JP2008256604A - Device for measuring dissolved ozone concentration, and method therefor - Google Patents

Device for measuring dissolved ozone concentration, and method therefor Download PDF

Info

Publication number
JP2008256604A
JP2008256604A JP2007100758A JP2007100758A JP2008256604A JP 2008256604 A JP2008256604 A JP 2008256604A JP 2007100758 A JP2007100758 A JP 2007100758A JP 2007100758 A JP2007100758 A JP 2007100758A JP 2008256604 A JP2008256604 A JP 2008256604A
Authority
JP
Japan
Prior art keywords
electrode
dissolved ozone
ozone concentration
amorphous carbon
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007100758A
Other languages
Japanese (ja)
Inventor
Kazuki Arihara
一樹 在原
Takeshi Ochiai
剛 落合
Chiaki Terajima
千晶 寺島
Akira Fujishima
昭 藤嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Original Assignee
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co filed Critical Central Japan Railway Co
Priority to JP2007100758A priority Critical patent/JP2008256604A/en
Publication of JP2008256604A publication Critical patent/JP2008256604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring dissolved ozone concentration that can secure measurement accuracy to the same degree as that of the case where an oxygen terminal diamond electrode is used for an electrode for detection, even if treatment of oxygen termination is not applied to the electrode material of the electrode for detection and easily increases the area of the electrode, and to provide a dissolved ozone concentration measurement method. <P>SOLUTION: A hard amorphous carbon electrode can secure the measurement accuracy of the same degree as in the case, where the oxygen terminal diamond electrode is used for the electrode for detection, and variations with time (dark dots in Figure) for the slope of a calibration curve, related to the hard amorphous carbon electrode, is very much smaller than those of the variations with time (white dots in drawing) of the slope of a calibration curve related to the oxygen-terminated diamond electrode. In other words, the hard amorphous carbon electrode is stable in a hydrogen terminated state, and impurity is less apt to adhere to it, as compared with diamond. The area of the amorphous carbon electrode is also readily increased. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、オゾン水中の溶存オゾン濃度を測定する溶存オゾン濃度測定装置及び溶存オゾン濃度測定方法に関する。   The present invention relates to a dissolved ozone concentration measuring apparatus and a dissolved ozone concentration measuring method for measuring a dissolved ozone concentration in ozone water.

オゾンは酸素よりも7倍程度酸化力が強く、殺菌、脱臭、脱色等に広く利用できる。更に、オゾンは水中に溶解させることで各種活性酸素種を生成し、その活性を一段と向上させることができる。   Ozone has about seven times the oxidizing power of oxygen and can be widely used for sterilization, deodorization, decolorization and the like. Further, ozone can be dissolved in water to generate various active oxygen species, and the activity can be further improved.

近年、オゾン水の利用機運が高まりを見せ、食品洗浄や手洗い等における殺菌手段として浸透しているのみではなく、半導体洗浄水としての利用や臨床利用などにも広がっている。上記用途にオゾン水を利用する際には、その効果を最大限に高め、また、無駄な消費をなくすためにも、オゾン水中の溶存オゾン濃度を定期的にモニタリングすることが必要である。特に、高濃度のオゾンは人体に有害であることから、オゾン濃度管理の徹底が望まれている。そこで、簡便かつ高精度に溶存オゾン濃度を定量・モニタリングできる測定装置が望まれている。   In recent years, the use of ozone water has been increasing, and it has not only penetrated as a sterilization means in food washing and hand washing, but has also spread to use as a semiconductor washing water and clinical use. When using ozone water for the above applications, it is necessary to regularly monitor the concentration of dissolved ozone in the ozone water in order to maximize the effect and eliminate wasteful consumption. In particular, since high-concentration ozone is harmful to the human body, thorough ozone concentration management is desired. Therefore, a measuring device that can quantitatively and monitor the dissolved ozone concentration simply and with high accuracy is desired.

オゾン濃度測定方法としては、(ア)紫外線吸収法、(イ)ヨウ素滴定法、(ウ)半導体法、(エ)電気化学的測定方法が知られている(特許文献1〜6参照)。このうち、上記(ア)の方法は、溶存オゾンが、波長258nm付近に溶存量に応じた紫外線の吸収を示す現象を利用し、溶存オゾン量を求める方法であるが、コストが高く、測定装置をコンパクト化しにくいという問題がある。上記(イ)の方法は、オゾンとヨウ化カリウムとの反応により生成したヨウ素をチオ硫酸ナトリウムで滴定し、溶存オゾン量を求める方法であるが、オゾン以外の酸化性共存物質の影響を受け易く、また、連続したモニタリングに適さないという問題がある。上記(ウ)の方法は、一般にオゾンガスの測定に用いられる方法であり、オゾン水中の溶存オゾンの定量・モニタリングには不向きである。   As the ozone concentration measurement method, (a) ultraviolet absorption method, (b) iodine titration method, (c) semiconductor method, and (d) electrochemical measurement method are known (see Patent Documents 1 to 6). Among them, the method (a) is a method for obtaining the amount of dissolved ozone by utilizing the phenomenon that dissolved ozone shows absorption of ultraviolet rays corresponding to the dissolved amount in the vicinity of a wavelength of 258 nm. There is a problem that it is difficult to downsize. The method (a) above is a method in which iodine produced by the reaction of ozone and potassium iodide is titrated with sodium thiosulfate to determine the amount of dissolved ozone, but it is easily affected by oxidizing coexisting substances other than ozone. Also, there is a problem that it is not suitable for continuous monitoring. The method (c) is a method generally used for measuring ozone gas, and is not suitable for quantifying and monitoring dissolved ozone in ozone water.

上記(エ)の電気化学的測定方法は、溶存オゾンの電気化学的応答に基づいて溶存オゾン濃度を測定する方法である。この方法は、測定が比較的簡便に行え、装置の小型化が容易で、またコストも低く抑えられるため、広く用いられている。この電気化学的測定方法は、更に具体的には、(エ−1)オゾンを選択的に透過させる透過性隔膜を通して溶存オゾンを測定系セルに導き、金等の検出用電極上で測定系セル内のオゾンを還元し、そのときの電流値から換算して溶存オゾン濃度を求める方法と、(エ−2)特定の異種金属を組み合わせた一対の電極をオゾン水中に直接浸漬すると、両電極間に溶存オゾン濃度に見合った起電力が発生するガルバニ電池の原理を利用した方法と、(エ−3)検出用電極をオゾン水中に直接浸漬し、検出用電極を一定電位に保持し、溶存オゾンの還元反応に伴う電流値から換算して溶存オゾン濃度を求める方法とがある。
特開平6−50932号公報 特許第3491705号公報 特開平8−304334号公報 特開平10−300719号公報 特表2004−520577号公報 特開2001−147211号公報
The electrochemical measurement method (D) is a method for measuring the dissolved ozone concentration based on the electrochemical response of the dissolved ozone. This method is widely used because the measurement can be performed relatively easily, the size of the apparatus can be easily reduced, and the cost can be kept low. More specifically, this electrochemical measurement method is more specifically: (D-1) The dissolved ozone is guided to a measurement system cell through a permeable membrane that selectively permeates ozone, and the measurement system cell is placed on a detection electrode such as gold. And reducing the ozone in the gas, and calculating the dissolved ozone concentration by converting from the current value at that time, and (d-2) When a pair of electrodes combined with specific dissimilar metals are directly immersed in ozone water, A method using the principle of a galvanic cell in which an electromotive force corresponding to the dissolved ozone concentration is generated, and (d-3) the detection electrode is directly immersed in ozone water, the detection electrode is kept at a constant potential, and the dissolved ozone There is a method in which the dissolved ozone concentration is obtained by converting from the current value accompanying the reduction reaction.
JP-A-6-50932 Japanese Patent No. 3491705 JP-A-8-304334 Japanese Patent Laid-Open No. 10-300719 Japanese translation of PCT publication No. 2004-520777 JP 2001-147 211 A

上記(エ−1)の方法は、溶存オゾンが透過性隔膜を透過するのに時間がかかるために応答速度が遅く、特に停止時からの立ち上がりにかなりの時間を要するという問題がある。また、測定系セル内の消耗電解液の補充、試料溶液に接する透過性隔膜の汚染に伴う定期的な取り替え、検出用電極の劣化に伴う定期的な取り替え等、維持管理が煩雑であるという問題がある。   The method (d-1) has a problem that the response speed is slow because it takes time for the dissolved ozone to permeate the permeable membrane, and it takes a considerable time to stand up from the stop. In addition, there is a problem that maintenance management is complicated, such as replenishment of consumable electrolyte in the measurement system cell, periodic replacement due to contamination of the permeable diaphragm in contact with the sample solution, periodic replacement due to deterioration of the detection electrode, etc. There is.

また、上記(エ−2)、(エ−3)のような、透過性隔膜を用いず、電極を直接試料溶液に浸漬させる方法は、試料溶液に含まれる不純物による影響を受け易いという問題がある。すなわち、(エ−2)の方法では、溶存オゾンだけではなく、他の化学種(酸素や遊離塩素等)が試料溶液中に溶存している場合、電極で検出した起電力は、溶存オゾンによる起電力だけではなく、他の化学種による起電力も含んでしまう。また(エ−3)の方法では、溶存オゾンだけではなく、他の化学種(酸素や遊離塩素等)が試料溶液中に溶存している場合、検出用電極に流れる電流は、溶存オゾンによる電流だけでなく、他の化学種に起因する電流も含んでしまうことが多い。特に、半導体の洗浄水として用いられるオゾン水は、洗浄効果を高めるために、過酸化水素、過硫酸、フッ素酸、塩素酸等を併用することが多いが、これらの成分がオゾン濃度の測定に影響を与えてしまい、更には、これらの成分が電極を腐食させる虞がある。   Moreover, the method of immersing an electrode directly in a sample solution without using a permeable membrane as in the above (D-2) and (D-3) has a problem that it is easily affected by impurities contained in the sample solution. is there. That is, in the method (d-2), when not only dissolved ozone but also other chemical species (oxygen, free chlorine, etc.) are dissolved in the sample solution, the electromotive force detected by the electrode depends on the dissolved ozone. It includes not only electromotive force but also electromotive force caused by other chemical species. In the method (D-3), when not only dissolved ozone but also other chemical species (oxygen, free chlorine, etc.) are dissolved in the sample solution, the current flowing through the detection electrode is the current due to the dissolved ozone. In addition, it often includes currents originating from other chemical species. In particular, ozone water used as semiconductor cleaning water often uses hydrogen peroxide, persulfuric acid, fluoric acid, chloric acid, etc. in combination to enhance the cleaning effect, but these components are used to measure ozone concentration. In addition, these components may corrode the electrode.

また、上記(エ−2)、(エ−3)の方法では、試料溶液中に有機物等の汚染物質が溶解していた場合、これが電極表面に吸着してオゾンによる応答を妨害するため、溶存オゾン濃度を正確に測定できないという問題がある。   In the methods (D-2) and (D-3), when a contaminant such as an organic substance is dissolved in the sample solution, it is adsorbed on the electrode surface and interferes with the response by ozone. There is a problem that the ozone concentration cannot be measured accurately.

そこで、本願出願人は、ダイヤモンド電極を溶存オゾン検出用電極とすること提案した(例えば、特願2006−31107号)。この場合、ダイヤモンド電極表面での溶存オゾンの電気化学的な還元反応に伴って流れる電流値から、簡便かつ高精度に溶存オゾン濃度を定量・モニタリングすることができる。   Therefore, the applicant of the present application has proposed that the diamond electrode be a dissolved ozone detection electrode (for example, Japanese Patent Application No. 2006-31107). In this case, the dissolved ozone concentration can be quantified and monitored easily and with high accuracy from the current value flowing along with the electrochemical reduction reaction of dissolved ozone on the diamond electrode surface.

ここで、ダイヤモンド電極とは、導電性を付与したダイヤモンド薄膜のことであり、近年、新規機能性電極として注目されている。このダイヤモンド電極の特徴としては、機械的強度に優れる、化学的に安定である、溶存物質が吸着し難い、溶媒の酸化分解及び還元分解が起こり難く広い電位窓を示す、バックグラウンド電流が非常に小さい、反応に選択性がある、等が挙げられる。このような特徴を生かして、電気化学的検出用電極や工業電解用電極としての応用が検討されている。特に、電気化学的検出用電極として用いる場合には、広い電位窓の作用により検出対象となる物質が広範囲に及び、更に、小さいバックグラウンド電流の作用により検出感度が非常に高くなるという利点がある。加えて、ダイヤモンド電極を予め酸化雰囲気下で処理しておくことで、表面官能基を酸素原子で終端化させることが可能であり、これによりオゾンが溶存する高い酸化雰囲気下においても電極表面が変性することはなく、正確な定量が可能となる。また、耐薬品性にも優れていることから、過酸化水素や過硫酸、フッ素酸、塩素酸などの溶液中で使用しても電極の消耗は起こらない。ダイヤモンド電極はオゾンの選択的検出が可能であり、かつ電極の耐久性にも優れることから、溶存オゾン濃度の測定に適切な電極といえる。   Here, the diamond electrode is a diamond thin film imparted with conductivity, and has recently attracted attention as a novel functional electrode. The diamond electrode is characterized by excellent mechanical strength, chemical stability, difficulty in adsorbing dissolved substances, oxidative decomposition and reductive decomposition of the solvent, and a wide potential window. Small, selective reaction, and the like. Taking advantage of such characteristics, application as an electrode for electrochemical detection or an electrode for industrial electrolysis is being studied. In particular, when used as an electrode for electrochemical detection, there is an advantage that a substance to be detected covers a wide range by the action of a wide potential window, and the detection sensitivity becomes very high by the action of a small background current. . In addition, it is possible to terminate the surface functional groups with oxygen atoms by pre-treating the diamond electrode in an oxidizing atmosphere, which makes the electrode surface denatured even in a highly oxidizing atmosphere in which ozone is dissolved. It is not necessary to make accurate quantification. In addition, since it has excellent chemical resistance, the electrode is not consumed even when used in a solution of hydrogen peroxide, persulfuric acid, fluorine acid, chloric acid or the like. Since the diamond electrode can selectively detect ozone and is excellent in the durability of the electrode, it can be said to be an electrode suitable for measuring the dissolved ozone concentration.

しかし、通常ダイヤモンド電極を成膜した直後は、その表面は水素終端化されており、高い酸化性雰囲気(例えばオゾンが溶存するなどの雰囲気)では表面が徐々に酸化されて酸素終端化されてしまう。図11は、オゾン水溶液中でダイヤモンド電極を用いて測定したサイクリックボルタモグラム(CV)を表し、(a)は、水素終端ダイヤモンド電極を用いた場合のCVである。この場合、+0.26Vにオゾンの還元ピークに対応する応答が観察される。この時のピーク電流値は溶存オゾン濃度に比例する。次に、0.1M硫酸水溶液を電解液として、この電極の電位を+3.2Vに30分間保持することで、ダイヤモンド電極表面の酸素終端化を行った。図11の(b)は、オゾン水溶液中で酸素終端ダイヤモンド電極を用いた場合のCVである。この場合、+0Vにオゾンの還元ピークに対応する応答が観察される。この時のピーク電流値は溶存オゾン濃度に比例する。   However, immediately after forming a diamond electrode, the surface is hydrogen-terminated, and in a highly oxidizing atmosphere (for example, an atmosphere in which ozone is dissolved), the surface is gradually oxidized and oxygen-terminated. . FIG. 11 shows a cyclic voltammogram (CV) measured using a diamond electrode in an aqueous ozone solution, and (a) is a CV when a hydrogen-terminated diamond electrode is used. In this case, a response corresponding to the ozone reduction peak at +0.26 V is observed. The peak current value at this time is proportional to the dissolved ozone concentration. Next, oxygen termination of the surface of the diamond electrode was performed by maintaining the potential of this electrode at +3.2 V for 30 minutes using 0.1 M sulfuric acid aqueous solution as an electrolyte. (B) of FIG. 11 is CV at the time of using an oxygen termination diamond electrode in ozone aqueous solution. In this case, a response corresponding to the ozone reduction peak at +0 V is observed. The peak current value at this time is proportional to the dissolved ozone concentration.

このように、オゾンの還元ピークに対応する電極の電位(以下、ピーク電位ともいう)は、水素終端の場合と酸素終端の場合とで異なる。このようなピーク電位の違いは、表面官能基に依存してオゾンの還元反応速度が異なるために起こる。   As described above, the potential of the electrode corresponding to the reduction peak of ozone (hereinafter also referred to as peak potential) differs between the case of hydrogen termination and the case of oxygen termination. Such a difference in peak potential occurs because the reduction reaction rate of ozone differs depending on the surface functional group.

オゾンが溶存するような高い酸化性雰囲気では表面が徐々に酸化されて酸素終端化されていく。従って、前述のようにダイヤモンド電極を溶存オゾン検出用電極とする場合、予め、電気化学処理や酸素プラズマ処理などにより表面を酸素終端化しておく必要がある。しかも、この酸素終端化も完全になされないと、溶存オゾン検出に使用していくうちに表面状態が変化し、測定に誤差を生じてしまう。   In a highly oxidizing atmosphere in which ozone is dissolved, the surface is gradually oxidized and oxygen-terminated. Therefore, when the diamond electrode is used as a dissolved ozone detection electrode as described above, the surface must be previously oxygen-terminated by electrochemical treatment or oxygen plasma treatment. In addition, if this oxygen termination is not completed completely, the surface state changes while being used for the detection of dissolved ozone, resulting in an error in measurement.

また、検出限界を向上させるには、電極の大きさをできる限り大きくすることが望ましい。しかしながら、ダイヤモンド電極は他の電極材料に比べて高価であり、大面積化が難しいという欠点があった。   In order to improve the detection limit, it is desirable to increase the size of the electrode as much as possible. However, the diamond electrode is expensive compared to other electrode materials, and has a drawback that it is difficult to increase the area.

そこで、本発明は、検出用電極の電極材料に酸素終端化の処理を施さなくても、酸素終端ダイヤモンド電極を検出用電極に用いた場合と同程度の測定精度が確保でき、しかも、電極の大面積化も容易な溶存オゾン濃度測定装置及び溶存オゾン濃度測定方法を提供することを目的としてなされた。   Therefore, the present invention can ensure the same measurement accuracy as when the oxygen-terminated diamond electrode is used as the detection electrode without subjecting the electrode material of the detection electrode to an oxygen termination treatment. It was made for the purpose of providing a dissolved ozone concentration measuring device and a dissolved ozone concentration measuring method which can be easily enlarged.

(1)請求項1記載の発明は、
試料溶液に接触する検出用電極と、上記検出用電極の電位を制御する制御手段と、上記検出用電極に流れる電流量を検知する検知手段と、を備え、上記検出用電極が、少なくともその最表面が導電性を有する硬質アモルファス炭素からなることを特徴とする溶存オゾン濃度測定装置を要旨とする。
(1) The invention described in claim 1
A detection electrode in contact with the sample solution; a control means for controlling the potential of the detection electrode; and a detection means for detecting the amount of current flowing through the detection electrode. A gist is a dissolved ozone concentration measuring device characterized in that the surface is made of hard amorphous carbon having conductivity.

ダイヤモンドは炭素のみからなる結晶で、sp3炭素結合が三次元的に連続したいわゆるダイヤモンド構造をとる。一方、グラファイトはsp2炭素結合が二次元的に連続したいわゆるグラファイト構造からなり、各シートは弱い分子間力で結合して結晶を形成する。これに対して、硬質アモルファス炭素は、sp3とsp2炭素結合の両方で構成された不規則構造からなる準安定なアモルファス(非晶質)状態となっている。硬質アモルファス炭素は、炭素を主成分とし、その他に水素を含んでおり、ダイヤモンドやグラファイトの同素体ではない。水素原子は、sp3炭素結合の不対結合手を終端する形で取り込まれている。   Diamond is a crystal composed of only carbon and has a so-called diamond structure in which sp3 carbon bonds are three-dimensionally continuous. On the other hand, graphite has a so-called graphite structure in which sp2 carbon bonds are two-dimensionally continuous, and each sheet is bonded by a weak intermolecular force to form a crystal. In contrast, hard amorphous carbon is in a metastable amorphous (amorphous) state consisting of an irregular structure composed of both sp3 and sp2 carbon bonds. Hard amorphous carbon contains carbon as a main component and also contains hydrogen, and is not an allotrope of diamond or graphite. The hydrogen atom is incorporated in a form that terminates the unpaired bond of the sp3 carbon bond.

このような硬質アモルファス炭素は、その特徴として、高硬度、耐磨耗性、低摩擦係数、絶縁性、低相手攻撃性、離型性、超平滑などを有している(例えば、「高分子材料へのフレキシブルDLC膜の開発」,表面技術,第53巻,第11号(2002),p.715−720参照)。従って、硬質アモルファス炭素は、優れた摺動材料として機能する。   Such hard amorphous carbon has, as its characteristics, high hardness, wear resistance, low friction coefficient, insulation, low opponent attack, releasability, ultra-smoothness, etc. (for example, “polymer Development of flexible DLC film to material ", Surface Technology, Vol. 53, No. 11 (2002), p. 715-720). Therefore, hard amorphous carbon functions as an excellent sliding material.

硬質アモルファス炭素膜は本来優れた絶縁体であるが、グラファイト構造を有するクラスターを導入したり、異種元素や金属微粒子をドーピングしたり、基板との中間層に金属を使用するなど、成膜方法や条件を工夫することで導電性を付与することができる。   Hard amorphous carbon films are inherently excellent insulators, but they can be used for film formation methods such as introducing clusters with a graphite structure, doping with different elements and metal fine particles, and using metal in the intermediate layer with the substrate. Conductivity can be imparted by devising conditions.

このような導電性を有する硬質アモルファス炭素からなる検出用電極(以下、硬質アモルファス炭素電極という)を使用した場合、アルゴン雰囲気下で測定した還元側の電位窓、すなわち水素発生反応が起こるまでの電位領域がダイヤモンド電極に匹敵するほど広くなり、酸素飽和条件でのバックグラウンド電流も非常に平滑であった。   When such a detection electrode made of hard amorphous carbon having conductivity (hereinafter referred to as a hard amorphous carbon electrode) is used, the potential window on the reduction side measured in an argon atmosphere, that is, the potential until a hydrogen generation reaction occurs. The area was wide enough to be comparable to a diamond electrode, and the background current under oxygen saturation conditions was also very smooth.

また、硬質アモルファス炭素電極は、ダイヤモンド電極の場合とは異なり、水素終端化された状態は非常に安定であり、酸素終端化されないことが分かった。このことは、アモルファス炭素電極を溶存オゾン濃度の測定に連続的に使用しても、電極の外観及びオゾンの還元ピーク電位に殆ど変化がなかったことから確認された。従って、アモルファス炭素電極を検出用電極として用いた場合、オゾンが溶存するような高い酸化性雰囲気でも表面が変化することがなく、安定して長期間使用できる。しかも、観察される還元ピーク電位は電極使用開始初期から変化しないため、ダイヤモンド電極を使用した場合のように酸素終端化の処理を施す必要もない。   In addition, unlike the diamond electrode, the hard amorphous carbon electrode was found to be very stable in a hydrogen-terminated state and not oxygen-terminated. This was confirmed from the fact that the appearance of the electrode and the reduction peak potential of ozone were hardly changed even when the amorphous carbon electrode was continuously used for measuring the dissolved ozone concentration. Therefore, when an amorphous carbon electrode is used as a detection electrode, the surface does not change even in a highly oxidizing atmosphere in which ozone is dissolved, and can be used stably for a long time. In addition, since the observed reduction peak potential does not change from the beginning of electrode use, it is not necessary to perform oxygen termination treatment as in the case of using a diamond electrode.

更に、本発明で使用される硬質アモルファス炭素電極の表面は非常に平滑であることから、その表面がなお一層汚染され難いという特性を有する。すなわち、ダイヤモンド電極として使用されるダイヤモンドは多結晶体であり、その表面には必ず結晶粒界が存在する。この部分は理想的なsp3炭素結合の他にsp2炭素結合が含まれているといわれる。ダイヤモンド電極表面のテラス部分は原子レベルで平滑であるが、このような粒界部分に溶存物質が吸着してしまい、長期間使用していくと精度が低下することが分かった。これに対して、上記硬質アモルファス炭素電極表面は非常に平滑であり、かつアモルファス状態であるが故に表面に偏在性はなく、どこを見ても同一の構造で構成されており、溶存物質が吸着し易い部分は存在しない。従って、上記硬質アモルファス炭素電極は、この点からもダイヤモンド電極と比較して、長期使用安定性に非常に優れている。   Furthermore, since the surface of the hard amorphous carbon electrode used in the present invention is very smooth, it has a characteristic that the surface is still more difficult to be contaminated. That is, diamond used as a diamond electrode is a polycrystal and always has crystal grain boundaries on its surface. This part is said to contain sp2 carbon bonds in addition to the ideal sp3 carbon bond. The terrace portion on the surface of the diamond electrode is smooth at the atomic level, but it has been found that dissolved substances are adsorbed on such grain boundary portions, and the accuracy decreases when used for a long time. On the other hand, the surface of the hard amorphous carbon electrode is very smooth and is in an amorphous state, so the surface is not unevenly distributed and is composed of the same structure everywhere, so that dissolved substances are adsorbed. There is no easy part to do. Therefore, the hard amorphous carbon electrode is very excellent in long-term use stability from this point as compared with the diamond electrode.

そして、本発明の溶存オゾン濃度測定装置は、例えば、次のようにして、試料溶液中の溶存オゾン濃度を測定することができる。なお、以下では、電極電位として、銀・塩化銀電極を参照電極として用いた場合の値を示している。   And the dissolved ozone concentration measuring apparatus of this invention can measure the dissolved ozone concentration in a sample solution as follows, for example. In addition, below, the value at the time of using a silver and silver chloride electrode as a reference electrode is shown as an electrode potential.

検出用電極が試料溶液に接触した状態で、制御手段は、参照用電極に対し検出用電極が一定の電位となるようにする。このとき、硬質アモルファス炭素電極において溶存オゾンの電気化学的な還元反応が生じ、検出用電極に電流が流れる。検出用電極の電位は、溶存オゾンの還元反応のみが生じ、他の物質(例えば酸素等)の還元反応が生じない電位が好ましく、例えば、−0.3〜+0.4Vの範囲が好ましい。検知手段は、検出用電極での電流値を検知する。その電流値は溶存オゾン濃度に依存するので、溶存オゾン濃度に換算することができる。なお、電流値から溶存オゾン濃度への換算のためには、予め溶存オゾン濃度既知の試料溶液を測定して得られた、溶存オゾン濃度と電流値との検量線を利用することができる。   In a state where the detection electrode is in contact with the sample solution, the control means causes the detection electrode to have a constant potential with respect to the reference electrode. At this time, an electrochemical reduction reaction of dissolved ozone occurs at the hard amorphous carbon electrode, and a current flows through the detection electrode. The potential of the detection electrode is preferably a potential at which only a reduction reaction of dissolved ozone occurs and a reduction reaction of other substances (for example, oxygen, etc.) does not occur. For example, a potential of −0.3 to + 0.4V is preferable. The detection means detects the current value at the detection electrode. Since the current value depends on the dissolved ozone concentration, it can be converted into the dissolved ozone concentration. In order to convert the current value to the dissolved ozone concentration, a calibration curve between the dissolved ozone concentration and the current value obtained by measuring a sample solution having a known dissolved ozone concentration in advance can be used.

本発明の溶存オゾン濃度測定装置は、検出用電極が、少なくともその最表面が導電性を有する硬質アモルファス炭素電極であるため、次の作用効果を奏することができる。
(i) 上記硬質アモルファス炭素電極上では、酸素や、その他の共存物質(例えば、次亜塩素酸、過酸化水素、過硫酸、フッ素酸、塩素酸等)の還元反応が進み難い。一方、本発明において上記硬質アモルファス炭素電極を用いた場合に、溶存オゾンを選択的に還元・検出可能であることが初めて明らかとなった。従って、本発明の溶存オゾン濃度測定装置は、上記硬質アモルファス炭素電極を用いることにより、オゾンが溶解した溶液中に必然的に溶存する酸素やその他の共存物質の影響を排除し、オゾンのみを選択的に還元することが可能であり、そのときの還元電流値からオゾン濃度を正確に定量することができる。
In the dissolved ozone concentration measuring apparatus of the present invention, since the detection electrode is a hard amorphous carbon electrode having at least the outermost surface having conductivity, the following effects can be obtained.
(i) On the hard amorphous carbon electrode, the reduction reaction of oxygen and other coexisting substances (for example, hypochlorous acid, hydrogen peroxide, persulfuric acid, fluorine acid, chloric acid, etc.) is difficult to proceed. On the other hand, when the hard amorphous carbon electrode is used in the present invention, it has been revealed for the first time that dissolved ozone can be selectively reduced and detected. Therefore, the dissolved ozone concentration measuring apparatus of the present invention eliminates the influence of oxygen and other coexisting substances inevitably dissolved in the solution in which ozone is dissolved by using the hard amorphous carbon electrode, and selects only ozone. The ozone concentration can be accurately quantified from the reduction current value at that time.

(ii)上記硬質アモルファス炭素電極は、試料溶液中にオゾンが溶存していない条件での電流応答、すなわちバックグラウンド電流が非常に小さく、検出電流値に及ぼす影響が少ない。このことにより、本発明の溶存オゾン濃度測定装置は、検出精度が非常に高い。   (ii) The hard amorphous carbon electrode has a very small current response under the condition that ozone is not dissolved in the sample solution, that is, the background current, and has little influence on the detected current value. For this reason, the dissolved ozone concentration measuring apparatus of the present invention has a very high detection accuracy.

(iii) 上記硬質アモルファス炭素電極の表面には溶存物質が吸着し難いため、バックグラウンド電流の変動自体が起こり難い。すなわち、本発明の溶存オゾン濃度測定装置は、硬質アモルファス炭素電極を用いることにより溶存オゾンの高精度の検出が可能である。   (iii) Since the dissolved substance is hardly adsorbed on the surface of the hard amorphous carbon electrode, the fluctuation of the background current itself hardly occurs. That is, the dissolved ozone concentration measuring apparatus of the present invention can detect dissolved ozone with high accuracy by using a hard amorphous carbon electrode.

(iv)上記硬質アモルファス炭素電極の表面には、上述したように、溶存物質が吸着し難いので、試料溶液中に汚損物質が溶存していたとしても、その汚損物質が上記硬質アモルファス炭素電極の表面に吸着し、オゾンの還元反応を阻害することはない。従って、本発明の溶存オゾン濃度測定装置は、溶存オゾン水中に多少の汚損物質が含まれていたとしても、溶存オゾン濃度を正確に測定することができる。   (iv) Since the dissolved substance is difficult to adsorb on the surface of the hard amorphous carbon electrode as described above, even if the contaminated substance is dissolved in the sample solution, the contaminated substance is not contained in the hard amorphous carbon electrode. It is adsorbed on the surface and does not inhibit the ozone reduction reaction. Therefore, the dissolved ozone concentration measuring apparatus of the present invention can accurately measure the dissolved ozone concentration even if some fouling substances are contained in the dissolved ozone water.

(v) 本発明の溶存オゾン濃度測定装置は、その構造を簡略化し、溶存オゾン濃度測定装置の取り扱いを非常に容易にすることができる。すなわち、本発明の溶存オゾン濃度測定装置は、上記硬質アモルファス炭素電極を用いることにより、妨害物質の影響を受けずに溶存オゾン濃度を検出できるので、オゾンを選択的に透過する透過性隔膜を備える必要がなく、電極類を直接試料溶液に浸漬することができる。また、透過性隔膜の定期的な取り替えも不要になる。   (v) The dissolved ozone concentration measuring device of the present invention can be simplified in structure, and the dissolved ozone concentration measuring device can be very easily handled. That is, the dissolved ozone concentration measuring apparatus of the present invention can detect the dissolved ozone concentration without being affected by the interfering substance by using the hard amorphous carbon electrode, and thus has a permeable diaphragm that selectively permeates ozone. There is no need, and the electrodes can be immersed directly in the sample solution. Also, periodic replacement of the permeable diaphragm is not necessary.

(vi)本発明の溶存オゾン濃度測定装置は、上記のように、オゾンを選択的に透過する透過性隔膜を備える必要がなく、電極類を直接試料溶液に浸漬することができるので、応答速度が非常に速い。   (vi) The dissolved ozone concentration measuring apparatus of the present invention does not need to have a permeable diaphragm that selectively permeates ozone as described above, and can immerse the electrodes directly in the sample solution. Is very fast.

(vii) 上記硬質アモルファス炭素電極は、前述のように、汚損され難いので、特殊薬剤による煩雑な汚れ除去等のメンテナンスが大幅に軽減される。また、上記硬質アモルファス炭素電極自身が非常に安定であるため、耐薬品性に優れ、過酸化水素、過硫酸、フッ素酸、塩素酸等の溶液中で使用しても電極の消耗が起こらず、電極交換が不要となる。   (vii) Since the hard amorphous carbon electrode is not easily contaminated as described above, maintenance such as complicated dirt removal by a special agent is greatly reduced. In addition, since the hard amorphous carbon electrode itself is very stable, it has excellent chemical resistance, and even when used in a solution such as hydrogen peroxide, persulfuric acid, fluoric acid, chloric acid, the electrode does not wear out, No electrode replacement is required.

(viii)硬質アモルファス炭素電極は、上記のようにダイヤモンド電極の場合とは異なり、水素終端された状態は非常に安定であるため、酸素終端化の処理を施さなくても安定して長期間使用できる。   (viii) The hard amorphous carbon electrode, unlike the diamond electrode as described above, is very stable in a hydrogen-terminated state, so it can be used stably for a long time without any oxygen termination treatment. it can.

このため、本発明の溶存オゾン濃度測定装置では、検出用電極の電極材料に酸素終端化の処理を施さなくても、酸素終端ダイヤモンド電極を検出用電極に用いた場合と同程度の測定精度が確保できる。しかも、硬質アモルファス炭素電極は、ダイヤモンド電極と比べて、大面積のものを安価に合成・入手することが可能である。電気化学反応では、電極面積を大きくすることで反応する物質の量を増やし、電流値を大きくすることができる。従って、本発明の溶存オゾン濃度測定装置では、極低濃度の溶存オゾンまで容易に検出することができる。   For this reason, in the dissolved ozone concentration measuring apparatus of the present invention, even if the electrode material of the detection electrode is not subjected to oxygen termination treatment, the measurement accuracy is about the same as when the oxygen-terminated diamond electrode is used as the detection electrode. It can be secured. Moreover, the hard amorphous carbon electrode can be synthesized and obtained at a lower cost than the diamond electrode. In the electrochemical reaction, by increasing the electrode area, the amount of the reacting substance can be increased and the current value can be increased. Therefore, the dissolved ozone concentration measuring apparatus of the present invention can easily detect even extremely low concentrations of dissolved ozone.

(2)請求項2の発明は、
上記試料溶液を静置する容器を備え、上記検出用電極は、上記容器内に静置された上記試料溶液と接触するように配置されていることを特徴とする請求項1記載の溶存オゾン濃度測定装置を要旨とする。
(2) The invention of claim 2
2. The dissolved ozone concentration according to claim 1, further comprising a container for allowing the sample solution to stand, wherein the detection electrode is disposed so as to be in contact with the sample solution that has been left in the container. The gist of the measuring device.

本発明の溶存オゾン濃度測定装置は、容器に試料溶液を入れることで溶存オゾン濃度を測定することができる。検出手法としては、電気化学的に一般に用いられている、サイクリックボルタンメトリー、クロノアンペロメトリー、ノーマルパルスボルタンメトリー、ディファレンシャルパルスボルタンメトリー等が適用できる。   The dissolved ozone concentration measuring apparatus of the present invention can measure the dissolved ozone concentration by putting a sample solution in a container. As a detection method, cyclic voltammetry, chronoamperometry, normal pulse voltammetry, differential pulse voltammetry, and the like that are generally used electrochemically can be applied.

(3)請求項3の発明は、
上記試料溶液の流路を備え、上記検出用電極は、上記流路を流れる上記試料溶液と接触するように配置されていることを特徴とする請求項1記載の溶存オゾン濃度測定装置を要旨とする。
(3) The invention of claim 3
2. The dissolved ozone concentration measuring apparatus according to claim 1, further comprising a flow path for the sample solution, wherein the detection electrode is disposed so as to be in contact with the sample solution flowing through the flow path. To do.

本発明の溶存オゾン濃度測定装置は、流路に試料溶液を連続的に供給しつつ、溶存オゾン濃度を連続的に測定することができる。試料溶液の供給は、例えば、一定の流量で行うことができる。また、試料溶液の流量は任意の値とすることができる。   The dissolved ozone concentration measuring apparatus of the present invention can continuously measure the dissolved ozone concentration while continuously supplying the sample solution to the flow path. The sample solution can be supplied at a constant flow rate, for example. Further, the flow rate of the sample solution can be set to an arbitrary value.

(4)請求項4の発明は、
試料溶液に、少なくともその最表面が導電性を有する硬質アモルファス炭素からなる検出用電極を接触させ、上記検出用電極の電位を制御すると共に、上記検出用電極に流れる電流量を検知し、上記電位と上記電流量に基づいて上記試料溶液中の溶存オゾン濃度を測定する溶存オゾン濃度測定方法を要旨とする。
(4) The invention of claim 4
The sample solution is brought into contact with a detection electrode made of hard amorphous carbon having at least the outermost surface thereof conductive, and the potential of the detection electrode is controlled and the amount of current flowing through the detection electrode is detected. And a dissolved ozone concentration measuring method for measuring a dissolved ozone concentration in the sample solution based on the current amount.

本発明によれば、上記請求項1に係る発明と同様の作用効果を奏することができる。
(5)請求項5の発明は、
上記検出用電極を、容器内に静置された上記試料溶液と接触させることを特徴とする請求項4記載の溶存オゾン濃度測定方法を要旨とする。
According to the present invention, it is possible to achieve the same effects as the invention according to the first aspect.
(5) The invention of claim 5
The gist of the dissolved ozone concentration measuring method according to claim 4, wherein the detection electrode is brought into contact with the sample solution placed in a container.

本発明の溶存オゾン濃度測定方法は、容器に試料溶液を入れて溶存オゾン濃度を測定することができる。検出手法としては、電気化学的に一般に用いられている、サイクリックボルタンメトリー、クロノアンペロメトリー、ノーマルパルスボルタンメトリー、ディファレンシャルパルスボルタンメトリー等が適用できる。   The dissolved ozone concentration measuring method of the present invention can measure the dissolved ozone concentration by putting a sample solution in a container. As a detection method, cyclic voltammetry, chronoamperometry, normal pulse voltammetry, differential pulse voltammetry, and the like that are generally used electrochemically can be applied.

(6)請求項6の発明は、
上記検出用電極を、所定の流路を流れる上記試料溶液と接触させることを特徴とする請求項4記載の溶存オゾン濃度測定方法を要旨とする。
(6) The invention of claim 6
The gist of the dissolved ozone concentration measuring method according to claim 4, wherein the detection electrode is brought into contact with the sample solution flowing in a predetermined flow path.

本発明の溶存オゾン濃度測定方法では、流路に試料溶液を連続的に供給しつつ、溶存オゾン濃度を連続的に測定することができる。
(7)請求項7の発明は、
上記検出用電極と接触する上記試料溶液に、予め電解質溶液を添加しておくことを特徴とする請求項4〜6のいずれかに記載の溶存オゾン濃度測定方法を要旨とする。
In the dissolved ozone concentration measuring method of the present invention, the dissolved ozone concentration can be continuously measured while continuously supplying the sample solution to the flow path.
(7) The invention of claim 7
The gist of the dissolved ozone concentration measuring method according to any one of claims 4 to 6, wherein an electrolyte solution is added in advance to the sample solution in contact with the detection electrode.

支持電解質を含まない純水や水道水は電気伝導性が小さいため、上記純水や水道水中の溶存オゾンを検出することは一般に困難である。本発明における溶存オゾン濃度測定方法では、例えば、検出用電極と接触させる前に、試料溶液に予め電解質溶液を加えておくので、支持電解質を含まない純水や水道水中に溶存したオゾンの濃度を測定することができる。   Since pure water or tap water that does not contain a supporting electrolyte has low electrical conductivity, it is generally difficult to detect dissolved ozone in the pure water or tap water. In the method for measuring the dissolved ozone concentration in the present invention, for example, the electrolyte solution is added to the sample solution in advance before contacting with the detection electrode, so the concentration of ozone dissolved in pure water or tap water not containing the supporting electrolyte is determined. Can be measured.

本発明の実施の形態を実施例により説明する。 The embodiment of the present invention will be described with reference to examples.

1.溶存オゾン濃度測定装置の製造
(a)硬質アモルファス炭素電極の作成
アモルファス炭素電極としては、特開平6−212429号公報、特開2002−327271号公報、特開2003−121407号公報、特開2004−217975号公報、特開2004−284915号公報、特開2006−90875号公報などに開示された公知の手法で作成されたものが一般に適用できる。アモルファス炭素膜の合成手法は、イオンビーム蒸着法、イオン化蒸着法、イオンビームスパッタ法、イオンプレーティング法、高周波プラズマ法、マグネトロンスパッタ法、レーザアブレーション法等、各種手法が知られているが、どのような手法によってもよい。そのようにして得られたアモルファス炭素電極のヌープ硬度は、1000〜4000(kg/mm2 )と非常に硬い。表面粗さは0.1〜10nmと極めて平滑であり、基材の表面粗さをそのまま反映する。アルゴンレーザー(波長514nm)を励起源とするラマンスペクトル法において、1340〜1440cm-1にグラファイトバンドを、1540〜1620cm-1にディフェクト(欠陥)バンドに起因する応答が観察される。
1. Production of dissolved ozone concentration measuring device (a) Preparation of hard amorphous carbon electrode As an amorphous carbon electrode, JP-A-6-212429, JP-A-2002-327271, JP-A-2003-121407, JP-A-2004-2004 Those created by known methods disclosed in, for example, 217975, JP-A 2004-284915, and JP-A 2006-90875 can be generally applied. Various methods such as ion beam deposition, ionization deposition, ion beam sputtering, ion plating, high frequency plasma, magnetron sputtering, and laser ablation are known as methods for synthesizing amorphous carbon films. Such a method may be used. The Knoop hardness of the amorphous carbon electrode thus obtained is as extremely high as 1000 to 4000 (kg / mm 2 ). The surface roughness is as extremely smooth as 0.1 to 10 nm, and directly reflects the surface roughness of the substrate. In an argon laser Raman spectrum method with (wavelength 514 nm) excitation source, a graphite band 1340~1440Cm -1, response due to defect (defect) band 1540~1620Cm -1 is observed.

電気化学測定を行うためには、抵抗率が100Ωcm以下であり、特にセル抵抗を低く抑える観点からは1Ωcm以下であることが好ましい。更に、本測定に用いるアモルファス炭素電極は、その最表面に存在するsp3炭素結合の不対結合手が水素原子で終端化されることを特徴とする。従って、導電性を持たせるために導入したグラファイトクラスターや金属微粒子は、アモルファス炭素電極の最表面に露出していない。電気化学反応は電極表面で起こる不均一反応であり、その最表面の特性によって反応機構が大きく変化する。表面にグラファイトクラスターや金属微粒子が露出した場合には、その部分で酸素還元などの副反応が起こり、オゾンの選択的検出が困難になってしまう。アモルファス炭素電極の形状は特に限定されるものではないが、平板状或いは針状のものが電気化学検出用電極として使用できる。   In order to perform electrochemical measurement, the resistivity is 100 Ωcm or less, and from the viewpoint of keeping the cell resistance low, it is preferably 1 Ωcm or less. Furthermore, the amorphous carbon electrode used in this measurement is characterized in that the unpaired bond of the sp3 carbon bond existing on the outermost surface is terminated with a hydrogen atom. Therefore, the graphite clusters and metal fine particles introduced to impart conductivity are not exposed on the outermost surface of the amorphous carbon electrode. The electrochemical reaction is a heterogeneous reaction that occurs on the electrode surface, and the reaction mechanism varies greatly depending on the characteristics of the outermost surface. When graphite clusters and metal fine particles are exposed on the surface, side reactions such as oxygen reduction occur at that portion, making selective detection of ozone difficult. The shape of the amorphous carbon electrode is not particularly limited, but a flat plate shape or a needle shape can be used as the electrode for electrochemical detection.

前述のように導電性アモルファス炭素膜の作成法自体は公知であり、そのための装置や、或いは成膜後の炭素膜を購入することが可能である。本実施例では、ナノテック株式会社より購入した導電性アモルファス炭素膜(以下、硬質アモルファス炭素電極という)を使用した。その表面を電子顕微鏡で観察したところ、図2のように非常に平滑であった。ラマンスペクトルは図3のようであり、アモルファス状態の炭素膜であることが確認された。表面の平均粗さは2mm、膜厚は0.7μm、電気抵抗率は0.33m W cm、含有元素としては主元素の炭素と水素の他にチタンが含まれていた。
(b)溶存オゾン濃度測定装置の作成
次に、図1に示す溶存オゾン濃度測定装置1を作成した。図1に示すように、溶存オゾン濃度測定装置1は、容器及び流路としての電解セル3と、導入管5と、排出管7と、検出用電極としての硬質アモルファス炭素電極9と、対極11と、参照電極13と、制御手段及び検知手段としての制御検出部15とから構成される。
As described above, a method for producing a conductive amorphous carbon film is known per se, and it is possible to purchase an apparatus for that purpose or a carbon film after film formation. In this example, a conductive amorphous carbon film (hereinafter referred to as a hard amorphous carbon electrode) purchased from Nanotech Co., Ltd. was used. When the surface was observed with an electron microscope, it was very smooth as shown in FIG. The Raman spectrum is as shown in FIG. 3 and was confirmed to be an amorphous carbon film. The average roughness of the surface was 2 mm, the film thickness was 0.7 μm, the electrical resistivity was 0.33 m W cm, and the contained elements contained titanium in addition to the main elements carbon and hydrogen.
(B) Creation of dissolved ozone concentration measuring device Next, the dissolved ozone concentration measuring device 1 shown in FIG. 1 was created. As shown in FIG. 1, the dissolved ozone concentration measuring apparatus 1 includes an electrolytic cell 3 as a container and a flow path, an introduction pipe 5, a discharge pipe 7, a hard amorphous carbon electrode 9 as a detection electrode, and a counter electrode 11. And a reference electrode 13 and a control detection unit 15 as control means and detection means.

上記電解セル3は、内部が中空の箱状部材であり、その一方の壁面に、試料溶液を導入するための配管である導入管5を備え、反対側の側面に、試料溶液を排出するための排出管7を備えている。従って、試料溶液は、導入管5から、電解セル3の内部を経て、排出管7へ連続的に流れ、電解セル3は、試料溶液の流路となる。   The electrolytic cell 3 is a box-shaped member having a hollow inside, and is provided with an introduction pipe 5 which is a pipe for introducing the sample solution on one wall surface thereof, and for discharging the sample solution on the opposite side surface. The discharge pipe 7 is provided. Therefore, the sample solution continuously flows from the introduction pipe 5 through the inside of the electrolytic cell 3 to the discharge pipe 7, and the electrolytic cell 3 becomes a flow path for the sample solution.

上記電解セル3の内部において、その底面には、硬質アモルファス炭素電極9が配置されている。また、電解セル3の内部において、その上方には、白金線からなる対極11と、銀・塩化銀電極である参照電極13とが、それぞれ配置されている。   A hard amorphous carbon electrode 9 is disposed on the bottom surface of the electrolytic cell 3. Further, in the inside of the electrolytic cell 3, a counter electrode 11 made of a platinum wire and a reference electrode 13 which is a silver / silver chloride electrode are disposed above the electrolytic cell 3, respectively.

上記制御検出部15は、上記硬質アモルファス炭素電極9、対極11、及び参照電極13のそれぞれと導電線により接続されており、硬質アモルファス炭素電極9の電位を参照電極13に対して任意に制御することができる。また、制御検出部15は、硬質アモルファス炭素電極9と対極11との間に流れる電流量を測定することができる。   The control detection unit 15 is connected to each of the hard amorphous carbon electrode 9, the counter electrode 11, and the reference electrode 13 by a conductive wire, and arbitrarily controls the potential of the hard amorphous carbon electrode 9 with respect to the reference electrode 13. be able to. The control detection unit 15 can measure the amount of current flowing between the hard amorphous carbon electrode 9 and the counter electrode 11.

2.溶存オゾン濃度の測定を行うための実験系の作成
また、図1に示すように、溶存オゾン濃度測定装置1と、オゾン水発生装置17と、紫外可視分光光度計19とからなる実験系を作成した。
2. Creation of an experimental system for measuring the dissolved ozone concentration In addition, as shown in FIG. 1, an experimental system comprising a dissolved ozone concentration measuring device 1, an ozone water generator 17, and an ultraviolet-visible spectrophotometer 19 is created. did.

オゾン水発生装置17は、原料水タンク21と、原料水タンク21から水を引き出すポンプ23と、オゾン発生装置25と、原料タンクから送られた水にオゾン発生装置25で発生したオゾンを混合する気液混合器27とを備えており、オゾン水を製造することができる。   The ozone water generator 17 mixes the ozone generated in the ozone generator 25 with the raw water tank 21, the pump 23 that draws water from the raw water tank 21, the ozone generator 25, and the water sent from the raw tank. The gas-liquid mixer 27 is provided, and ozone water can be produced.

オゾン水発生装置17で製造されたオゾン水は、配管29により、溶存オゾン濃度測定装置1の導入管5、及び紫外可視分光光度計19に送られる。すなわち、配管29は、途中から配管29aと配管29bとに分岐しており、配管29aは、溶存オゾン濃度測定装置1の導入管5に接続され、配管29bは、紫外可視分光光度計19に接続されている。このため、オゾン水生成装置17で製造された水は、配管29aを通り、溶存オゾン濃度測定装置1へ送られると共に、配管29bを通り、紫外可視分光光度計19へも送られ、測定試料の同時検出が可能である。   The ozone water produced by the ozone water generator 17 is sent to the introduction pipe 5 of the dissolved ozone concentration measuring device 1 and the ultraviolet-visible spectrophotometer 19 through the pipe 29. That is, the pipe 29 is branched into a pipe 29 a and a pipe 29 b from the middle, the pipe 29 a is connected to the introduction pipe 5 of the dissolved ozone concentration measuring device 1, and the pipe 29 b is connected to the ultraviolet-visible spectrophotometer 19. Has been. For this reason, the water produced by the ozone water generator 17 is sent to the dissolved ozone concentration measuring device 1 through the pipe 29a, and is also sent to the ultraviolet-visible spectrophotometer 19 through the pipe 29b. Simultaneous detection is possible.

3.オゾン水中でのCV測定
オゾン水濃度を3.3mg/Lに調整した過塩素酸水溶液を試料溶液として溶存オゾン濃度測定装置1に導入し、溶液が静止した状態でCVを測定した。得られたCVを図4に示す。なお、図4には、オゾン水中のCVを曲線(c)で示すと共に、アルゴン雰囲気下でのCVを曲線(a)で、酸素雰囲気下でのCVを曲線(b)で、それぞれ重ねて示した。図4に示すように、硬質アモルファス炭素電極9を組み込んだ溶存オゾン濃度測定装置1において得られたCVでは、オゾンが溶存した場合にのみ+0.3Vに明瞭な還元ピークが観察された。これがオゾンの還元反応に対応する。このピーク電流値は溶存オゾン濃度に比例するため、測定によって得られた電流値から溶存オゾン濃度が分かる。
3. CV Measurement in Ozone Water A perchloric acid aqueous solution whose ozone water concentration was adjusted to 3.3 mg / L was introduced as a sample solution into the dissolved ozone concentration measuring apparatus 1, and CV was measured while the solution was stationary. The obtained CV is shown in FIG. In FIG. 4, the CV in ozone water is indicated by a curve (c), the CV in an argon atmosphere is indicated by a curve (a), and the CV in an oxygen atmosphere is indicated by a curve (b). It was. As shown in FIG. 4, in the CV obtained by the dissolved ozone concentration measuring apparatus 1 incorporating the hard amorphous carbon electrode 9, a clear reduction peak at +0.3 V was observed only when ozone was dissolved. This corresponds to the ozone reduction reaction. Since this peak current value is proportional to the dissolved ozone concentration, the dissolved ozone concentration can be found from the current value obtained by measurement.

また、図4の曲線(a)から分かるように、アルゴン雰囲気下で測定した還元側の電位窓、すなわち水素発生反応が起こるまでの電位領域がダイヤモンド電極に匹敵するほど広い。更に、図4の曲線(b)から分かるように、酸素飽和条件でも酸素還元反応は−0.2Vより負側の電位でようやく起こる。また更に、−0.2V〜+1.0Vの範囲においてバックグラウンド電流が非常に平滑である。従って、溶存酸素の影響は排除できることが分かった。このピーク電位は何回測定しても変化しなかった。   Further, as can be seen from the curve (a) in FIG. 4, the potential window on the reduction side measured in an argon atmosphere, that is, the potential region until the hydrogen generation reaction occurs is as wide as that of the diamond electrode. Furthermore, as can be seen from the curve (b) in FIG. 4, the oxygen reduction reaction finally occurs at a potential on the negative side of −0.2 V even under the oxygen saturation condition. Furthermore, the background current is very smooth in the range of -0.2V to + 1.0V. Therefore, it was found that the influence of dissolved oxygen can be eliminated. This peak potential did not change no matter how many times it was measured.

しかも、バックグラウンド電流が非常に小さいため、検出精度が非常に高くなる。バックグラウンド電流は硬質アモルファス炭素電極でおよそ3μA cm-2 、ダイヤモンド電極でおよそ1μA cm-2 、金電極でおよそ30μA cm-2 であった。硬質アモルファス炭素電極の値はダイヤモンド電極の場合よりも若干大きいが、金電極に比べると著しく小さい。すなわち、硬質アモルファス炭素電極においてはバックグラウンド電流の変動が検出電流値に及ぼす影響は小さい。 Moreover, since the background current is very small, the detection accuracy is very high. Background current is about 3μA hard amorphous carbon electrode cm -2, approximately 1 .mu.A cm -2 at diamond electrode was about 30 .mu.A cm -2 at a gold electrode. The value of the hard amorphous carbon electrode is slightly larger than that of the diamond electrode, but is significantly smaller than that of the gold electrode. That is, in the hard amorphous carbon electrode, the influence of the fluctuation of the background current on the detected current value is small.

その上、硬質アモルファス炭素電極では、電極表面に存在するsp3炭素結合の不対結合手は水素原子で終端化されている。このことは、図4に(c)で示す硬質アモルファス炭素電極を用いた場合のオゾンの還元波のピーク電位が、図11に(a)で示す水素終端ダイヤモンド電極での還元ピーク電位に近いことから分かる。電極表面官能基が水素原子で安定化されていると、電極表面には溶存物質が吸着し難いため、バックグラウンド電流の変動自体が起こりにくい特性を有する。以上のことから、硬質アモルファス炭素電極を用いると溶存オゾンの高精度の検出が可能となることが分かる。   In addition, in the hard amorphous carbon electrode, unpaired bonds of sp3 carbon bonds existing on the electrode surface are terminated with hydrogen atoms. This means that the peak potential of the ozone reduction wave when the hard amorphous carbon electrode shown in FIG. 4C is used is close to the reduction peak potential of the hydrogen-terminated diamond electrode shown in FIG. I understand. When the electrode surface functional groups are stabilized with hydrogen atoms, dissolved substances are difficult to be adsorbed on the electrode surface, so that the background current fluctuation itself does not easily occur. From the above, it can be seen that the use of a hard amorphous carbon electrode enables highly accurate detection of dissolved ozone.

更に、図2に示したように、硬質アモルファス炭素電極の表面は非常に平滑であることから、その表面がなお一層汚染されにくいという特性を有する。すなわち、ダイヤモンド電極として使用されるダイヤモンドは多結晶体であり、その表面には必ず結晶粒界が存在する。この部分は理想的なsp3炭素結合の他にsp2炭素結合が含まれているといわれる。ダイヤモンド電極表面のテラス部分は原子レベルで平滑であるが、このような粒界部分に溶存物質が吸着してしまい、長期間使用していくと精度が低下することが分かった。一方、硬質アモルファス炭素電極の表面は非常に平滑であり、かつアモルファス状態であるが故に表面に偏在性はなく、どこを見ても同一の構造で構成されており、溶存物質が吸着しやすい部分は存在しない。従って、ダイヤモンド電極と比較して、長期使用安定性に非常に優れている。   Furthermore, as shown in FIG. 2, since the surface of the hard amorphous carbon electrode is very smooth, it has a characteristic that the surface is still more difficult to be contaminated. That is, diamond used as a diamond electrode is a polycrystal and always has crystal grain boundaries on its surface. This part is said to contain sp2 carbon bonds in addition to the ideal sp3 carbon bond. The terrace portion on the surface of the diamond electrode is smooth at the atomic level, but it has been found that dissolved substances are adsorbed on such grain boundary portions, and the accuracy decreases when used for a long time. On the other hand, the surface of the hard amorphous carbon electrode is very smooth and is in an amorphous state, so the surface is not unevenly distributed and is composed of the same structure everywhere, so that dissolved substances are easy to adsorb. Does not exist. Therefore, compared with a diamond electrode, it is very excellent in long-term use stability.

更に、ダイヤモンド電極と比べて、アモルファス炭素電極は大面積のものを安価に合成・入手することが可能である。電気化学反応では、電極面積を大きくすることで反応する物質の量を増やし、電流値を大きくすることができる。すなわち、極低濃度まで検出できるようになる。この点で、大面積化が安価にできるアモルファス炭素電極は有利である。   Furthermore, compared to the diamond electrode, an amorphous carbon electrode having a large area can be synthesized and obtained at a low cost. In the electrochemical reaction, by increasing the electrode area, the amount of the reacting substance can be increased and the current value can be increased. That is, it becomes possible to detect even extremely low concentrations. In this respect, an amorphous carbon electrode that can be increased in area at low cost is advantageous.

4.検量線の作成
次に、溶存オゾン量が既知の7種類の試料溶液を準備し、それぞれを溶存オゾン濃度測定装置1に導入し、溶液が静止した状態でCVを測定した。得られたCVにおける還元波のピーク電流値を既知の溶存オゾン濃度に対してプロットすることで図5に(a)で示す検量線を得た。この検量線の傾きは8.0μA cm-2(mg L-1-1であり、後述の同一条件でダイヤモンド電極を用いて得られた検量線(b)の傾き6.7μA cm-2(mg L-1-1よりも大きい。このことは硬質アモルファス炭素電極を用いた場合にオゾンの検出感度が向上することを意味する。
4). Preparation of calibration curve Next, seven types of sample solutions with known dissolved ozone amounts were prepared, each of which was introduced into the dissolved ozone concentration measuring apparatus 1, and CV was measured while the solution was stationary. The calibration curve shown by (a) in FIG. 5 was obtained by plotting the peak current value of the reduction wave in the obtained CV against the known dissolved ozone concentration. The slope of this calibration curve is 8.0 μA cm −2 (mg L −1 ) −1 , and the slope of the calibration curve (b) obtained using a diamond electrode under the same conditions described later is 6.7 μA cm −2 ( greater than mg L -1) -1. This means that the detection sensitivity of ozone is improved when a hard amorphous carbon electrode is used.

なお、この検量線は電位掃引速度や電気化学測定法に大きく依存することから、採用する条件ごとに検量線を作成する必要がある。溶存したオゾンの検出手法としては、上記サイクリックボルタンメトリーの他にも、電気化学で一般に用いられているクロノアンペロメトリー、ノーマルパルスボルタンメトリー、ディファレンシャルパルスボルタンメトリー等が適用できる。   In addition, since this calibration curve largely depends on the potential sweep rate and the electrochemical measurement method, it is necessary to create a calibration curve for each condition to be adopted. As a method for detecting dissolved ozone, in addition to the above cyclic voltammetry, chronoamperometry, normal pulse voltammetry, differential pulse voltammetry and the like generally used in electrochemistry can be applied.

5.共存物質(妨害物質)存在下でのCV測定
共存物質の影響を測るため、過塩素酸水溶液中に共存物質を溶存した試料溶液を調製し、これを溶存オゾン濃度測定装置1に導入し、溶液が静止した状態でCVを測定した。共存物質としては、過酸化水素、塩化ナトリウム、過硫酸ナトリウム、フッ素酸、硝酸のいずれかを用いた。硬質アモルファス炭素電極を組み込んだ溶存オゾン濃度測定装置1を用いて、各種共存物質が存在する条件でアルゴン雰囲気下で得られたCVを図6に示す。図6に示すように、各種共存物質が溶存した場合でも、オゾンの還元電流が観察される電流領域では反応が起こらない。すなわち、硬質アモルファス炭素電極を用いた場合には、上記共存物質が共存する環境下でも溶存オゾン濃度を正確に定量できることが分かった。
5. CV measurement in the presence of coexisting substances (interfering substances) In order to measure the influence of coexisting substances, a sample solution in which coexisting substances are dissolved in a perchloric acid aqueous solution is prepared, and this is introduced into the dissolved ozone concentration measuring apparatus 1 CV was measured in a state in which was stationary. As a coexisting substance, hydrogen peroxide, sodium chloride, sodium persulfate, fluorine acid, or nitric acid was used. FIG. 6 shows CVs obtained under an argon atmosphere under the condition where various coexisting substances exist using the dissolved ozone concentration measuring apparatus 1 incorporating a hard amorphous carbon electrode. As shown in FIG. 6, even when various coexisting substances are dissolved, no reaction occurs in the current region where the ozone reduction current is observed. That is, it was found that when a hard amorphous carbon electrode is used, the dissolved ozone concentration can be accurately quantified even in an environment where the coexisting substances coexist.

6.溶存オゾン濃度の測定
オゾン水生成装置17で製造した溶存オゾン量が既知の試料溶液を、溶存オゾン濃度測定装置1に毎分100mLの流量で供給した。その状態で、溶存オゾン濃度測定装置1に組み込まれた硬質アモルファス炭素電極の電位を−0.1Vに固定し、オゾンの還元反応に伴って流れる電流値を測定した。この電流値は、溶存しているオゾンの量に比例しており、既知の溶存オゾン濃度に対してプロットすることにより図7に(a)で示す検量線を得た。この検量線の傾きは16.5μA cm-2(mg L-1-1であり、後述の同一条件でダイヤモンド電極を用いて得られた値9.8μA cm-2(mg L-1-1よりも大きい。このことは、静止条件の場合と同様、フロー条件でも、硬質アモルファス炭素電極を用いた場合にオゾンの検出感度が向上することを意味する。なお、この検量線は装置の形態や流量に大きく依存することから、採用する条件ごとに検量線を作成する必要がある。
6). Measurement of dissolved ozone concentration A sample solution having a known amount of dissolved ozone produced by the ozone water generating device 17 was supplied to the dissolved ozone concentration measuring device 1 at a flow rate of 100 mL per minute. In this state, the potential of the hard amorphous carbon electrode incorporated in the dissolved ozone concentration measuring apparatus 1 was fixed at −0.1 V, and the value of the current flowing along with the ozone reduction reaction was measured. This current value is proportional to the amount of dissolved ozone, and a calibration curve indicated by (a) in FIG. 7 was obtained by plotting against the known dissolved ozone concentration. The slope of this calibration curve is 16.5 μA cm −2 (mg L −1 ) −1 , and the value obtained using a diamond electrode under the same conditions described later is 9.8 μA cm −2 (mg L −1 ) −. Greater than one . This means that the detection sensitivity of ozone is improved when the hard amorphous carbon electrode is used under the flow condition as in the case of the stationary condition. Since this calibration curve greatly depends on the configuration and flow rate of the apparatus, it is necessary to create a calibration curve for each condition to be adopted.

この検量線を用いて、溶存オゾン量が未知の試料溶液の溶存オゾン濃度を測定した。過塩素酸溶液中に適当にオゾンガスを溶存させたオゾン水を調製し、溶存オゾン濃度測定装置1に供給して還元電流を測定したところ、203.4μA cm-2 であった。図7(a)の検量線を用いて還元電流203.4μA cm-2 を溶存オゾン濃度に換算すると、その値は12.3mg/Lである。一方、当該試料溶液を紫外可視分光光度計19を用いて測定し、溶存オゾン濃度を測定するとその値は12.2mg/Lであった。この結果から、溶存オゾン濃度測定装置1を用いることで溶存オゾン濃度を正確に定量できることが確認できた。 Using this calibration curve, the dissolved ozone concentration of the sample solution whose amount of dissolved ozone is unknown was measured. When ozone water in which ozone gas was appropriately dissolved in a perchloric acid solution was prepared and supplied to the dissolved ozone concentration measuring apparatus 1 and the reduction current was measured, it was 203.4 μA cm −2 . When the reduction current 203.4 μA cm −2 is converted into the dissolved ozone concentration using the calibration curve in FIG. 7A, the value is 12.3 mg / L. On the other hand, when the sample solution was measured using an ultraviolet-visible spectrophotometer 19 and the dissolved ozone concentration was measured, the value was 12.2 mg / L. From this result, it was confirmed that the dissolved ozone concentration can be accurately quantified by using the dissolved ozone concentration measuring apparatus 1.

過塩素酸溶液中に適当にオゾンガスを溶存させたオゾン水に共存物質として、過酸化水素、塩化ナトリウム、過硫酸ナトリウム、硝酸、フッ素酸のいずれかを含む溶液について、上記と同様の条件で測定を行った。共存物質の濃度は1mMとした。オゾンの還元反応により流れた電流値をオゾン濃度に対してプロットして、図8に示す検量線を得た。これらの共存物質の存在下においても検量線は原点を通る直線となるので、いずれの溶液においても図8の検量線を用いて、溶存オゾン濃度を定量することが可能である。   Measured under the same conditions as above for a solution containing hydrogen peroxide, sodium chloride, sodium persulfate, nitric acid, or fluoric acid as a coexisting substance in ozone water in which ozone gas is appropriately dissolved in a perchloric acid solution Went. The concentration of the coexisting substance was 1 mM. The calibration curve shown in FIG. 8 was obtained by plotting the current value flowing through the ozone reduction reaction against the ozone concentration. Since the calibration curve is a straight line passing through the origin even in the presence of these coexisting substances, the dissolved ozone concentration can be quantified in any solution using the calibration curve of FIG.

更に、これらの検量線は不純物の有無によらずほぼ一致しており、測定誤差8%を許容するのであれば、溶液中の不純物の有無に関わらず一本の検量線を用いて、測定した還元電流値から溶存オゾン濃度を算出することが可能である。   Furthermore, these calibration curves are almost the same regardless of the presence or absence of impurities, and if a measurement error of 8% is allowed, the measurement was performed using a single calibration curve regardless of the presence or absence of impurities in the solution. It is possible to calculate the dissolved ozone concentration from the reduction current value.

7.純水や水道水中の溶存オゾン濃度の測定法
純水や水道水の電気伝導率は非常に低いため、そのままでは正確な電気化学測定が困難であるが、試料溶液に電解質を加えることで溶存オゾン濃度の測定が可能となる。加える電解質としては、純水や水道水に溶解し、解離してイオンを生ずるもので、かつオゾンとの反応性の低いものであればよい。なお、試料溶液との混合を迅速に行うためには、電解質を予め水に溶かし込んだ電解質溶液を加えることが望ましい。例えば上述のような、オゾンの還元反応に影響を与えないような化学種の電解質溶液が使用できる。その際の検量線としては、例えば図7または図8に示すものが適用できる。
7). Measurement method of dissolved ozone concentration in pure water and tap water Since the electrical conductivity of pure water and tap water is very low, accurate electrochemical measurement is difficult as it is, but dissolved ozone is added by adding electrolyte to the sample solution. The concentration can be measured. The electrolyte to be added may be any electrolyte that dissolves in pure water or tap water, dissociates to generate ions, and has low reactivity with ozone. In order to quickly mix with the sample solution, it is desirable to add an electrolyte solution in which the electrolyte is previously dissolved in water. For example, an electrolyte solution of a chemical species that does not affect the ozone reduction reaction as described above can be used. For example, the calibration curve shown in FIG. 7 or FIG. 8 can be applied.

8.長期安定性
硬質アモルファス炭素電極を組み込んだ溶存オゾン濃度測定装置1を使用し、溶存オゾン濃度測定用の検量線の経時変化を測定した。測定日には、オゾン水生成装置17で製造した溶存オゾン量が既知の試料溶液を、溶存オゾン濃度測定装置1に毎分100mLの流量で供給し、その状態で、硬質アモルファス炭素電極の電位を−0.1Vに固定し、オゾンの還元反応に伴って流れる電流値を測定して検量線を得た。得られた検量線の傾きを使用日数に対してプロットしたものを図9に●で示す。硬質アモルファス炭素電極を用いた場合には、日数が経過しても検量線の傾きは殆ど変化しなかった。一方、後述の同一条件でダイヤモンド電極を用いて得られた結果(○)では、30日以上使用すると検量線の傾きが上昇する傾向が見られた。このような検量線の傾きの増加は、ダイヤモンド電極の多結晶表面の粒界部分等に溶存物質が吸着し、ここでのオゾンの還元反応が触媒的に進行したためと考えられる。電解酸化処理を行って表面の不純物を取り除くことで検量線の傾きは回復するものの、そのような作業は煩雑であり、その作業を怠った場合には測定誤差を生じてしまう可能性がある。一方、硬質アモルファス炭素電極の表面は非常に平滑であり、かつアモルファス状態であるが故に表面に偏在性はなく、どこを見ても同一の構造で構成されており、溶存物質が吸着しやすい部分は存在しない。従って、ダイヤモンド電極と比較して、長期使用安定性に非常に優れている。
8). Long-term stability Using a dissolved ozone concentration measuring device 1 incorporating a hard amorphous carbon electrode, the time course of the calibration curve for measuring the dissolved ozone concentration was measured. On the measurement day, a sample solution with a known amount of dissolved ozone produced by the ozone water generator 17 is supplied to the dissolved ozone concentration measuring device 1 at a flow rate of 100 mL per minute, and in this state, the potential of the hard amorphous carbon electrode is set. A calibration curve was obtained by fixing the current to −0.1 V and measuring the value of the current flowing along with the ozone reduction reaction. The plot of the slope of the obtained calibration curve versus the number of days used is shown by ● in FIG. When a hard amorphous carbon electrode was used, the slope of the calibration curve hardly changed even after days passed. On the other hand, in the result (◯) obtained using the diamond electrode under the same conditions described later, the inclination of the calibration curve increased when used for 30 days or more. Such an increase in the slope of the calibration curve may be attributed to the fact that dissolved substances are adsorbed on the grain boundary portion of the polycrystalline surface of the diamond electrode, and the ozone reduction reaction proceeds catalytically. Although the slope of the calibration curve is recovered by removing impurities on the surface by performing electrolytic oxidation treatment, such work is complicated, and if the work is neglected, measurement errors may occur. On the other hand, the surface of the hard amorphous carbon electrode is very smooth and is in an amorphous state, so the surface is not unevenly distributed and is composed of the same structure everywhere, so that dissolved substances are easy to adsorb. Does not exist. Therefore, compared with a diamond electrode, it is very excellent in long-term use stability.

また、図10は、硬質アモルファス炭素電極を組み込んだ溶存オゾン濃度測定装置1における使用前に測定されたCV(曲線(a))と、安定性試験を1ヶ月行った後に測定されたCV(曲線(b))とを表している。図10に示すように、硬質アモルファス炭素電極におけるオゾンの還元ピーク電位は、長期間の使用によっても殆ど変化しないことが分かった。   FIG. 10 shows CV (curve (a)) measured before use in the dissolved ozone concentration measuring apparatus 1 incorporating a hard amorphous carbon electrode, and CV (curve) measured after one month of the stability test. (B)). As shown in FIG. 10, it was found that the reduction peak potential of ozone at the hard amorphous carbon electrode hardly changed even after long-term use.

9.比較例1(ダイヤモンド電極)
特願2006−31107号に記載の方法でダイヤモンド電極を作成し、酸素終端化の処理は省略した。このように、人工的に合成したダイヤモンドの表面は一般に水素原子で終端化されている。溶存オゾン濃度測定装置1にこの水素終端ダイヤモンド電極を組み込んだ。オゾン水濃度を10.1mg/Lに調整した試料溶液を溶存オゾン濃度測定装置1に導入し、溶液が静止した状態でサイクリックボルタンメトリーを実施したところ、前述の図11に(a)で示すCVが得られた。ところが、このピーク電位は、何回も測定を繰り返すうちに徐々に負側にシフトして行った。
9. Comparative Example 1 (diamond electrode)
A diamond electrode was prepared by the method described in Japanese Patent Application No. 2006-31107, and the oxygen termination treatment was omitted. In this way, the surface of artificially synthesized diamond is generally terminated with hydrogen atoms. This hydrogen-terminated diamond electrode was incorporated into the dissolved ozone concentration measuring apparatus 1. When the sample solution whose ozone water concentration was adjusted to 10.1 mg / L was introduced into the dissolved ozone concentration measuring apparatus 1 and cyclic voltammetry was performed with the solution still, the CV shown in FIG. was gotten. However, this peak potential was gradually shifted to the negative side as the measurement was repeated many times.

この水素終端ダイヤモンド電極に対して、0.1M硫酸水溶液を電解液として、この電極の電位を+3.2Vに30分間保持することで、ダイヤモンド電極表面の酸素終端化を行った。溶存オゾン濃度測定装置1にこの酸素終端ダイヤモンド電極を組み込んだ。オゾン水濃度を11.9mg/Lに調整した試料溶液を溶存オゾン濃度測定装置1に導入し、溶液が静止した状態でサイクリックボルタンメトリーを実施した。得られたCVには、図11に(b)で示すように、オゾンが溶存した場合にのみ+0Vに明瞭な還元ピークが観察された。このピーク電位は何回測定してもほとんど変化しなかった。得られたCVにおける還元波のピーク電流値を既知の溶存オゾン濃度に対してプロットすることで、前述の図5に(b)で示す検量線を得た。この検量線の傾きは6.7μA cm-2(mg L-1-1であった。従って、酸素終端ダイヤモンド電極は安定して使用することが可能であるが、煩雑な酸素終端化前処理を必要とする。また、前述のように、傾きは硬質アモルファス炭素電極を用いた場合に比べて小さく、検出感度が低いことが分かる。 The hydrogen-terminated diamond electrode was subjected to oxygen termination on the surface of the diamond electrode by using a 0.1 M sulfuric acid aqueous solution as an electrolyte and holding the potential of this electrode at +3.2 V for 30 minutes. This oxygen-terminated diamond electrode was incorporated into the dissolved ozone concentration measuring apparatus 1. A sample solution having an ozone water concentration adjusted to 11.9 mg / L was introduced into the dissolved ozone concentration measuring apparatus 1, and cyclic voltammetry was performed while the solution was stationary. In the obtained CV, as shown in FIG. 11B, a clear reduction peak at +0 V was observed only when ozone was dissolved. This peak potential hardly changed no matter how many times it was measured. By plotting the peak current value of the reduction wave in the obtained CV against the known dissolved ozone concentration, the calibration curve shown in FIG. 5 (b) was obtained. The slope of this calibration curve was 6.7 μA cm −2 (mg L −1 ) −1 . Therefore, the oxygen-terminated diamond electrode can be used stably, but requires complicated oxygen-termination pretreatment. Further, as described above, the inclination is smaller than that in the case of using the hard amorphous carbon electrode, and it can be seen that the detection sensitivity is low.

オゾン水生成装置17で製造した溶存オゾン量が既知の試料溶液を、溶存オゾン濃度測定装置1に毎分100mLの流量で供給した。その状態で、溶存オゾン濃度測定装置1に組み込まれた上記ダイヤモンド電極の電位を−0.3Vに固定し、オゾンの還元反応に伴って流れる電流値を測定した。この電流値は、溶存しているオゾンの量に比例しており、既知の溶存オゾン濃度に対してプロットすることにより図7に(b)で示す検量線を得た。この検量線の傾きも9.8μA cm-2(mg L-1-1と、硬質アモルファス炭素電極の検量線の傾きに比べて小さかった。 A sample solution with a known amount of dissolved ozone produced by the ozone water generator 17 was supplied to the dissolved ozone concentration measuring apparatus 1 at a flow rate of 100 mL per minute. In this state, the potential of the diamond electrode incorporated in the dissolved ozone concentration measurement apparatus 1 was fixed at −0.3 V, and the value of the current flowing along with the ozone reduction reaction was measured. This current value is proportional to the amount of dissolved ozone, and a calibration curve shown in FIG. 7B was obtained by plotting against the known dissolved ozone concentration. The slope of this calibration curve was also 9.8 μA cm −2 (mg L −1 ) −1 , which was smaller than that of the hard amorphous carbon electrode.

上記ダイヤモンド電極を組み込んだ溶存オゾン濃度測定装置1を使用し、溶存オゾン濃度測定用の検量線の経時変化を測定した。測定日には、オゾン水生成装置17で製造した溶存オゾン量が既知の試料溶液を、溶存オゾン濃度測定装置1に毎分100mLの流量で供給し、その状態で、ダイヤモンド電極の電位を−0.3Vに固定し、オゾンの還元反応に伴って流れる電流値を測定して検量線を得た。得られた検量線の傾きを使用日数に対してプロットしたものを図9に○で示す。ダイヤモンド電極を用いた場合には、30日以上使用すると検量線の傾きが上昇する傾向が見られたが、電解酸化処理を行って表面の不純物を取り除くことで検量線の傾きは回復した。   The dissolved ozone concentration measuring apparatus 1 incorporating the diamond electrode was used, and the change with time of the calibration curve for measuring the dissolved ozone concentration was measured. On the measurement day, a sample solution with a known amount of dissolved ozone produced by the ozone water generator 17 is supplied to the dissolved ozone concentration measuring device 1 at a flow rate of 100 mL / min. In this state, the potential of the diamond electrode is −0. The calibration curve was obtained by measuring the value of the current flowing along with the ozone reduction reaction. A plot of the slope of the obtained calibration curve versus the number of days used is shown by circles in FIG. When a diamond electrode was used, there was a tendency for the slope of the calibration curve to increase when it was used for 30 days or more. However, the slope of the calibration curve was recovered by removing impurities on the surface by performing electrolytic oxidation treatment.

なお、本発明は上記実施例になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
例えば、電解セル3の形態は、針状の硬質アモルファス炭素電極を静止状態の試料溶液に浸漬する形態のもの、板状の硬質アモルファス炭素電極の表面を試料溶液が流下する形態のもの、板状の硬質アモルファス炭素電極が試料溶液内で回転する形態のもの、板状の硬質アモルファス炭素電極が試料溶液中で振動する形態のもの等であってもよい。
In addition, this invention is not limited to the said Example at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.
For example, the shape of the electrolytic cell 3 is such that the needle-like hard amorphous carbon electrode is immersed in a stationary sample solution, the sample solution flows down the surface of the plate-like hard amorphous carbon electrode, or plate-like The hard amorphous carbon electrode may be rotated in the sample solution, or the plate-like hard amorphous carbon electrode may be vibrated in the sample solution.

実施例の溶存オゾン濃度測定装置を含む実験系を表す説明図である。It is explanatory drawing showing the experimental system containing the dissolved ozone concentration measuring apparatus of an Example. 実施例の硬質アモルファス炭素電極の表面を表す電顕写真である。It is an electron micrograph showing the surface of the hard amorphous carbon electrode of an Example. 該硬質アモルファス炭素電極のラマンスペクトルを表すグラフである。It is a graph showing the Raman spectrum of this hard amorphous carbon electrode. 該硬質アモルファス炭素電極についてCVを表すグラフである。It is a graph showing CV about this hard amorphous carbon electrode. 該硬質アモルファス炭素電極の静止条件での検量線を表すグラフである。It is a graph showing the calibration curve in the stationary conditions of this hard amorphous carbon electrode. 該硬質アモルファス炭素電極の共存物質存在下のCVを表すグラフである。It is a graph showing CV in the presence of the coexisting substance of this hard amorphous carbon electrode. 該硬質アモルファス炭素電極のフロー条件での検量線を表すグラフである。It is a graph showing the calibration curve in the flow conditions of this hard amorphous carbon electrode. 該硬質アモルファス炭素電極の共存物質存在下の検量線を表すグラフである。It is a graph showing a calibration curve in the presence of a coexisting substance of the hard amorphous carbon electrode. 検量線の傾きの経時変化をダイヤモンド電極と比較して表すグラフである。It is a graph showing the time-dependent change of the inclination of a calibration curve compared with a diamond electrode. 上記硬質アモルファス炭素電極のCVの経時変化を表すグラフである。It is a graph showing the time-dependent change of CV of the said hard amorphous carbon electrode. ダイヤモンド電極のCVの水素終端,酸素終端による相違を表すグラフである。It is a graph showing the difference by the hydrogen termination | terminus and oxygen termination | terminus of CV of a diamond electrode.

符号の説明Explanation of symbols

1…溶存オゾン濃度測定装置 3…電解セル 5…導入管
7…排出管 9…硬質アモルファス炭素電極 11…対極
13…参照電極 15…制御検出部 17…オゾン水生成装置
19…紫外可視分光光度計
DESCRIPTION OF SYMBOLS 1 ... Dissolved ozone concentration measuring apparatus 3 ... Electrolytic cell 5 ... Introducing pipe 7 ... Discharge pipe 9 ... Hard amorphous carbon electrode 11 ... Counter electrode 13 ... Reference electrode 15 ... Control detection part 17 ... Ozone water generator 19 ... Ultraviolet visible spectrophotometer

Claims (7)

試料溶液に接触する検出用電極と、
上記検出用電極の電位を制御する制御手段と、
上記検出用電極に流れる電流量を検知する検知手段と、
を備え、
上記検出用電極が、少なくともその最表面が導電性を有する硬質アモルファス炭素からなることを特徴とする溶存オゾン濃度測定装置。
A detection electrode in contact with the sample solution;
Control means for controlling the potential of the detection electrode;
Detection means for detecting the amount of current flowing through the detection electrode;
With
The dissolved ozone concentration measuring apparatus, wherein the detection electrode is made of hard amorphous carbon having at least an outermost surface having conductivity.
上記試料溶液を静置する容器を備え、
上記検出用電極は、上記容器内に静置された上記試料溶液と接触するように配置されていることを特徴とする請求項1記載の溶存オゾン濃度測定装置。
A container for allowing the sample solution to stand;
The dissolved ozone concentration measuring apparatus according to claim 1, wherein the detection electrode is disposed so as to contact the sample solution placed in the container.
上記試料溶液の流路を備え、
上記検出用電極は、上記流路を流れる上記試料溶液と接触するように配置されていることを特徴とする請求項1記載の溶存オゾン濃度測定装置。
A flow path for the sample solution;
The dissolved ozone concentration measuring apparatus according to claim 1, wherein the detection electrode is disposed so as to be in contact with the sample solution flowing through the flow path.
試料溶液に、少なくともその最表面が導電性を有する硬質アモルファス炭素からなる検出用電極を接触させ、
上記検出用電極の電位を制御すると共に、上記検出用電極に流れる電流量を検知し、
上記電位と上記電流量に基づいて上記試料溶液中の溶存オゾン濃度を測定する溶存オゾン濃度測定方法。
A sample electrode is brought into contact with a detection electrode made of hard amorphous carbon having at least the outermost surface having conductivity,
While controlling the potential of the detection electrode, detecting the amount of current flowing through the detection electrode,
A dissolved ozone concentration measuring method for measuring a dissolved ozone concentration in the sample solution based on the potential and the current amount.
上記検出用電極を、容器内に静置された上記試料溶液と接触させることを特徴とする請求項4記載の溶存オゾン濃度測定方法。   5. The dissolved ozone concentration measuring method according to claim 4, wherein the detection electrode is brought into contact with the sample solution placed in a container. 上記検出用電極を、所定の流路を流れる上記試料溶液と接触させることを特徴とする請求項4記載の溶存オゾン濃度測定方法。   The dissolved ozone concentration measuring method according to claim 4, wherein the detection electrode is brought into contact with the sample solution flowing in a predetermined flow path. 上記検出用電極と接触する上記試料溶液に、予め電解質溶液を添加しておくことを特徴とする請求項4〜6のいずれかに記載の溶存オゾン濃度測定方法。   The dissolved ozone concentration measuring method according to any one of claims 4 to 6, wherein an electrolyte solution is previously added to the sample solution in contact with the detection electrode.
JP2007100758A 2007-04-06 2007-04-06 Device for measuring dissolved ozone concentration, and method therefor Pending JP2008256604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100758A JP2008256604A (en) 2007-04-06 2007-04-06 Device for measuring dissolved ozone concentration, and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100758A JP2008256604A (en) 2007-04-06 2007-04-06 Device for measuring dissolved ozone concentration, and method therefor

Publications (1)

Publication Number Publication Date
JP2008256604A true JP2008256604A (en) 2008-10-23

Family

ID=39980304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100758A Pending JP2008256604A (en) 2007-04-06 2007-04-06 Device for measuring dissolved ozone concentration, and method therefor

Country Status (1)

Country Link
JP (1) JP2008256604A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184715B1 (en) * 2012-12-06 2013-04-17 日科ミクロン株式会社 Galvanic concentration measuring apparatus and galvanic concentration measuring method
JP2015178989A (en) * 2014-03-19 2015-10-08 株式会社industria Coulometric titration method and coulometric titration device
JP2016538555A (en) * 2013-11-29 2016-12-08 エレメント シックス テクノロジーズ リミテッド Electrochemical sensor device and electrochemical sensing method
JP7345602B1 (en) 2022-06-10 2023-09-15 住友化学株式会社 Electrochemical sensor and method for manufacturing electrochemical sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184715B1 (en) * 2012-12-06 2013-04-17 日科ミクロン株式会社 Galvanic concentration measuring apparatus and galvanic concentration measuring method
JP2014115078A (en) * 2012-12-06 2014-06-26 Nikka Micron Kk Galvanic-type concentration measuring apparatus and galvanic-type concentration measuring method
JP2016538555A (en) * 2013-11-29 2016-12-08 エレメント シックス テクノロジーズ リミテッド Electrochemical sensor device and electrochemical sensing method
JP2015178989A (en) * 2014-03-19 2015-10-08 株式会社industria Coulometric titration method and coulometric titration device
JP7345602B1 (en) 2022-06-10 2023-09-15 住友化学株式会社 Electrochemical sensor and method for manufacturing electrochemical sensor
JP2023181161A (en) * 2022-06-10 2023-12-21 住友化学株式会社 Electrochemical sensor for ozone concentration measurement
JP2023180811A (en) * 2022-06-10 2023-12-21 住友化学株式会社 Electrochemical sensor and method for manufacturing electrochemical sensor
JP7445068B2 (en) 2022-06-10 2024-03-06 住友化学株式会社 Electrochemical sensor for measuring ozone concentration

Similar Documents

Publication Publication Date Title
Zhang et al. Facile electrochemical preparation of NaOH nanorods on glassy carbon electrode for ultrasensitive and simultaneous sensing of hydroquinone, catechol and resorcinol
JP7272565B2 (en) Triode electrode with conductive diamond electrode as reference electrode, apparatus and electrochemical measurement method
JP5265803B1 (en) Ozone water concentration measuring device and ozone water concentration measuring method
JP2007139725A (en) Residual chlorine measuring method and residual chlorine measuring instrument
Ivandini et al. Development of amperometric arsine gas sensor using gold-modified diamond electrodes
JP2007212232A (en) Dissolved ozone concentration measuring device and method
Noskova et al. Electrodeposition and stripping voltammetry of arsenic (III) and arsenic (V) on a carbon black–polyethylene composite electrode in the presence of iron ions
Zhao et al. Preparation of Ni (OH) 2 nanosheets on Ni foam via a direct precipitation method for a highly sensitive non-enzymatic glucose sensor
JP5770491B2 (en) Method for measuring total concentration of oxidizing substance, concentration meter for measuring total concentration of oxidizing substance, and sulfuric acid electrolysis apparatus using the same
Kumar et al. Nanoporous gold-based dopamine sensor with sensitivity boosted by interferant ascorbic acid
Liu et al. A highly stable microporous boron-doped diamond electrode etched by oxygen plasma for enhanced electrochemical ozone generation
Patella et al. Nanowire ordered arrays for electrochemical sensing of H2O2
JP2008256604A (en) Device for measuring dissolved ozone concentration, and method therefor
Fierro et al. pH sensing using boron doped diamond electrodes
Ardelean et al. Electrochemical detection of sulphide in water/seawater using nanostructured carbon–epoxy composite electrodes
Terzi et al. Voltammetric determination of hydrogen peroxide at high concentration level using a copper electrode
JP4561994B2 (en) Hydrogen peroxide reduction electrode, sensor using the same, and method for measuring hydrogen peroxide concentration
JP6814990B2 (en) Residual chlorine measuring method and residual chlorine measuring device
JP4458362B2 (en) Arsenic detection electrode, sensor using the same, and arsenic concentration measurement method
Hadi et al. Application of nanocrystalline graphite-like pyrolytic carbon film electrode for determination of thiols
Awad et al. Fractional determination of peracetic acid and hydrogen peroxide at deposited gold enriched in the Au (1 1 1) domain
JP4217077B2 (en) Stabilization method of diaphragm type electrode
Ahour A Novel H2O2 Amperometric Sensor based on Prussian Blue/Palladium Nanoparticles/Graphene Oxide Nanocomposite Modified Electrode
Mitani et al. The simple voltammetric analysis of acids using highly boron-doped diamond macroelectrodes and microelectrodes
JP2007155671A (en) Method and apparatus for analyzing aqueous solution