WO2018131316A1 - Vibration damping device - Google Patents

Vibration damping device Download PDF

Info

Publication number
WO2018131316A1
WO2018131316A1 PCT/JP2017/043184 JP2017043184W WO2018131316A1 WO 2018131316 A1 WO2018131316 A1 WO 2018131316A1 JP 2017043184 W JP2017043184 W JP 2017043184W WO 2018131316 A1 WO2018131316 A1 WO 2018131316A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
coil spring
vibration
defining
axis direction
Prior art date
Application number
PCT/JP2017/043184
Other languages
French (fr)
Japanese (ja)
Inventor
康裕 川瀬
松田 三起夫
和宏 林
和弘 多田
義夫 山崎
Original Assignee
株式会社Soken
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017221141A external-priority patent/JP2018112309A/en
Application filed by 株式会社Soken, 株式会社デンソー filed Critical 株式会社Soken
Publication of WO2018131316A1 publication Critical patent/WO2018131316A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/06Wound springs with turns lying in cylindrical surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/12Attachments or mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/02Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction
    • F16F3/04Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction composed only of wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/12Vibration or noise prevention thereof

Definitions

  • This disclosure relates to a vibration isolator that suppresses vibration transmission.
  • Patent Document 1 discloses a vibration isolating bush in which a gap is provided in a part of a rubber elastic body disposed between an inner cylinder and an outer cylinder.
  • This anti-vibration bushing has a structure in which a non-linear spring characteristic is obtained in which a part of the elastic body is in contact with the wall of the air gap facing the elastic body when the amplitude is large, and the spring constant is larger than that when the amplitude is small.
  • the anti-vibration bush disclosed in Patent Document 1 changes the spring constant in one direction in which the shape of the gap of the elastic member changes, and vibrations having different amplitudes in the direction in which the shape of the gap in the elastic member does not change. If this works, vibration transmission cannot be sufficiently suppressed.
  • This disclosure is intended to provide a vibration isolator having non-linear elastic characteristics in two different directions.
  • This disclosure is directed to a vibration isolator that connects the first vibration generation unit and the second vibration generation unit and suppresses transmission of vibration.
  • the vibration isolator is The invention described in claim 1 A rod-shaped member connecting the first vibration generating unit and the second vibration generating unit; An elastic member that suppresses transmission of one vibration of the first vibration generating unit and the second vibration generating unit to the other through the rod-shaped member; A displacement restricting portion that restricts displacement of the rod-like member in the elastic member in the intersecting direction intersecting the rod axis direction.
  • the elastic member has a characteristic that the elastic constant in the rod axis direction increases as the load acting in the rod axis direction increases, and the displacement limiter and the displacement limiting portion increase as the displacement amount in the cross direction in the elastic member increases.
  • the contact area is configured to be large.
  • the elastic member is configured such that when the load acting in the intersecting direction is increased, the contact area with the displacement limiting portion is increased, so that the elastically deformable range is reduced.
  • the elastic member since the elastic member has the characteristic that the elastic constant in the cross direction increases as the load acting in the cross direction increases, even if vibrations with different amplitudes act in the rod diameter direction The transmission of vibration can be suppressed by the elastic member.
  • the vibration isolator is A rod-shaped member connecting the first vibration generating unit and the second vibration generating unit; An elastic member that suppresses transmission of one vibration of the first vibration generating unit and the second vibration generating unit to the other through the rod-shaped member; A first axial direction defining portion for defining a position of one end side of the rod-shaped member of the rod-shaped member in the elastic member; A second axial direction defining portion that defines a position on the other end side in the rod axial direction of the elastic member.
  • the elastic member has a characteristic that the elastic constant in the crossing direction increases as the load acting in the crossing direction crossing the rod axis direction increases. Furthermore, the elastic member is configured such that the contact area with one of the first axial direction defining portion and the second axial direction defining portion increases as the amount of displacement of the elastic member in the rod axial direction increases.
  • the elastic member when the load acting in the rod axis direction increases, the elastic member has a larger contact area with one of the first axial direction defining portion and the second axial direction defining portion, thereby reducing the elastic deformation range. It is configured as follows.
  • the elastic member since the elastic member has the characteristic that the elastic constant in the rod axis direction increases as the load acting in the rod axis direction increases, this is the case when vibrations with different amplitudes act in the rod axis direction. However, the transmission of vibration can be suppressed by the elastic member.
  • a vehicle air conditioner 10 shown in FIG. 1 is an apparatus that is applied to a vehicle such as an automobile equipped with an engine EG, and adjusts the temperature in the passenger compartment to a desired temperature.
  • the vehicle air conditioner 10 of the present embodiment is composed of an auto air conditioner system in which an air conditioning unit 11 that air-conditions a passenger compartment is controlled by a control device ECU.
  • the control device ECU is a device that controls the operation of various control devices for air conditioning.
  • the air conditioning unit 11 is disposed inside the instrument panel at the forefront of the vehicle interior.
  • the air conditioning unit 11 houses an indoor blower 13, an evaporator 14, a heater core 15 and the like inside an air conditioning case 12 that forms an outer shell thereof.
  • the air conditioning case 12 has an air passage for air to be blown into the vehicle interior, and is formed of, for example, a resin such as polypropylene.
  • an inside / outside air switching box 16 for switching and introducing the inside air as the cabin air and the outside air as the cabin outside air is arranged.
  • An indoor blower 13 is disposed on the downstream side of the air flow of the inside / outside air switching box 16 to blow the air sucked through the inside / outside air switching box 16 toward the vehicle interior.
  • the indoor blower 13 is composed of an electric blower that drives an impeller by an electric motor.
  • An evaporator 14 is disposed on the downstream side of the air flow of the indoor blower 13.
  • the evaporator 14 is a cooling heat exchanger that cools the blown air by exchanging heat between the refrigerant flowing through the evaporator 14 and the blown air.
  • the air conditioning case 12 on the downstream side of the air flow of the evaporator 14, the hot air passage 20 and the cold air passage 21 through which the air after passing through the evaporator 14 flows, and the air that has flowed out of the hot air passage 20 and the cold air passage 21.
  • a mixing space 22 for mixing the two is formed.
  • a heater core 15 for heating the air after passing through the evaporator 14 is disposed in the hot air passage 20.
  • the heater core 15 is a heat exchanger for heating that heats the blown air by exchanging heat between the hot water flowing inside the blower air. Hot water warmed by the engine EG flows into the heater core 15, and air is heated by heat exchange between the flowing warm water and air.
  • the cold air passage 21 is an air passage for guiding the air after passing through the evaporator 14 to the mixing space 22 without passing through the heater core 15. Therefore, the temperature of the air mixed in the mixing space 22 varies depending on the air volume ratio of the air passing through the hot air passage 20 and the air passing through the cold air passage 21.
  • the air mix that changes the air volume ratio of the cold air flowing into the hot air passage 20 and the cold air passage 21 on the downstream side of the air flow of the evaporator 14 and on the inlet side of the hot air passage 20 and the cold air passage 21.
  • a door 23 is arranged.
  • the air mix door 23 functions as a temperature adjusting means for adjusting the air temperature in the mixing space 22.
  • the evaporator 14 constitutes a vapor compression refrigeration cycle together with the compressor 24, the condenser 25, the expansion valve 26, the gas-liquid separator 28, and the like.
  • the compressor 24 is disposed in the engine room.
  • the compressor 24 sucks refrigerant in the refrigeration cycle and compresses and discharges the sucked refrigerant.
  • the compressor 24 is driven by an engine EG mounted in the engine room of the vehicle.
  • the condenser 25 is a radiator that is arranged in the engine room and causes the compressed refrigerant to be condensed and liquefied by exchanging heat between the refrigerant circulating inside and the outside air.
  • the gas-liquid separator 28 separates the gas-liquid two-phase refrigerant flowing out from the condenser 25 into a liquid refrigerant and a gas refrigerant.
  • the expansion valve 26 is decompression means for decompressing and expanding the liquid refrigerant separated by the gas-liquid separator 28.
  • the evaporator 14 is a heat absorber that evaporates and evaporates the refrigerant decompressed and expanded by the expansion valve 26 by heat exchange between the refrigerant and the blown air.
  • the refrigerant discharged from the compressor 24 flows in the order of the condenser 25, the gas-liquid separator 28, the expansion valve 26, and the evaporator 14, and then is sucked into the compressor 24 again.
  • the compressor 24 is attached to the engine EG via a suspension device 30 in the engine room.
  • the suspension device 30 functions as an anti-vibration device that connects the engine EG that forms the first vibration generating unit and the compressor 24 that forms the second vibration generating unit, and suppresses vibration transmission.
  • the compressor 24 of the present embodiment is attached to the engine EG via four suspension devices 30.
  • the outer shape of the compressor 24 is modeled into a cylindrical shape
  • the outer shape of the engine EG is modeled into a rectangular parallelepiped shape.
  • the compressor 24 of this embodiment is attached to the engine EG, when the compressor 24 vibrates, the vibration is transmitted to the engine EG.
  • the vibration caused by the vibration of the engine 24 and the driving sound of the engine EG are radiated to the outside of the passenger compartment.
  • the noise on the engine EG side is low, such as when the engine EG is stopped, the sound caused by the vibration of the compressor 24 is not easily erased by the noise on the engine EG side. That is, when the noise on the engine EG side is small, noise due to the vibration of the compressor 24 is likely to be a problem.
  • the suspension device 30 that connects the engine EG and the compressor 24 needs to have an elastic characteristic with a small elastic constant so that transmission of vibration with a minute amplitude such as vibration of the compressor 24 can be suppressed. Is done.
  • the engine EG may generate a vibration with a large amplitude depending on the operating condition.
  • the vibration with a large amplitude is generated in the engine EG, if the elastic characteristic of the suspension device 30 is maintained in a state where the elastic constant is small, it becomes difficult for the suspension device 30 to absorb the vibration. If the suspension device 30 cannot absorb vibration, the vibration of the engine EG is transmitted to the compressor 24, and the durability of the compressor 24 may be impaired.
  • the suspension device 30 needs not only a vibration with a small amplitude such as the vibration of the compressor 24 but also an elastic characteristic with a large elastic constant so that transmission of a vibration with a large amplitude can be suppressed. Is done.
  • the suspension device 30 of the present embodiment has a non-linear elastic characteristic in which the elastic constant increases as the amplitude of vibration input to the suspension device 30 increases.
  • the structure of the suspension device 30 of the present embodiment will be described with reference to FIG.
  • the suspension device 30 is provided at a connecting portion that connects the engine-side housing EGH of the engine EG and the compressor-side housing 240 of the compressor 24.
  • the suspension device 30 of the present embodiment includes a rod-shaped member 40 formed in a rod shape, a first suspension portion 50 disposed on one end side of the rod-shaped member 40, and a second suspension portion disposed on the other end side of the rod-shaped member 40. 60.
  • the rod-shaped member 40 is disposed so as to extend along the intersecting direction (specifically, the horizontal direction) that intersects the vertical direction, which is the direction of gravity. That is, the rod-shaped member 40 is disposed such that the axis CL extends along the horizontal direction.
  • DRa shown in FIG. 3 has shown the rod axial direction which is the direction where the axial center CL of the rod-shaped member 40 is extended.
  • DRr shown in FIG. 3 indicates a rod radial direction that is a direction orthogonal to the rod axis direction DRa of the rod-shaped member 40.
  • the rod-shaped member 40 of the present embodiment is composed of, for example, a hexagon bolt.
  • the rod-shaped member 40 includes a male screw portion 41 formed on one end side in the rod axis direction DRa, a substantially hexagonal head portion 42 formed on the other end side in the rod axis direction DRa, a male screw portion 41 and the head portion 42.
  • the intermediate shaft part 43 is provided.
  • an insertion hole 241 through which the rod-shaped member 40 is inserted is formed at a connection portion with the engine EG.
  • the engine-side housing EGH is formed with a screw hole EGS at a connection portion with the compressor 24.
  • the male screw portion 41 of the rod-shaped member 40 is screwed into the screw hole EGS.
  • the compressor-side housing 240 is formed with a first housing portion 242 and a second housing portion 243 for housing a first holder portion 52, a second holder portion 62, and the like, which will be described later, on both sides of the opening portion of the insertion hole 241. ing.
  • the 1st accommodating part 242 and the 2nd accommodating part 243 are comprised by the bottomed hole used as a larger diameter than the insertion hole 241. FIG.
  • the first suspension part 50 is provided on one end side of the intermediate shaft part 43 of the rod-shaped member 40 that is close to the engine-side housing EGH.
  • the first suspension unit 50 includes a first coil spring 51 that suppresses vibration transmission between the engine EG and the compressor 24, a first holder unit 52 that houses the first coil spring 51, and the first coil spring 51 in the rod axis direction DRa.
  • a first end position defining portion 53 that defines the positions of both end portions is provided.
  • the first coil spring 51 is an elastic member that suppresses transmission of vibration of one of the engine EG and the compressor 24 to the other through the rod-shaped member 40.
  • the first coil spring 51 is composed of a conical coil spring wound with a wire 510 so that the coil diameter increases from one end side toward the other end side.
  • the first coil spring 51 is arranged such that the coil center axis connecting the centers of the coil diameters extends along the rod axis direction DRa of the rod-shaped member 40.
  • the first coil spring 51 of the present embodiment is arranged so that the small diameter end portion with the smallest coil diameter is located on the engine EG side.
  • the first coil spring 51 of the present embodiment is configured such that a part of the wire 510 adjacent in the rod axis direction DRa overlaps in the rod axis direction DRa. Accordingly, the first coil spring 51 is configured such that when a load is applied from the rod axis direction DRa, a part of the adjacent wire 510 is brought into contact.
  • the first coil spring 51 of the present embodiment is formed of a wire material in which the wire material 510 has a circular cross section.
  • the 1st coil spring 51 may be comprised with the deformed wire which becomes a cross-sectional square shape, for example.
  • the first holder part 52 is fixed to the first housing part 242 by press fitting or the like.
  • the 1st holder part 52 is comprised by the cylinder shape so that the 1st coil spring 51 can be accommodated in the inside.
  • the first holder portion 52 has a first inner wall portion 520 that covers a portion of the first coil spring 51 that is exposed outside the rod radial direction DRr.
  • the first holder 52 is in contact with a part of the first coil spring 51 when a load exceeding a predetermined reference load is applied to the first coil spring 51 in the rod radial direction DRr. And the first coil spring 51 are set.
  • the distance between the first inner wall portion 520 and the first coil spring 51 is such that the contact area with the first coil spring 51 increases as the load in the rod radial direction DRr increases. Is set.
  • the first inner wall portion 520 is configured by an inner wall portion having a hole shape that increases from the small diameter side to the large diameter side of the first coil spring 51 in the first holder portion 52.
  • the first holder portion 52 configured in this way is easily brought into contact with the first inner wall portion 520 even on the small diameter side where the coil diameter of the first coil spring 51 is small when a load in the rod radial direction DRr is applied. Yes.
  • the first end position defining portion 53 defines the positions of both end portions of the first coil spring 51 in the rod axis direction DRa.
  • the first end position defining portion 53 defines the position of the first large diameter side defining portion 531 that defines the position of the large diameter side end portion of the first coil spring 51 and the position of the small diameter side end portion of the first coil spring 51.
  • the first small diameter side defining portion 532 is configured.
  • the first large-diameter side defining portion 531 is formed of an annular member and is disposed at the bottom of the first accommodating portion 242. Further, the first small diameter side defining portion 532 is formed of an annular member, and is disposed between the male screw portion 41 and the intermediate shaft portion 43 of the rod-shaped member 40.
  • the first coil spring 51 of the present embodiment has a pair of flat portions formed at the end portions facing the defining portions 531 and 532 so that the contact state with the defining portions 531 and 532 is stable.
  • Portions 512 and 513 are provided.
  • the pair of flat portions 512 and 513 can be formed by subjecting both end portions of the first coil spring 51 to a grinding process.
  • the pair of flat portions 512 and 513 are provided, for example, in a range of about 3/4 winding at the end portion of the wire 510.
  • the first coil spring 51 is compressed between the first large diameter side defining part 531 and the first small diameter side defining part 532 in a state compressed to some extent in the rod axis direction DRa. It is inserted in. Therefore, the first coil spring 51 fitted between the first large-diameter side defining portion 531 and the first small-diameter side defining portion 532 has a length in the rod axis direction DRa as compared with the first coil spring 51 in the free state. It is getting smaller.
  • the second suspension part 60 is provided on the other end side of the intermediate shaft part 43 of the rod-shaped member 40.
  • the second suspension part 60 includes a second coil spring 61 that suppresses vibration transmission between the engine EG and the compressor 24, a second holder part 62 that houses the second coil spring 61, and the rod axis direction DRa of the second coil spring 61.
  • a second end position defining portion 63 that defines the positions of both end portions is provided.
  • the second coil spring 61 is an elastic member that suppresses transmission of vibration of one of the engine EG and the compressor 24 to the other through the rod-shaped member 40.
  • the second coil spring 61 is constituted by a conical coil spring wound with a wire 610 so that the coil diameter increases from one end side toward the other end side.
  • the second coil spring 61 is arranged such that the coil center axis connecting the centers of the coil diameters extends along the rod axis direction DRa of the rod-shaped member 40.
  • the second coil spring 61 of the present embodiment is arranged so that the small diameter end portion with the smallest coil diameter is positioned on the head 42 side of the rod-shaped member 40.
  • the second coil spring 61 of the present embodiment is configured such that a part of the wire 610 adjacent to the rod axis direction DRa overlaps with the rod axis direction DRa.
  • the second coil spring 61 is configured such that a part of the adjacent wire 610 contacts when a load is applied from the rod axis direction DRa.
  • the second coil spring 61 of the present embodiment is made of a wire material in which the wire material 610 has a circular cross section.
  • the 2nd coil spring 61 may be comprised with the deformed wire which becomes a cross-sectional square shape, for example.
  • the second holder part 62 is fixed to the second housing part 243 by press fitting or the like.
  • the 2nd holder part 62 is comprised by the cylinder shape so that the 2nd coil spring 61 can be accommodated in the inside.
  • the second holder portion 62 has a second inner wall portion 620 that covers a portion of the second coil spring 61 that is exposed outside the rod radial direction DRr.
  • the second holder 62 is in contact with a part of the second coil spring 61 when a load exceeding a predetermined reference load is applied to the second coil spring 61 in the rod radial direction DRr. And the second coil spring 61 are set.
  • the distance between the second inner wall portion 620 and the second coil spring 61 is such that the contact area with the second coil spring 61 increases as the load in the rod radial direction DRr increases. Is set.
  • the second inner wall portion 620 includes an inner wall portion having a hole shape that increases from the small diameter side to the large diameter side of the second coil spring 61 in the second holder portion 62.
  • the second end position defining portion 63 defines the positions of both end portions of the second coil spring 61 in the rod axis direction DRa.
  • the second end position defining portion 63 defines the position of the second large diameter side defining portion 631 that defines the position of the large diameter end portion of the second coil spring 61 and the position of the small diameter end portion of the second coil spring 61.
  • the second small-diameter side defining portion 632 is configured.
  • the second large-diameter side defining portion 631 is formed of an annular member and is disposed at the bottom of the second accommodating portion 243. Further, the second small diameter side defining portion 632 is formed of an annular member, and is disposed between the head portion 42 of the rod-shaped member 40 and the intermediate shaft portion 43.
  • the second coil spring 61 of the present embodiment has a pair of flat portions formed in a flat shape at the ends facing the defining portions 631 and 632 so that the contact state with the defining portions 631 and 632 is stable.
  • Portions 612 and 613 are provided.
  • the pair of flat portions 612 and 613 can be formed by subjecting both end portions of the second coil spring 61 to a grinding process.
  • the pair of flat portions 612 and 613 are provided, for example, in a range of about 3/4 winding at the end of the wire 610.
  • the second coil spring 61 is between the second large diameter side defining portion 631 and the second small diameter side defining portion 632 in a state where the second coil spring 61 is compressed to some extent in the rod axis direction DRa. It is inserted in. Therefore, the second coil spring 61 fitted between the second large-diameter side defining portion 631 and the second small-diameter side defining portion 632 has a length in the rod axis direction DRa as compared with the second coil spring 61 in the free state. It is getting smaller.
  • the first coil spring 51 and the second coil spring 61 have the same way of bending in the rod axis direction DRa and the rod radial direction DRr. For this reason, below, the bending method of the 1st coil spring 51 is fundamentally demonstrated and the description about the bending method of the 2nd coil spring 61 is abbreviate
  • the first coil spring 51 bends in the rod axis direction DRa.
  • the first coil spring 51 is in a state in which the wires 510 adjacent to each other in the rod axis direction DRa are separated from each other in the unloaded state of the suspension device 30.
  • the spring effective length L that can be elastically deformed in the first coil spring 51 is the entire length of the first coil spring 51 in the rod axis direction DRa. That is, the first coil spring 51 of the present embodiment is in a range where the entire rod axis direction DRa of the first coil spring 51 can be elastically deformed when the suspension device 30 is in an unloaded state.
  • the first coil spring 51 contracts in the rod axis direction DRa. Thereby, vibrations acting in the rod axis direction DRa are absorbed by the first coil spring 51.
  • the spring constant of the large diameter portion where the coil diameter is large is smaller than the spring constant of the small diameter portion where the coil diameter is small.
  • the adjacent wire rods 510 start to come into close contact with each other in order from the portion on the large diameter side.
  • the part where the wires 510 are in close contact with each other loses the function as a spring.
  • the spring effective length L that can be elastically deformed in the rod axis direction DRa in the first coil spring 51 becomes small.
  • the first coil spring 51 of the present embodiment when the compressive load Fa acting in the rod axis direction DRa is increased, the contact area between the wires 510 is increased, so that the elastically deformable range is reduced. For this reason, the first coil spring 51 of the present embodiment has a nonlinear elastic characteristic in which the elastic constant (that is, the spring constant) in the rod axis direction DRa increases as the load Fa acting in the rod axis direction DRa increases. Will have.
  • the first coil spring 51 having such non-linear elastic characteristics has a displacement amount of the first coil spring 51 in the rod axis direction DRa as the load Fa acting in the rod axis direction DRa increases. (That is, the amount of deflection) becomes small. Since the second coil spring 61 is configured in the same manner as the first coil spring 51, the second coil spring 61 has a non-linear elastic characteristic in the rod axis direction DRa similarly to the first coil spring 51.
  • the first coil spring 51 bends in the rod radial direction DRr.
  • the first coil spring 51 is in a state of being separated from the first inner wall portion 520 of the first holder portion 52 facing the rod radial direction DRr in the unloaded state of the suspension device 30.
  • the spring effective length L that can be elastically deformed in the first coil spring 51 is the entire length of the first coil spring 51 in the rod axis direction DRa. That is, the first coil spring 51 of the present embodiment is in a range where the entire rod axis direction DRa of the first coil spring 51 can be elastically deformed when the suspension device 30 is in an unloaded state.
  • the first coil spring 51 is elastic in the rod radial direction DRr. Bend. Thereby, the vibration acting in the rod radial direction DRr is absorbed by the first coil spring 51.
  • the spring constant of the large diameter portion where the coil diameter is large is smaller than the spring constant of the small diameter portion where the coil diameter is small. For this reason, when the load Fr in the rod radial direction DRr acting on the first coil spring 51 increases, as shown in FIG. 8, the first inner wall portion 520 of the first holder portion 52 is sequentially applied from the portion on the large diameter side. Start to abut. The portion of the first coil spring 51 where the wire 510 is in contact with the first inner wall portion 520 loses its function as a spring. For this reason, when the load Fr acting in the rod radial direction DRr increases, the effective spring length L of the first coil spring 51 that can be elastically deformed in the rod radial direction DRr becomes small.
  • the first coil spring 51 of the present embodiment can be elastically deformed by increasing the contact area between the wire 510 and the first inner wall portion 520 when the load Fr acting in the rod radial direction DRr increases.
  • the range becomes smaller.
  • the first coil spring 51 of the present embodiment has a nonlinear elastic characteristic in which the elastic constant (that is, the spring constant) in the rod radial direction DRr increases as the load Fr acting in the rod radial direction DRr increases. That is, it has spring characteristics.
  • the first coil spring 51 having such non-linear elastic characteristics has a displacement amount of the first coil spring 51 in the rod radial direction DRr as the load Fr acting in the rod radial direction DRr increases. (That is, the amount of deflection) becomes small. Since the second coil spring 61 is configured in the same manner as the first coil spring 51, the second coil spring 61 has a non-linear elastic characteristic in the rod radial direction DRr as in the first coil spring 51.
  • the first coil spring 51 and the second coil spring 61 constitute an elastic member that suppresses transmission of one vibration of the engine EG and the compressor 24 to the other through the rod-shaped member 40. ing.
  • the 1st holder part 52 and the 2nd holder part 62 comprise the displacement restriction
  • limiting part limits the displacement to the crossing direction which cross
  • the suspension device 30 includes the first coil spring 51 and the second coil spring 61 as elastic members that suppress transmission of vibration of one of the engine EG and the compressor 24 to the other through the rod-shaped member 40. It has.
  • the suspension device 30 includes a first holder portion 52 and a second holder as deformation restriction portions that restrict deformation of the rod-shaped member 40 in the first coil spring 51 and the second coil spring 61 in the intersecting direction intersecting the rod axis direction DRa.
  • a portion 62 is provided.
  • the first coil spring 51 and the second coil spring 61 of the present embodiment have a characteristic that the elastic constant in the rod axis direction DRa increases as the load Fa acting on the rod axis direction DRa increases. According to this, even when vibrations having different amplitudes act in the rod axis direction DRa, vibration transmission between the engine EG and the compressor 24 is performed by the first coil spring 51 and the second coil spring 61 that constitute the elastic member. Can be suppressed.
  • first coil spring 51 and the second coil spring 61 of the present embodiment have a contact area with the first holder part 52 and the second holder part 62 as the displacement amount in the intersecting direction intersecting the rod axis direction DRa increases. It is configured to be large. That is, the first coil spring 51 and the second coil spring 61 according to the present embodiment have a small contactable area with the holder portions 52 and 62 when the load acting in the intersecting direction is increased. It is comprised so that it may become.
  • the vibration isolator having nonlinear elastic characteristics with respect to two different directions, ie, the rod axis direction DRa of the rod-shaped member 40 and the intersecting direction intersecting the rod axis direction DRa. Can be realized.
  • each of the coil springs 51 and 61 is configured by a conical coil spring having a non-linear spring characteristic with respect to a load acting in the rod axis direction DRa.
  • the first holder 52 and the second holder 62 are displaced in the intersecting direction intersecting the rod axis direction DRa of the rod-shaped member 40 in the first coil spring 51 and the second coil spring 61. It is the structure which restricts.
  • a vibration isolator having non-linear elastic characteristics with respect to two different directions can be realized with a simple configuration of the coil springs 51 and 61 and the holder portions 52 and 62. .
  • the inner wall portions 520 and 620 of the holder portions 52 and 62 constituting the displacement restricting portion are increased from the small diameter side to the large diameter side of the coil springs 51 and 61. It is comprised so that it may become a hole shape. According to this, not only the large diameter side but also the small diameter side of the coil springs 51 and 61 can easily come into contact with the inner wall portions 520 and 620 of the holder portions 52 and 62, so that a sufficient variable range of the spring constant can be secured. It becomes possible to do.
  • the suspension device 30 of the present embodiment is provided with a pair of flat portions 512, 513, 612, and 613 formed in a flat shape at portions facing the end position defining portions 53 and 63 in the coil springs 51 and 61, respectively. It has been. According to this, since the contact state between the coil springs 51 and 61 and the end position defining portions 53 and 63 can be stabilized, for example, it is biased toward a part of the end position defining portions 53 and 63. It can suppress that a load acts.
  • a pair of flat portions 512, 513, 612, 613 are provided at portions of the coil springs 51, 61 that face the end position defining portions 53, 63.
  • the pair of flat portions 512, 513, 612, and 613 function as springs that are elastically deformed in the rod radial direction DRr, the spring characteristics of the coil springs 51 and 61 in the rod radial direction DRr become unstable. End up.
  • the pair of flat portions 512, 513, 612, 613 in the coil springs 51, 61 does not function as a spring that is elastically deformed in the rod radial direction DRr. Yes.
  • the first coil spring 51 of the present embodiment has a rod-like shape in which at least one turn of the wire rod 510 a connected to the flat portion 512 on the small diameter side of the pair of flat portions 512, 513 is a rod-like shape.
  • the size of the member 40 is in contact with the outer periphery of the member 40.
  • at least one turn of the wire 510a connected to the flat portion 512 on the small diameter side of the wire 510 constituting the first coil spring 51 is in contact with the rod-shaped member 40 of the present embodiment.
  • At least one turn of the wire rod 510 b connected to the flat portion 513 on the large diameter side of the pair of flat portions 512 and 513 of the wire rod 510 is the first coil portion 51 of the first holder portion 52.
  • the size is abutted against the inner wall portion 520.
  • at least one turn of the wire rod 510b connected to the flat portion 513 on the large diameter side of the wire rod 510 constituting the first coil spring 51 is in contact with the first holder portion 52 of the present embodiment.
  • the second coil spring 61 of the present embodiment as shown in FIG. 10, at least one turn of the wire 610 a connected to the flat portion 612 on the small diameter side of the pair of flat portions 612 and 613 is rod-shaped.
  • the size of the member 40 is in contact with the outer periphery of the member 40.
  • at least one turn of the wire 610 a connected to the flat portion 612 on the small diameter side of the wire 610 constituting the second coil spring 61 is in contact with the rod-shaped member 40 of the present embodiment.
  • the second coil spring 61 of the present embodiment at least one turn of the wire 610 b connected to the large-diameter flat portion 613 of the pair of flat portions 612 and 613 of the wire 610 is the second of the second holder portion 62.
  • the size is in contact with the inner wall portion 620.
  • at least one turn of the wire 610b connected to the flat portion 613 on the large diameter side out of the wire 610 constituting the second coil spring 61 is in contact with the second holder portion 62 of the present embodiment.
  • the suspension device 30 of the present embodiment can obtain the same effects as those of the first embodiment with the same configuration as the suspension device 30 of the first embodiment.
  • the wire rods 510a and 610a connected to the flat portions 512 and 612 on the small diameter side of the coil springs 51 and 61 are in contact with the rod-shaped member 40.
  • the wire members 510b and 610b connected to the flat portions 513 and 613 on the large diameter side of the coil springs 51 and 61 are in contact with the holder portions 52 and 62, respectively. According to this, since the flat portions 512, 513, 612, 613 provided on the coil springs 51, 61 hardly function as springs deforming in the rod radial direction DRr, the spring characteristics of the coil springs 51, 61 in the rod radial direction DRr are It becomes possible to stabilize.
  • the contact state between the coil springs 51 and 61 and the end position defining portions 53 and 63 is stabilized, and the springs in the rod radial direction DRr of the coil springs 51 and 61 are provided. It becomes possible to stabilize the characteristics.
  • the wire 511 of the first coil spring 51 of the present embodiment has a cross-sectional shape on both ends in the rod axis direction DRa that is the same as the cross-sectional shape of other portions. That is, the first coil spring 51 of the present embodiment is not provided with a configuration corresponding to the pair of flat portions 512 and 513 described in the first embodiment on both end sides in the rod axis direction DRa.
  • the first coil spring 51 configured as described above has more stable spring characteristics in the rod radial direction DRr of the first coil spring 51 than the configuration in which the pair of flat portions 512 and 513 are provided on both ends in the rod axis direction DRa. It becomes possible to make it.
  • the first end position defining portion 53 has the first end position defining portion 53 so that the first end position defining portion 53 abuts more than half of the portions located on both ends of the first coil spring 51.
  • a portion facing the coil spring 51 is inclined with respect to the rod radial direction DRr.
  • the first large-diameter side defining portion 531 and the first small-diameter side defining portion 532 of the present embodiment are such that the portion on the opposite side of the contact portion that contacts the first coil spring 51 is in the rod diameter direction DRr. Inclined, and a portion of the first coil spring 51 opposite to the contact portion extends along the rod radial direction DRr.
