JP3886787B2 - Austenitic stainless steel for alcohol fuel reformer - Google Patents

Austenitic stainless steel for alcohol fuel reformer Download PDF

Info

Publication number
JP3886787B2
JP3886787B2 JP2001357423A JP2001357423A JP3886787B2 JP 3886787 B2 JP3886787 B2 JP 3886787B2 JP 2001357423 A JP2001357423 A JP 2001357423A JP 2001357423 A JP2001357423 A JP 2001357423A JP 3886787 B2 JP3886787 B2 JP 3886787B2
Authority
JP
Japan
Prior art keywords
mass
stainless steel
austenitic stainless
reformer
steam oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357423A
Other languages
Japanese (ja)
Other versions
JP2003160843A (en
Inventor
学 奥
佳幸 藤村
幸寛 川畑
敏郎 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2001357423A priority Critical patent/JP3886787B2/en
Publication of JP2003160843A publication Critical patent/JP2003160843A/en
Application granted granted Critical
Publication of JP3886787B2 publication Critical patent/JP3886787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、アルコール系燃料から水素を製造する改質器に適したオーステナイト系ステンレス鋼に関する。
【0002】
【従来の技術】
燃料電池は、水の電気分解と逆の反応経過を経て電力を発生する装置であり、環境に有害な排ガスを発生しないことから自動車等の動力源として有望視されている。また、小規模なオンサイト発電装置としても一部ですでに実用化されている。
燃料電池の代表的な燃料として水素が使用されている。水素は、都市ガス(LNG),石油液化ガス(LPG),ナフサ,メタノール等の炭化水素系燃料を触媒の存在下で改質反応させることにより製造される。なかでも、メタノール,ジメチルエーテル等のアルコール系燃料の改質は、反応温度が低いため起動に要する時間が比較的短い点が長所である。生成した水素は、Sが含まれていないことからも燃料電池用燃料に適している。
【0003】
【発明が解決しようとする課題】
メタノールの改質には、水蒸気酸化改質方式,部分酸化改質方式及び両者を組み合わせた併用改質方式(オートサーマル方式)がある。水蒸気改質方式では改質器の温度が300℃程度であるため、改質器の構造材として通常のステンレス鋼を使用しても損傷は軽微であるが、改質に必要な熱量を外部から供給する必要がある。そのため、起動時は部分酸化改質やオートサーマル方式で改質し、改質器が昇温した段階で水蒸気酸化改質に切り替えるシステムが検討されている。
【0004】
部分酸化改質やオートサーマル方式では、改質器が600℃程度の高温に上昇することもある。しかも、多量の水蒸気の他にCO,CO2等を含む酸化性雰囲気で改質器が稼動されるため、水蒸気酸化や赤スケールが発生しやすい。したがって、改質器用材料には、当該温度域で加熱・冷却されても初期の機能を損なうことがない優れた耐高温酸化性,耐赤スケール性が要求される。
更には、改質器を搭載した自動車を想定すると、自動車の走行に応じて改質器の起動停止が繰り返され、常温〜高温の幅広い温度域で改質器の構造材が加熱・冷却される。加熱・冷却によって熱歪が蓄積されると、材料破断に至る虞もある。この点,熱疲労特性に優れていることも、改質器に要求される特性の一つである。
【0005】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、高温水蒸気雰囲気下で起動・停止を繰り返しても水蒸気酸化や赤スケールが発生せず、長期間にわたって安定条件下の改質反応が継続されるアルコール系燃料改質器用材料を提供することを目的とする。
【0006】
本発明のアルコール系燃料改質器用オーステナイト系ステンレス鋼は、その目的を達成するため、Cr:15〜25質量%,Ni:7〜15質量%,C:0.01〜0.10質量%,Si: . 56〜4質量%,Mn:2.0質量%以下,S:0.008質量%以下を、更にN:0 . 05〜0 . 20質量%,Mo:0 . 1〜3 . 0質量%の1種又は2種を含み、残部がFe及び不可避的不純物の組成をもち、耐水蒸気酸化性,耐赤スケール性に優れていることを特徴とする。
【0007】
当該オーステナイト系ステンレス鋼は、更にY,REM(希土類元素),Caの1種又は2種以上を合計で0.001〜 . 1質量%含むことができる。
【0008】
【作用】
代表的なオーステナイト系ステンレス鋼であるSUS304は、通常の大気雰囲気では優れた耐熱・耐食性を呈するが、多量の水蒸気及びCO2を含む改質器の高温雰囲気に曝されると水蒸気酸化,赤スケール化が容易に進行し、構造材としての機能が損なわれる虞がある。SUS304は、加熱・冷却の繰返しに起因する熱疲労に対しても十分な耐性を備えていない。そこで、本発明者等は、水蒸気酸化,赤スケール及び熱疲労の発生メカニズムを材質面から検討し、SUS304をベースとして種々の合金成分を添加することによって添加合金成分が水蒸気酸化及び熱疲労に及ぼす影響を調査した。
【0009】
高温雰囲気における水蒸気酸化は大気酸化よりも損傷が大きい。水蒸気酸化機構は必ずしも明らかでないが、水蒸気が酸素及び水素に解離して酸化反応を促進させ、水蒸気が鋼素地に直接到達して酸化を促進させること等によって生じる現象である。また、赤スケールは、Cr系酸化物よりもFe系酸化物の方が優先的に生成することにより生じる。水蒸気酸化や赤スケールの発生によって酸化スケールが剥離すると、改質器構造材としての機能が損なわれ、改質反応が不安定になる。
600℃程度の高温雰囲気における耐酸化性はCr:15質量%以上のCr添加で確保されるが、多量の水蒸気,CO2を含む改質器の雰囲気では水蒸気酸化が進行し、赤スケールが発生する。本発明においては、所定量のSiを添加することによって水蒸気酸化や赤スケールを防止している。
【0010】
水蒸気酸化や赤スケールがSi添加で抑制される理由は定かではないが、Si添加によって鋼中のCr拡散が促進され、Cr系酸化物が生成しやすくなり、結果として酸化皮膜が強化され、H2O,CO2等の酸化性成分が酸化皮膜を透過して下地鋼に達することが抑止されるものと推察される。酸化皮膜の強化は、下地鋼からのFe拡散を抑え、赤スケールの発生防止にも有効である。
Y,REM,Ca,Alの添加も耐水蒸気酸化性,耐赤スケール性の改善に有効である。Y,REM,Ca,Alは、酸化皮膜のCr系酸化物に固溶し、酸化皮膜を強化することによって酸化性成分の透過を抑制するものと推察される。
【0011】
N,Nb,Ti,Mo,Cuは、ステンレス鋼の高温強度、ひいては熱疲労特性を改善する。そのため、改質器の稼動・停止に伴って常温〜600℃の広範囲で加熱・冷却が繰り返される環境下でも、熱応力に十分耐え、材料破断を抑制する効果が大きい。
【0012】
以上の観点から、改質器に使用されるオーステナイト系ステンレス鋼の成分・組成を次のように定めた。
Cr:15〜25質量%
ステンレス鋼に必要な耐食性,耐酸化性を付与する上で必要な合金成分である。600℃前後における高温耐酸化性を確保するためには、15質量%以上のCrが必要である。しかし、25質量%を超える過剰量のCr含有は、オーステナイト系ステンレス鋼の加工性を低下させる。
【0013】
Ni:7〜15質量%
オーステナイト相を維持するために必要な合金成分であり、改質器の高温状態及び降温段階でもオーステナイト相が安定するように、Ni含有量を7質量%以上に設定する。しかし、15質量%を超える過剰量のNi含有は、鋼材を完全オーステナイト組織にするため、結果としてオーステナイト系ステンレス鋼の熱間加工性,溶接性を低下させ、鋼板の製造性,歩留にとって不利である。
【0014】
C:0.01〜0.1質量%
本発明の成分系では、Cr系炭化物となって耐水蒸気酸化性,耐赤スケール性に有効なCr量を消費し、高温特性に有害なCr欠乏層を生成する。このような欠陥発生は、C含有量を0.1質量%以下に規制することによって防止できる。しかし、C量の低減に伴ってオーステナイト系ステンレス鋼が軟質化するので、鋼板強度が要求される場合にはC含有量の下限を0.01質量%に設定する。C低減に起因する軟質化は、Si,N,Nb,Ti,Mo等の添加によっても抑制できる。なかでも、Nb,Tiは、炭化物として固溶C量を減少させるため、C含有量の上限に関する制約も緩和する。
【0015】
Si:1〜4質量%以下
Cr系酸化物の安定化に有効な合金成分であり、1質量%以上の含有量でSiの添加効果が顕著になる。しかし、4質量%を超える過剰量のSiが含まれると、鋼材の加工性,溶接性が低下する。
Mn:2.0質量%以下
オーステナイト相を安定化させる作用を呈し、Niの代替成分として添加できる。しかし、2.0質量%を超える過剰量のMnを添加すると、加熱初期の酸化物中に含まれるMn量が増加し、耐水蒸気酸化特性,耐赤スケール性が低下する。
【0016】
S:0.008質量%以下
熱間加工性に悪影響を及ぼす成分であり、異常酸化の起点にもなる。そのため、S含有量は可能な限り低い方が好ましく、上限を0.008質量%に規定した。
Y,REM(希土類元素),Caの1種又は2種以上を合計で0.001〜0.1質量%及び/又はAl:0.01〜2.5質量%
何れも必要に応じて添加される合金成分であり、酸化皮膜中のCr系酸化物に固溶し、酸化皮膜を強化する作用を呈する。このような効果は、Y,REM,Ca,Alの1種又は2種以上を0.001質量%以上添加するとき顕著になる。しかし、Y,REM,Caの合計添加量が0.1質量%を超え、或いは2.5質量%を超える過剰量のAlを添加すると、鋼材が過度に硬質化すると共に、製造時に表面疵が生じやすく製造コストの上昇を招く。
【0017】
N:0.05〜0.20質量%, Nb:0.05〜0.50質量%,
Ti:0.05〜0.50質量%, Mo:0.1〜3.0質量%,
Cu:0.1〜4.0質量%
何れも必要に応じて添加される合金成分であり、N,Mo,Cuは固溶強化、Nb,Tiは析出硬化によってオーステナイト系ステンレス鋼の高温強度を高め、それぞれN:0.05質量%以上,Mo:0.1質量%以上,Nb:0.05質量%以上,Ti:0.05質量%以上,Cu:0.1質量%以上で添加効果が顕著になる。しかし、過剰量のNが含まれると鋼材の清浄度が低下しやすく、過剰量のMo,Nb,Tiが含まれると鋼材が過度に硬質化し、過剰量のCuが含まれると熱間加工性が低下するので、それぞれの上限をN:0.20質量%,Mo:3.0質量%,Nb:0.50質量%,Ti:0.50質量%,Cu:4.0質量%に設定した。
【0018】
その他の成分について本発明では特に規定するものではないが、一般的な不純物元素でありP,O等は可能な限り低減することが好ましい。通常はP:0.04質量%以下,O:0.02質量%以下に規制されるが、高レベルの加工性や溶接性を確保するためにP,Oを更に厳格に規制する場合もある。また、耐熱性の改善に有効なW,Ta,V,Zrや熱間加工性の改善に有効なB,Mg,Co等の元素も必要に応じて添加できる。
【0019】
【実施例】
表1の成分・組成をもつ各種オーステナイト系ステンレス鋼を30kg真空溶解炉で溶製し、インゴットに鋳造した。インゴットを粗圧延した後、熱延,焼鈍酸洗,冷延,仕上げ焼鈍を経て板厚2.0mmの冷延焼鈍材を製造した。
また、別のインゴットを熱間鍛造,焼鈍し、外径30mmの丸棒を製造した。
【0020】

Figure 0003886787
【0021】
各オーステナイト系ステンレス鋼から試験片を切り出し、冷延焼鈍板を高温水蒸気酸化試験に、焼鈍丸棒を熱疲労試験に供した。
高温水蒸気酸化試験では、改質器が曝される雰囲気を想定し、50体積%H2O+20体積%CO2の雰囲気を用意した。当該雰囲気中で試験片を600℃に25分保持する加熱及び室温まで降温して5分保持する冷却を1サイクルとする加熱・冷却を500回繰り返した後、試験片の重量を測定した。
【0022】
測定結果を試験前の重量と比較し、重量変化が2.0mg/cm2以下を○,2.0mg/cm2を超える重量変化があったものを×として耐水蒸気酸化性を評価した。酸化が生じていないものほど、酸化皮膜の環境遮断機能が強く、耐水蒸気酸化性に優れているといえる。また、加熱・冷却後の試験片表面を観察し、赤スケール発生の有無を調査した。
熱疲労試験では、自由熱膨張に相当する歪量を付与(拘束率100%)しながら200〜900℃の温度域で試験片を繰返し加熱・冷却した。初期の最大引張り応力が3/4まで低下したときの繰返し数を破損繰返し数と定義し、加熱・冷却を1000サイクル以上繰り返しても破損しなかった試験片を○,1000サイクル未満の加熱・冷却で破損繰返し数に達した試験片を×として熱疲労特性を評価した。
【0023】
表2の試験結果にみられるように、本発明に従った鋼種番号1〜5のオーステナイト系ステンレス鋼は、何れも耐水蒸気酸化性,熱疲労特性に優れており、アルコール系燃料改質器材料としての要求特性を十分に満足していた。また、試験片表面に赤スケールが観察されなかった。
他方、鋼種番号6,7のオーステナイト系ステンレス鋼は、高温保持した後での重量変化が多く、水蒸気酸化,赤スケール発生が進行していた。水蒸気酸化,赤スケール発生は、Si含有量が不足するために酸化皮膜のCr系酸化物が不安定で、高温保持中に酸化皮膜を透過したH2O,CO2等が下地鋼をアタックしたことによるものと推察される。
【0024】
Figure 0003886787
【0025】
【発明の効果】
以上に説明したように、本発明のオーステナイト系ステンレス鋼は、Si添加でCr系酸化物を安定化させた酸化皮膜が表面に形成され、高温雰囲気に長時間曝された状態でも酸化皮膜が劣化せずに高い環境遮断機能を発現するため、水蒸気酸化や赤スケール発生が抑えられる。Si添加は、鋼材の高温強度、ひいては熱疲労特性の改善にも有効である。そのため、多量のH2O,CO2,COを含む高温雰囲気に曝され、しかも高温〜常温の広い温度域にわたって加熱・冷却が繰り返されるアルコール系燃料改質器に好適な材料として使用される。[0001]
[Industrial application fields]
The present invention relates to an austenitic stainless steel suitable for a reformer that produces hydrogen from alcohol fuel.
[0002]
[Prior art]
A fuel cell is a device that generates electric power through a reaction process opposite to that of water electrolysis, and is considered promising as a power source for automobiles and the like because it does not generate exhaust gas harmful to the environment. Some small on-site power generation devices have already been put into practical use.
Hydrogen is used as a typical fuel for fuel cells. Hydrogen is produced by a reforming reaction of hydrocarbon fuels such as city gas (LNG), petroleum liquefied gas (LPG), naphtha and methanol in the presence of a catalyst. Among these, reforming of alcohol fuels such as methanol and dimethyl ether has an advantage in that the time required for starting is relatively short because the reaction temperature is low. The generated hydrogen is suitable for fuel cell fuel because it does not contain S.
[0003]
[Problems to be solved by the invention]
For reforming methanol, there are a steam oxidation reforming method, a partial oxidation reforming method, and a combined reforming method (autothermal method) combining both. In the steam reforming method, the temperature of the reformer is about 300 ° C., so even if ordinary stainless steel is used as the structural material of the reformer, the damage is slight, but the amount of heat required for reforming is externally applied. It is necessary to supply. Therefore, a system is being studied in which reforming is performed by partial oxidation reforming or autothermal method at startup, and switching to steam oxidation reforming when the temperature of the reformer rises.
[0004]
In the partial oxidation reforming or autothermal system, the reformer may rise to a high temperature of about 600 ° C. Moreover, since the reformer is operated in an oxidizing atmosphere containing CO, CO 2 and the like in addition to a large amount of steam, steam oxidation and red scale are likely to occur. Therefore, the reformer material is required to have excellent high temperature oxidation resistance and red scale resistance that do not impair the initial function even when heated and cooled in the temperature range.
Furthermore, assuming an automobile equipped with a reformer, the reformer is repeatedly started and stopped as the automobile travels, and the structural material of the reformer is heated and cooled in a wide temperature range from room temperature to high temperature. . If thermal strain accumulates due to heating and cooling, there is a risk of material breakage. In this respect, excellent thermal fatigue characteristics are also required for the reformer.
[0005]
[Means for Solving the Problems]
The present invention has been devised to solve such a problem, and even if it is repeatedly started and stopped in a high-temperature steam atmosphere, steam oxidation and red scale do not occur, and the stable condition is improved over a long period of time. An object of the present invention is to provide an alcohol-based fuel reformer material in which a quality reaction is continued.
[0006]
The austenitic stainless steel for alcohol-based fuel reformer of the present invention has a Cr: 15-25% by mass, Ni: 7-15% by mass, C: 0.01-0.10% by mass, Si:. 2 56 ~4 wt%, Mn: 2.0 wt% or less, S: 0.008 mass% or less, further N:.. 0 05~0 20 wt%, Mo:. 0 1~3. It is characterized by containing one or two kinds of 0% by mass , the balance having a composition of Fe and inevitable impurities, and excellent steam oxidation resistance and red scale resistance.
[0007]
The austenitic stainless steel further Y, REM (rare earth element), 0.001 in total one or two or more of Ca 0. Can contain 1% by weight.
[0008]
[Action]
SUS304 is a representative austenitic stainless steel, but exhibits an excellent heat resistance and corrosion resistance in a normal air atmosphere, when exposed to a high temperature atmosphere in the reformer containing a large amount of water vapor and CO 2 steam oxidation, red scale May easily progress, and the function as a structural material may be impaired. SUS304 does not have sufficient resistance against thermal fatigue caused by repeated heating and cooling. Therefore, the present inventors have studied the generation mechanism of steam oxidation, red scale, and thermal fatigue from the viewpoint of material, and by adding various alloy components based on SUS304, the added alloy component affects steam oxidation and thermal fatigue. The impact was investigated.
[0009]
Steam oxidation in a high temperature atmosphere is more damaging than atmospheric oxidation. Although the steam oxidation mechanism is not necessarily clear, it is a phenomenon caused by water vapor dissociating into oxygen and hydrogen to promote an oxidation reaction, and water vapor directly reaches the steel substrate to promote oxidation. Further, the red scale is generated when the Fe-based oxide is preferentially generated over the Cr-based oxide. When the oxide scale is peeled off due to the generation of steam oxidation or red scale, the function as the reformer structure material is impaired, and the reforming reaction becomes unstable.
Oxidation resistance in a high temperature atmosphere of about 600 ° C is ensured by adding Cr: 15% by mass or more of Cr, but steam oxidation proceeds in a reformer atmosphere containing a large amount of steam and CO 2 , and red scale is generated. To do. In the present invention, steam oxidation and red scale are prevented by adding a predetermined amount of Si.
[0010]
The reason why steam oxidation and red scale are suppressed by addition of Si is not clear, but the addition of Si promotes Cr diffusion in the steel and facilitates the formation of Cr-based oxides. As a result, the oxide film is strengthened, and H It is assumed that oxidizing components such as 2 O and CO 2 are prevented from passing through the oxide film and reaching the base steel. The strengthening of the oxide film suppresses Fe diffusion from the base steel and is effective in preventing the occurrence of red scale.
Addition of Y, REM, Ca, and Al is also effective in improving steam oxidation resistance and red scale resistance. It is inferred that Y, REM, Ca, and Al are dissolved in the Cr-based oxide of the oxide film and suppress the permeation of the oxidizing component by strengthening the oxide film.
[0011]
N, Nb, Ti, Mo, and Cu improve the high-temperature strength of stainless steel and thus the thermal fatigue characteristics. Therefore, even in an environment where heating / cooling is repeated in a wide range from room temperature to 600 ° C. along with the operation / stop of the reformer, the effect of sufficiently resisting thermal stress and suppressing material breakage is great.
[0012]
From the above viewpoint, the components and composition of the austenitic stainless steel used in the reformer were determined as follows.
Cr: 15-25% by mass
It is an alloy component necessary for imparting the necessary corrosion resistance and oxidation resistance to stainless steel. In order to ensure high-temperature oxidation resistance at around 600 ° C., 15% by mass or more of Cr is necessary. However, containing an excessive amount of Cr exceeding 25% by mass reduces the workability of the austenitic stainless steel.
[0013]
Ni: 7 to 15% by mass
It is an alloy component necessary for maintaining the austenite phase, and the Ni content is set to 7% by mass or more so that the austenite phase is stabilized even in the high temperature state and the temperature lowering stage of the reformer. However, an excessive Ni content exceeding 15% by mass makes the steel material a complete austenitic structure, resulting in a decrease in hot workability and weldability of austenitic stainless steel, which is disadvantageous for steel plate manufacturability and yield. It is.
[0014]
C: 0.01-0.1 mass%
In the component system of the present invention, it becomes a Cr-based carbide, consumes an amount of Cr effective for steam oxidation resistance and red scale resistance, and forms a Cr-deficient layer that is harmful to high-temperature characteristics. Such defect generation can be prevented by regulating the C content to 0.1 mass% or less. However, since the austenitic stainless steel softens as the C content decreases, the lower limit of the C content is set to 0.01 mass% when steel plate strength is required. Softening due to C reduction can be suppressed by addition of Si, N, Nb, Ti, Mo, or the like. Especially, since Nb and Ti reduce the amount of solid solution C as a carbide | carbonized_material, the restrictions regarding the upper limit of C content are also eased.
[0015]
Si: 1 to 4% by mass or less Si is an alloy component effective for stabilizing the Cr-based oxide, and the addition effect of Si becomes remarkable when the content is 1% by mass or more. However, if an excessive amount of Si exceeding 4% by mass is contained, the workability and weldability of the steel material are deteriorated.
Mn: 2.0% by mass or less Mn: Stabilizes the austenite phase and can be added as an alternative component of Ni. However, when an excessive amount of Mn exceeding 2.0% by mass is added, the amount of Mn contained in the oxide in the initial stage of heating increases, and the steam oxidation resistance and the red scale resistance deteriorate.
[0016]
S: 0.008% by mass or less S is a component that adversely affects hot workability and also serves as a starting point for abnormal oxidation. Therefore, the S content is preferably as low as possible, and the upper limit is defined as 0.008% by mass.
One or more of Y, REM (rare earth elements) and Ca in total 0.001 to 0.1% by mass and / or Al: 0.01 to 2.5% by mass
Any of these is an alloy component that is added as necessary, and exhibits an action of strengthening the oxide film by being dissolved in the Cr-based oxide in the oxide film. Such an effect becomes conspicuous when one or more of Y, REM, Ca and Al are added in an amount of 0.001% by mass or more. However, if the total amount of Y, REM and Ca added exceeds 0.1% by mass, or if an excessive amount of Al exceeding 2.5% by mass is added, the steel material becomes excessively hardened and surface flaws occur during production. It tends to occur and causes an increase in manufacturing cost.
[0017]
N: 0.05 to 0.20% by mass, Nb: 0.05 to 0.50% by mass,
Ti: 0.05-0.5 mass%, Mo: 0.1-3.0 mass%,
Cu: 0.1-4.0 mass%
All are alloy components added as necessary, N, Mo, Cu are solid solution strengthening, Nb, Ti is a precipitation hardening to increase the high temperature strength of austenitic stainless steel, each N: 0.05% by mass or more , Mo: 0.1% by mass or more, Nb: 0.05% by mass or more, Ti: 0.05% by mass or more, Cu: 0.1% by mass or more, the effect of addition becomes remarkable. However, if an excessive amount of N is contained, the cleanliness of the steel material is likely to be lowered. If an excessive amount of Mo, Nb, Ti is included, the steel material is excessively hardened, and if an excessive amount of Cu is included, hot workability. Therefore, the upper limits are set to N: 0.20% by mass, Mo: 3.0% by mass, Nb: 0.50% by mass, Ti: 0.50% by mass, Cu: 4.0% by mass, respectively. did.
[0018]
Other components are not particularly defined in the present invention, but are generally impurity elements, and it is preferable to reduce P, O, etc. as much as possible. Usually, P: 0.04 mass% or less and O: 0.02 mass% or less are regulated, but P and O may be more strictly regulated to ensure a high level of workability and weldability. . Also, elements such as W, Ta, V, Zr effective for improving heat resistance and B, Mg, Co effective for improving hot workability can be added as required.
[0019]
【Example】
Various austenitic stainless steels having the components and compositions shown in Table 1 were melted in a 30 kg vacuum melting furnace and cast into ingots. After roughly rolling the ingot, a cold-rolled annealed material having a thickness of 2.0 mm was manufactured through hot rolling, annealing pickling, cold rolling, and finish annealing.
Another ingot was hot forged and annealed to produce a round bar with an outer diameter of 30 mm.
[0020]
Figure 0003886787
[0021]
A test piece was cut out from each austenitic stainless steel, the cold-rolled annealed plate was subjected to a high temperature steam oxidation test, and the annealed round bar was subjected to a thermal fatigue test.
In the high temperature steam oxidation test, an atmosphere of 50% by volume H 2 O + 20% by volume CO 2 was prepared assuming an atmosphere to which the reformer was exposed. The test piece was heated in the atmosphere for 25 minutes at 600 ° C. and heated and cooled for one cycle of cooling to room temperature and cooling for 5 minutes, and the weight of the test piece was measured.
[0022]
The measurement result was compared with the weight before the test, and the steam oxidation resistance was evaluated by setting the weight change to 2.0 mg / cm 2 or less as ◯, and the weight change exceeding 2.0 mg / cm 2 as x. It can be said that the more the oxide is not produced, the stronger the environmental barrier function of the oxide film, and the better the steam oxidation resistance. Moreover, the surface of the test piece after heating / cooling was observed to investigate the occurrence of red scale.
In the thermal fatigue test, the test piece was repeatedly heated and cooled in a temperature range of 200 to 900 ° C. while applying a strain corresponding to free thermal expansion (constraint rate 100%). The number of repetitions when the initial maximum tensile stress is reduced to 3/4 is defined as the number of failure repetitions. A test piece that did not break even after repeated heating and cooling for 1000 cycles or more is heated and cooled for less than 1000 cycles. The thermal fatigue property was evaluated by setting the test piece that reached the number of repetitions of damage as x.
[0023]
As can be seen from the test results in Table 2, all of the austenitic stainless steels of steel types 1 to 5 according to the present invention are excellent in steam oxidation resistance and thermal fatigue properties, and are alcohol-based fuel reformer materials. The required characteristics were fully satisfied. Further, no red scale was observed on the surface of the test piece.
On the other hand, the austenitic stainless steels of steel types 6 and 7 have a large weight change after being kept at a high temperature, and steam oxidation and red scale generation proceeded. Steam oxidation and red scale generation are unstable due to insufficient Cr content in the oxide film due to insufficient Si content, and H 2 O, CO 2, etc. that permeated the oxide film during high temperature holding attacked the underlying steel. This is presumed to be due to this.
[0024]
Figure 0003886787
[0025]
【The invention's effect】
As described above, the austenitic stainless steel of the present invention has an oxide film formed by stabilizing the Cr-based oxide by adding Si, and the oxide film deteriorates even when exposed to a high temperature atmosphere for a long time. Without it, it exhibits a high environmental barrier function, so that steam oxidation and red scale generation can be suppressed. Si addition is also effective in improving the high temperature strength of the steel material, and hence the thermal fatigue characteristics. Therefore, it is used as a material suitable for an alcohol-based fuel reformer that is exposed to a high-temperature atmosphere containing a large amount of H 2 O, CO 2 , and CO and that is repeatedly heated and cooled over a wide temperature range from high temperature to normal temperature.

Claims (2)

Cr:15〜25質量%,Ni:7〜15質量%,C:0.01〜0.10質量%,Si: . 56〜4質量%,Mn:2.0質量%以下,S:0.008質量%以下を、更にN:0 . 05〜0 . 20質量%,Mo:0 . 1〜3 . 0質量%の1種又は2種を含み、残部がFe及び不可避的不純物の組成をもち、耐水蒸気酸化性,耐赤スケール性に優れていることを特徴とするアルコール系燃料改質器用オーステナイト系ステンレス鋼。Cr: 15-25 wt%, Ni: 7 to 15 mass%, C: 0.01 to 0.10 wt%, Si:. 2 56 ~4 wt%, Mn: 2.0 wt% or less, S: 0 the .008% by mass or less, further N:.. 0 05~0 20 wt%, Mo:.. 0 1 to 3 wherein one or two of 0 wt%, the balance being Fe and unavoidable impurities Also, austenitic stainless steel for alcohol-based fuel reformers, which has excellent steam oxidation resistance and red scale resistance. 更にY,REM(希土類元素),Caの1種又は2種以上を合計で0.001〜 . 1質量%を含む請求項1記載のアルコール系燃料改質器用オーステナイト系ステンレス鋼。Furthermore Y, REM (rare earth element), one or 0.001 to 2 or more in total 0.1 alcohol of claim 1 further comprising a mass% fuel reformer austenitic stainless steel Ca.
JP2001357423A 2001-11-22 2001-11-22 Austenitic stainless steel for alcohol fuel reformer Expired - Fee Related JP3886787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357423A JP3886787B2 (en) 2001-11-22 2001-11-22 Austenitic stainless steel for alcohol fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357423A JP3886787B2 (en) 2001-11-22 2001-11-22 Austenitic stainless steel for alcohol fuel reformer

Publications (2)

Publication Number Publication Date
JP2003160843A JP2003160843A (en) 2003-06-06
JP3886787B2 true JP3886787B2 (en) 2007-02-28

Family

ID=19168771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357423A Expired - Fee Related JP3886787B2 (en) 2001-11-22 2001-11-22 Austenitic stainless steel for alcohol fuel reformer

Country Status (1)

Country Link
JP (1) JP3886787B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010053385A1 (en) * 2010-12-03 2012-06-21 Bayerische Motoren Werke Aktiengesellschaft Austenitic steel for hydrogen technology
JP5780598B2 (en) 2012-02-15 2015-09-16 新日鐵住金ステンレス株式会社 Austenitic stainless steel for high temperature equipment of welded pipe structure
KR101412916B1 (en) * 2012-04-19 2014-06-26 주식회사 포스코 Austenitic stainless steel with excellent high temperature oxidation resistance
CN104060190A (en) * 2014-07-09 2014-09-24 上海大学兴化特种不锈钢研究院 Chromium-saving and nickel-saving type high-silicon heat-resistant stainless steel
CN106609344A (en) * 2015-10-26 2017-05-03 威尔机械江苏有限公司 Stainless steel with good weldability and production method thereof
CN106609342A (en) * 2015-10-26 2017-05-03 威尔机械江苏有限公司 Stainless steel with high toughness and production method thereof

Also Published As

Publication number Publication date
JP2003160843A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
US9150947B2 (en) Austenitic stainless steel
JP4952236B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
BRPI1015347B1 (en) FERRITIC STAINLESS STEEL WITH EXCELLENT HEAT RESISTANCE
JP2013503265A (en) Manufacturing method of iron-chromium alloy
US6641780B2 (en) Ferritic stainless steel having high temperature creep resistance
JP6300841B2 (en) Al-containing ferritic stainless steel with excellent high-temperature strength
JP5977854B1 (en) Ferritic stainless steel sheet excellent in carburization resistance and oxidation resistance and method for producing the same
JP3910419B2 (en) Ferritic stainless steel for alcohol fuel reformers
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
JP2005511892A6 (en) Ferritic stainless steel with high temperature creep resistance
JP2016204709A (en) Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method of manufacturing the same
EP3064606B1 (en) Ferritic stainless steel for use in fuel reformer and method of manufacturing ferritic stainless steel
JP3886787B2 (en) Austenitic stainless steel for alcohol fuel reformer
JP2008156692A (en) Ferritic stainless steel for high-temperature device of fuel cell
JP3942876B2 (en) Ferritic stainless steel for hydrocarbon fuel reformer
JP4463663B2 (en) Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof
JP6367259B2 (en) Ferritic stainless steel plate with excellent carburization and oxidation resistance
JP3886785B2 (en) Ferritic stainless steel for petroleum fuel reformers
JP4299507B2 (en) Austenitic stainless steel with excellent red scale resistance
JP3886786B2 (en) Austenitic stainless steel for petroleum fuel reformer
JP4078881B2 (en) Austenitic stainless steel sheet for heat exchanger
JP6971184B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
KR20220071004A (en) High strength Austenitic stainless steel with improved low-temperature toughness in a hydrogen environment
JP6749808B2 (en) Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method for producing the same
JPWO2017073093A1 (en) Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees