JP2013015506A - Ammoniac nitrogen measurement method of coulometric titration system, and device thereof - Google Patents

Ammoniac nitrogen measurement method of coulometric titration system, and device thereof Download PDF

Info

Publication number
JP2013015506A
JP2013015506A JP2011162554A JP2011162554A JP2013015506A JP 2013015506 A JP2013015506 A JP 2013015506A JP 2011162554 A JP2011162554 A JP 2011162554A JP 2011162554 A JP2011162554 A JP 2011162554A JP 2013015506 A JP2013015506 A JP 2013015506A
Authority
JP
Japan
Prior art keywords
cathode
surface area
bromine
current
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011162554A
Other languages
Japanese (ja)
Inventor
Takeshi Sudo
毅 須藤
Seiya Kurita
誠也 栗田
Masaki Nakayama
正樹 仲山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIRANUMA SANGYO
HIRANUMA SANGYO KK
Original Assignee
HIRANUMA SANGYO
HIRANUMA SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIRANUMA SANGYO, HIRANUMA SANGYO KK filed Critical HIRANUMA SANGYO
Priority to JP2011162554A priority Critical patent/JP2013015506A/en
Publication of JP2013015506A publication Critical patent/JP2013015506A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ammoniac nitrogen measurement device of coulometric titration system that can measure up to 0.05 mg/L as a lower limit of measurement.SOLUTION: A surface area of a cathode used as an electrolysis electrode is set to 1/50 to 1/100 of a surface area of an anode, and current density of the cathode is set to 0.1 to 0.2 A/cm. Consequently, the ammoniac nitrogen with 0.05 mg/L can be measured.

Description

本発明は電量滴定法によるアンモニア性窒素の測定方法および装置に関するものである。  The present invention relates to a method and apparatus for measuring ammonia nitrogen by a coulometric titration method.

海水、湖沼水、河川水などの環境水および下水処理場、工場排水から排出され廃水に含まれる微量なアンモニア性窒素を電量滴定法によって測定するアンモニア性窒素測定装置は、測定精度が高く短時間で測定できる特徴を備えており、広く活用されて来た。また、本装置の改良についても、研究報告(特許文献1)がなされて来た技術である。  Ammonia nitrogen measuring equipment that measures trace amounts of ammonia nitrogen discharged from environmental water such as seawater, lake water, river water, sewage treatment plants, and industrial wastewater by coulometric titration has high measurement accuracy and requires a short time. It has the features that can be measured with, and has been widely used. In addition, the improvement of this apparatus is a technique for which a research report (Patent Document 1) has been made.

特開2000−111521号公報JP 2000-1111521 A

「上水試験方法 解説編 2001年度版」、日本水道協会、2001年、p.5“Water Supply Test Method, Explanation Edition 2001”, Japan Waterworks Association, 2001, p. 5

従来の電量滴定式アンモニア性窒素測定装置における定量下限はおよそ1mg/Lであり、本濃度以下を精度良く測定することが困難である。一方、測定上限は数千mg/Lまで測定可能であるが、実試料において数千mg/Lのような高濃度試料は少なく、実用性は低い。実際にアンモニア性窒素を測定する下水処理場等では、原水のアンモニア性窒素濃度として50mg/L〜100mg/L程度であり、最終的な処理水のアンモニア性窒素濃度は1mg/L以下である場合が多い。従って従来の電量滴定式アンモニア性窒素測定装置において、より低濃度を簡便かつ精度よく測定できる装置が望まれる。しかしながら現状1mg/L以下を精度よく測定できる電量滴定式アンモニア性窒素測定装置はない。  The lower limit of quantification in a conventional coulometric titration-type ammoniacal nitrogen measuring device is about 1 mg / L, and it is difficult to accurately measure this concentration or less. On the other hand, the upper limit of measurement is measurable up to several thousand mg / L, but there are few high-concentration samples such as several thousand mg / L in actual samples, and practicality is low. In a sewage treatment plant or the like that actually measures ammonia nitrogen, the ammonia nitrogen concentration of raw water is about 50 mg / L to 100 mg / L, and the ammonia nitrogen concentration in the final treated water is 1 mg / L or less. There are many. Therefore, an apparatus capable of easily and accurately measuring a lower concentration in a conventional coulometric titration type ammoniacal nitrogen measuring apparatus is desired. However, there is no coulometric titration type ammoniacal nitrogen measuring device that can accurately measure 1 mg / L or less at present.

電量滴定式アンモニア性窒素測定装置において、電解電極である陽極および陰極に白金を用いることは特許文献1に記されているとおりである。本発明は、白金の表面積ならびに電流密度をより詳細に規定し、アンモニア性窒素濃度として0.05mg/Lまで測定可能とするものである。  In the coulometric titration type ammoniacal nitrogen measuring device, as described in Patent Document 1, platinum is used for the anode and the cathode which are electrolytic electrodes. In the present invention, the surface area and current density of platinum are defined in more detail, and the ammonia nitrogen concentration can be measured up to 0.05 mg / L.

本発明は、電量滴定式アンモニア性窒素測定装置の電解電極において、陰極の表面積を陽極の表面積の1/50から1/100とすること、ならびに陰極の電流密度を0.1A/cm〜0.2A/cmとしたものである。The present invention relates to an electrolytic electrode of a coulometric titration-type ammonia nitrogen measuring apparatus, wherein the surface area of the cathode is set to 1/50 to 1/100 of the surface area of the anode, and the current density of the cathode is 0.1 A / cm 2 to 0. .2 A / cm 2 .

前述した電解電極の表面積ならびに電流密度にすることにより、アンモニア性窒素濃度として0.05mg/Lまで測定可能となった。  By using the surface area and current density of the electrolytic electrode described above, it was possible to measure ammonia nitrogen concentration up to 0.05 mg / L.

電量滴定式アンモニア性窒素測定装置の概略図Schematic diagram of coulometric titration ammonia nitrogen measuring device 電解電極の概略図Schematic diagram of electrolytic electrode 電解電流と2ppmアンモニア性窒素標準液の測定値との関係を示すグラフGraph showing the relationship between the electrolysis current and the measured value of 2ppm ammonia nitrogen standard solution 電解電流を4mAとしたときの滴定曲線Titration curve when the electrolysis current is 4 mA 電解電流を10mAとしたときの滴定曲線Titration curve when electrolytic current is 10 mA

前述したような電解電極の表面積および電流密度に至った経緯について、各実験結果を踏まえながら説明する。  The process of reaching the surface area and current density of the electrolytic electrode as described above will be described based on the results of each experiment.

まず、陰極の衣面積を極端に小さくするに至った着眼点について説明する。一般に市販されている電量滴定式アンモニア性窒素測定装置に使用されている電解電極の陽極および陰極の表面積はおよそ1.6cmであり、電解電流は約30mAとなっている。電解電流が大きいため、高濃度のアンモニア性窒素に関しては迅速に測定可能となっているが、反面、低濃度については電解電流が大きすぎて測定時間が極端に短くなるために精度が悪くなるという欠点もある。そのため電解電流を小さくすることにより低濃度の精度を向上させることが考えられるが、両電解電極の表面積が大きいと電流密度が小さくなるため、陰極表面で本来の目的以外の電解が生じ、結果として電解効率が悪くなる。陰極表面で発生する本来の目的以外の電解とは、後述する臭素の還元などが考えられる。逆に言えば、陰極表面で目的以外の電解を生じさせないようにするためには、陰極の表面積をより小さくし、電流密度を大きくすればよい。前述した市販されている装置における電極の電流密度はおよそ0.02A/cmであり、本発明はこの電流密度を大きくするという着眼点から、陰極の表面積を極端に小さくする発想に至ったものである。First, the point of focus that has led to the extremely small area of the cathode clothing will be described. The surface area of the anode and cathode of the electrolytic electrode used in a coulometric titration ammoniacal nitrogen measuring device that is generally marketed is about 1.6 cm 2 , and the electrolytic current is about 30 mA. Because the electrolysis current is large, high concentration ammoniacal nitrogen can be measured quickly. On the other hand, for low concentrations, the electrolysis current is too large and the measurement time becomes extremely short, resulting in poor accuracy. There are also drawbacks. Therefore, it is conceivable to improve the accuracy of low concentration by reducing the electrolysis current. However, if the surface area of both electrolysis electrodes is large, the current density becomes small, resulting in electrolysis other than the original purpose on the cathode surface. Electrolytic efficiency becomes worse. The electrolysis other than the original purpose generated on the cathode surface may be reduction of bromine described later. In other words, in order not to cause undesired electrolysis on the cathode surface, the surface area of the cathode may be reduced and the current density increased. The current density of the electrode in the above-mentioned commercially available apparatus is about 0.02 A / cm 2 , and the present invention has led to the idea of extremely reducing the surface area of the cathode from the viewpoint of increasing this current density. It is.

本発明における陰極の表面積ならびに電流密度に関して実験を行なった結果、陰極の表面積を陽極の表面積の1/50から1/100とすること、ならびに陰極の電流密度を0.1A/cm〜0.2A/cmにすることによって、0.05mg/Lまでのアンモニア性窒素を測定することが可能になるという結論に至ったものである。As a result of experiments on the surface area of the cathode and the current density in the present invention, the surface area of the cathode is set to 1/50 to 1/100 of the surface area of the anode, and the current density of the cathode is 0.1 A / cm 2 to . It came to the conclusion that by making 2 A / cm 2 , ammoniacal nitrogen up to 0.05 mg / L can be measured.

以下に、電解電極の表面積および電流密度を上記のように決定した実験の詳細を説明する。  Details of the experiment in which the surface area and current density of the electrolytic electrode were determined as described above will be described below.

まず、電解電極の表面積について説明する。電解電極に使用する白金はφ0.8mmの白金線を使用した。陽極は白金線を13cmにカットし、渦巻き状にしたものを作成した。この表面積は3.27cmとなる。一方、陰極は表面積の比較実験を行うため、(1)陽極と同表面積のもの、(2)1cmにカットしたもの(表面積0.26cm)、(3)0.5cmにカットしたもの(表面積0.13cm)、(4)0.1cmにカットしたもの(表面積0.03cm)の4種類を準備した。電解電流を4mAとし、塩化アンモニウムより調製した2ppmアンモニア性窒素標準液を測定した。また、測定に使用する電解液は、臭化カリウム濃度を0.4mol/Lとし、pH緩衝剤として炭酸ナトリウムと炭酸水素ナトリウムによって約pH9に調製したものを用いた。本電解液10mLと2ppmアンモニア性窒素標準液10mLを電解セルに採取し、測定を実施した。測定結果を表1に示した。その結果、電解効率としてほぼ100%が得られるのは、陰極の表面積が0.13cmと0.03cmであることがわかった。陰極の表面積0.13cmは陽極の表面積の約1/25であり、0.03cmは約1/109である。この範囲ではほぼ100%の電解効率が得られることがわかったため、余裕度を考慮して、陰極の表面積は陽極の1/50から1/100の表面積が適切であると判断した。First, the surface area of the electrolytic electrode will be described. The platinum used for the electrolytic electrode was a platinum wire of φ0.8 mm. The anode was prepared by cutting a platinum wire into 13 cm and making it into a spiral shape. This surface area is 3.27 cm 2 . On the other hand, in order to conduct comparative experiments on the surface area of the cathode, (1) the same surface area as the anode, (2) 1 cm cut (surface area 0.26 cm 2 ), (3) 0.5 cm cut (surface area 0.13 cm 2), we were prepared four (4) which was cut into 0.1 cm (surface area 0.03 cm 2). The electrolytic current was 4 mA, and a 2 ppm ammoniacal nitrogen standard solution prepared from ammonium chloride was measured. The electrolyte used for the measurement was a potassium bromide concentration of 0.4 mol / L and a pH buffering agent adjusted to about pH 9 with sodium carbonate and sodium bicarbonate. 10 mL of the present electrolyte and 10 mL of 2 ppm ammoniacal nitrogen standard solution were collected in an electrolytic cell and measured. The measurement results are shown in Table 1. As a result, almost 100% as the electrolytic efficiency is that obtained was found to be the surface area of the cathode is 0.13 cm 2 and 0.03 cm 2. The cathode surface area of 0.13 cm 2 is about 1/25 of the anode surface area, and 0.03 cm 2 is about 1/109. Since it was found that approximately 100% electrolysis efficiency was obtained within this range, the surface area of the cathode was determined to be appropriate from 1/50 to 1/100 of the anode in consideration of the margin.

Figure 2013015506
Figure 2013015506

電解電極の陰極側の表面積を小さくすることによって100%の電解効率が得られる要因としては、次のようなことが考えられる。  The following factors can be considered as factors that can achieve 100% electrolysis efficiency by reducing the surface area of the cathode side of the electrolytic electrode.

まず、本測定の原理について説明する。本測定の原理は、電解液に含まれている臭素イオンが電解電流を流すことにより陽極側で酸化されて臭素が発生し、その臭素がアンモニアと定量的に反応することによってアンモニアが測定されるという原理に基づいている。すなわち、発生した臭素が全てアンモニアと反応しないと100%の電解効率を達成し得ないことになる。  First, the principle of this measurement will be described. The principle of this measurement is that bromine ions contained in the electrolyte are oxidized on the anode side by passing an electrolysis current to generate bromine, and ammonia is measured by the quantitative reaction of the bromine with ammonia. Based on the principle. That is, 100% electrolysis efficiency cannot be achieved unless all the bromine generated reacts with ammonia.

電解効率が低下する要因は、陽極で発生した臭素の一部が陰極側で再び臭素イオンに還元されてしまうことが挙げられる。電解は一定電流で行われるため、陰極側の表面積が大きいと、陽極間との抵抗が小さくなるため両極間にかかる電圧が小さくなる。陰極側では通常、水(水素イオン)が還元されて水素が発生するが、電圧が小さい条件下では、臭素は電気化学的に水より小さい電圧で先に還元されるために、一部の臭素も還元されてしまうことが推測される。そのため、陰極側の表面積を小さくすることにより両極間の電圧が大きくなり、臭素の還元が抑制されたと考えられる。  A factor that reduces the electrolytic efficiency is that a part of bromine generated at the anode is reduced again to bromine ions on the cathode side. Since the electrolysis is performed at a constant current, if the surface area on the cathode side is large, the resistance between the anodes becomes small and the voltage applied between both electrodes becomes small. Normally, water (hydrogen ions) is reduced on the cathode side to generate hydrogen. However, under conditions where the voltage is low, bromine is first reduced at a voltage lower than water, so some bromine It is speculated that they will also be reduced. For this reason, it is considered that by reducing the surface area on the cathode side, the voltage between both electrodes is increased, and the reduction of bromine is suppressed.

一方、アンモニアと臭素の反応速度、および陰極への臭素の接触頻度の観点からも、陰極の表面積が小さいほうが臭素の還元を抑制する効果があることが推測される。まず、電解開始直後は被滴定液中のアンモニアは臭素より大過剰にあるため、臭素とアンモニアの反応速度が速い。そのため電解開始直後は陰極への接触頻度が低いため臭素は還元されにくい。しかし、電解が進行し終点に近づくに従ってアンモニアが少なくなるため、次第に臭素との反応速度が遅くなる。そのため、臭素は陰極への接触する頻度が高くなる。この臭素の陰極への接触頻度は陰極の表面積が大きいほど高くなることは容易に推測できる。従って陰極の表面積が小さいほど臭素の接触頻度も少なくなり、陰極での臭素の還元もされにくくなると推測される。  On the other hand, from the viewpoint of the reaction rate of ammonia and bromine and the contact frequency of bromine to the cathode, it is presumed that the smaller the surface area of the cathode, the more effective the suppression of bromine reduction. First, immediately after the start of electrolysis, ammonia in the titrant is in excess of bromine, so the reaction rate between bromine and ammonia is fast. Therefore, bromine is not easily reduced immediately after the start of electrolysis because the frequency of contact with the cathode is low. However, since the amount of ammonia decreases as electrolysis progresses and approaches the end point, the reaction rate with bromine gradually decreases. For this reason, the frequency of contact of bromine with the cathode increases. It can be easily estimated that the contact frequency of bromine with the cathode increases as the surface area of the cathode increases. Therefore, it is presumed that the smaller the surface area of the cathode, the lower the bromine contact frequency and the less the reduction of bromine at the cathode.

また付加的な要因として、陰極の表面積を小さくすると陰極全体が水素の気体で覆われることにより臭素が陰極に届き難くなることも、臭素の還元が抑制される要因になっていると推測される。上述したこれらの要因が、陰極の表面積を小さくすると100%の電解効率が達成できた要因であると考えられる。すなわち、陰極における臭素の還元が電量滴定式アンモニア性窒素測定において1ppm以下を測定できなかった主因であり、表1に示すように陰極の表面積を小さく改善することが、1ppm以下を精度良く測定するための必須条件である。  As an additional factor, it is speculated that reducing the surface area of the cathode makes it difficult for bromine to reach the cathode because the entire cathode is covered with hydrogen gas, which is also a factor that suppresses the reduction of bromine. . These factors described above are considered to be factors that have achieved 100% electrolysis efficiency when the surface area of the cathode is reduced. That is, the reduction of bromine at the cathode is the main reason why it was not possible to measure 1 ppm or less in coulometric titration ammoniacal nitrogen measurement, and improving the cathode surface area as shown in Table 1 accurately measures 1 ppm or less. Is a prerequisite for.

次に、最適な電解電流について実験した。前述の実験では電解電流を4mAとしたが、1mAから25mAの範囲で電解電流を変え、同様に2ppmアンモニア性窒素標準液を測定した。陰極の表面積は前述の実験で100%の電解効率が得られた0.03cmを用いた。測定結果を表2に示し、グラフで表したものを図3に示した。本実験を行った結果、電解電流が1mA〜15mAの範囲内で測定誤差として3%以内の結果が得られた。特に2mA〜5mAの範囲内では誤差1%以内の結果となり、本測定の最適条件であることがわかった。Next, it experimented about the optimal electrolysis current. In the above experiment, the electrolysis current was 4 mA, but the electrolysis current was changed in the range of 1 mA to 25 mA, and a 2 ppm ammonia nitrogen standard solution was measured in the same manner. As the surface area of the cathode, 0.03 cm 2, at which electrolysis efficiency of 100% was obtained in the above-described experiment, was used. The measurement results are shown in Table 2, and the graphs are shown in FIG. As a result of conducting this experiment, a measurement error within 3% was obtained when the electrolysis current was in the range of 1 mA to 15 mA. In particular, within the range of 2 mA to 5 mA, the error was within 1%, indicating that it was the optimum condition for this measurement.

Figure 2013015506
Figure 2013015506

電解電流が2mA〜5mA以外ではわずかに測定誤差が出る要因としては、次のようなことが考えられる。  The following factors can be considered as factors causing slight measurement errors when the electrolytic current is other than 2 mA to 5 mA.

まず、電解電流1mAでは真値より低い値となった。この要因としては測定中に一部のアンモニアが揮散したことが考えられる。電解電流1mAの条件で2ppmアンモニア性窒素標準液を測定すると、測定時間としておよそ8分を要する。測定時間が長いため、一部のアンモニアの揮散による測定誤差が影響したと推測される。  First, at an electrolytic current of 1 mA, the value was lower than the true value. As this factor, it is considered that a part of ammonia was volatilized during the measurement. When a 2 ppm ammonia nitrogen standard solution is measured under the condition of an electrolytic current of 1 mA, it takes about 8 minutes as the measurement time. Since the measurement time is long, it is presumed that a measurement error due to volatilization of a part of ammonia has influenced.

次に電解電流6mA〜15mAの条件では、真値より高い値を示した。この要因としては、前項で示した陰極での臭素の還元が起因していると考えられる。電解電流を大きくすると陽極で発生する臭素も多くなる。発生した臭素は直ちにアンモニアと反応するが、臭素濃度が高いとアンモニアと反応して消費する臭素より、陽極より発生する臭素がいくぶん過剰になる。臭素過剰の状況下では陰極における臭素の還元がわずかに行われてしまい、すなわちアンモニアとの反応以外で臭素が消費されるため、結果として測定値が高くなったと考えられる。  Next, under the condition of electrolytic current of 6 mA to 15 mA, a value higher than the true value was shown. This is considered to be due to the reduction of bromine at the cathode shown in the previous section. When the electrolytic current is increased, more bromine is generated at the anode. Generated bromine reacts immediately with ammonia, but if the bromine concentration is high, bromine generated from the anode is somewhat more excessive than bromine consumed by reaction with ammonia. Under the condition of excessive bromine, bromine is slightly reduced at the cathode, that is, bromine is consumed except for the reaction with ammonia, and as a result, the measured value is considered to be high.

本推測の根拠として、電解電流4mAと10mAによる滴定曲線を図4および図5に示した。電解電流4mAでは、測定中は電流指示値がほぼ0μAを示し、終点(EP)直前で急激に電流が上昇し、終点に達する。一方、電解電流10mAの滴定曲線は、測定途中で電流指示値が少しずつ上昇し、終点に達していることがわかる。指示電極は定電圧電流検出法となっており、臭素が過剰になると電流値が上昇し、所定の電流値以上になった点を終点として検出するしくみとなっている。測定途中で電流値が上昇しているということは、被滴定液中にわずかに臭素が常に存在していることを意味する。このわずかに存在している臭素が陰極側で臭素イオンに還元されてしまうため、測定値が高くなると推測される。  As a basis for this estimation, titration curves with electrolytic currents of 4 mA and 10 mA are shown in FIGS. When the electrolysis current is 4 mA, the current instruction value is approximately 0 μA during the measurement, and the current rapidly increases immediately before the end point (EP) and reaches the end point. On the other hand, the titration curve of the electrolytic current of 10 mA shows that the current instruction value gradually increases during the measurement and reaches the end point. The indicator electrode is a constant voltage current detection method. When bromine becomes excessive, the current value increases, and a point where the current value is equal to or higher than a predetermined current value is detected as an end point. An increase in current value during measurement means that a slight amount of bromine is always present in the titrant. Since this slightly existing bromine is reduced to bromine ions on the cathode side, the measured value is estimated to be high.

最後に電解電流20mA〜25mAの条件では、測定値が低い値を示した。この要因としては、ブランクの測定誤差に起因すると考えられる。本測定の手順としてはまず電解液に含まれるブランクを測定し、本測定から減算する必要がある。ブランクの値としては概ね0.2ppm程度である。すなわち、このブランクが正確に測定できることもアンモニア性窒素を正確に測定するために必須となる。電解電流20mA〜25mAの条件では、このブランクの測定に問題が生じる。前述したように、通常のブランクはおよそ0.2ppmであるが、電解電流20mA〜25mAでは電流が大きいため臭素が急激に発生し、指示電極による終点検出と、終点を検出したことによって電解電流がストップする間にわずかな時間差が生じる。その時間差によって臭素の過剰分が大きくなる。実際に電解電流20〜25mAにおけるブランク値は0.4〜0.5ppmを示した。つまり、ブランクの減算分が大きくなったために測定値が低くなったと推測される。  Finally, the measured value showed a low value under the condition of an electrolytic current of 20 mA to 25 mA. This is considered to be due to blank measurement errors. As a procedure for the main measurement, it is necessary to first measure a blank contained in the electrolytic solution and subtract it from the main measurement. The blank value is about 0.2 ppm. That is, it is indispensable to accurately measure the ammoniacal nitrogen that the blank can be measured accurately. Under the condition of an electrolytic current of 20 mA to 25 mA, a problem occurs in the measurement of this blank. As described above, the normal blank is about 0.2 ppm, but bromine is generated abruptly at an electrolysis current of 20 mA to 25 mA, so that the electrolysis current is detected by detecting the end point with the indicator electrode and detecting the end point. There is a slight time difference between the stops. The excess of bromine increases due to the time difference. Actually, the blank value at an electrolysis current of 20 to 25 mA was 0.4 to 0.5 ppm. That is, it is presumed that the measured value has decreased because the blank subtraction has increased.

前項までの実験結果より、低濃度のアンモニア性窒素を測定するためには、陰極の表面積を陽極の表面積の1/50から1/100とし、かつ電解電流を2mA〜5mAとすることにより陰極の電流密度を0.1A/cm〜0.2A/cmとすることが最適な条件であることが明らかとなった。この結果を踏まえ、本発明による装置におけるアンモニア性窒素の定量下限値を求めた。From the experimental results up to the previous section, in order to measure low concentration ammoniacal nitrogen, the surface area of the cathode is set to 1/50 to 1/100 of the surface area of the anode, and the electrolytic current is set to 2 mA to 5 mA. making the current density 0.1A / cm 2 ~0.2A / cm 2 was found to be the best conditions. Based on this result, the lower limit of determination of ammonia nitrogen in the apparatus according to the present invention was determined.

試験方法は、非特許文献1の「2 自己精度管理」に記されている定量下限の算出法に従った。塩化アンモニウム標準液を、アンモニア性窒素濃度として0〜0.1ppmとなるように段階的に調製したものを測定する併行試験を行い、べき乗回帰および双曲線回帰の計算によって変動係数10%となる濃度を算出した。0〜0.1ppmアンモニア性窒素標準液の併行試験結果を表3に示した。  The test method followed the calculation method of the lower limit of quantification described in “2 Self-accuracy control” of Non-Patent Document 1. A parallel test was conducted to measure the ammonium chloride standard solution prepared stepwise so that the concentration of ammoniacal nitrogen was 0 to 0.1 ppm, and the concentration at which the coefficient of variation was 10% was calculated by calculation of power regression and hyperbola regression. Calculated. Table 3 shows the parallel test results of 0-0.1 ppm ammonia nitrogen standard solution.

Figure 2013015506
Figure 2013015506

表3の結果を元に、べき乗回帰計算を行うと、変動係数10%の濃度は0.0483ppmとなり、双曲線回帰計算を行うと、0.0416ppmとなる。濃度の高いほうが定量下限値として採用されるため、べき乗回帰によって計算された値(0.0483ppm)が定量下限値となる。本結果より、0.05ppmのアンモニア性窒素が定量可能であることが実証された。  Based on the results in Table 3, when power regression calculation is performed, the concentration of the coefficient of variation of 10% is 0.0483 ppm, and when hyperbolic regression calculation is performed, it is 0.0416 ppm. Since the higher concentration is adopted as the lower limit of quantification, the value (0.0483 ppm) calculated by power regression is the lower limit of quantification. From this result, it was demonstrated that 0.05 ppm of ammoniacal nitrogen can be quantified.

上述のように、本発明によって電量滴定式アンモニア性窒素測定装置の定量下限を、従来のおよそ1mg/Lから0.05mg/Lに引き下げることができた。このことによって、従来の電量滴定式アンモニア性窒素測定装置の利点である測定の簡便性に加え、より市場の需要にマッチした低濃度領域の測定が可能となり、本方式によるアンモニア性窒素測定装置における実用性ならびに汎用性を飛躍的に向上させることができた。  As described above, according to the present invention, the lower limit of quantification of the coulometric titration-type ammoniacal nitrogen measuring apparatus could be lowered from about 1 mg / L to 0.05 mg / L. As a result, in addition to the simplicity of measurement, which is an advantage of the conventional coulometric titration-type ammoniacal nitrogen measuring device, it is possible to measure in a low concentration region that better matches the market demand. Practicality and versatility were dramatically improved.

本発明の実施例を図1に基づいて説明する。図1は本発明の電量滴定式アンモニア性窒素測定装置の概略図である。本装置は、電解電流や検出器を制御する制御部1と、測定結果等の表示を行う表示部2と、制御部を操作するためのキーボード3と、電解液と試料を投入して電解を行う滴定セル7から構成される。滴定セル7には検出部5に接続された指示電極8と、電解電流電源制御部4に接続された電解電極9と、モーター6に接続されたスターラ10が配置されている。指示電極8は片方が金線11、もう片方が銀線12からなり、滴定終点を検出する役割をする。一方、電解電極9は陽極13と陰極14から成り、電解電流を流すことによって臭素を発生させる役割をする。  An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic view of a coulometric titration ammoniacal nitrogen measuring apparatus of the present invention. This apparatus includes a control unit 1 for controlling an electrolysis current and a detector, a display unit 2 for displaying measurement results, a keyboard 3 for operating the control unit, an electrolytic solution and a sample, and performing electrolysis. It consists of a titration cell 7 to perform. In the titration cell 7, an indicator electrode 8 connected to the detection unit 5, an electrolytic electrode 9 connected to the electrolytic current power supply control unit 4, and a stirrer 10 connected to the motor 6 are arranged. The indicator electrode 8 has a gold wire 11 on one side and a silver wire 12 on the other side, and serves to detect the titration end point. On the other hand, the electrolytic electrode 9 comprises an anode 13 and a cathode 14 and plays a role of generating bromine by flowing an electrolytic current.

実際の測定操作について説明する。電解液および測定試料を滴定セル7に投入し、キーボード3からの入力操作によって測定を開始すると、電解電流電源制御部4がオンし、電解が開始される。同時にスターラ10に接続されているモーター6が回転して滴定セル中の液を撹拌し、本測定における化学反応を迅速かつ確実に行う目的を果たす。電解電流は制御部1によって2mA〜5mAに制御される。陽極13では電解液に含まれる臭素イオンが酸化されて臭素が発生する。発生した臭素は直ちに試料に含まれるアンモニアと反応する。このように反応が進行し、滴定セルにアンモニアが無くなり臭素が過剰になると、指示電極8が臭素過剰を検知して電解を停止し、測定が終了する。測定終了までに流した電気量によって試料中のアンモニア性窒素濃度が計算され、測定結果が表示部2に表示される。  The actual measurement operation will be described. When the electrolytic solution and the measurement sample are put into the titration cell 7 and measurement is started by an input operation from the keyboard 3, the electrolysis current power supply control unit 4 is turned on and electrolysis is started. At the same time, the motor 6 connected to the stirrer 10 rotates to agitate the liquid in the titration cell, and the purpose of performing the chemical reaction in this measurement quickly and reliably is achieved. The electrolytic current is controlled to 2 mA to 5 mA by the control unit 1. At the anode 13, bromine ions contained in the electrolytic solution are oxidized to generate bromine. The generated bromine immediately reacts with ammonia contained in the sample. When the reaction proceeds in this way and ammonia disappears in the titration cell and bromine becomes excessive, the indicator electrode 8 detects excess bromine, stops electrolysis, and the measurement is completed. The ammonia nitrogen concentration in the sample is calculated based on the amount of electricity passed until the measurement is completed, and the measurement result is displayed on the display unit 2.

本発明における電解電極の構造について図2に基づき説明する。電解電極は電解電極胴部20と、白金線を渦巻き状に形成した陽極21と、白金線を樹脂性チューブ23で被覆した陰極22から構成される。まず陽極21は、陰極22と比較して表面積を50倍から100倍に大きく製作する必要がある。表面積を大きくする方法として、白金を板状もしくは網状に形成する方法も考えられるが、本実施例では特殊な加工が不要であり、最も製作が簡単である白金線を渦巻き状に形成する方法を選択した。一方、陰極22は白金線に樹脂製のチューブで被覆した形状をしており、先端部が表面積0.03cmとなるように白金が露出した構造をしている。樹脂製のチューブで被覆する形状とすることにより、白金の露出面積の調整は、チューブの長さを変更するのみで可能となるため、本発明には好適である。The structure of the electrolytic electrode in the present invention will be described with reference to FIG. The electrolytic electrode includes an electrolytic electrode body 20, an anode 21 in which a platinum wire is spirally formed, and a cathode 22 in which the platinum wire is covered with a resin tube 23. First, the anode 21 needs to be manufactured with a surface area 50 to 100 times larger than that of the cathode 22. As a method of increasing the surface area, a method of forming platinum in a plate shape or a net shape is also conceivable, but in this embodiment, a special processing is unnecessary, and a method of forming a platinum wire that is the easiest to manufacture in a spiral shape. Selected. On the other hand, the cathode 22 has a shape in which a platinum wire is covered with a resin tube, and has a structure in which platinum is exposed so that the tip portion has a surface area of 0.03 cm 2 . By adopting a shape covered with a resin tube, it is possible to adjust the exposed area of platinum only by changing the length of the tube, which is suitable for the present invention.

1 制御部
2 表示部
3 キーボード
4 電解電流電源制御部
5 検出部
6 モーター
7 滴定セル
8 指示電極
9 電解電極
10 スターラ
11 金線
12 銀線
13 陽極
14 陰極
20 電解電極胴部
21 陽極
22 陰極
23 樹脂製チューブ
DESCRIPTION OF SYMBOLS 1 Control part 2 Display part 3 Keyboard 4 Electrolytic current power supply control part 5 Detection part 6 Motor 7 Titration cell 8 Indicator electrode 9 Electrode electrode 10 Stirrer 11 Gold wire 12 Silver wire 13 Anode 14 Cathode 20 Electrolytic electrode trunk | drum 21 Anode 22 Cathode 23 Resin tube

Claims (3)

電量滴定式アンモニア性窒素測定装置において、アンモニア性窒素の定量下限として0.05mg/Lまで測定可能とする方法。  In a coulometric titration type ammoniacal nitrogen measuring device, a method capable of measuring 0.05 mg / L as a lower limit of quantification of ammoniacal nitrogen. 電量滴定式アンモニア性窒素測定装置において、電解電極の陰極の表面積を陽極の表面積の1/50から1/100とすること、ならびに陰極の電流密度を0.1A/cm〜0.2A/cmとすることを特徴とする電量滴定式アンモニア性窒素測定装置。In the coulometric titration type ammoniacal nitrogen measuring device, the surface area of the cathode of the electrolytic electrode is set to 1/50 to 1/100 of the surface area of the anode, and the current density of the cathode is 0.1 A / cm 2 to 0.2 A / cm. 2. A coulometric titration ammoniacal nitrogen measuring device characterized in that it is 2 . 請求項2において、電解電極は陽極および陰極ともに白金を使用し、陽極は白金線を渦巻き状等に形成し、陰極は白金線を樹脂等によってコーティングして白金の露出面積が陽極の1/50から1/100となるような構造を有した電解電極を具備する電量滴定式アンモニア性窒素測定装置。  3. The electrolytic electrode according to claim 2, wherein platinum is used for both the anode and the cathode, the anode is formed of a platinum wire in a spiral shape, the platinum wire is coated with a resin or the like, and the exposed area of platinum is 1/50 of the anode. A coulometric titration ammoniacal nitrogen measuring device comprising an electrolytic electrode having a structure of 1/100 to 1/100.
JP2011162554A 2011-07-06 2011-07-06 Ammoniac nitrogen measurement method of coulometric titration system, and device thereof Pending JP2013015506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162554A JP2013015506A (en) 2011-07-06 2011-07-06 Ammoniac nitrogen measurement method of coulometric titration system, and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162554A JP2013015506A (en) 2011-07-06 2011-07-06 Ammoniac nitrogen measurement method of coulometric titration system, and device thereof

Publications (1)

Publication Number Publication Date
JP2013015506A true JP2013015506A (en) 2013-01-24

Family

ID=47688297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162554A Pending JP2013015506A (en) 2011-07-06 2011-07-06 Ammoniac nitrogen measurement method of coulometric titration system, and device thereof

Country Status (1)

Country Link
JP (1) JP2013015506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516073A (en) * 2012-05-03 2015-06-04 バックマン・ラボラトリーズ・インターナショナル・インコーポレーテッドBuckman Laboratories International Incorporated Method and apparatus for measuring and controlling the concentration of electroactive species in an aqueous solution

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285886A (en) * 1976-01-08 1977-07-16 Agency Of Ind Science & Technol Simple water quality measuring method and water quality meter
JPS5722550A (en) * 1980-07-16 1982-02-05 Mitsubishi Chem Ind Ltd Device for measuring very small amount of ammonia-state nitrogen and total nitrogen
JPH0510922A (en) * 1991-07-05 1993-01-19 Mitsubishi Kasei Corp Electrolytic cell for coulometric titration
JP2000111521A (en) * 1998-10-07 2000-04-21 Central Kagaku Kk Electrolytic cell for coulometric titration-type ammoniacal nitrogen meter
JP2003234256A (en) * 2002-02-12 2003-08-22 Isamu Uchida Evaluation method of electric double layer capacitor material using micro-electrode for measuring powder and evaluating device for electric double layer capacitor material
JP2005241506A (en) * 2004-02-27 2005-09-08 Toshiba Corp Microelectrode for electrochemical measurement and manufacturing method thereof
JP2005283294A (en) * 2004-03-29 2005-10-13 Iijima Denshi Kogyo Kk Measurement method for reducing sugar and its instrument

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285886A (en) * 1976-01-08 1977-07-16 Agency Of Ind Science & Technol Simple water quality measuring method and water quality meter
JPS5722550A (en) * 1980-07-16 1982-02-05 Mitsubishi Chem Ind Ltd Device for measuring very small amount of ammonia-state nitrogen and total nitrogen
JPH0510922A (en) * 1991-07-05 1993-01-19 Mitsubishi Kasei Corp Electrolytic cell for coulometric titration
JP2000111521A (en) * 1998-10-07 2000-04-21 Central Kagaku Kk Electrolytic cell for coulometric titration-type ammoniacal nitrogen meter
JP2003234256A (en) * 2002-02-12 2003-08-22 Isamu Uchida Evaluation method of electric double layer capacitor material using micro-electrode for measuring powder and evaluating device for electric double layer capacitor material
JP2005241506A (en) * 2004-02-27 2005-09-08 Toshiba Corp Microelectrode for electrochemical measurement and manufacturing method thereof
JP2005283294A (en) * 2004-03-29 2005-10-13 Iijima Denshi Kogyo Kk Measurement method for reducing sugar and its instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516073A (en) * 2012-05-03 2015-06-04 バックマン・ラボラトリーズ・インターナショナル・インコーポレーテッドBuckman Laboratories International Incorporated Method and apparatus for measuring and controlling the concentration of electroactive species in an aqueous solution

Similar Documents

Publication Publication Date Title
JP6196528B2 (en) Dissolved hydrogen concentration measuring method and electrolyzed water generator
JP2007139725A (en) Residual chlorine measuring method and residual chlorine measuring instrument
US9625405B2 (en) Ozone water concentration measurement apparatus and ozone water concentration measurement method
US10031105B2 (en) Electrochemical total organic carbon analyzer
JP2007212232A (en) Dissolved ozone concentration measuring device and method
dos Santos et al. A versatile and robust electrochemical flow cell with a boron-doped diamond electrode for simultaneous determination of Zn 2+ and Pb 2+ ions in water samples
JP2013015506A (en) Ammoniac nitrogen measurement method of coulometric titration system, and device thereof
JP4874345B2 (en) Electrochemical measurement method of zinc ion
US20070227908A1 (en) Electrochemical cell sensor
JP6762536B2 (en) Water corrosiveness judgment method and water corrosiveness judgment device
JP2008256604A (en) Device for measuring dissolved ozone concentration, and method therefor
JP5814025B2 (en) Method and apparatus for electrochemical analysis of cadmium
JP2007163224A (en) Electrochemical measuring method
JP2022114416A (en) Electrochemical measurement device and electrochemical measurement method
Huszał et al. Simultaneous determination of platinum and rhodium with hydroxylamine and acetone oxime by catalytic adsorptive stripping voltammetry (CAdSV)
US20150192523A1 (en) Chlorine Detection and pH Sensing Methods and Apparatus
JP4217077B2 (en) Stabilization method of diaphragm type electrode
JPS60171448A (en) Apparatus for measuring concentration of dissolved substance
JP3443230B2 (en) Trace oxygen concentration measurement device
JP2023062579A (en) Electrochemical measurement device and method for electrochemical measurement
JP2010271236A (en) Electrochemical measuring method and device for arsenic
JP5392918B2 (en) Constant potential electrolytic acid gas detector
JP6225410B2 (en) Nitrite nitrogen concentration measuring method and apparatus
WO2014185114A1 (en) Functional water production apparatus
KR101684460B1 (en) Formate sensing in the electrochemical conversion of carbon dioxide to formate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150609