JP3884837B2 - Isolation floor device - Google Patents

Isolation floor device Download PDF

Info

Publication number
JP3884837B2
JP3884837B2 JP26676897A JP26676897A JP3884837B2 JP 3884837 B2 JP3884837 B2 JP 3884837B2 JP 26676897 A JP26676897 A JP 26676897A JP 26676897 A JP26676897 A JP 26676897A JP 3884837 B2 JP3884837 B2 JP 3884837B2
Authority
JP
Japan
Prior art keywords
floor
coil spring
spring
load
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26676897A
Other languages
Japanese (ja)
Other versions
JPH11107504A (en
Inventor
武志 山脇
義幸 藤原
幸男 奥田
和夫 海老原
恒一 前田
正孝 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Osaka Gas Co Ltd
Original Assignee
Obayashi Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Osaka Gas Co Ltd filed Critical Obayashi Corp
Priority to JP26676897A priority Critical patent/JP3884837B2/en
Publication of JPH11107504A publication Critical patent/JPH11107504A/en
Application granted granted Critical
Publication of JP3884837B2 publication Critical patent/JP3884837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Floor Finish (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、床をその下方のスラブに弾性支持させて、このスラブから床に入力される上下振動を免振するようにした免振床装置に関する。
【0002】
【従来の技術】
電算機器や計測制御機器等の精密機器類を設置する部屋の場合、それらの設置床は外部からの上下振動を遮断(免振)可能な免振床とするのが望ましく、この様な免振床装置として、床の支持フレームをその下方の支持基盤であるスラブに対して上下変位自在に配置し、当該支持フレームをコイルばねを用いた多数の免振ユニットを介してスラブ上に弾性支持するようにした構造のものがある。
【0003】
ここで、このような免振床装置にあっては、床の固有周期はコイルばねのばね定数と床荷重とによって定まるが、従来にあっては、上記コイルばねには支持荷重に拘わらずばね定数が一定な線形特性を有するものを用い、そのばね定数は床面上に設置される機器類などの重量を含んだ床荷重に合わせて定めることにより、床の固有周期が免振に適した値となるようにしている。また、支持フレームと免振ユニットとの間には、床荷重に相応して縮むコイルばねの変位を吸収して床面を所定の高さに調整するためのレベル調整ボルトを介在させている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の免振床装置では、免振ユニットのコイルばねには、ばね定数が一定な線形特性を有するものを使用しているので、室内に設置する機器類の入れ替えや増設、あるいはレイアウト変更などによって床荷重に変動が来されると、床の固有周期もこれに伴って変化してしまう。このため、このような床荷重の変動が来された後には、上記免振に適する床の固有周期を保持することができなくなって、免振機能が著しく低下されてしまうことになる。従って、このような場合には、変動後の床荷重に適したばね定数の免振ユニットに付け替えねばならず、極めて大がかりな作業が必要になってしまうといった課題があった。
【0005】
また、免振ユニットによって弾性支持した床を地震等の振動外力からより効果的に免振するには、床荷重と免振ユニットのコイルばねの剛性とで決まる固有周期Tを約1.2秒程度に長周期化しておくことが望ましいが、そのためにはコイルばねの剛性(ばね定数)を低く設定する必要がある。
【0006】
ところが、コイルばねの剛性を低くすると、床荷重によるばねの縮み量(変位)は大きくなり、しかもこの大きく変位した状態でさらに地震等の外部振動を有効に吸収し得るようにコイルばねの伸縮ストロークを確保せねばならないので、従来のような線形特性を有するコイルばねを用いた免振床装置では、コイルばねの長さが必然的に長大なものとなってしまう。したがって、これに伴いコイルばねを配置する床とスラブとの間のクリアランスも大きく設定する必要が生じ、よって長周期化を図って免振床を設置しようとすればその分だけ階高が高くなり、建物全体の高さが必要以上に大きくなってしまうという課題があった。また、これは換言すれば、階高に十分な余裕のない既存建物には長周期化を図って従来の免振床は設置し難いということになる。
【0007】
一方、長周期化を図り易いばねとして、空気ばねを採用することが考えられるが、空気ばねを組み込んで免振床装置を構成するには、制御盤や各種エアー機器、配管、補助タンクなどの多数の周辺機器や部品が必要となり、このため装置のコストが高くなり、かつそれだけではなく定期点検整備や部品交換などによるランニングコストも嵩んでしまうことになる。
【0008】
本発明は、上記従来の課題に鑑みてなされたものであり、その目的は、床荷重の大小に拘わらず床の固有周期を略一定の範囲内に維持することができ、しかも床とスラブとの間のクリアランスを大きくとることなく、固有周期の長周期化も図ることができる免振床装置を提供することにある。
【0009】
【課題を解決するための手段】
かかる目的を達成するために本発明にかかる免振床装置は、床をその下方のスラブに対して上下変位自在に配置し、これら床とスラブとの間に介設したコイルばねによりスラブ側から床に伝達される振動を免振するようにした免振床装置において、上記コイルばねに、床荷重の増大に対してばね定数が連続的に増大する非線形ばね特性を有するばねを用い、前記床は、機器類が設置される床面材と、フレームと、該フレーム上に設けられ前記床面材を支持する支持脚とを有し、前記コイルばねの両側に配置されているフレームは、該コイルばねの上半分をU字状に跨ぐように相互に結合されていることを特徴とする。
【0010】
以上の構成により本発明の免振床装置の作用を述べると、コイルばねに、床荷重の増大に対してばね定数が連続的に増大する非線形特性を有するばねを用いたので、[荷重/ばね定数]の平方根に比例する床の固有周期が床荷重の変動にかかわらず略一定に保たれるように設定することができ、地震などの振動外力に対する免振効果を床荷重の荷重変動にかかわりなく良好に保持することができる。また、床荷重が大きいときのばね定数が大きくなるので、当該大荷重時の縮み量は小さくなり、コイルばねの全長を可及的に短く形成して免振床装置の高さを抑えることができ、床の固有周期の長周期化を図り易くなる。また、前記床は、機器類が設置される床面材と、フレームと、該フレーム上に設けられ前記床面材を支持する支持脚とを有し、前記コイルばねの両側に配置されているフレームは、該コイルばねの上半分をU字状に跨ぐように相互に結合されているように構成したので、コイルばねを、床とスラブと間に効果的に設置できる。
【0011】
【発明の実施の形態】
以下、本発明の実施形態について添付図面を参照しつつ詳細に説明する。図1から図4は本発明の免振床装置の一実施形態を示し、図1は免振床装置の断面図、図2は免振床装置に用いられるコイルばねを示す拡大断面図、図3はコイルばねの変形量と荷重変動との関係を示す特性図、図4は床荷重と床の固有周期との関係を示す特性図である。
【0012】
図1に示すように本実施形態の免振床装置は、床12をその下方の支持基盤であるスラブ14に対して上下変位自在に配置し、これら床12とスラブ14との間に免振ユニット10を介在させるようになっており、この免振ユニット10内に設けたコイルばね16で床荷重を支持するとともにスラブ14側から床12に伝達される振動を免振するようになっている。
【0013】
ここで、本実施形態における上記免振ユニット10の基本構成としては、上記コイルばね16には床荷重Fの変動に対するばね定数Kが漸次連続的に増大する非線形特性を有するばねを用いるようにしている。
【0014】
上記免振ユニット10は、スラブ14に設置されるベースプレート18と、床面12側に設けられる上方取付け板20とを備え、これらベースプレート18と上方取付け板20との間に上記コイルばね16が配置される。上記ベースプレート18の中心部からはガイド支柱22が立設されており、このガイド支柱22を中心として上記コイルばね16が配置されるとともに、上記上方取付け板20の中心部はガイド支柱22に摺動自在に挿通されている。
【0015】
また、コイルばね16の上端には、ガイド支柱22に挿通されるガイド部21aを有するスプリングシート21が取り付けられる。また、ベースプレート18と上方取付け板20とにはそれぞれコイルばね16の外周側を覆う筒状部18a,20aが設けられている。
【0016】
上記上方取付け板20の上面には、図において左右方向に延びる矩形の連結板25が一体的に溶接されて立設されており、かつこの連結板25はガイド支柱22を避けてこれを挟むようにして図示する紙面の直交方向両側に並設されている。また、これらの連結板25の左右両側には、それぞれ側方から下方に向けて延びるL字状をした板材でなるフレーム連結部材24がボルトにより一体的に接合されており、このフレーム連結部材24の下端は水平配置されるS造のフレーム28の一端に一体的に溶接接合されている。即ち、免振ユニット10の左右両側に配置されている各フレーム28,28はそれぞれフレーム連結部材24と連結板25とを介して、免振ユニット10の上方取付け板20に結合されていて、しかも両フレーム28,28は上記フレーム連結部材24,24と連結板25とにより、コイルばね16の上半部をU字状に跨ぐようにして相互に結合されている。また、各フレーム28,28の他端は隣設する図外の免振ユニットに同様にフレーム連結部材等を介して結合され、両端が各々免振ユニット10により支持されて水平配置されるようになっている。
【0017】
また、上記上方取付け板20には、これに螺合されてレベル調整ボルト26が設けられ、その先端は当該上方取付け板20を貫通して、上記コイルばね16上端のスプリングシート21に当接している。
【0018】
上記フレーム28の上側には支持脚30を介して床面材13が支持されるようになっており、床面材13,支持脚30,フレーム28,フレーム連結部材24等からなる床12自身の荷重及び床12上に載置される機器類等の荷重は、上記連結板25,上方取付け板20及びレベル調整ボルト26を介して免振ユニット10のスプリングシート21に入力される。尚、上記ガイド支柱22の上方に位置する床面材13には所定の面積をもって切り欠いた点検口13aが設けられ、この点検口13aは蓋13bによって着脱可能に閉止されている。
【0019】
ここで、上記コイルばね16は、SUP9,SUP9A等のばね鋼を用いて形成され、図2に示すように例えばピッチPを一端から他端に行くに従って漸次大きくなるように変化させてある。すなわち、コイルばね16のばね定数Kは材質,スプリング巻回径および線径が同一の場合、ばねとして有効な巻回数が多い程小さく、巻回数が少ない程大きくて、荷重の漸増に従ってピッチPが小さい部分から順に密着してばねとして有効な巻回数が漸減するため、上記コイルばね16のばね定数Kは、ピッチPの小さい一端部からピッチPの大きい他端部にかけて漸増する仕様となる。
【0020】
以上の構成により本実施形態の免振床装置10にあっては、コイルばね16にはピッチPが一方から他方に行くに従って漸次連続的に大きくなる非線形特性を有するばねを用いているので、床荷重Fが比較的小さくてコイルばね16の縮み量(変形)が少ない場合は、上記コイルばね16のほぼ全長で荷重支持するとともに変位の吸収機能を発揮することになり、該コイルばね16全体で得られる小さいばね定数Kが働く。
【0021】
一方、床荷重Fが増大した場合には、コイルばね16の縮み量が大きくなるが、この場合には上記コイルばね16は、荷重に応じてピッチPの小さい部分が除々に潰れて密着していき、ばね定数が大きくまだ密着状態に至っていないピッチPの大きい部分によって変位の吸収機能が発揮されるようになる。
【0022】
図3は床荷重Fの変動とコイルばね16の縮み量(変形)との関係を示すもので、上記コイルばね16のばね特性Xを表す。即ち,縦軸は床荷重であり、O点を基準として床荷重Fを増大させていった場合のコイルばね16の高さ変化を横軸に示している。同図に示すように、このコイルばね16のばね特性は傾き(ばね定数K)が変位とともに連続して大きくなる曲線グラフとなっている。つまり、このばね特性Xでは床荷重Fが小さいときほどその荷重増に対する縮み量は多くく、床荷重Fが大きいときほどその荷重増に対する縮み量は少なくなっていく。
【0023】
ところで、上記床12の固有周期Tは一般に知られるように次の数式1によって得られる。同式中Wは荷重、Kはばね定数、gは重力加速度である。
[数式1]
T=2π(W/K・g)1/2
【0024】
即ち、数式1に示されるように固有周期Tと床荷重Fとの関係は、固有周期Tが[荷重/ばね定数]の平方根に比例するようになっている。ここで、本実施形態では上記図3に示したように床荷重Fの増大に伴ってばね定数Kが連続して増大するので、その固有周期Tを略一定に設定することができる。そして、このときの固有周期Tは図4に示すような特性図となる。即ち、この特性図に示す周期特性Yは上記図3に示した初期値O点に対応した点oがプロットされており、床荷重Fの増大に伴って滑らかに増大する。従って、載置機器等の重量の増減範囲を考慮して予め想定した通常使用範囲の床荷重Fに合わせて、上記コイルばね16のばね定数Kを図3に示す荷重と高さの関係に設定しておくことにより、当該通常使用領域Rにおいて上記固有周期Tを略1.2秒前後の範囲に収めることができる。
【0025】
このように、床荷重Fの変動にかかわらず床12の固有周期Tを略1.2秒前後の範囲に長周期化できることにより、地震等の振動外力に対して著しい免振効果を発揮させることができる。
【0026】
ここで、載置機器の増設や移設、並びにレイアウト変更等により床荷重Fが変動されると、当然に床12の沈み込み量が変わってしまうが、床面の高さはレベル調整ボルト26によって容易に所定の高さSに再設定調節可能であるから、レベル調整ボルト26を操作して高さ調整をおこなうだけの簡単な作業ですみ、コイルばね16の交換といった大がかりな作業を行う必要がない。
【0027】
また、上記コイルばね16は大荷重時ほど、そのばね定数Kが大きくなるため、従来の線形特性を呈するものに比べて、コイルばね16のばね長を可及的に短く形成することができ、よって免振ユニット10の高さを低くでき、床12とスラブ14との間隔Sを小さくして、建物が不必要に高くなるのを防止することができる。これは換言すれば、階高にあまり余裕のない既存の建物に対しても長周期化を図った免振床装置を設置することが可能になることを意味する。
【0028】
また、本実施形態では上記コイルばね16には、ピッチPが漸次変化するものを使用して構成した場合を開示したが、これに限ることなくコイルの巻回径を漸次変化させたり、線径が漸増するばね素材を用いることによっても同様の機能を得ることができる。
【0029】
【発明の効果】
以上説明したように本発明の請求項1に示す免振床装置にあっては、免振ユニットのコイルばねに、床荷重の増大に対するばね定数が漸次連続的に強まる非線形特性を有したばねを用いたので、[荷重/ばね定数]の平方根に比例する床の固有周期を床荷重の変動にかかわらず略一定の範囲内に保持することができる。従って、室内に設置する機器類の入れ替えや増設、あるいはレイアウト変更などによって床荷重に変動が来されても、地震などの振動外力に対する免振効果を良好に維持することができ、免震ユニットのコイルばねを交換する必要がない。また、前記床は、機器類が設置される床面材と、フレームと、該フレーム上に設けられ前記床面材を支持する支持脚とを有し、前記コイルばねの両側に配置されているフレームは、該コイルばねの上半分をU字状に跨ぐように相互に結合されているように構成したので、コイルばねを、床とスラブと間に効果的に設置できる。
【0030】
また、コイルばねの縮み量が大きくなるに連れて大きなばね定数をもって床荷重を支持することができるため、当該コイルばねの全長を可及的に短く形成し得、よって免振床装置の高さを低く構成することが可能となり、床面とスラブとの間の間隔を小さくして建物が不必要に高くなるのを防止することができ、階高にあまり余裕のない既存の建物に対しても長周期化を図った免振床装置を設置することが可能になる。
【0031】
また、床荷重の変動に対するコイルばねのばね定数変化が滑らであり、固有周期も滑らかに変化するから、振動入力時における床の揺動を滑らかに抑制することができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の免振床装置の一実施形態を示す断面図である。
【図2】本発明の免振床装置に用いられる非線形コイルばねの一実施形態を示す拡大図である。
【図3】本発明の免振床装置の一実施形態に用いられる非線形コイルばねの変形量と荷重変動との関係を示す特性図である。
【図4】本発明の免振床装置の一実施形態における床荷重と床の固有周期との関係を示す特性図である。
【符号の説明】
10 免振ユニット
12 床
14 スラブ
16 コイルばね
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration-isolating floor device in which a floor is elastically supported by a slab below the floor so that vertical vibrations input from the slab to the floor are isolated.
[0002]
[Prior art]
In the case of a room where precision equipment such as computer equipment and measurement control equipment is installed, it is desirable that those floors be isolated floors that can block external vibrations (isolation). As a floor device, a floor support frame is disposed so as to be vertically displaceable with respect to a slab which is a support base below the floor apparatus, and the support frame is elastically supported on the slab via a number of vibration isolation units using coil springs. There is a thing of such a structure.
[0003]
Here, in such a vibration-isolating floor device, the natural period of the floor is determined by the spring constant of the coil spring and the floor load. Conventionally, the coil spring has a spring regardless of the supporting load. Using a constant constant linear characteristic, the spring constant is determined according to the floor load including the weight of equipment installed on the floor surface, so that the natural period of the floor is suitable for vibration isolation. Value. Further, a level adjustment bolt is interposed between the support frame and the vibration isolation unit to absorb the displacement of the coil spring that contracts in accordance with the floor load and adjust the floor surface to a predetermined height.
[0004]
[Problems to be solved by the invention]
However, in the above conventional vibration isolation floor device, the coil spring of the vibration isolation unit uses a linear spring with a constant spring constant, so that the equipment installed in the room is replaced, expanded, or laid out. When the floor load changes due to a change or the like, the natural period of the floor also changes accordingly. For this reason, after such a change in floor load occurs, the natural period of the floor suitable for the above-mentioned vibration isolation cannot be maintained, and the vibration isolation function is significantly deteriorated. Therefore, in such a case, it is necessary to replace the vibration isolator unit with a spring constant suitable for the changed floor load, and there is a problem that a very large work is required.
[0005]
In addition, in order to more effectively isolate the floor elastically supported by the vibration isolation unit from vibration external forces such as earthquakes, the natural period T determined by the floor load and the rigidity of the coil spring of the vibration isolation unit is about 1.2 seconds. Although it is desirable to make the period long, it is necessary to set the rigidity (spring constant) of the coil spring low.
[0006]
However, if the rigidity of the coil spring is lowered, the amount of spring contraction (displacement) due to the floor load increases, and the coil spring expansion / contraction stroke can effectively absorb external vibrations such as earthquakes in this greatly displaced state. Therefore, in a vibration-isolating floor device using a coil spring having a linear characteristic as in the prior art, the length of the coil spring is inevitably long. Therefore, it is necessary to set a large clearance between the floor on which the coil spring is arranged and the slab. Therefore, if an attempt is made to install a vibration-isolating floor with a longer period, the floor height will increase accordingly. There was a problem that the height of the entire building would become larger than necessary. In other words, this means that it is difficult to install a conventional vibration-isolating floor in an existing building that does not have enough room for the floor height and to increase the period.
[0007]
On the other hand, it is conceivable to adopt an air spring as a spring that can easily increase the period, but in order to construct a vibration-isolating floor device incorporating the air spring, a control panel, various air devices, piping, auxiliary tanks, etc. A large number of peripheral devices and parts are required, which increases the cost of the apparatus and increases the running cost due to periodic inspection and maintenance and parts replacement.
[0008]
The present invention has been made in view of the above-described conventional problems. The purpose of the present invention is to maintain the natural period of the floor within a substantially constant range regardless of the size of the floor load. An object of the present invention is to provide a vibration-isolating floor device that can increase the natural period without increasing the clearance between the two.
[0009]
[Means for Solving the Problems]
In order to achieve such an object, the vibration-isolating floor device according to the present invention arranges a floor so as to be vertically displaceable with respect to a slab below the floor, and from the slab side by a coil spring interposed between the floor and the slab. in immune Fuyuka device designed to vibration isolation of the vibrations transmitted to the floor, to the coil spring, with a spring having a nonlinear spring characteristic that the spring constant increases continuously with respect to increase in floor loading, the floor Has a floor surface material on which equipment is installed, a frame, and support legs provided on the frame and supporting the floor surface material, and the frames disposed on both sides of the coil spring include: The coil springs are connected to each other so as to straddle the upper half of the coil spring .
[0010]
The operation of the vibration-isolating floor device of the present invention having the above configuration is described. Since the spring having a nonlinear characteristic in which the spring constant continuously increases with an increase in the floor load is used as the coil spring, [Load / Spring The natural period of the floor, which is proportional to the square root of the [Constant], can be set to be substantially constant regardless of the floor load fluctuation, and the vibration isolation effect against vibration external forces such as earthquakes is related to the load fluctuation of the floor load. And can be held well. In addition, since the spring constant when the floor load is large becomes large, the amount of shrinkage at the time of the large load becomes small, and the overall length of the coil spring can be made as short as possible to suppress the height of the vibration isolation floor device. This makes it easier to increase the natural period of the floor. The floor includes a floor surface material on which devices are installed, a frame, and support legs provided on the frame and supporting the floor surface material, and are disposed on both sides of the coil spring. Since the frame is configured to be coupled to each other so as to straddle the upper half of the coil spring in a U-shape, the coil spring can be effectively installed between the floor and the slab.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 to 4 show an embodiment of the vibration isolation floor device of the present invention, FIG. 1 is a sectional view of the vibration isolation floor device, and FIG. 2 is an enlarged sectional view showing a coil spring used in the vibration isolation floor device. 3 is a characteristic diagram showing the relationship between the amount of deformation of the coil spring and the load fluctuation, and FIG. 4 is a characteristic diagram showing the relationship between the floor load and the natural period of the floor.
[0012]
As shown in FIG. 1, the vibration-isolating floor device according to the present embodiment arranges a floor 12 so as to be vertically displaceable with respect to a slab 14 that is a support base below the floor 12 and dampens the vibration between the floor 12 and the slab 14. A unit 10 is interposed, and a floor load is supported by a coil spring 16 provided in the vibration isolation unit 10 and vibration transmitted from the slab 14 side to the floor 12 is isolated. .
[0013]
Here, as a basic configuration of the vibration isolation unit 10 in the present embodiment, a spring having a non-linear characteristic in which the spring constant K with respect to the fluctuation of the floor load F gradually increases is used for the coil spring 16. Yes.
[0014]
The vibration isolation unit 10 includes a base plate 18 installed on the slab 14 and an upper mounting plate 20 provided on the floor 12 side, and the coil spring 16 is disposed between the base plate 18 and the upper mounting plate 20. Is done. A guide column 22 is erected from the center of the base plate 18, the coil spring 16 is disposed around the guide column 22, and the center of the upper mounting plate 20 slides on the guide column 22. It is inserted freely.
[0015]
A spring seat 21 having a guide portion 21 a inserted through the guide column 22 is attached to the upper end of the coil spring 16. The base plate 18 and the upper mounting plate 20 are provided with cylindrical portions 18a and 20a that cover the outer peripheral side of the coil spring 16, respectively.
[0016]
On the upper surface of the upper mounting plate 20, a rectangular connecting plate 25 extending in the left-right direction in the drawing is integrally welded, and the connecting plate 25 is sandwiched by avoiding the guide column 22. They are juxtaposed on both sides in the orthogonal direction of the paper surface shown. Further, frame connecting members 24 made of L-shaped plate members extending downward from the sides are integrally joined to the left and right sides of these connecting plates 25 by bolts. Is integrally welded to one end of an S frame 28 that is horizontally disposed. That is, the frames 28 and 28 arranged on the left and right sides of the vibration isolation unit 10 are coupled to the upper mounting plate 20 of the vibration isolation unit 10 via the frame coupling member 24 and the coupling plate 25, respectively. Both the frames 28 and 28 are connected to each other by the frame connecting members 24 and 24 and the connecting plate 25 so as to straddle the upper half of the coil spring 16 in a U shape. Further, the other ends of the frames 28 and 28 are coupled to adjacent vibration-isolating units (not shown) via frame connecting members or the like, and both ends are respectively supported by the vibration-isolating unit 10 and horizontally disposed. It has become.
[0017]
Further, the upper mounting plate 20 is provided with a level adjusting bolt 26 which is screwed to the upper mounting plate 20, and the tip of the upper mounting plate 20 penetrates the upper mounting plate 20 and comes into contact with the spring seat 21 at the upper end of the coil spring 16. Yes.
[0018]
The floor material 13 is supported on the upper side of the frame 28 via the support legs 30, and the floor 12 itself composed of the floor material 13, the support legs 30, the frame 28, the frame connecting member 24, and the like. The load and the load of equipment and the like placed on the floor 12 are input to the spring seat 21 of the vibration isolation unit 10 through the connection plate 25, the upper mounting plate 20 and the level adjustment bolt 26. The floor member 13 located above the guide column 22 is provided with an inspection port 13a cut out with a predetermined area, and the inspection port 13a is detachably closed by a lid 13b.
[0019]
Here, the coil spring 16 is formed using spring steel such as SUP9, SUP9A, etc., and as shown in FIG. 2, for example, the pitch P is gradually increased from one end to the other end. That is, when the material, the spring winding diameter and the wire diameter are the same, the spring constant K of the coil spring 16 is smaller as the number of effective windings is larger, and is larger as the number of windings is smaller. Since the effective number of turns as a spring gradually decreases in close contact with a small portion, the spring constant K of the coil spring 16 is a specification that gradually increases from one end portion with a small pitch P to the other end portion with a large pitch P.
[0020]
With the above-described configuration, in the vibration isolation floor device 10 of the present embodiment, the coil spring 16 uses a spring having a nonlinear characteristic that gradually increases as the pitch P goes from one to the other. When the load F is relatively small and the amount of contraction (deformation) of the coil spring 16 is small, the coil spring 16 is supported by the entire length of the coil spring 16 and exhibits a displacement absorbing function. The resulting small spring constant K works.
[0021]
On the other hand, when the floor load F increases, the amount of contraction of the coil spring 16 increases. In this case, the coil spring 16 is gradually crushed in close contact with a portion having a small pitch P according to the load. The displacement absorbing function is exhibited by the large portion of the pitch P, which has a large spring constant and has not yet been in close contact.
[0022]
FIG. 3 shows the relationship between the fluctuation of the floor load F and the amount of contraction (deformation) of the coil spring 16, and represents the spring characteristic X of the coil spring 16. That is, the vertical axis represents the floor load, and the horizontal axis represents the change in the height of the coil spring 16 when the floor load F is increased with the point O as a reference. As shown in the figure, the spring characteristic of the coil spring 16 is a curve graph in which the slope (spring constant K) continuously increases with displacement. That is, in this spring characteristic X, the smaller the floor load F, the greater the amount of shrinkage with respect to the load increase, and the greater the floor load F, the smaller the amount of shrinkage with respect to the load increase.
[0023]
By the way, the natural period T of the floor 12 is obtained by the following formula 1 as generally known. In the equation, W is a load, K is a spring constant, and g is a gravitational acceleration.
[Formula 1]
T = 2π (W / K · g) 1/2
[0024]
That is, as shown in Equation 1, the natural period T and the floor load F are such that the natural period T is proportional to the square root of [load / spring constant]. Here, in the present embodiment, as shown in FIG. 3, the spring constant K continuously increases as the floor load F increases, so that the natural period T can be set to be substantially constant. And the natural period T at this time becomes a characteristic diagram as shown in FIG. That is, in the periodic characteristic Y shown in this characteristic diagram, a point o corresponding to the initial value O point shown in FIG. 3 is plotted, and increases smoothly as the floor load F increases. Accordingly, the spring constant K of the coil spring 16 is set to the relationship between the load and the height shown in FIG. 3 in accordance with the floor load F in the normal use range assumed in advance in consideration of the range of weight increase / decrease of the mounting device. By doing so, the natural period T can be kept in the range of about 1.2 seconds in the normal use region R.
[0025]
As described above, the natural period T of the floor 12 can be extended in a range of about 1.2 seconds regardless of the variation of the floor load F, thereby exhibiting a significant vibration isolation effect against vibration external forces such as earthquakes. Can do.
[0026]
Here, if the floor load F is fluctuated due to the addition or relocation of the mounting equipment, the layout change, etc., the sinking amount of the floor 12 naturally changes, but the height of the floor surface is adjusted by the level adjusting bolt 26. Since it is possible to easily reset and adjust to the predetermined height S, only a simple operation of adjusting the height by operating the level adjusting bolt 26 is necessary, and it is necessary to perform a large-scale operation such as replacement of the coil spring 16. Absent.
[0027]
Moreover, since the spring constant K of the coil spring 16 increases as the load increases, the spring length of the coil spring 16 can be made as short as possible compared to the conventional one that exhibits linear characteristics. Therefore, the height of the vibration isolation unit 10 can be reduced, and the space S between the floor 12 and the slab 14 can be reduced to prevent the building from becoming unnecessarily high. In other words, this means that it is possible to install a vibration-isolating floor device with a long period even for an existing building that does not have much room for floor height.
[0028]
Further, in the present embodiment, the case where the coil spring 16 is configured to use the one in which the pitch P gradually changes is disclosed. However, the present invention is not limited to this, and the coil winding diameter is gradually changed or the wire diameter is changed. The same function can be obtained by using a spring material that gradually increases.
[0029]
【The invention's effect】
As described above, in the vibration-isolating floor device according to claim 1 of the present invention, the coil spring of the vibration-isolating unit is provided with a spring having a nonlinear characteristic in which the spring constant with respect to an increase in floor load gradually increases. Since it is used, the natural period of the floor proportional to the square root of [load / spring constant] can be maintained within a substantially constant range regardless of the variation in floor load. Therefore, even if floor loads fluctuate due to replacement or expansion of equipment installed in the room, or layout change, etc., it is possible to maintain a good isolation effect against vibration external forces such as earthquakes. There is no need to replace the coil spring. The floor includes a floor surface material on which devices are installed, a frame, and support legs provided on the frame and supporting the floor surface material, and are disposed on both sides of the coil spring. Since the frame is configured to be coupled to each other so as to straddle the upper half of the coil spring in a U-shape, the coil spring can be effectively installed between the floor and the slab.
[0030]
Further, since the floor load can be supported with a large spring constant as the amount of contraction of the coil spring increases, the overall length of the coil spring can be made as short as possible, and thus the height of the vibration isolation floor device can be reduced. It is possible to reduce the space between the floor surface and the slab and prevent the building from becoming unnecessarily high. It is also possible to install a vibration isolation floor device with a longer period.
[0031]
Further, since the spring constant change of the coil spring with respect to the fluctuation of the floor load is smooth and the natural period also changes smoothly, there is an excellent effect that the swing of the floor at the time of vibration input can be suppressed smoothly.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a vibration isolation floor device of the present invention.
FIG. 2 is an enlarged view showing an embodiment of a non-linear coil spring used in the vibration-isolating floor device of the present invention.
FIG. 3 is a characteristic diagram showing a relationship between a deformation amount of a non-linear coil spring and a load fluctuation used in an embodiment of the vibration isolation floor device of the present invention.
FIG. 4 is a characteristic diagram showing the relationship between the floor load and the natural period of the floor in one embodiment of the vibration-isolating floor device of the present invention.
[Explanation of symbols]
10 Isolation unit 12 Floor 14 Slab 16 Coil spring

Claims (1)

床をその下方のスラブに対して上下変位自在に配置し、これら床とスラブとの間に介設したコイルばねによりスラブ側から床に伝達される振動を免振するようにした免振床装置において、
上記コイルばねに、床荷重の増大に対してばね定数が連続的に増大する非線形ばね特性を有するばねを用い、
前記床は、機器類が設置される床面材と、フレームと、該フレーム上に設けられ前記床面材を支持する支持脚とを有し、
前記コイルばねの両側に配置されているフレームは、該コイルばねの上半分をU字状に跨ぐように相互に結合されていることを特徴とする免振床装置。
A floor-isolated floor device in which the floor is disposed so as to be freely displaced up and down with respect to the slab below, and the vibration transmitted from the slab side to the floor is isolated by a coil spring interposed between the floor and the slab. In
For the coil spring, a spring having a non-linear spring characteristic in which a spring constant continuously increases with an increase in floor load is used.
The floor has a floor surface material on which equipment is installed, a frame, and a support leg that is provided on the frame and supports the floor surface material,
Frames arranged on both sides of the coil spring are coupled to each other so as to straddle the upper half of the coil spring in a U-shape .
JP26676897A 1997-09-30 1997-09-30 Isolation floor device Expired - Fee Related JP3884837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26676897A JP3884837B2 (en) 1997-09-30 1997-09-30 Isolation floor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26676897A JP3884837B2 (en) 1997-09-30 1997-09-30 Isolation floor device

Publications (2)

Publication Number Publication Date
JPH11107504A JPH11107504A (en) 1999-04-20
JP3884837B2 true JP3884837B2 (en) 2007-02-21

Family

ID=17435441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26676897A Expired - Fee Related JP3884837B2 (en) 1997-09-30 1997-09-30 Isolation floor device

Country Status (1)

Country Link
JP (1) JP3884837B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044561A (en) * 2004-08-06 2006-02-16 Kobelco Contstruction Machinery Ltd Track spring for crawler traveling body
JP2007078122A (en) * 2005-09-15 2007-03-29 Kurashiki Kako Co Ltd Vibration damper
JP5572553B2 (en) 2007-12-11 2014-08-13 アイゼントロピック リミテッド valve
JP5668628B2 (en) * 2011-07-21 2015-02-12 新日鐵住金株式会社 Railcar steering wheel
JP2013190270A (en) * 2012-03-13 2013-09-26 Nidec-Read Corp Probe and connection jig
JP2014024601A (en) * 2012-06-22 2014-02-06 Nippon Express Co Ltd Freight transportation pallet device
WO2017170833A1 (en) * 2016-03-31 2017-10-05 日本発條株式会社 Coil spring
WO2018131316A1 (en) * 2017-01-12 2018-07-19 株式会社Soken Vibration damping device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108601A (en) * 1978-02-14 1979-08-25 Pioneer Electronic Corp Audio insulator
JPS636361Y2 (en) * 1980-09-05 1988-02-23
JPH0473631U (en) * 1990-11-07 1992-06-29
JPH0732242U (en) * 1991-06-28 1995-06-16 東洋電機製造株式会社 Unequal pitch coil spring
JPH0914316A (en) * 1995-06-27 1997-01-14 Ishikawajima Harima Heavy Ind Co Ltd Coil spring for preventing horizontal deformation

Also Published As

Publication number Publication date
JPH11107504A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
US4565039A (en) Floor structure for reducing vibration
US5390892A (en) Vibration isolation system
JP4936161B2 (en) 3D seismic isolation device
US8132773B1 (en) Passive thermal control of negative-stiffness vibration isolators
KR101510214B1 (en) Seismic Resistant Support Frame of Equipment Equipped with Isolation Properties and Vertical Vibration Reduction Device
JP3884837B2 (en) Isolation floor device
JP3884836B2 (en) Isolation floor device
KR102217095B1 (en) A seismic isolator of power supply
US5327692A (en) Vertical vibration control device
JP3884835B2 (en) Isolation floor device
JPH07139589A (en) Vibration-proof frame
WO2019020991A1 (en) Building, integrated damping unit, and method of damping
BE1024071A1 (en) ELASTIC SUPPORT WITH OPTIL SAFETY AND METHOD FOR DISCONNECTING CORE CORDS AND WALLS OF BUILDINGS
JP3576281B2 (en) Seismic isolation device
JPH07150810A (en) Damping device
JP3053604B2 (en) Base-isolated floor structure
JPH1130278A (en) Base isolation construction
JP4030447B2 (en) Unit type building with seismic isolation device
JP2006029593A (en) Vibration eliminating device
JP5106112B2 (en) Support structure and fixing element and method
JPH10169241A (en) Base-isolated building
JP6641970B2 (en) Unit-type vibration damping device and vibration-isolation gantry equipped with the unit-type vibration damping device
JP3022681B2 (en) Vibration isolation device
JP3879277B2 (en) Vibration isolator
JP4300647B2 (en) Seismic isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees