に電流を供給しながら、所定の固体電解質膜の両側に配置された電圧電極間の電位差に基づいて、上記所定の固体電解質膜のイオン導電度を測定するイオン伝導度測定方法において、
上記電圧電極として被覆層を有さない良導電性線を使用し、該電圧電極の太さが1〜15μmであることを特徴とするイオン伝導度測定方法。
With respect to at least three or more solid electrolyte membranes arranged between two current electrodes, a voltage electrode is inserted between the solid electrolyte membranes, and current flows in the film thickness direction of the laminated solid electrolyte membranes by the current electrodes. In the ion conductivity measurement method for measuring the ionic conductivity of the predetermined solid electrolyte membrane based on the potential difference between the voltage electrodes arranged on both sides of the predetermined solid electrolyte membrane while supplying
A method of measuring ion conductivity, wherein a good conductive wire having no coating layer is used as the voltage electrode, and the thickness of the voltage electrode is 1 to 15 μm.
上記電圧電極の太さが5〜10μmであることを特徴とする請求項1に記載のイオン伝導度測定方法。   The thickness of the said voltage electrode is 5-10 micrometers, The ion conductivity measuring method of Claim 1 characterized by the above-mentioned. 2つの電流電極間に積層配置された少なくとも3枚以上の固体電解質膜に対し、各固体電解質膜間に電圧電極を挿入し、上記電流電極によって上記積層された固体電解質膜の膜厚方向に電流を供給しながら、所定の固体電解質膜の両側に配置された電圧電極間の電位差に基づいて、上記所定の固体電解質膜のイオン導電度を測定するイオン伝導度測定方法において、
上記電圧電極として絶縁性被覆層を有する良導電性線を使用し、該電圧電極の太さが50〜150μm、内部の良導電性線の太さが30〜70μmであることを特徴とするイオン伝導度測定方法。
With respect to at least three or more solid electrolyte membranes arranged between two current electrodes, a voltage electrode is inserted between the solid electrolyte membranes, and current flows in the film thickness direction of the laminated solid electrolyte membranes by the current electrodes. In the ion conductivity measurement method for measuring the ionic conductivity of the predetermined solid electrolyte membrane based on the potential difference between the voltage electrodes arranged on both sides of the predetermined solid electrolyte membrane while supplying
An ion characterized in that a good conductive wire having an insulating coating layer is used as the voltage electrode, the thickness of the voltage electrode is 50 to 150 μm, and the thickness of the internal good conductive wire is 30 to 70 μm. Conductivity measurement method.
上記電圧電極の太さが50〜100μmであることを特徴とする請求項3に記載のイオン伝導度測定方法。   The thickness of the said voltage electrode is 50-100 micrometers, The ion conductivity measuring method of Claim 3 characterized by the above-mentioned. 上記電流電極、固体電解質膜、および電圧電極は、ホットプレス、捻じ込み、又はねじ栓などの圧力によるコンパクト手法にて接合され、イオン伝導度の測定は、この測定用電極/膜接合体に対して行われることを特徴とする請求項1ないし4の何れかに記載のイオン伝導度測定方法。   The current electrode, the solid electrolyte membrane, and the voltage electrode are joined by a compact method using pressure such as hot pressing, screwing, or screw plug, and the ionic conductivity is measured with respect to the electrode / membrane assembly for measurement. The ion conductivity measuring method according to claim 1, wherein the ion conductivity measuring method is performed. 上記電流電極は、交流インピーダンス、電流遮断、電位ステップ、電流、電位パルスの何れかによる入力電流を与えることを特徴とする請求項1ないし5の何れかに記載のイオン伝導度測定方法。   6. The ion conductivity measuring method according to claim 1, wherein the current electrode gives an input current by any one of AC impedance, current interruption, potential step, current, and potential pulse. 上記電流電極によって入力される電流を導入する役目となる外側の両電解質膜間にある電解質膜が1枚以上20枚以下であることを特徴とする請求項1ないし6の何れかに記載のイオン伝導度測定方法。   The ion according to any one of claims 1 to 6, wherein the number of electrolyte membranes between the outer electrolyte membranes for introducing a current input by the current electrode is 1 or more and 20 or less. Conductivity measurement method. 上記電流電極、固体電解質膜、および電圧電極は、120〜250℃の範囲の温度、3.84×10〜1.92×10Paの範囲の圧力にて、ホットプレスにて接合されることを特徴とする請求項5に記載のイオン伝導度測定方法。 The current electrode, the solid electrolyte membrane, and the voltage electrode are bonded by hot pressing at a temperature in the range of 120 to 250 ° C. and a pressure in the range of 3.84 × 10 6 to 1.92 × 10 8 Pa. The ionic conductivity measuring method according to claim 5. 上記電流電極、固体電解質膜、および電圧電極は、150〜200℃の範囲の温度、3.84×10〜1.44×10Paの範囲の圧力にて、ホットプレスの手法により接合されることを特徴とする請求項5に記載のイオン伝導度測定方法。 The current electrode, the solid electrolyte membrane, and the voltage electrode are bonded by a hot press technique at a temperature in the range of 150 to 200 ° C. and a pressure in the range of 3.84 × 10 7 to 1.44 × 10 8 Pa. The ionic conductivity measuring method according to claim 5, wherein: 上記電流電極、固体電解質膜、および電圧電極は、3〜20Nmの範囲のトルクにて、捻じ込み、またはねじ栓の手法により接合されることを特徴とする請求項5に記載のイオン伝導度測定方法。   6. The ion conductivity measurement according to claim 5, wherein the current electrode, the solid electrolyte membrane, and the voltage electrode are joined by a screwing or screw plug technique with a torque in the range of 3 to 20 Nm. Method. 上記電流電極、固体電解質膜、および電圧電極は、5〜15Nmの範囲のトルクにて、捻じ込み、またはねじ栓の手法により接合されることを特徴とする請求項5に記載のイオン伝導度測定方法。   6. The ion conductivity measurement according to claim 5, wherein the current electrode, the solid electrolyte membrane, and the voltage electrode are joined by a screwing or screw plug technique with a torque in the range of 5 to 15 Nm. Method. 上記電流電極が、Au、Pt、白金黒、銅などの何れかの金属、またはカーボンである良導電性シートからなることを特徴とする請求項1ないし11の何れかに記載のイオン伝導度測定方法。   The ion conductivity measurement according to any one of claims 1 to 11, wherein the current electrode is made of a highly conductive sheet made of any metal such as Au, Pt, platinum black, copper, or carbon. Method. 上記電圧電極は、電解質膜間の等電位位置に配置されることを特徴とする請求項1ないし12の何れかに記載のイオン伝導度測定方法。   The ion conductivity measuring method according to claim 1, wherein the voltage electrode is disposed at an equipotential position between electrolyte membranes. 上記電圧電極は、電解質膜の積層方向から見た電流電極配置領域内に配置される部分にて、その太さが1〜15μmである良導電性裸線が用いられ、該良導電性裸線は上記電流電極配置領域外でそれよりも太い導電性線に接続されていることを特徴とする請求項1または2に記載のイオン伝導度測定方法。   As the voltage electrode, a good conductive bare wire having a thickness of 1 to 15 μm is used in a portion arranged in the current electrode placement region as viewed from the stacking direction of the electrolyte membrane, and the good conductive bare wire The ion conductivity measuring method according to claim 1, wherein the ionic conductivity is connected to a thicker conductive wire outside the current electrode arrangement region. 上記電圧電極は、電流電極配置領域内に配置される部分に用いられる細裸線の長さが0.5mmに調整され、該細線の先端が両電流電極の間に0.1〜0.2mm入る程度に配置されて、ホットプレス又は捻じ込み、ねじ栓などの圧力によるコンパクト手法で接合されることを特徴とする請求項14に記載のイオン伝導度測定方法。   In the voltage electrode, the length of the fine bare wire used in the portion arranged in the current electrode arrangement region is adjusted to 0.5 mm, and the tip of the fine wire is 0.1 to 0.2 mm between the two current electrodes. The ion conductivity measurement method according to claim 14, wherein the ion conductivity measurement method is arranged so as to enter, and is joined by a compact method using pressure such as hot pressing, screwing, or screw plugging. 上記電圧電極は、その先端部における絶縁性被覆層を0.1〜0.2mm削った状態で使用されることを特徴とする請求項3に記載のイオン伝導度測定方法。   4. The ion conductivity measuring method according to claim 3, wherein the voltage electrode is used in a state where the insulating coating layer at the tip thereof is cut by 0.1 to 0.2 mm. 上記電圧電極は、絶縁性被覆層を有する良導電性線の先端部をその軸線方向に対して斜めに切った状態で使用されることを特徴とする請求項3に記載のイオン伝導度測定方法。   4. The ion conductivity measuring method according to claim 3, wherein the voltage electrode is used in a state in which a tip portion of a highly conductive wire having an insulating coating layer is cut obliquely with respect to the axial direction thereof. . 上記電圧電極は、絶縁性被覆層を有する良導電性線の先端部をその軸線方向に対して垂直に切った状態で使用されることを特徴とする請求項3に記載のイオン伝導度測定方法。   4. The ion conductivity measuring method according to claim 3, wherein the voltage electrode is used in a state in which a leading end portion of a highly conductive wire having an insulating coating layer is cut perpendicularly to an axial direction thereof. . 上記電圧電極が挿入される上記電解質膜の接触面に、該電解質膜材料とそれが溶ける溶媒とからなる溶液を塗布し、積層された上記電解質膜および電圧電極を真空乾燥させた後、上記接合体を製造することを特徴とする請求項5に記載のイオン伝導度測定方法。   After applying a solution composed of the electrolyte membrane material and a solvent in which the electrolyte membrane material is dissolved to the contact surface of the electrolyte membrane into which the voltage electrode is inserted, the laminated electrolyte membrane and the voltage electrode are vacuum-dried, and then the bonding The ion conductivity measuring method according to claim 5, wherein the body is manufactured. 上記電解質膜を該電解質膜が溶ける溶媒にて膨張させ、積層された上記電解質膜および電圧電極を真空乾燥させた後、上記接合体を製造することを特徴とする請求項5に記載のイオン伝導度測定方法。   6. The ionic conduction according to claim 5, wherein the electrolyte membrane is expanded with a solvent in which the electrolyte membrane dissolves, and the laminated electrolyte membrane and voltage electrode are vacuum-dried, and then the joined body is manufactured. Degree measurement method. 上記電圧電極の先端に、上記電解質膜材料とそれが溶ける溶媒とからなる溶液にて小球を作り、該小球の溶媒を乾燥させてから、さらに、積層された上記電解質膜および電圧電極を真空乾燥させた後、上記接合体を製造することを特徴とする請求項5に記載のイオン伝導度測定方法。   At the tip of the voltage electrode, a small sphere is made with a solution composed of the electrolyte membrane material and a solvent in which the electrolyte membrane material is dissolved, the solvent of the small sphere is dried, and the stacked electrolyte membrane and voltage electrode are further attached. The ion conductivity measuring method according to claim 5, wherein the joined body is manufactured after vacuum drying.
JP2004145448A 2004-05-14 2004-05-14 Ion conductivity measuring method Pending JP2005326311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145448A JP2005326311A (en) 2004-05-14 2004-05-14 Ion conductivity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145448A JP2005326311A (en) 2004-05-14 2004-05-14 Ion conductivity measuring method

Publications (1)

Publication Number Publication Date
JP2005326311A true JP2005326311A (en) 2005-11-24

Family

ID=35472774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145448A Pending JP2005326311A (en) 2004-05-14 2004-05-14 Ion conductivity measuring method

Country Status (1)

Country Link
JP (1) JP2005326311A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226984A (en) * 2006-02-21 2007-09-06 Japan Atomic Energy Agency Proton conductivity measurement method and device
JP2007298388A (en) * 2006-04-28 2007-11-15 Espec Corp Method of manufacturing membrane/electrode junction body for measuring ion conductivity by membrane-thickness-directional four-terminal method
JP2009229337A (en) * 2008-03-25 2009-10-08 Hioki Ee Corp Electrode inspection apparatus
KR101036034B1 (en) 2007-07-12 2011-05-19 가부시키가이샤 히타치세이사쿠쇼 Semiconductor device
JP2013171701A (en) * 2012-02-21 2013-09-02 Nippon Soken Inc Fuel cell diagnosis device, fuel cell system, and fuel cell diagnosis method
CN104849564A (en) * 2015-05-26 2015-08-19 西北有色金属研究院 Method for measuring conductivity of lithium ion cell anode material
JP2016178079A (en) * 2015-03-19 2016-10-06 パナソニックIpマネジメント株式会社 Proton conductivity measuring method and proton conductivity measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226984A (en) * 2006-02-21 2007-09-06 Japan Atomic Energy Agency Proton conductivity measurement method and device
JP2007298388A (en) * 2006-04-28 2007-11-15 Espec Corp Method of manufacturing membrane/electrode junction body for measuring ion conductivity by membrane-thickness-directional four-terminal method
KR101036034B1 (en) 2007-07-12 2011-05-19 가부시키가이샤 히타치세이사쿠쇼 Semiconductor device
JP2009229337A (en) * 2008-03-25 2009-10-08 Hioki Ee Corp Electrode inspection apparatus
JP2013171701A (en) * 2012-02-21 2013-09-02 Nippon Soken Inc Fuel cell diagnosis device, fuel cell system, and fuel cell diagnosis method
JP2016178079A (en) * 2015-03-19 2016-10-06 パナソニックIpマネジメント株式会社 Proton conductivity measuring method and proton conductivity measuring device
CN104849564A (en) * 2015-05-26 2015-08-19 西北有色金属研究院 Method for measuring conductivity of lithium ion cell anode material

Similar Documents

Publication Publication Date Title
Young et al. Characterizing the structural degradation in a PEMFC cathode catalyst layer: carbon corrosion
Qu et al. Electrochemical impedance and its applications in energy‐storage systems
Dollé et al. Development of reliable three-electrode impedance measurements in plastic Li-ion batteries
Cappadonia et al. Proton conduction of Nafion® 117 membrane between 140 K and room temperature
Lee et al. Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application
JP5131671B2 (en) Proton conductivity measurement method and apparatus
Lufrano et al. Influence of Nafion content in electrodes on performance of carbon supercapacitors
Zhang et al. A highly sensitive breathable fuel cell gas sensor with nanocomposite solid electrolyte
Pei et al. Use of galvanostatic charge method as a membrane electrode assembly diagnostic tool in a fuel cell stack
Ünlü et al. Study of alkaline electrodes for hybrid polymer electrolyte fuel cells
WO2016095769A1 (en) Ionic conductivity test device, and test method using same
Le Canut et al. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells
JP2006286397A (en) Solid electrolyte membrane structure, its manufacturing method, and ion conductivity measurement device
JP2005326311A (en) Ion conductivity measuring method
JP5289983B2 (en) Electrochemical cell
CN105759123B (en) A kind of ionic conductivity test device and use its method of testing
CN110061270A (en) The non-destructive measuring method of fuel battery double plates and carbon paper interface contact resistance
CN104714096B (en) A kind of method of testing of test device and electronic conductor intermediate ion electrical conductivity
JP2023522240A (en) Current collector, electrochemical device and electronic device containing the current collector
Nakura et al. Characterization of lithium insertion electrodes: a method to measure area-specific impedance of single electrode
JP4899150B2 (en) Manufacturing method of joined body, and measuring method of 4-terminal ionic conductivity in film thickness direction
JP7331253B2 (en) Polymer electrolyte membrane and membrane-electrode assembly containing the same
JP2009229373A (en) Evaluation implement for electron conductivity
JP2005044715A (en) Inspection instrument and inspection method of fuel cell
Piela et al. Looking Inside Polymer Electrolyte Membrane Fuel Cell Stack Using Tailored Electrochemical Methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304