  • the wire 611 of the second coil spring 61 of the present embodiment has a cross-sectional shape at both ends in the rod axis direction DRa that is the same as the cross-sectional shape of other portions.
  • the second coil spring 61 of this embodiment is not provided with a configuration corresponding to the pair of flat portions 612 and 613 described in the first embodiment on both ends in the rod axis direction DRa.
  • the second coil spring 61 configured in this way has more stable spring characteristics in the rod radial direction DRr in the second coil spring 61 than in the configuration in which the pair of flat portions 612 and 613 are provided on both ends in the rod axis direction DRa. It becomes possible to make it.
  • the second end position defining portion 63 has the second end position defining portion 63 so that the second end position defining portion 63 abuts more than half of the portions located on both ends of the second coil spring 61.
  • a portion facing the coil spring 61 is inclined with respect to the rod radial direction DRr.
  • the second large-diameter side defining portion 631 and the second small-diameter side defining portion 632 according to the present embodiment are such that the portion on the opposite side of the contact portion that contacts the second coil spring 61 is in the rod diameter direction DRr. Inclined, and a portion of the second coil spring 61 opposite to the contact portion extends along the rod radial direction DRr.
  • the suspension device 30 of the present embodiment can obtain the same effects as those of the first embodiment with the same configuration as the suspension device 30 of the first embodiment.
  • the cross-sectional shapes of both ends in the rod axis direction DRa of the wire rods 511 and 611 constituting the coil springs 51 and 61 are the same as the cross-sectional shapes of other portions.
  • the portions facing the coil springs 51 and 61 in the end position defining portions 53 and 63 are applied more than half turns of the portions positioned on both ends of the coil springs 51 and 61. Inclined to touch. According to this, it is possible to stabilize the contact state between the coil springs 51 and 61 and the end position defining portions 53 and 63 and to stabilize the spring characteristics of the coil springs 51 and 61 in the rod radial direction DRr. Become.
  • the first coil spring 51 of the first suspension part 50 of the present embodiment is arranged so that the large-diameter end having the largest coil diameter is located on the engine EG side. That is, the first coil spring 51 of the present embodiment has a coil diameter that decreases from the engine EG side toward the bottom surface side of the first housing portion 242.
  • first inner wall portion 520 of the first holder portion 52 of the present embodiment is configured by an inner wall portion having a hole shape that decreases from the engine EG side toward the bottom surface side of the first housing portion 242.
  • the first large diameter side defining portion 531 is disposed between the male screw portion 41 and the intermediate shaft portion 43 of the rod-shaped member 40, and the first small diameter side defining portion 532 is the first end portion defining portion 531. 1 is disposed at the bottom of the accommodating portion 242.
  • the first small diameter side defining portion 532 of the present embodiment is configured integrally with the first holder portion 52.
  • the first small diameter side defining portion 532 may be configured separately from the first holder portion 52.
  • the second coil spring 61 of the second suspension unit 60 of the present embodiment is arranged so that the large-diameter end having the largest coil diameter is located on the head 42 side of the rod-shaped member 40. That is, the second coil spring 61 of the present embodiment has a coil diameter that decreases from the head portion 42 side of the rod-shaped member 40 toward the bottom surface side of the second housing portion 243.
  • the second inner wall portion 620 of the second holder portion 62 of the present embodiment is an inner wall portion having a hole shape that decreases from the head portion 42 side of the rod-shaped member 40 toward the bottom surface side of the second housing portion 243. It is configured.
  • the second large diameter side defining portion 631 is disposed between the head portion 42 of the rod-shaped member 40 and the intermediate shaft portion 43, and the second small diameter side defining portion 632 is the second accommodation. It is arranged at the bottom of the part 243.
  • the second small diameter side defining portion 632 of the present embodiment is configured integrally with the second holder portion 62.
  • the second small diameter side defining portion 632 may be configured separately from the second holder portion 62.
  • the suspension device 30 of the present embodiment has the same configuration as that of the suspension device 30 of the first embodiment, although the internal structure of each suspension portion 50, 60 is reversed in the rod axis direction DRa with respect to the first embodiment. I have. For this reason, the suspension apparatus 30 of this embodiment can obtain the effect produced from a structure common to 1st Embodiment similarly to 1st Embodiment.
  • the elastic constants in the rod radial direction DRr of the coil springs 51 and 61 are increased. This is not preferable because when the vibration having a small amplitude acts in the rod radial direction DRr, it becomes difficult for the coil springs 51 and 61 to suck the vibration.
  • the coil springs 51 and 61 of the present embodiment are designed so that the small-diameter side coil central axis Cs and the large-diameter side coil central axis Cb are displaced in a free state as shown in FIG. Has been.
  • the small diameter side of each coil spring 51 and 61 is offset in the direction opposite to the direction of gravity in comparison with the large diameter side in the free state. Accordingly, as shown in FIG. 16, the coil springs 51 and 61 of the present embodiment are prevented from drooping downward due to their own weight when installed in the holder portions 52 and 62.
  • the suspension device 30 of the present embodiment can obtain the same effects as those of the first embodiment with the same configuration as the suspension device 30 of the first embodiment.
  • the small diameter side of each of the coil springs 51 and 61 is offset in the direction opposite to the direction of action of gravity compared to the large diameter side. According to this, it becomes possible to suppress that a spring characteristic changes with the deformation
  • the first end position defining portion 53 of the first embodiment includes a first large-diameter side defining portion 531 disposed in a first accommodating portion 242 formed in the compressor-side housing 240 and a male screw portion 41 of the rod-shaped member 40. And the first small diameter side defining portion 532 disposed between the intermediate shaft portion 43 and the intermediate shaft portion 43.
  • the second end position defining portion 63 of the first embodiment includes the second large-diameter side defining portion 631 disposed in the second housing portion 243 formed in the compressor-side housing 240 and the head of the rod-shaped member 40. 42 and a second small diameter side defining portion 632 disposed between the intermediate shaft portion 43 and the intermediate shaft portion 43.
  • each inner wall part 520,620 which functions as a displacement restriction
  • FIG. the large diameter side defining portions 531 and 631 and the inner side wall portions 520 and 620 are set on the compressor 24 side, and the small diameter side defining portions 532 and 632 are fixed to the engine side housing EGH. It is set to the rod-shaped member 40 side.
  • the large diameter side defining portions 531 and 631 constitute a first axial direction defining portion
  • the small diameter side defining portions 532 and 632 constitute a second axial direction defining portion. ing.
  • the present inventors diligently studied the above-described structure in order to further improve the suspension device 30. As a result, it has been found that, in the above-described structure, when the load in the rod radial direction DRr acts, the small diameter side defining portions 532 and 632 and the inner side wall portions 520 and 620 may contact each other. When the small diameter side defining portions 532 and 632 and the inner wall portions 520 and 620 come into contact with each other, the nonlinear elastic characteristics of the coil springs 51 and 61 are not exhibited, so that the effect of suppressing vibration transmission cannot be sufficiently obtained. There is a risk of it.
  • the shape of the small diameter side defining portions 532 and 632 is different from that of the first embodiment. It has changed. In the present embodiment, portions different from those in the first embodiment will be mainly described, and descriptions of portions similar to those in the first embodiment may be omitted.
  • the suspension device 30 of the present embodiment has a cylindrical portion 44 in which a rod-shaped member 40 is formed in a cylindrical shape.
  • the cylindrical portion 44 covers the outer periphery of the intermediate shaft portion 43, and the inner diameter is set to be approximately the same as the outer diameter of the intermediate shaft portion 43.
  • the cylindrical portion 44 is inserted into the insertion hole 241 of the compressor side housing 240 together with the intermediate shaft portion 43.
  • the insertion hole 241 of the present embodiment is set to such a size that a gap is formed between the coil springs 51 and 61 and the cylindrical portion 44 of the rod-shaped member 40 even when the displacement amount in the rod radial direction DRr is maximized. Has been. According to this, it is possible to prevent the rod-shaped member 40 and the inner wall of the insertion hole 241 from coming into direct contact when a load in the rod radial direction DRr is applied.
  • the first small diameter side defining portion 532 of the present embodiment is integrally provided on the male screw portion 41 side in the tubular portion 44.
  • the first small diameter side defining portion 532 of the present embodiment has a first defining side contact portion 533 that contacts the first coil spring 51.
  • the first defining side contact portion 533 is a first holder portion in the rod diameter direction DRr in a state where no load is applied to either the rod axis direction DRa or the rod diameter direction DRr of the first small diameter side defining portion 532.
  • 52 is a part overlapping with 52.
  • the first regulation side contact part 533 is a part that regulates the displacement of the first coil spring 51 when a load is applied in the rod axis direction DRa. For this reason, as shown in FIG. 18, the 1st prescription
  • regulation side contact part 533 is comprised so that a contact state with the 1st coil spring 51 may be maintained even if a load acts on the rod axial direction DRa. That is, the first prescribed-side contact portion 533 has an outer diameter Dpe1 larger than a line center diameter Dsc that is intermediate between the outer diameter Dse1 and the inner diameter of the first spring-side contact portion 514 of the first coil spring 51. ing.
  • the first spring-side contact portion 514 described above is a portion of the first coil spring 51 that contacts the first specified-side contact portion 533. Further, the line center diameter Dsc can be interpreted as an average diameter obtained by averaging the outer diameter Dse1 and the inner diameter of the first spring-side contact portion 514.
  • the first prescribed-side contact portion 533 overlaps the first holder portion 52 in the rod radial direction DRr, and may contact the first inner wall surface 520 when a load in the rod radial direction DRr is applied. There is.
  • the 1st regulation side contact part 533 is the shape spaced apart from the 1st inner side wall surface 520 so that a clearance gap may be formed between the 1st inner side wall surface 520 even if the load of rod diameter direction DRr acts. It has become.
  • the outer diameter Dpe1 of the first specified-side contact portion 533 is smaller than the outer diameter Dse1 of the first spring-side contact portion 514.
  • a portion of the first small diameter side defining portion 532 that is opposite to the first defining side contact portion 533 overlaps the first holder portion 52 in the rod diameter direction DRr. May be in a state.
  • a portion of the first small diameter side defining portion 532 that is opposite to the first defining side contact portion 533 may come into contact with the first inner wall surface 520. .
  • the first small-diameter side defining portion 532 has a shape in which a gap is formed between the first inner wall surface 520 even if a load acts on both the rod axis direction DRa and the rod diameter direction DRr. That is, the first small-diameter side defining portion 532 has a rod shaft so that the outer diameter Dpe1 of the first defining-side contact portion 533 is larger than the outer diameter of the portion on the opposite side of the first defining-side contact portion 533.
  • An inclined surface 534 inclined with respect to the direction DRa is provided.
  • the inclined surface 534 of the first small diameter side defining portion 532 is formed such that the inclination angle ⁇ 1 with respect to the rod axis direction DRa is larger than the inclination angle ⁇ 1 with respect to the rod axis direction DRa of the first inner wall surface 520.
  • the second small-diameter side defining portion 632 of the present embodiment is disposed between the end portion on the head portion 42 side of the tubular portion 44 and the head portion 42.
  • the second small diameter side defining portion 632 of the present embodiment has a second defining side abutting portion 633 that abuts on the second coil spring 61.
  • the second defining side contact portion 633 is a second holder portion in the rod diameter direction DRr in a state where no load is applied to either the rod axis direction DRa or the rod diameter direction DRr of the second small diameter side defining portion 632. This is a part overlapping with 62.
  • the second regulation side contact part 633 is a part that regulates the displacement of the second coil spring 61 when a load is applied in the rod axis direction DRa. For this reason, the 2nd regulation side contact part 633 is comprised so that a contact state with the 1st coil spring 51 may be maintained even if a load acts on the rod axial direction DRa. That is, the outer diameter Dpe2 of the second specified-side contact portion 633 is larger than the line center diameter Dsc that is intermediate between the outer diameter Dse2 and the inner diameter of the second spring-side contact portion 614 of the second coil spring 61. ing.
  • the second spring-side contact portion 614 described above is a portion that contacts the second specified-side contact portion 633 in the second coil spring 61. Further, the interline center diameter Dsc can be interpreted as an average diameter obtained by averaging the outer diameter Dse2 and the inner diameter of the second spring-side contact portion 614.
  • the second prescribed-side contact portion 633 is shaped to be separated from the second inner wall surface 620 so that a gap is formed between the second inner wall surface 620 and the load in the rod radial direction DRr. It has become.
  • the outer diameter Dpe2 of the second prescribed-side contact portion 633 is smaller than the outer diameter Dse2 of the second spring-side contact portion 614.
  • the second small-diameter side defining portion 632 has a shape in which a gap is formed between the first inner wall surface 520 even if a load acts on both the rod axis direction DRa and the rod diameter direction DRr. That is, the second small-diameter side defining portion 632 is configured so that the outer diameter Dpe2 of the second defining-side contact portion 633 is larger than the outside diameter of the portion on the opposite side of the second defining-side contact portion 633.
  • An inclined surface 634 that is inclined with respect to the direction DRa is provided.
  • the inclined surface 634 of the second small diameter side defining portion 632 is formed such that the inclination angle ⁇ 2 with respect to the rod axis direction DRa is larger than the inclination angle ⁇ 2 with respect to the rod axis direction DRa of the second inner wall surface 620.
  • each of the small-diameter side defining portions 532 and 632 has an outer diameter Dpe1 and Dpe2 of each defining-side contact portion 533 and 633 larger than the line center diameter Dsc of each spring-side contacting portion 514 and 614. The contact state between the small diameter side defining portions 532 and 632 and the coil springs 51 and 61 is maintained.
  • the outer diameters Dpe1 and Dpe2 of the respective defined side contact portions 533 and 633 are smaller than the outer diameters Dse1 and Dse2 of the respective spring side contact portions 514 and 614. Therefore, the small diameter side defining portions 532 and 632 are in a state of being separated from the inner wall portions 520 and 620.
  • the small diameter side defining portions 532 and 632 are separated from the inner wall portions 520 and 620, respectively. It is a structure in which the separated state is maintained. For this reason, in the suspension device 30 of the present embodiment, even if a load in the rod radial direction DRr acts on the coil springs 51 and 61, the small diameter side defining portions 532 and 632 are directly applied to the inner wall portions 520 and 620, respectively. Can be prevented from touching.
  • the load in the rod axis direction DRa and the load in the rod radial direction DRr simultaneously act on the coil springs 51 and 61. .
  • a portion of the first small-diameter side defining portion 532 other than the first defining-side contact portion 533 is located in the first holder portion 52 and at the same time, the small diameter of the first coil spring 51 The side portion may come into contact with the first inner wall portion 520. In such a state, there is a possibility that parts of the first small diameter side defining part 532 other than the first defining side contact part 533 may contact the first inner wall surface 520.
  • inclined surfaces 534 and 634 are provided for the respective small diameter side defining portions 532 and 632, and the inclination angles ⁇ 1 and ⁇ 2 of the inclined surfaces 534 and 634 are set to the respective inner wall surfaces 520 and 620.
  • the inclination angles are larger than ⁇ 1 and ⁇ 2. According to this, the clearance dimension between each small diameter side definition part 532,632 and each inner wall surface 520,620 becomes large as it leaves
  • the small diameter side defining portions 532, 632 other than the defined side contact portions 533, 633 Can be prevented from coming into direct contact with the inner wall surfaces 520 and 620.
  • FIG. 21 shows a measurement result of vibration of the compressor 24 when the suspension device 30 as a comparative example of the present embodiment is used.
  • FIG. 22 shows a measurement result of vibration of the compressor 24 when the suspension device 30 as a comparative example of the present embodiment is used.
  • the suspension device 30 as a comparative example is configured in the same manner as in the first embodiment.
  • the vibration of the compressor 24 becomes smaller than when the suspension device 30 as a comparative example is used. This is presumed to be due to the fact that in the suspension device 30 of the present embodiment, the respective small diameter side defining portions 532 and 632 are maintained in a state of being separated from the respective inner wall surfaces 520 and 620.
  • the suspension device 30 may have a configuration in which the inclined surfaces 534 and 634 are not provided for the small-diameter side defining portions 532 and 632.
  • first small diameter side defining portion 532 is configured integrally with the cylindrical portion 44
  • present invention is not limited to this.
  • the first small diameter side defining portion 532 may be configured separately from the cylindrical portion 44.
  • the configuration in which the cylindrical portion 44 is added to the rod-shaped member 40 is exemplified, but the present invention is not limited to this.
  • the rod-shaped member 40 may be configured not to have the cylindrical portion 44 as in the first embodiment.
  • FIGS. (Seventh embodiment) Next, a seventh embodiment will be described with reference to FIGS.
  • This embodiment is different from the first embodiment in that the elastic member of the first suspension part 50A is constituted by the first spiral spring 51A and the elastic member of the second suspension part 60A is constituted by the second spiral spring 61A. is doing.
  • portions different from those in the first embodiment will be mainly described, and descriptions of portions similar to those in the first embodiment may be omitted.
  • the suspension device 30 of the present embodiment has a cylindrical portion 44 in which a rod-shaped member 40 is formed in a cylindrical shape, similarly to the sixth embodiment.
  • the cylindrical portion 44 covers the outer periphery of the intermediate shaft portion 43, and the inner diameter is set to be approximately the same as the outer diameter of the intermediate shaft portion 43.
  • the cylindrical portion 44 is inserted into the insertion hole 241 of the compressor side housing 240 together with the intermediate shaft portion 43.
  • the insertion hole 241 of the present embodiment is large enough to form a gap with the cylindrical portion 44 of the rod-like member 40 even if the displacement amount in the rod radial direction DRr of each of the spiral springs 51A and 61A described later is maximized. Is set.
  • the insertion hole 241 has a gap Ga formed between the cylindrical portion 44 in the rod radial direction DRr and the thickness t of the plate material 510A of the spiral spring 51A and the number of turns N of the spiral spring 51A. It is formed so as to be larger than a value obtained by multiplying.
  • the insertion hole 241 has an outer diameter Dh smaller than outer diameters Dpi1 and Dpi2 of spiral springs 51A and 61A described later.
  • the first suspension portion 50A of the present embodiment is provided on one end side of the intermediate shaft portion 43 of the rod-like member 40 that is close to the engine-side housing EGH.
  • the first suspension part 50A includes a first spiral spring 51A, a first displacement restriction part 54 that restricts displacement of the first spiral spring 51A in the rod radial direction DRr, and both ends of the first spiral spring 51A in the rod axis direction DRa.
  • a first outer circumferential side defining portion 55 and a first inner circumferential side defining portion 56 that define the position are provided.
  • the first spiral spring 51 ⁇ / b> A is an elastic member that suppresses transmission of vibration of one of the engine EG and the compressor 24 to the other through the rod-shaped member 40.
  • 51 A of 1st spiral springs are arrange
  • the first spiral spring 51A of the present embodiment is arranged so that the end portion on the inner peripheral side with the smallest coil diameter is located on the engine EG side.
  • the first spiral spring 51A is a spring configured by winding a rectangular plate 510A in a conical shape.
  • the first spiral spring 51A is formed such that a gap is generated between portions of the plate material 510A adjacent to each other in the rod radial direction DRr.
  • the plate material 510A constituting the first spiral spring 51A has a uniform length in the rod axis direction DRa.
  • 51 A of 1st spiral springs have comprised the spiral shape wound so that the inner peripheral side might protrude in the rod-axis direction DRa with respect to the outer peripheral side.
  • the first spiral spring 51A of the present embodiment is configured such that a part of the plate material 510A adjacent to the rod radial direction DRr overlaps with the rod radial direction DRr.
  • the first spiral spring 51A is configured such that a part of the adjacent plate material 510A contacts when a load is applied from the rod radial direction DRr.
  • the first displacement limiting portion 54 is configured by an inner wall surface extending along the rod axis direction DRa in the first accommodating portion 242.
  • the first displacement limiting portion 54 has a size that allows the first spiral spring 51A to be accommodated therein.
  • the first displacement limiting portion 54 is sized to abut on the entire portion located on the outer peripheral side in the rod radial direction DRr of the first spiral spring 51A.
  • the first outer peripheral side defining portion 55 defines the position of the portion located on the outermost peripheral side in the first spiral spring 51A.
  • the first outer peripheral side defining portion 55 is configured by a bottom portion of the first accommodating portion 242 that extends along the rod radial direction DRr.
  • the first outer circumferential side defining portion 55 is configured to overlap with a portion located on the innermost circumferential side in the first spiral spring 51A in the rod axis direction DRa. Thereby, when a predetermined compressive load is applied to the first spiral spring 51A in the rod axis direction DRa, the first outer peripheral side defining portion 55 is not limited to the inner peripheral portion of the first spiral spring 51A. The peripheral part is also easily abutted.
  • the outer diameter Dh of the insertion hole 241 is smaller than the outer diameter Dpi1 of the portion located on the innermost peripheral side of the first spiral spring 51A. For this reason, the site
  • the first inner circumferential side defining portion 56 defines the position of the portion located on the innermost circumferential side in the first spiral spring 51A.
  • the first inner peripheral side defining portion 56 is integrally provided on the male screw portion 41 side in the tubular portion 44.
  • the first inner circumferential side defining portion 56 of the present embodiment has a first defining side contact portion 561 that contacts the first spiral spring 51A.
  • the first defining side contact portion 561 has a first displacement in the rod radial direction DRr in a state where no load is applied to either the rod axial direction DRa or the rod radial direction DRr in the first inner circumferential side defining portion 56. This is a part that overlaps with the restriction part 54.
  • the first regulation side contact part 561 is a part that regulates the displacement of the first spiral spring 51A when a load is applied in the rod axis direction DRa. For this reason, the 1st regulation side contact part 561 is comprised so that a contact state with 51 A of 1st spiral springs may be maintained even if a load acts on the rod axial direction DRa. That is, as shown in FIG. 26, the first prescribed-side contact portion 561 has an outer diameter Dve1 larger than the inner diameter Dsi1 of the first spring-side contact portion 514 located on the innermost side of the first spiral spring 51A. It is getting bigger.
  • the first spring-side contact portion 514 described above is a portion that contacts the first specified-side contact portion 561 in the first spiral spring 51A.
  • the first inner circumferential side defining portion 56 has a portion overlapping the first displacement limiting portion 54 in the rod radial direction DRr, and when the load in the rod radial direction DRr is applied, the first displacement limiting portion 54 may come into contact.
  • the second suspension portion 60A of the present embodiment will be described.
  • the second suspension portion 60 ⁇ / b> A of the present embodiment is provided on the other end side of the intermediate shaft portion 43 of the rod-shaped member 40.
  • the second suspension portion 60A includes a second spiral spring 61A, a second displacement restriction portion 64 that restricts displacement of the second spiral spring 61A in the rod radial direction DRr, and both end portions of the second spiral spring 61A in the rod axis direction DRa.
  • a second outer peripheral side defining portion 65 and a second inner peripheral side defining portion 66 that define the position are provided.
  • the second spiral spring 61 ⁇ / b> A is an elastic member that suppresses transmission of vibration of one of the engine EG and the compressor 24 to the other via the rod-shaped member 40.
  • the second spiral spring 61 ⁇ / b> A is arranged in such a posture that the coil center axis connecting the centers of the coil diameters extends along the rod axis direction DRa of the rod-shaped member 40.
  • the second spiral spring 61 ⁇ / b> A of the present embodiment is arranged so that the end portion on the inner peripheral side having the smallest coil diameter is located on the head 42 side of the rod-shaped member 40.
  • the second spiral spring 61A is a spring configured by winding a rectangular plate 510A in a conical shape. Note that the second spiral spring 61A is configured in the same manner as the first spiral spring 51A, and therefore a detailed description thereof is omitted.
  • the second displacement limiting portion 64 is configured by an inner wall surface extending along the rod axis direction DRa in the second accommodating portion 243.
  • the second displacement limiting portion 64 has a size that allows the second spiral spring 61A to be accommodated therein. Specifically, the second displacement limiting portion 64 is sized to abut on the entire portion of the second spiral spring 61A located on the outer peripheral side in the rod radial direction DRr.
  • the second outer peripheral side defining portion 65 is for defining the position of the most outer peripheral side portion of the second spiral spring 61A.
  • regulation part 65 is comprised by the bottom part extended along the rod radial direction DRr among the 2nd accommodating parts 243. As shown in FIG.
  • the second outer peripheral side defining portion 65 is configured to overlap in the rod axial direction DRa with a portion located on the innermost peripheral side in the second spiral spring 61A.
  • the second outer peripheral side defining portion 65 is not limited to the inner peripheral portion of the second spiral spring 61A when a predetermined compressive load is applied to the second spiral spring 61A in the rod axis direction DRa.
  • the peripheral part is also easily abutted.
  • the outer diameter Dh of the insertion hole 241 is smaller than the outer diameter Dpi2 of the portion located on the innermost side of the second spiral spring 61A. For this reason, the site
  • the second inner circumferential side defining portion 66 defines the position of the portion located on the innermost circumferential side in the second spiral spring 61A.
  • the second inner peripheral side defining portion 66 is disposed between the end portion of the tubular portion 44 and the head portion 42 of the rod-shaped member 40.
  • the second inner circumferential side defining portion 66 of the present embodiment has a second defined side contact portion 661 that contacts the second spiral spring 61A.
  • the second regulation side contact part 661 is a part that regulates the displacement of the second spiral spring 61A when a load is applied in the rod axis direction DRa. For this reason, the 2nd regulation side contact part 661 is comprised so that a contact state with 61 A of 2nd spiral springs may be maintained even if a load acts on the rod axial direction DRa. That is, the second prescribed side contact portion 661 has an outer diameter Dve2 larger than the inner diameter Dsi2 of the second spring side contact portion 614 located on the innermost peripheral side of the second spiral spring 61A.
  • the second spring-side contact portion 614 described above is a portion that contacts the second specified-side contact portion 661 in the second spiral spring 61A.
  • the displacement limiting portions 54 and 64 and the outer peripheral side defining portions 55 and 65 are set in the accommodating portions 242 and 243 of the compressor-side housing 240, respectively.
  • the inner peripheral side defining portions 56 and 66 are set on the rod-like member 40 side fixed to the engine side housing EGH. Therefore, in the first embodiment and the present embodiment, the outer peripheral side defining portions 55 and 65 constitute the first axial direction defining portion, and the inner peripheral side defining portions 56 and 66 constitute the second axial direction defining portion. is doing.
  • the plate members 510A and 610A adjacent to each other in the rod radial direction DRr of the spiral springs 51A and 61A are separated from each other in the unloaded state, and the inner portions of the spiral springs 51A and 61A are the outer peripheral side defining portions. It is in a state of being separated from 55 and 65.
  • each spiral spring 51A, 61A of the present embodiment increases the contact area between the plate members 510A and 610A when the load acting in the rod radial direction DRr increases, thereby reducing the elastically deformable range. .
  • each spiral spring 51A, 61A of the present embodiment has nonlinear elastic characteristics in which the elastic constant in the rod radial direction DRr increases as the load acting on the rod radial direction DRr increases.
  • each spiral spring 51A, 61A of the present embodiment increases the contact area between the plate members 510A and 610A and the outer peripheral side defining portions 55 and 65 when the load acting in the rod axis direction DRa increases.
  • the range in which elastic deformation is possible is reduced.
  • each spiral spring 51A, 61A of the present embodiment has nonlinear elastic characteristics in which the elastic constant in the rod axis direction DRa increases as the load acting in the rod axis direction DRa increases.
  • the first spiral spring 51A when the load acting on the rod axis direction DRa increases, the first spiral spring 51A finally comes into contact with the first outer peripheral side defining portion 55 as shown in FIG. . In this state, the first defining side contact portion 561 of the first inner circumferential side defining portion 56 is located in the first accommodating portion 242.
  • the first inner circumferential side defining portion 56 is displaced in the rod radial direction DRr as shown in FIG.
  • the first displacement limiting portion 54 may come into contact.
  • the dimension Gb1 of the gap between the first inner peripheral side defining portion 56 and the first displacement limiting portion 54 in the rod radial direction DRr is the thickness t of the plate material 510A of the first spiral spring 51A.
  • the effective number of turns Ne of the spiral spring 51A is configured to be larger than the value.
  • the inner peripheral side defining portions 56 and 66 are directly applied to the displacement limiting portions 54 and 64, respectively. It is possible to prevent contact.
  • the insertion hole 241 formed in the compressor-side housing 240 causes the cylindrical portion 44 of the rod-shaped member 40 even if the displacement amount in the rod radial direction DRr of each of the spiral springs 51A and 61A is maximized. Is set to such a size that a gap is formed between them. According to this, it is possible to prevent the rod-shaped member 40 and the inner wall of the insertion hole 241 from coming into direct contact when a load in the rod radial direction DRr is applied.
  • the configuration in which the cylindrical portion 44 is added to the rod-shaped member 40 is exemplified, but the present invention is not limited to this.
  • the rod-shaped member 40 may be configured not to have the cylindrical portion 44 as in the first embodiment.
  • each displacement limitation part 54 and 64 may be comprised by the holder part press-fitted in each accommodating part 242 and 243 like 1st Embodiment.
  • the conical coil spring is exemplified as the elastic member, but the present invention is not limited to this.
  • the elastic member may be constituted by, for example, a drum-shaped coil spring having an intermediate coil diameter smaller than the coil diameters at both ends, or a barrel-shaped coil spring having an intermediate coil diameter larger than the coil diameters at both ends. Good.
  • each inner wall part 520, 620 of each holder part 52, 62 may have a shape such that a cylindrical space is formed therein, for example.
  • the present invention is not limited to this.
  • the rod-shaped member 40 may be arranged, for example, in a posture extending along the vertical direction or a posture extending along a direction intersecting both the vertical direction and the horizontal direction.
  • each holder part 52, 62 is configured separately from each accommodating part 242, 243 has been described, but the present invention is not limited thereto, and each holder part 52, 62 has , And may be configured integrally with each of the accommodating portions 242, 243.
  • each large-diameter side defining portion 531 and 631 is configured separately from each accommodating portion 242 and 243 .
  • the side defining portions 531 and 631 may be configured integrally with the accommodating portions 242 and 243.
  • the example in which the suspension device 30 that functions as the vibration isolator is configured by the first suspension unit 50 and the second suspension unit 60 has been described.
  • the present invention is not limited thereto, and the first suspension unit 50 is not limited thereto.
  • one of the second suspension portions 60 may be configured.
  • the vibration isolator of the present disclosure is applied to the suspension device 30 that connects the engine EG and the compressor 24 .
  • the present invention is not limited thereto, The present invention can be widely applied to a connection portion between devices that generate vibration.
  • the prevention device has an elastic constant that increases in the rod axis direction as the load acting on the elastic member in the rod axis direction increases. It has the characteristic to do. Furthermore, the elastic member is configured such that the contact area with the displacement limiting portion increases as the amount of displacement in the intersecting direction of the elastic member increases.
  • the vibration isolator is configured such that the elastic member includes a conical coil spring having a non-linear spring characteristic with respect to a load acting in the rod axis direction.
  • the displacement limiting part is comprised including the holder part which covers the site
  • the holder portion is provided with a displacement restricting portion that abuts against one portion of the coil spring when a load exceeding a predetermined reference load is applied to the coil spring in the crossing direction and restricts the displacement of the one portion of the coil spring. Yes.
  • the spring effective length that can be elastically deformed decreases, and the spring constant increases. That is, according to the present disclosure, it is possible to realize a vibration isolator having a non-linear spring characteristic with respect to the rod axis direction and the intersecting direction intersecting the rod axis direction with a simple configuration of the coil spring and the holder portion. .
  • the vibration isolator is configured by an inner wall portion having a hole shape in which the displacement restricting portion increases from the small diameter side to the large diameter side of the coil spring in the holder portion.
  • the displacement restricting portion is configured by the inner wall portion having a hole shape that increases from the small diameter side to the large diameter side of the coil spring, not only the large diameter side but also the small diameter side of the coil spring is the inner wall portion of the holder portion. Therefore, it is possible to sufficiently secure a variable range of the spring constant.
  • the vibration isolator includes end position defining portions that define the positions of both end portions of the coil spring in the rod axis direction.
  • the coil spring is provided with a pair of flat portions formed in a flat shape at portions facing the end position defining portions at both ends in the rod axis direction.
  • the rod-shaped member is in contact with at least one turn of the wire connected to the flat portion on the small diameter side of the pair of flat portions. Further, at least one turn of the wire connected to the large diameter flat portion of the pair of flat portions is in contact with the holder portion.
  • the contact state between the coil spring and the end position defining portion can be stabilized. It is possible to suppress the load from acting on the portion.
  • the wire connected to the flat portion on the small diameter side contacts the rod-shaped member, and the wire connected to the flat portion on the large diameter side contacts the holder portion.
  • the flat portion provided in the coil spring hardly functions as a spring that deforms in the rod radial direction, the spring characteristics in the rod radial direction of the coil spring are stabilized while stabilizing the contact state between the coil spring and the end position defining portion. Can be stabilized.
  • the vibration isolator includes end position defining portions that define the positions of both ends of the coil spring in the rod axis direction.
  • the wire which comprises a coil spring is comprised similarly to the cross-sectional shape of the other site
  • the end position defining portion is inclined in the rod axis direction so that half or more of the portions located on both ends in the rod axis direction of the wire are in contact with each other.
  • the end position defining portion of the present disclosure is inclined in the rod axis direction so that more than half turns of the portions located on both ends of the wire rod in the rod axis direction come into contact with each other. According to this, it is possible to stabilize the contact state between the coil spring and the end position defining portion while stabilizing the spring characteristics in the rod radial direction of the coil spring.
  • the coil spring in the vibration isolator, is installed in a posture in which the coil central axis intersects the direction of gravity in the holder portion, and the small diameter side of the coil spring is large in the free state. Compared to the radial side, the direction of gravity is offset in the opposite direction. In this way, by taking into account deformation due to the weight of the coil spring, by offsetting the small diameter side of the coil spring, it is possible to suppress a change in spring characteristics due to the deformation due to the weight of the coil spring.
  • the vibration isolator includes a first axial direction defining portion that defines the position of one end side of the elastic member in the rod axis direction, and the other end side of the elastic member in the rod axis direction.
  • a second axial direction defining portion that defines the position of the end of the first axial direction.
  • the displacement limiting part and the first axial direction defining part are set on one vibration generating part side of the first vibration generating part and the second vibration generating part.
  • the rod-like member is fixed to the other vibration generating part among the first vibration generating part and the second vibration generating part, and is connected to one vibration generating part via an elastic member.
  • regulation part is set to the rod-shaped member side, and even if one of a 1st vibration generation part and a 2nd vibration generation part vibrates, a clearance gap will be formed between displacement limitation parts. Further, it is separated from the displacement limiting portion.
  • the vibration isolator has a structure in which the displacement restricting portion and the second axial direction defining portion come into contact with each other when one of the first vibration generating portion and the second vibration generating portion vibrates.
  • the function as a spring is not displayed.
  • the vibration isolator of the present disclosure has a gap between the displacement limiting portion and the second axial direction defining portion even if one of the first vibration generating portion and the second vibration generating portion vibrates. Therefore, the function of the elastic member as a spring can be exhibited.
  • the elastic member in the vibration isolator, includes a conical coil spring having a non-linear spring characteristic with respect to a load acting in the rod axis direction.
  • the outer diameter of the defined side contact portion that contacts the coil spring is smaller than the outer diameter of the spring side contact portion that contacts the second axial direction defining portion of the coil spring, and the spring side It is larger than the center diameter between the lines, which is intermediate between the outer diameter and the inner diameter of the contact portion.
  • the displacement restricting portion has an inclined surface inclined with respect to the rod axis direction corresponding to the outer shape of the coil spring.
  • the second axial direction defining portion is an inclined surface inclined with respect to the rod axis direction so that the outer diameter of the defined side contact portion is larger than the outer diameter of the portion opposite to the defined side contact portion in the rod axis direction. have.
  • the inclined surface of the second axial direction defining portion has an inclination angle with respect to the rod axis direction larger than the inclination angle with respect to the rod axis direction of the inclined surface of the displacement limiting portion.
  • the gap dimension between the second axial direction defining portion and the displacement limiting portion increases as it moves away from the defined side contact portion in the rod axis direction, the defined side of the second axial direction defining portion. It is possible to prevent a part other than the contact part from coming into direct contact with the displacement limiting portion.
  • the vibration isolator has a characteristic that the elastic constant of the elastic member increases in the intersecting direction as the load acting in the intersecting direction intersecting the rod axis direction increases. Furthermore, the elastic member is configured such that the contact area with one of the first axial direction defining portion and the second axial direction defining portion increases as the amount of displacement of the elastic member in the rod axial direction increases.
  • the vibration isolator includes a displacement limiting unit that limits the displacement of the bar-shaped member of the elastic member in the crossing direction intersecting the bar axis direction.
  • the first axial direction defining portion and the displacement limiting portion are set on one vibration generating portion side of the first vibration generating portion and the second vibration generating portion.
  • the rod-like member is fixed to the other vibration generating part among the first vibration generating part and the second vibration generating part, and is connected to one vibration generating part via an elastic member.
  • the second axial direction defining portion is set on the rod-shaped member side, and even if one of the first vibration generating portion and the second vibration generating portion vibrates, a gap is formed between the displacement limiting portion, It is separated from the displacement limiting part.
  • the vibration isolator configured in this way forms a gap between the displacement limiting portion and the second axial direction defining portion even if one of the first vibration generating portion and the second vibration generating portion vibrates. Therefore, the function of the elastic member as a spring can be exhibited.
  • the vibration isolator includes a spiral spring in which the elastic member is formed by winding a plate-like member in a spiral shape and has a non-linear spring characteristic with respect to a load acting in the intersecting direction. It is configured to include.
  • the outer diameter of the defined side contact portion that contacts the spiral spring is larger than the inner diameter of the spring side contact portion that contacts the second axial direction defining portion in the spiral spring.
  • the dimension of the gap between the second axial direction defining portion and the displacement limiting portion in the direction orthogonal to the rod axis direction is an effective winding excluding the spring-side contact portion of the spiral spring plate thickness and the spiral spring winding number.
  • the rod-shaped member is inserted through an insertion hole formed in one of the first vibration generating unit and the second vibration generating unit.
  • the insertion hole is set to a size that allows a gap to be formed between the elastic member and the rod-shaped member even when the amount of displacement in the intersecting direction of the elastic member is maximized. According to this, even if one vibration generating part of the 1st vibration generating part and the 2nd vibration generating part vibrates, it can prevent that a rod-shaped member and the inner wall of an insertion hole touch directly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

This vibration damping device connects a first vibration generation section (EG) and a second vibration generation section (24) and prevents the transmission of vibration. The vibration damping device is provided with: a bar-like member (40) for connecting the first vibration generation section and the second vibration generation section; and an elastic member for preventing the vibration of one of the first vibration generation section and the second vibration generation section from being transmitted to the other through the bar-like member. Further, the vibration damping device is provided with a displacement limiting section for limiting the displacement of the elastic member in a direction intersecting the axial direction of the bar-like member. The elastic member has characteristics such that the elastic constant of the elastic member in the axial direction of the bar-like member increases as a load acting in the axial direction increases, and the elastic member is configured such that the area of contact of the elastic member with the displacement limiting section increases as the amount of displacement of the elastic member in the intersecting direction increases.

Description

防振装置Vibration isolator 関連出願への相互参照Cross-reference to related applications
 本出願は、2017年1月12日に出願された日本出願番号2017-3464号と、2017年11月16日に出願された日本出願番号2017-221141号に基づくものであって、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2017-3464 filed on Jan. 12, 2017 and Japanese Application No. 2017-221141 filed on Nov. 16, 2017. The description is incorporated.
 本開示は、振動の伝達を抑制する防振装置に関する。 This disclosure relates to a vibration isolator that suppresses vibration transmission.
 従来、バネ定数を変化させることが可能な防振装置が知られている(例えば、特許文献1参照)。特許文献1には、内筒と外筒との間に配置されたゴム弾性体の一部に空隙が設けられた防振ブッシュが開示されている。この防振ブッシュは、大振幅時に弾性体の一部が弾性体に相対する空隙壁面に接することで、小振幅時に比べてバネ定数が大きくなるといった非線形なバネ特性が得られる構造となっている。 Conventionally, a vibration isolator capable of changing a spring constant is known (for example, see Patent Document 1). Patent Document 1 discloses a vibration isolating bush in which a gap is provided in a part of a rubber elastic body disposed between an inner cylinder and an outer cylinder. This anti-vibration bushing has a structure in which a non-linear spring characteristic is obtained in which a part of the elastic body is in contact with the wall of the air gap facing the elastic body when the amplitude is large, and the spring constant is larger than that when the amplitude is small. .
特開2004-282250号公報JP 2004-282250 A
 ところで、特許文献1に開示された防振ブッシュは、弾性部材の空隙の形状が変化する一方向にバネ定数を可変させるものであり、弾性部材における空隙の形状が変化しない方向に振幅の異なる振動が作用すると、振動伝達を充分に抑制することができない。 By the way, the anti-vibration bush disclosed in Patent Document 1 changes the spring constant in one direction in which the shape of the gap of the elastic member changes, and vibrations having different amplitudes in the direction in which the shape of the gap in the elastic member does not change. If this works, vibration transmission cannot be sufficiently suppressed.
 本開示は、異なる二方向に対して非線形な弾性特性を有する防振装置を提供することを目的とする。 This disclosure is intended to provide a vibration isolator having non-linear elastic characteristics in two different directions.
 本開示は、第1振動発生部および第2振動発生部を接続すると共に、振動の伝達を抑制する防振装置を対象としている。 This disclosure is directed to a vibration isolator that connects the first vibration generation unit and the second vibration generation unit and suppresses transmission of vibration.
 本開示の1つの観点によれば、防振装置は、
 請求項1に記載の発明は、
 第1振動発生部および第2振動発生部を接続する棒状部材と、
 第1振動発生部および第2振動発生部の一方の振動が棒状部材を介して他方に伝達されることを抑制する弾性部材と、
 弾性部材における棒状部材の棒軸方向と交差する交差方向への変位を制限する変位制限部と、を備える。
According to one aspect of the present disclosure, the vibration isolator is
The invention described in claim 1
A rod-shaped member connecting the first vibration generating unit and the second vibration generating unit;
An elastic member that suppresses transmission of one vibration of the first vibration generating unit and the second vibration generating unit to the other through the rod-shaped member;
A displacement restricting portion that restricts displacement of the rod-like member in the elastic member in the intersecting direction intersecting the rod axis direction.
 そして、弾性部材は、棒軸方向に作用する荷重が増加するに伴って棒軸方向における弾性定数が増加する特性を有すると共に、弾性部材における交差方向への変位量が大きくなるに従って変位制限部との接触面積が大きくなるように構成されている。 The elastic member has a characteristic that the elastic constant in the rod axis direction increases as the load acting in the rod axis direction increases, and the displacement limiter and the displacement limiting portion increase as the displacement amount in the cross direction in the elastic member increases. The contact area is configured to be large.
 このように、棒状部材の棒軸方向に作用する荷重が増加するに伴って棒軸方向における弾性定数が増加する特性を有する弾性部材を採用すれば、棒軸方向に振幅の異なる振動が作用した場合であっても、弾性部材によって振動の伝達を抑制することができる。 In this way, if an elastic member having the characteristic that the elastic constant in the rod axis direction increases as the load acting on the rod axis direction of the rod member increases, vibrations with different amplitudes act in the rod axis direction. Even in this case, the transmission of vibration can be suppressed by the elastic member.
 また、弾性部材は、交差方向に作用する荷重が増加すると、変位制限部との接触面積が大きくなることで、弾性変形可能な範囲が小さくなるように構成されている。 Further, the elastic member is configured such that when the load acting in the intersecting direction is increased, the contact area with the displacement limiting portion is increased, so that the elastically deformable range is reduced.
 これによると、弾性部材は、交差方向に作用する荷重が増加するに伴って交差方向の弾性定数が増加する特性が得られるので、棒径方向に振幅の異なる振動が作用した場合であっても、弾性部材によって振動の伝達を抑制することができる。 According to this, since the elastic member has the characteristic that the elastic constant in the cross direction increases as the load acting in the cross direction increases, even if vibrations with different amplitudes act in the rod diameter direction The transmission of vibration can be suppressed by the elastic member.
 従って、本開示によれば、棒状部材の棒軸方向および当該棒軸方向に交差する交差方向という異なる二方向に対して非線形な弾性特性を有する防振装置を実現することができる。 Therefore, according to the present disclosure, it is possible to realize a vibration isolator having non-linear elastic characteristics with respect to two different directions, ie, the rod axis direction of the rod-shaped member and the intersecting direction intersecting the rod axis direction.
 また、本開示の別の観点によれば、防振装置は、
 第1振動発生部および第2振動発生部を接続する棒状部材と、
 第1振動発生部および第2振動発生部の一方の振動が棒状部材を介して他方に伝達されることを抑制する弾性部材と、
 弾性部材における棒状部材の棒軸方向の一端側の位置を規定する第1軸方向規定部と、
 弾性部材における棒軸方向の他端側の位置を規定する第2軸方向規定部と、を備える。
According to another aspect of the present disclosure, the vibration isolator is
A rod-shaped member connecting the first vibration generating unit and the second vibration generating unit;
An elastic member that suppresses transmission of one vibration of the first vibration generating unit and the second vibration generating unit to the other through the rod-shaped member;
A first axial direction defining portion for defining a position of one end side of the rod-shaped member of the rod-shaped member in the elastic member;
A second axial direction defining portion that defines a position on the other end side in the rod axial direction of the elastic member.
 そして、弾性部材は、棒軸方向に交差する交差方向に作用する荷重が増加するに伴って交差方向における弾性定数が増加する特性を有する。さらに、弾性部材は、弾性部材における棒軸方向への変位量が大きくなるに従って第1軸方向規定部および第2軸方向規定部の一方との接触面積が大きくなるように構成されている。 The elastic member has a characteristic that the elastic constant in the crossing direction increases as the load acting in the crossing direction crossing the rod axis direction increases. Furthermore, the elastic member is configured such that the contact area with one of the first axial direction defining portion and the second axial direction defining portion increases as the amount of displacement of the elastic member in the rod axial direction increases.
 このように、棒状部材の交差方向に作用する荷重が増加するに伴って交差方向における弾性定数が増加する特性を有する弾性部材を採用すれば、棒径方向に振幅の異なる振動が作用した場合であっても弾性部材によって振動の伝達を抑制することができる。 In this way, if an elastic member having the characteristic that the elastic constant in the crossing direction increases as the load acting in the crossing direction of the rod-shaped member increases, vibrations with different amplitudes act in the rod radial direction. Even if it exists, transmission of a vibration can be suppressed by an elastic member.
 また、弾性部材は、棒軸方向に作用する荷重が増加すると、第1軸方向規定部および第2軸方向規定部の一方との接触面積が大きくなることで、弾性変形可能な範囲が小さくなるように構成されている。 In addition, when the load acting in the rod axis direction increases, the elastic member has a larger contact area with one of the first axial direction defining portion and the second axial direction defining portion, thereby reducing the elastic deformation range. It is configured as follows.
 これによると、弾性部材は、棒軸方向に作用する荷重が増加するに伴って棒軸方向の弾性定数が増加する特性が得られるので、棒軸方向に振幅の異なる振動が作用した場合であっても、弾性部材によって振動の伝達を抑制することができる。 According to this, since the elastic member has the characteristic that the elastic constant in the rod axis direction increases as the load acting in the rod axis direction increases, this is the case when vibrations with different amplitudes act in the rod axis direction. However, the transmission of vibration can be suppressed by the elastic member.
 従って、本構成によっても、棒状部材の棒軸方向および当該棒軸方向に交差する交差方向という異なる二方向に対して非線形な弾性特性を有する防振装置を実現することができる。 Therefore, even with this configuration, it is possible to realize a vibration isolator having non-linear elastic characteristics with respect to two different directions, ie, the rod axis direction of the rod-shaped member and the intersecting direction intersecting the rod axis direction.
車両用空調装置の概略構成図である。It is a schematic block diagram of a vehicle air conditioner. エンジンと圧縮機との取り付け構造を示す模式的な斜視図である。It is a typical perspective view which shows the attachment structure of an engine and a compressor. 第1実施形態の懸架装置の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the suspension apparatus of 1st Embodiment. 第1実施形態の懸架装置の無負荷状態における第1コイルバネの状態を模式的に図示した模式図である。It is the schematic diagram which illustrated typically the state of the 1st coil spring in the unloaded state of the suspension apparatus of 1st Embodiment. 第1実施形態の懸架装置に対して棒軸方向に圧縮荷重が作用した際の第1コイルバネの状態を模式的に図示した模式図である。It is the schematic diagram which illustrated typically the state of the 1st coil spring when a compressive load acted on the axial direction with respect to the suspension apparatus of 1st Embodiment. 第1実施形態の各コイルバネにおける棒軸方向のバネ特性を説明するための説明図である。It is explanatory drawing for demonstrating the spring characteristic of the bar axial direction in each coil spring of 1st Embodiment. 第1実施形態の懸架装置の無負荷状態における第1コイルバネと第1ホルダ部との関係を模式的に図示した模式図である。It is the schematic diagram which illustrated typically the relationship between the 1st coil spring and the 1st holder part in the unloaded state of the suspension apparatus of 1st Embodiment. 第1実施形態の懸架装置に対して棒径方向に荷重が作用した際の第1コイルバネと第1ホルダ部との関係を模式的に図示した模式図である。It is the schematic diagram which illustrated typically the relationship between the 1st coil spring and the 1st holder part at the time of a load acting on the suspension apparatus of 1st Embodiment in the rod diameter direction. 第1実施形態の各コイルバネにおける棒径方向のバネ特性を説明するための説明図である。It is explanatory drawing for demonstrating the spring characteristic of the rod radial direction in each coil spring of 1st Embodiment. 第2実施形態の懸架装置の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the suspension apparatus of 2nd Embodiment. 図10のXI部分の拡大図である。It is an enlarged view of the XI part of FIG. 第3実施形態の懸架装置の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the suspension apparatus of 3rd Embodiment. 図12のXIII部分の拡大図である。It is an enlarged view of the XIII part of FIG. 第4実施形態の懸架装置の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the suspension apparatus of 4th Embodiment. 第5実施形態の各コイルバネの自由状態における模式的な正面図である。It is a typical front view in the free state of each coil spring of a 5th embodiment. 第5実施形態の各コイルバネを各ホルダ部に収容した状態における模式的な正面図である。It is a typical front view in the state where each coil spring of a 5th embodiment was stored in each holder part. 第6実施形態の懸架装置の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the suspension apparatus of 6th Embodiment. 図17のXVIII部分の拡大図である。It is an enlarged view of the XVIII part of FIG. 第6実施形態の懸架装置に対して棒径方向に荷重が作用した際の状態を模式的に図示した模式図である。It is the schematic diagram which illustrated typically the state at the time of a load acting on the suspension apparatus of 6th Embodiment in the rod diameter direction. 第6実施形態の懸架装置に対して棒軸方向および棒径方向の双方に荷重が作用した際の状態を模式的に図示した模式図である。It is the schematic diagram which illustrated typically the state at the time of a load having acted on both the rod-axis direction and the rod radial direction with respect to the suspension apparatus of 6th Embodiment. 第6実施形態の比較例となる懸架装置を用いた際の圧縮機の振動の測定結果を説明するための説明図である。It is explanatory drawing for demonstrating the measurement result of the vibration of the compressor at the time of using the suspension apparatus used as the comparative example of 6th Embodiment. 第6実施形態の懸架装置を用いた際の圧縮機の振動の測定結果を説明するための説明図である。It is explanatory drawing for demonstrating the measurement result of the vibration of the compressor at the time of using the suspension apparatus of 6th Embodiment. 第7実施形態の懸架装置の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the suspension apparatus of 7th Embodiment. 第7実施形態の渦巻バネの模式的な半断面図である。It is a typical half section view of the spiral spring of a 7th embodiment. 第7実施形態の渦巻バネの模式的な正面図である。It is a typical front view of the spiral spring of the seventh embodiment. 図23のXXVI部分の拡大図である。It is an enlarged view of the XXVI part of FIG. 第7実施形態の懸架装置に対して棒軸方向に荷重が作用した際の状態を模式的に図示した模式図である。It is the schematic diagram which illustrated typically the state at the time of a load acting with respect to the suspension apparatus of 7th Embodiment to the rod-axis direction. 第7実施形態の懸架装置に対して棒軸方向および棒径方向の双方に荷重が作用した際の状態を模式的に図示した模式図である。It is the schematic diagram which illustrated typically the state at the time of a load acting on both the rod-axis direction and the rod radial direction with respect to the suspension apparatus of 7th Embodiment.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts as those described in the preceding embodiments are denoted by the same reference numerals, and the description thereof may be omitted. Further, in the embodiment, when only a part of the constituent elements are described, the constituent elements described in the preceding embodiment can be applied to the other parts of the constituent elements. The following embodiments can be partially combined with each other even if they are not particularly specified as long as they do not cause any trouble in the combination.
 (第1実施形態)
 本実施形態について、図1~図9を参照して説明する。図1に示す車両用空調装置10は、エンジンEGを搭載する自動車等の車両に適用され、車室内の温度を所望の温度となるように調整する装置である。
(First embodiment)
This embodiment will be described with reference to FIGS. A vehicle air conditioner 10 shown in FIG. 1 is an apparatus that is applied to a vehicle such as an automobile equipped with an engine EG, and adjusts the temperature in the passenger compartment to a desired temperature.
 本実施形態の車両用空調装置10は、車室内を空調する空調ユニット11を制御装置ECUによって制御するオートエアコンシステムで構成されている。なお、制御装置ECUは、空調用の各種制御機器の作動を制御する装置である。 The vehicle air conditioner 10 of the present embodiment is composed of an auto air conditioner system in which an air conditioning unit 11 that air-conditions a passenger compartment is controlled by a control device ECU. The control device ECU is a device that controls the operation of various control devices for air conditioning.
 空調ユニット11は、車室内最前部のインストルメントパネルの内側に配置されている。空調ユニット11は、その外殻を形成する空調ケース12の内部に室内用ブロワ13、蒸発器14、ヒータコア15等が収容されている。 The air conditioning unit 11 is disposed inside the instrument panel at the forefront of the vehicle interior. The air conditioning unit 11 houses an indoor blower 13, an evaporator 14, a heater core 15 and the like inside an air conditioning case 12 that forms an outer shell thereof.
 空調ケース12は、車室内に送風される送風空気の空気通路を内部に形成しており、例えば、ポリプロピレン等の樹脂にて成形されている。空調ケース12内の空気流れ最上流側には、車室内空気である内気と車室外空気である外気とを切り替え導入する内外気切替箱16が配置されている。 The air conditioning case 12 has an air passage for air to be blown into the vehicle interior, and is formed of, for example, a resin such as polypropylene. On the most upstream side of the air flow in the air conditioning case 12, an inside / outside air switching box 16 for switching and introducing the inside air as the cabin air and the outside air as the cabin outside air is arranged.
 内外気切替箱16の空気流れ下流側には、内外気切替箱16を介して吸入した空気を車室内へ向けて送風する室内用ブロワ13が配置されている。室内用ブロワ13は、羽根車を電動モータにて駆動する電動送風機で構成されている。 An indoor blower 13 is disposed on the downstream side of the air flow of the inside / outside air switching box 16 to blow the air sucked through the inside / outside air switching box 16 toward the vehicle interior. The indoor blower 13 is composed of an electric blower that drives an impeller by an electric motor.
 室内用ブロワ13の空気流れ下流側には、蒸発器14が配置されている。蒸発器14は、その内部を流通する冷媒と送風空気とを熱交換させて送風空気を冷却する冷却用熱交換器である。空調ケース12内における蒸発器14の空気流れ下流側には、蒸発器14を通過した後の空気を流す温風通路20および冷風通路21、並びに、温風通路20および冷風通路21から流出した空気を混合させる混合空間22が形成されている。 An evaporator 14 is disposed on the downstream side of the air flow of the indoor blower 13. The evaporator 14 is a cooling heat exchanger that cools the blown air by exchanging heat between the refrigerant flowing through the evaporator 14 and the blown air. In the air conditioning case 12, on the downstream side of the air flow of the evaporator 14, the hot air passage 20 and the cold air passage 21 through which the air after passing through the evaporator 14 flows, and the air that has flowed out of the hot air passage 20 and the cold air passage 21. A mixing space 22 for mixing the two is formed.
 温風通路20には、蒸発器14を通過後の空気を加熱するヒータコア15が配置されている。ヒータコア15は、その内部を流れる温水と送風空気とを熱交換させて送風空気を加熱する加熱用熱交換器である。ヒータコア15には、エンジンEGで温められた温水が流入し、流入する温水と空気との熱交換によって空気が加熱される。 A heater core 15 for heating the air after passing through the evaporator 14 is disposed in the hot air passage 20. The heater core 15 is a heat exchanger for heating that heats the blown air by exchanging heat between the hot water flowing inside the blower air. Hot water warmed by the engine EG flows into the heater core 15, and air is heated by heat exchange between the flowing warm water and air.
 冷風通路21は、蒸発器14を通過後の空気を、ヒータコア15を通過させることなく、混合空間22に導くための空気通路である。従って、混合空間22にて混合された空気の温度は、温風通路20を通過する空気および冷風通路21を通過する空気の風量割合によって変化する。 The cold air passage 21 is an air passage for guiding the air after passing through the evaporator 14 to the mixing space 22 without passing through the heater core 15. Therefore, the temperature of the air mixed in the mixing space 22 varies depending on the air volume ratio of the air passing through the hot air passage 20 and the air passing through the cold air passage 21.
 本実施形態では、蒸発器14の空気流れ下流側であって、温風通路20および冷風通路21の入口側に、温風通路20および冷風通路21へ流入させる冷風の風量割合を変化させるエアミックスドア23が配置されている。エアミックスドア23は、混合空間22内の空気温度を調整する温度調整手段として機能する。 In the present embodiment, the air mix that changes the air volume ratio of the cold air flowing into the hot air passage 20 and the cold air passage 21 on the downstream side of the air flow of the evaporator 14 and on the inlet side of the hot air passage 20 and the cold air passage 21. A door 23 is arranged. The air mix door 23 functions as a temperature adjusting means for adjusting the air temperature in the mixing space 22.
 ここで、蒸発器14は、圧縮機24、凝縮器25、膨張弁26、気液分離器28等と共に、蒸気圧縮式の冷凍サイクルを構成している。圧縮機24は、エンジンルーム内に配置されている。圧縮機24は、冷凍サイクルにおいて冷媒を吸入し、吸入した冷媒を圧縮して吐出するものである。圧縮機24は、車両のエンジンルーム内に搭載されたエンジンEGによって駆動される。 Here, the evaporator 14 constitutes a vapor compression refrigeration cycle together with the compressor 24, the condenser 25, the expansion valve 26, the gas-liquid separator 28, and the like. The compressor 24 is disposed in the engine room. The compressor 24 sucks refrigerant in the refrigeration cycle and compresses and discharges the sucked refrigerant. The compressor 24 is driven by an engine EG mounted in the engine room of the vehicle.
 凝縮器25は、エンジンルーム内に配置されて、内部を流通する冷媒と外気とを熱交換させることにより、圧縮された冷媒を凝縮液化させる放熱器である。気液分離器28は、凝縮器25から流出した気液二相冷媒を液冷媒とガス冷媒とに分離するものである。膨張弁26は、気液分離器28によって分離された液冷媒を減圧膨張させる減圧手段である。蒸発器14は、冷媒と送風空気との熱交換により、膨張弁26で減圧膨張された冷媒を蒸発気化させる吸熱器である。 The condenser 25 is a radiator that is arranged in the engine room and causes the compressed refrigerant to be condensed and liquefied by exchanging heat between the refrigerant circulating inside and the outside air. The gas-liquid separator 28 separates the gas-liquid two-phase refrigerant flowing out from the condenser 25 into a liquid refrigerant and a gas refrigerant. The expansion valve 26 is decompression means for decompressing and expanding the liquid refrigerant separated by the gas-liquid separator 28. The evaporator 14 is a heat absorber that evaporates and evaporates the refrigerant decompressed and expanded by the expansion valve 26 by heat exchange between the refrigerant and the blown air.
 このように構成される冷房サイクルでは、圧縮機24から吐出された冷媒が、凝縮器25、気液分離器28、膨張弁26、蒸発器14の順に流れた後、再び圧縮機24に吸入される。 In the cooling cycle configured as described above, the refrigerant discharged from the compressor 24 flows in the order of the condenser 25, the gas-liquid separator 28, the expansion valve 26, and the evaporator 14, and then is sucked into the compressor 24 again. The
 圧縮機24は、図2に示すように、エンジンルームの内部において、懸架装置30を介してエンジンEGに取り付けられている。懸架装置30は、第1振動発生部を構成するエンジンEGおよび第2振動発生部を構成する圧縮機24を接続すると共に、振動の伝達を抑制する防振装置として機能する。 As shown in FIG. 2, the compressor 24 is attached to the engine EG via a suspension device 30 in the engine room. The suspension device 30 functions as an anti-vibration device that connects the engine EG that forms the first vibration generating unit and the compressor 24 that forms the second vibration generating unit, and suppresses vibration transmission.
 具体的には、本実施形態の圧縮機24は、4つの懸架装置30を介してエンジンEGに取り付けられている。なお、図2では、理解を容易にするため、圧縮機24の外形状を円柱形状に模式化すると共に、エンジンEGの外形状を直方体形状に模式化している。 Specifically, the compressor 24 of the present embodiment is attached to the engine EG via four suspension devices 30. In FIG. 2, for easy understanding, the outer shape of the compressor 24 is modeled into a cylindrical shape, and the outer shape of the engine EG is modeled into a rectangular parallelepiped shape.
 本実施形態の圧縮機24は、エンジンEGに取り付けられるため、圧縮機24が振動すると、その振動がエンジンEGに伝達される。エンジンEGが駆動している場合、エンジンEGの振動およびエンジンEGの駆動音が車室外に放射されることから、圧縮機24の振動に起因する騒音は問題になり難い。 Since the compressor 24 of this embodiment is attached to the engine EG, when the compressor 24 vibrates, the vibration is transmitted to the engine EG. When the engine EG is driven, the vibration caused by the vibration of the engine 24 and the driving sound of the engine EG are radiated to the outside of the passenger compartment.
 しかしながら、エンジンEGの停止時等のように、エンジンEG側の騒音が小さい場合には、圧縮機24の振動に起因した音がエンジンEG側の騒音によって掻き消され難くなる。すなわち、エンジンEG側の騒音が小さい場合には、圧縮機24の振動に起因する騒音が問題になり易い。 However, when the noise on the engine EG side is low, such as when the engine EG is stopped, the sound caused by the vibration of the compressor 24 is not easily erased by the noise on the engine EG side. That is, when the noise on the engine EG side is small, noise due to the vibration of the compressor 24 is likely to be a problem.
 従って、エンジンEGと圧縮機24とを接続する懸架装置30には、圧縮機24の振動のような微小な振幅となる振動の伝達を抑制可能なように、弾性定数の小さい弾性特性が必要とされる。 Therefore, the suspension device 30 that connects the engine EG and the compressor 24 needs to have an elastic characteristic with a small elastic constant so that transmission of vibration with a minute amplitude such as vibration of the compressor 24 can be suppressed. Is done.
 一方、エンジンEGは、稼働状況によって大きな振幅の振動を発することがある。エンジンEGに大きな振幅の振動が発生した際に、懸架装置30における弾性特性が、弾性定数が小さい状態に維持されていると、懸架装置30によって振動を吸収することが困難となってしまう。懸架装置30によって振動を吸収できない場合、エンジンEGの振動が圧縮機24に伝達されることで、圧縮機24の耐久性が損なわれる虞がある。 On the other hand, the engine EG may generate a vibration with a large amplitude depending on the operating condition. When the vibration with a large amplitude is generated in the engine EG, if the elastic characteristic of the suspension device 30 is maintained in a state where the elastic constant is small, it becomes difficult for the suspension device 30 to absorb the vibration. If the suspension device 30 cannot absorb vibration, the vibration of the engine EG is transmitted to the compressor 24, and the durability of the compressor 24 may be impaired.
 このように、懸架装置30には、圧縮機24の振動のような微小な振幅となる振動だけでなく、大きな振幅の振動の伝達を抑制可能なように、弾性定数の大きい弾性特性も必要とされる。 As described above, the suspension device 30 needs not only a vibration with a small amplitude such as the vibration of the compressor 24 but also an elastic characteristic with a large elastic constant so that transmission of a vibration with a large amplitude can be suppressed. Is done.
 これらの事情を鑑みて、本実施形態の懸架装置30は、懸架装置30に入力される振動の振幅が大きくなるほど弾性定数が大きくなる非線形の弾性特性を有する構造となっている。以下、本実施形態の懸架装置30の構造について図3を参照して説明する。 In view of these circumstances, the suspension device 30 of the present embodiment has a non-linear elastic characteristic in which the elastic constant increases as the amplitude of vibration input to the suspension device 30 increases. Hereinafter, the structure of the suspension device 30 of the present embodiment will be described with reference to FIG.
 図3に示すように、懸架装置30は、エンジンEGのエンジン側ハウジングEGHと圧縮機24の圧縮機側ハウジング240とを連結する連結部位に設けられている。本実施形態の懸架装置30は、棒状に形成された棒状部材40、棒状部材40の一端側に配置された第1懸架部50、および棒状部材40の他端側に配置された第2懸架部60を備えている。 As shown in FIG. 3, the suspension device 30 is provided at a connecting portion that connects the engine-side housing EGH of the engine EG and the compressor-side housing 240 of the compressor 24. The suspension device 30 of the present embodiment includes a rod-shaped member 40 formed in a rod shape, a first suspension portion 50 disposed on one end side of the rod-shaped member 40, and a second suspension portion disposed on the other end side of the rod-shaped member 40. 60.
 棒状部材40は、重力の作用方向である鉛直方向に交差する交差方向(具体的には、水平方向)に沿って延びるように配置されている。すなわち、棒状部材40は、その軸心CLが水平方向に沿って延びるように配置されている。なお、図3に示すDRaは、棒状部材40の軸心CLの延びる方向である棒軸方向を示している。また、図3に示すDRrは、棒状部材40の棒軸方向DRaに直交する方向である棒径方向を示している。 The rod-shaped member 40 is disposed so as to extend along the intersecting direction (specifically, the horizontal direction) that intersects the vertical direction, which is the direction of gravity. That is, the rod-shaped member 40 is disposed such that the axis CL extends along the horizontal direction. In addition, DRa shown in FIG. 3 has shown the rod axial direction which is the direction where the axial center CL of the rod-shaped member 40 is extended. Further, DRr shown in FIG. 3 indicates a rod radial direction that is a direction orthogonal to the rod axis direction DRa of the rod-shaped member 40.
 本実施形態の棒状部材40は、例えば、六角ボルトで構成されている。棒状部材40は、棒軸方向DRaの一端側に形成された雄ネジ部41、棒軸方向DRaの他端側に形成された略六角形状の頭部42、雄ネジ部41と頭部42との間の中間軸部43を備えている。 The rod-shaped member 40 of the present embodiment is composed of, for example, a hexagon bolt. The rod-shaped member 40 includes a male screw portion 41 formed on one end side in the rod axis direction DRa, a substantially hexagonal head portion 42 formed on the other end side in the rod axis direction DRa, a male screw portion 41 and the head portion 42. The intermediate shaft part 43 is provided.
 ここで、圧縮機側ハウジング240には、エンジンEGとの連結部位に、棒状部材40が挿通される挿通穴241が形成されている。また、エンジン側ハウジングEGHには、圧縮機24との連結部位にネジ穴EGSが形成されている。ネジ穴EGSには、棒状部材40の雄ネジ部41が螺合されている。これにより、圧縮機側ハウジング240とエンジン側ハウジングEGHとが、棒状部材40を介して互いに連結されている。 Here, in the compressor-side housing 240, an insertion hole 241 through which the rod-shaped member 40 is inserted is formed at a connection portion with the engine EG. Further, the engine-side housing EGH is formed with a screw hole EGS at a connection portion with the compressor 24. The male screw portion 41 of the rod-shaped member 40 is screwed into the screw hole EGS. Thereby, the compressor side housing 240 and the engine side housing EGH are mutually connected via the rod-shaped member 40.
 また、圧縮機側ハウジング240には、挿通穴241の開口部の両側に後述する第1ホルダ部52、第2ホルダ部62等を収容する第1収容部242および第2収容部243が形成されている。第1収容部242および第2収容部243は、挿通穴241よりも大径となる有底穴で構成されている。 Further, the compressor-side housing 240 is formed with a first housing portion 242 and a second housing portion 243 for housing a first holder portion 52, a second holder portion 62, and the like, which will be described later, on both sides of the opening portion of the insertion hole 241. ing. The 1st accommodating part 242 and the 2nd accommodating part 243 are comprised by the bottomed hole used as a larger diameter than the insertion hole 241. FIG.
 第1懸架部50は、棒状部材40の中間軸部43におけるエンジン側ハウジングEGHに近接する一端側に設けられている。第1懸架部50は、エンジンEGと圧縮機24との間の振動伝達を抑制する第1コイルバネ51、第1コイルバネ51を収容する第1ホルダ部52、第1コイルバネ51の棒軸方向DRaにおける両端部の位置を規定する第1端部位置規定部53を備えている。 The first suspension part 50 is provided on one end side of the intermediate shaft part 43 of the rod-shaped member 40 that is close to the engine-side housing EGH. The first suspension unit 50 includes a first coil spring 51 that suppresses vibration transmission between the engine EG and the compressor 24, a first holder unit 52 that houses the first coil spring 51, and the first coil spring 51 in the rod axis direction DRa. A first end position defining portion 53 that defines the positions of both end portions is provided.
 第1コイルバネ51は、エンジンEGおよび圧縮機24の一方の振動が棒状部材40を介して他方に伝達されることを抑制する弾性部材である。第1コイルバネ51は、一端側から他端側に向かってコイル径が大きくなるように線材510を巻いた円錐状のコイルバネで構成されている。第1コイルバネ51は、コイル径の中心を結んだコイル中心軸が、棒状部材40の棒軸方向DRaに沿って延びる姿勢で配置されている。本実施形態の第1コイルバネ51は、コイル径が最も小さい小径端部がエンジンEG側に位置するように配置されている。 The first coil spring 51 is an elastic member that suppresses transmission of vibration of one of the engine EG and the compressor 24 to the other through the rod-shaped member 40. The first coil spring 51 is composed of a conical coil spring wound with a wire 510 so that the coil diameter increases from one end side toward the other end side. The first coil spring 51 is arranged such that the coil center axis connecting the centers of the coil diameters extends along the rod axis direction DRa of the rod-shaped member 40. The first coil spring 51 of the present embodiment is arranged so that the small diameter end portion with the smallest coil diameter is located on the engine EG side.
 また、本実施形態の第1コイルバネ51は、棒軸方向DRaに隣り合う線材510の一部が棒軸方向DRaに重なり合うように構成されている。これにより、第1コイルバネ51は、棒軸方向DRaから荷重が作用した際に、隣り合う線材510の一部が接触する構成となっている。 Also, the first coil spring 51 of the present embodiment is configured such that a part of the wire 510 adjacent in the rod axis direction DRa overlaps in the rod axis direction DRa. Accordingly, the first coil spring 51 is configured such that when a load is applied from the rod axis direction DRa, a part of the adjacent wire 510 is brought into contact.
 さらに、本実施形態の第1コイルバネ51は、線材510が断面円形状となる線材で構成されている。なお、第1コイルバネ51は、例えば、断面四角形状となる異形線材で構成されていてもよい。 Furthermore, the first coil spring 51 of the present embodiment is formed of a wire material in which the wire material 510 has a circular cross section. In addition, the 1st coil spring 51 may be comprised with the deformed wire which becomes a cross-sectional square shape, for example.
 第1ホルダ部52は、第1収容部242に対して圧入等によって固定されている。第1ホルダ部52は、その内部に第1コイルバネ51が収容可能なように筒状に構成されている。第1ホルダ部52は、第1コイルバネ51における棒径方向DRrの外側に露出する部位を覆う第1内側壁部520を有している。 The first holder part 52 is fixed to the first housing part 242 by press fitting or the like. The 1st holder part 52 is comprised by the cylinder shape so that the 1st coil spring 51 can be accommodated in the inside. The first holder portion 52 has a first inner wall portion 520 that covers a portion of the first coil spring 51 that is exposed outside the rod radial direction DRr.
 第1ホルダ部52は、第1コイルバネ51に対して棒径方向DRrに所定の基準荷重を超える荷重が作用した際に第1コイルバネ51の一部位と当接するように、第1内側壁部520と第1コイルバネ51との間隔が設定されている。本実施形態の第1ホルダ部52は、棒径方向DRrの荷重が大きくなるにつれて第1コイルバネ51との接触面積が大きくなるように、第1内側壁部520と第1コイルバネ51との間隔が設定されている。 The first holder 52 is in contact with a part of the first coil spring 51 when a load exceeding a predetermined reference load is applied to the first coil spring 51 in the rod radial direction DRr. And the first coil spring 51 are set. In the first holder portion 52 of the present embodiment, the distance between the first inner wall portion 520 and the first coil spring 51 is such that the contact area with the first coil spring 51 increases as the load in the rod radial direction DRr increases. Is set.
 より具体的には、第1内側壁部520は、第1ホルダ部52における第1コイルバネ51の小径側から大径側に向かって大きくなる穴形状を有する内側壁部で構成されている。このように構成される第1ホルダ部52は、棒径方向DRrの荷重が作用した際に、第1コイルバネ51におけるコイル径が小さい小径側についても第1内側壁部520に当接し易くなっている。 More specifically, the first inner wall portion 520 is configured by an inner wall portion having a hole shape that increases from the small diameter side to the large diameter side of the first coil spring 51 in the first holder portion 52. The first holder portion 52 configured in this way is easily brought into contact with the first inner wall portion 520 even on the small diameter side where the coil diameter of the first coil spring 51 is small when a load in the rod radial direction DRr is applied. Yes.
 第1端部位置規定部53は、第1コイルバネ51における棒軸方向DRaの両端部の位置を規定するものである。第1端部位置規定部53は、第1コイルバネ51における大径側の端部の位置を規定する第1大径側規定部531、および第1コイルバネ51における小径側の端部の位置を規定する第1小径側規定部532で構成されている。 The first end position defining portion 53 defines the positions of both end portions of the first coil spring 51 in the rod axis direction DRa. The first end position defining portion 53 defines the position of the first large diameter side defining portion 531 that defines the position of the large diameter side end portion of the first coil spring 51 and the position of the small diameter side end portion of the first coil spring 51. The first small diameter side defining portion 532 is configured.
 第1大径側規定部531は、円環状の部材で構成され、第1収容部242の底部に配置されている。また、第1小径側規定部532は、円環状の部材で構成され、棒状部材40の雄ネジ部41と中間軸部43との間に配置されている。 The first large-diameter side defining portion 531 is formed of an annular member and is disposed at the bottom of the first accommodating portion 242. Further, the first small diameter side defining portion 532 is formed of an annular member, and is disposed between the male screw portion 41 and the intermediate shaft portion 43 of the rod-shaped member 40.
 ここで、本実施形態の第1コイルバネ51は、各規定部531、532との接触状態が安定するように、各規定部531、532に対向する端部に平坦状に形成された一対の平坦部512、513が設けられている。一対の平坦部512、513は、第1コイルバネ51の両端部に対して研削処理を施すことで形成することができる。一対の平坦部512、513は、例えば、線材510の端部における3/4巻き程度の範囲に設けられている。 Here, the first coil spring 51 of the present embodiment has a pair of flat portions formed at the end portions facing the defining portions 531 and 532 so that the contact state with the defining portions 531 and 532 is stable. Portions 512 and 513 are provided. The pair of flat portions 512 and 513 can be formed by subjecting both end portions of the first coil spring 51 to a grinding process. The pair of flat portions 512 and 513 are provided, for example, in a range of about 3/4 winding at the end portion of the wire 510.
 また、本実施形態の第1懸架部50では、第1コイルバネ51が、棒軸方向DRaにおいて或る程度圧縮された状態で第1大径側規定部531および第1小径側規定部532の間に嵌め込まれている。従って、第1大径側規定部531および第1小径側規定部532の間に嵌め込まれた第1コイルバネ51は、自由状態における第1コイルバネ51と比較して、棒軸方向DRaの長さが小さくなっている。 Further, in the first suspension part 50 of the present embodiment, the first coil spring 51 is compressed between the first large diameter side defining part 531 and the first small diameter side defining part 532 in a state compressed to some extent in the rod axis direction DRa. It is inserted in. Therefore, the first coil spring 51 fitted between the first large-diameter side defining portion 531 and the first small-diameter side defining portion 532 has a length in the rod axis direction DRa as compared with the first coil spring 51 in the free state. It is getting smaller.
 続いて、第2懸架部60は、棒状部材40の中間軸部43における他端側に設けられている。第2懸架部60は、エンジンEGと圧縮機24との間の振動伝達を抑制する第2コイルバネ61、第2コイルバネ61を収容する第2ホルダ部62、第2コイルバネ61の棒軸方向DRaにおける両端部の位置を規定する第2端部位置規定部63を備えている。 Subsequently, the second suspension part 60 is provided on the other end side of the intermediate shaft part 43 of the rod-shaped member 40. The second suspension part 60 includes a second coil spring 61 that suppresses vibration transmission between the engine EG and the compressor 24, a second holder part 62 that houses the second coil spring 61, and the rod axis direction DRa of the second coil spring 61. A second end position defining portion 63 that defines the positions of both end portions is provided.
 第2コイルバネ61は、エンジンEGおよび圧縮機24の一方の振動が棒状部材40を介して他方に伝達されることを抑制する弾性部材である。第2コイルバネ61は、一端側から他端側に向かってコイル径が大きくなるよう線材610を巻いた円錐状のコイルバネで構成されている。第2コイルバネ61は、コイル径の中心を結んだコイル中心軸が、棒状部材40の棒軸方向DRaに沿って延びる姿勢で配置されている。本実施形態の第2コイルバネ61は、コイル径が最も小さい小径端部が棒状部材40の頭部42側に位置するように配置されている。 The second coil spring 61 is an elastic member that suppresses transmission of vibration of one of the engine EG and the compressor 24 to the other through the rod-shaped member 40. The second coil spring 61 is constituted by a conical coil spring wound with a wire 610 so that the coil diameter increases from one end side toward the other end side. The second coil spring 61 is arranged such that the coil center axis connecting the centers of the coil diameters extends along the rod axis direction DRa of the rod-shaped member 40. The second coil spring 61 of the present embodiment is arranged so that the small diameter end portion with the smallest coil diameter is positioned on the head 42 side of the rod-shaped member 40.
 また、本実施形態の第2コイルバネ61は、棒軸方向DRaに隣り合う線材610の一部が棒軸方向DRaに重なり合うように構成されている。これにより、第2コイルバネ61は、棒軸方向DRaから荷重が作用した際に、隣り合う線材610の一部が接触する構成となっている。 Further, the second coil spring 61 of the present embodiment is configured such that a part of the wire 610 adjacent to the rod axis direction DRa overlaps with the rod axis direction DRa. Thus, the second coil spring 61 is configured such that a part of the adjacent wire 610 contacts when a load is applied from the rod axis direction DRa.
 さらに、本実施形態の第2コイルバネ61は、線材610が断面円形状となる線材で構成されている。なお、第2コイルバネ61は、例えば、断面四角形状となる異形線材で構成されていてもよい。 Furthermore, the second coil spring 61 of the present embodiment is made of a wire material in which the wire material 610 has a circular cross section. In addition, the 2nd coil spring 61 may be comprised with the deformed wire which becomes a cross-sectional square shape, for example.
 第2ホルダ部62は、第2収容部243に対して圧入等によって固定されている。第2ホルダ部62は、その内部に第2コイルバネ61が収容可能なように筒状に構成されている。具体的には、第2ホルダ部62は、第2コイルバネ61における棒径方向DRrの外側に露出する部位を覆う第2内側壁部620を有している。 The second holder part 62 is fixed to the second housing part 243 by press fitting or the like. The 2nd holder part 62 is comprised by the cylinder shape so that the 2nd coil spring 61 can be accommodated in the inside. Specifically, the second holder portion 62 has a second inner wall portion 620 that covers a portion of the second coil spring 61 that is exposed outside the rod radial direction DRr.
 第2ホルダ部62は、第2コイルバネ61に対して棒径方向DRrに所定の基準荷重を超える荷重が作用した際に第2コイルバネ61の一部位と当接するように、第2内側壁部620と第2コイルバネ61との間隔が設定されている。本実施形態の第2ホルダ部62は、棒径方向DRrの荷重が大きくなるにつれて第2コイルバネ61との接触面積が大きくなるように、第2内側壁部620と第2コイルバネ61との間隔が設定されている。 The second holder 62 is in contact with a part of the second coil spring 61 when a load exceeding a predetermined reference load is applied to the second coil spring 61 in the rod radial direction DRr. And the second coil spring 61 are set. In the second holder portion 62 of this embodiment, the distance between the second inner wall portion 620 and the second coil spring 61 is such that the contact area with the second coil spring 61 increases as the load in the rod radial direction DRr increases. Is set.
 より具体的には、第2内側壁部620は、第2ホルダ部62における第2コイルバネ61の小径側から大径側に向かって大きくなる穴形状を有する内側壁部で構成されている。 More specifically, the second inner wall portion 620 includes an inner wall portion having a hole shape that increases from the small diameter side to the large diameter side of the second coil spring 61 in the second holder portion 62.
 第2端部位置規定部63は、第2コイルバネ61における棒軸方向DRaの両端部の位置を規定するものである。第2端部位置規定部63は、第2コイルバネ61における大径側の端部の位置を規定する第2大径側規定部631、および第2コイルバネ61における小径側の端部の位置を規定する第2小径側規定部632で構成されている。 The second end position defining portion 63 defines the positions of both end portions of the second coil spring 61 in the rod axis direction DRa. The second end position defining portion 63 defines the position of the second large diameter side defining portion 631 that defines the position of the large diameter end portion of the second coil spring 61 and the position of the small diameter end portion of the second coil spring 61. The second small-diameter side defining portion 632 is configured.
 第2大径側規定部631は、円環状の部材で構成され、第2収容部243の底部に配置されている。また、第2小径側規定部632は、円環状の部材で構成され、棒状部材40の頭部42と中間軸部43との間に配置されている。 The second large-diameter side defining portion 631 is formed of an annular member and is disposed at the bottom of the second accommodating portion 243. Further, the second small diameter side defining portion 632 is formed of an annular member, and is disposed between the head portion 42 of the rod-shaped member 40 and the intermediate shaft portion 43.
 ここで、本実施形態の第2コイルバネ61は、各規定部631、632との接触状態が安定するように、各規定部631、632に対向する端部に平坦状に形成された一対の平坦部612、613が設けられている。一対の平坦部612、613は、第2コイルバネ61の両端部に対して研削処理を施すことで形成することができる。一対の平坦部612、613は、例えば、線材610の端部における3/4巻き程度の範囲に設けられている。 Here, the second coil spring 61 of the present embodiment has a pair of flat portions formed in a flat shape at the ends facing the defining portions 631 and 632 so that the contact state with the defining portions 631 and 632 is stable. Portions 612 and 613 are provided. The pair of flat portions 612 and 613 can be formed by subjecting both end portions of the second coil spring 61 to a grinding process. The pair of flat portions 612 and 613 are provided, for example, in a range of about 3/4 winding at the end of the wire 610.
 また、本実施形態の第2懸架部60では、第2コイルバネ61は、棒軸方向DRaにおいて或る程度圧縮された状態で第2大径側規定部631および第2小径側規定部632の間に嵌め込まれている。従って、第2大径側規定部631および第2小径側規定部632の間に嵌め込まれた第2コイルバネ61は、自由状態における第2コイルバネ61と比較して、棒軸方向DRaの長さが小さくなっている。 Further, in the second suspension portion 60 of the present embodiment, the second coil spring 61 is between the second large diameter side defining portion 631 and the second small diameter side defining portion 632 in a state where the second coil spring 61 is compressed to some extent in the rod axis direction DRa. It is inserted in. Therefore, the second coil spring 61 fitted between the second large-diameter side defining portion 631 and the second small-diameter side defining portion 632 has a length in the rod axis direction DRa as compared with the second coil spring 61 in the free state. It is getting smaller.
 次に、棒軸方向DRaおよび棒径方向DRrにおける第1コイルバネ51および第2コイルバネ61の撓み方について説明する。なお、第1コイルバネ51および第2コイルバネ61は、棒軸方向DRaおよび棒径方向DRrにおける撓み方が同様となる。このため、以下では、基本的に第1コイルバネ51の撓み方について説明し、第2コイルバネ61の撓み方についての説明を省略する。 Next, how the first coil spring 51 and the second coil spring 61 are bent in the rod axis direction DRa and the rod diameter direction DRr will be described. The first coil spring 51 and the second coil spring 61 have the same way of bending in the rod axis direction DRa and the rod radial direction DRr. For this reason, below, the bending method of the 1st coil spring 51 is fundamentally demonstrated and the description about the bending method of the 2nd coil spring 61 is abbreviate | omitted.
 まず、棒軸方向DRaにおける第1コイルバネ51の撓み方について、図4~図6を参照して説明する。第1コイルバネ51は、図4に示すように、懸架装置30の無負荷状態において、棒軸方向DRaに隣り合う線材510同士が互いに離れた状態となる。この状態では、第1コイルバネ51における弾性変形可能なバネ有効長さLが、第1コイルバネ51の棒軸方向DRaの全体の長さとなる。すなわち、本実施形態の第1コイルバネ51は、懸架装置30の無負荷状態において、第1コイルバネ51の棒軸方向DRaの全体が弾性変形可能な範囲となる。 First, how the first coil spring 51 bends in the rod axis direction DRa will be described with reference to FIGS. As shown in FIG. 4, the first coil spring 51 is in a state in which the wires 510 adjacent to each other in the rod axis direction DRa are separated from each other in the unloaded state of the suspension device 30. In this state, the spring effective length L that can be elastically deformed in the first coil spring 51 is the entire length of the first coil spring 51 in the rod axis direction DRa. That is, the first coil spring 51 of the present embodiment is in a range where the entire rod axis direction DRa of the first coil spring 51 can be elastically deformed when the suspension device 30 is in an unloaded state.
 そして、例えば、圧縮機24が棒軸方向DRaに振動し、第1コイルバネ51に対して棒軸方向DRaの圧縮荷重Faが作用すると、第1コイルバネ51は、棒軸方向DRaに縮む。これにより、棒軸方向DRaに作用する振動が第1コイルバネ51によって吸収される。 For example, when the compressor 24 vibrates in the rod axis direction DRa and the compression load Fa in the rod axis direction DRa acts on the first coil spring 51, the first coil spring 51 contracts in the rod axis direction DRa. Thereby, vibrations acting in the rod axis direction DRa are absorbed by the first coil spring 51.
 ここで、第1コイルバネ51は、コイル径が大きい大径側の部位のバネ定数が、コイル径が小さい小径側の部位のバネ定数よりも小さくなる。このため、第1コイルバネ51に対して作用する棒軸方向DRaの圧縮荷重Faが増加すると、図5に示すように、大径側の部位から順に隣り合う線材510同士が密着し始める。線材510同士が密着した部位は、バネとしての機能が失われる。このため、棒軸方向DRaの圧縮荷重Faが増加すると、第1コイルバネ51における棒軸方向DRaに弾性変形可能なバネ有効長さLが小さくなる。 Here, in the first coil spring 51, the spring constant of the large diameter portion where the coil diameter is large is smaller than the spring constant of the small diameter portion where the coil diameter is small. For this reason, when the compressive load Fa in the rod axis direction DRa acting on the first coil spring 51 increases, as shown in FIG. 5, the adjacent wire rods 510 start to come into close contact with each other in order from the portion on the large diameter side. The part where the wires 510 are in close contact with each other loses the function as a spring. For this reason, when the compressive load Fa in the rod axis direction DRa increases, the spring effective length L that can be elastically deformed in the rod axis direction DRa in the first coil spring 51 becomes small.
 このように、本実施形態の第1コイルバネ51は、棒軸方向DRaに作用する圧縮荷重Faが増加すると、線材510同士の接触面積が大きくなることで、弾性変形可能な範囲が小さくなる。このため、本実施形態の第1コイルバネ51は、棒軸方向DRaに作用する荷重Faが増加するに伴って、棒軸方向DRaの弾性定数(すなわち、バネ定数)が増加する非線形な弾性特性を有することになる。 As described above, in the first coil spring 51 of the present embodiment, when the compressive load Fa acting in the rod axis direction DRa is increased, the contact area between the wires 510 is increased, so that the elastically deformable range is reduced. For this reason, the first coil spring 51 of the present embodiment has a nonlinear elastic characteristic in which the elastic constant (that is, the spring constant) in the rod axis direction DRa increases as the load Fa acting in the rod axis direction DRa increases. Will have.
 このような非線形な弾性特性を有する第1コイルバネ51は、図6に示すように、棒軸方向DRaに作用する荷重Faが増加するに伴って、第1コイルバネ51の棒軸方向DRaにおける変位量(すなわち、撓み量)が小さくなる。なお、第2コイルバネ61は、第1コイルバネ51と同様に構成されているので、第1コイルバネ51と同様に棒軸方向DRaにおいて非線形な弾性特性を有する。 As shown in FIG. 6, the first coil spring 51 having such non-linear elastic characteristics has a displacement amount of the first coil spring 51 in the rod axis direction DRa as the load Fa acting in the rod axis direction DRa increases. (That is, the amount of deflection) becomes small. Since the second coil spring 61 is configured in the same manner as the first coil spring 51, the second coil spring 61 has a non-linear elastic characteristic in the rod axis direction DRa similarly to the first coil spring 51.
 続いて、棒径方向DRrにおける第1コイルバネ51の撓み方について、図7~図9を参照して説明する。第1コイルバネ51は、図7に示すように、懸架装置30の無負荷状態において、棒径方向DRrに対向する第1ホルダ部52の第1内側壁部520から離れた状態となる。この状態では、第1コイルバネ51における弾性変形可能なバネ有効長さLが、第1コイルバネ51の棒軸方向DRaの全体の長さとなる。すなわち、本実施形態の第1コイルバネ51は、懸架装置30の無負荷状態において、第1コイルバネ51の棒軸方向DRaの全体が弾性変形可能な範囲となる。 Subsequently, how the first coil spring 51 bends in the rod radial direction DRr will be described with reference to FIGS. As shown in FIG. 7, the first coil spring 51 is in a state of being separated from the first inner wall portion 520 of the first holder portion 52 facing the rod radial direction DRr in the unloaded state of the suspension device 30. In this state, the spring effective length L that can be elastically deformed in the first coil spring 51 is the entire length of the first coil spring 51 in the rod axis direction DRa. That is, the first coil spring 51 of the present embodiment is in a range where the entire rod axis direction DRa of the first coil spring 51 can be elastically deformed when the suspension device 30 is in an unloaded state.
 そして、例えば、圧縮機24が棒径方向DRrに振動し、第1コイルバネ51に対して棒径方向DRrの荷重Frが作用すると、第1コイルバネ51が、弾性を有した状態で棒径方向DRrに撓む。これにより、棒径方向DRrに作用する振動が第1コイルバネ51によって吸収される。 For example, when the compressor 24 vibrates in the rod radial direction DRr and a load Fr in the rod radial direction DRr acts on the first coil spring 51, the first coil spring 51 is elastic in the rod radial direction DRr. Bend. Thereby, the vibration acting in the rod radial direction DRr is absorbed by the first coil spring 51.
 ここで、第1コイルバネ51は、コイル径が大きい大径側の部位のバネ定数が、コイル径が小さい小径側の部位のバネ定数よりも小さくなる。このため、第1コイルバネ51に対して作用する棒径方向DRrの荷重Frが増加すると、図8に示すように、大径側の部位から順に第1ホルダ部52の第1内側壁部520に当接し始める。第1コイルバネ51における線材510が第1内側壁部520と当接した部位は、バネとしての機能が失われる。このため、棒径方向DRrに作用する荷重Frが増加すると、第1コイルバネ51における棒径方向DRrに弾性変形可能なバネ有効長さLが小さくなる。 Here, in the first coil spring 51, the spring constant of the large diameter portion where the coil diameter is large is smaller than the spring constant of the small diameter portion where the coil diameter is small. For this reason, when the load Fr in the rod radial direction DRr acting on the first coil spring 51 increases, as shown in FIG. 8, the first inner wall portion 520 of the first holder portion 52 is sequentially applied from the portion on the large diameter side. Start to abut. The portion of the first coil spring 51 where the wire 510 is in contact with the first inner wall portion 520 loses its function as a spring. For this reason, when the load Fr acting in the rod radial direction DRr increases, the effective spring length L of the first coil spring 51 that can be elastically deformed in the rod radial direction DRr becomes small.
 このように、本実施形態の第1コイルバネ51は、棒径方向DRrに作用する荷重Frが増加すると、線材510と第1内側壁部520との接触面積が大きくなることで、弾性変形可能な範囲が小さくなる。このため、本実施形態の第1コイルバネ51は、棒径方向DRrに作用する荷重Frが増加するに伴って、棒径方向DRrの弾性定数(すなわち、バネ定数)が増加する非線形な弾性特性(すなわち、バネ特性)を有することになる。 Thus, the first coil spring 51 of the present embodiment can be elastically deformed by increasing the contact area between the wire 510 and the first inner wall portion 520 when the load Fr acting in the rod radial direction DRr increases. The range becomes smaller. For this reason, the first coil spring 51 of the present embodiment has a nonlinear elastic characteristic in which the elastic constant (that is, the spring constant) in the rod radial direction DRr increases as the load Fr acting in the rod radial direction DRr increases. That is, it has spring characteristics.
 このような非線形な弾性特性を有する第1コイルバネ51は、図9に示すように、棒径方向DRrに作用する荷重Frが増加するに伴って、第1コイルバネ51の棒径方向DRrにおける変位量(すなわち、撓み量)が小さくなる。なお、第2コイルバネ61は、第1コイルバネ51と同様に構成されているので、第1コイルバネ51と同様に棒径方向DRrにおいて非線形な弾性特性を有する。 As shown in FIG. 9, the first coil spring 51 having such non-linear elastic characteristics has a displacement amount of the first coil spring 51 in the rod radial direction DRr as the load Fr acting in the rod radial direction DRr increases. (That is, the amount of deflection) becomes small. Since the second coil spring 61 is configured in the same manner as the first coil spring 51, the second coil spring 61 has a non-linear elastic characteristic in the rod radial direction DRr as in the first coil spring 51.
 ここで、本実施形態では、第1コイルバネ51および第2コイルバネ61が、エンジンEGおよび圧縮機24の一方の振動が棒状部材40を介して他方に伝達されることを抑制する弾性部材を構成している。 Here, in the present embodiment, the first coil spring 51 and the second coil spring 61 constitute an elastic member that suppresses transmission of one vibration of the engine EG and the compressor 24 to the other through the rod-shaped member 40. ing.
 また、本実施形態では、第1ホルダ部52および第2ホルダ部62が、弾性部材における棒状部材40の棒軸方向DRaと交差する交差方向への変位を制限する変位制限部を構成している。そして、第1内側壁部520および第2内側壁部620が、各コイルバネ51、61に対して交差方向に所定の基準荷重を超える荷重が作用した際に各コイルバネ51、61の一部位の変位を規制する変位規制部を構成している。 Moreover, in this embodiment, the 1st holder part 52 and the 2nd holder part 62 comprise the displacement restriction | limiting part which restrict | limits the displacement to the crossing direction which cross | intersects the rod-axis direction DRa of the rod-shaped member 40 in an elastic member. . When the first inner wall portion 520 and the second inner wall portion 620 are subjected to a load exceeding a predetermined reference load in the intersecting direction with respect to the coil springs 51 and 61, the displacement of one part of the coil springs 51 and 61 is changed. A displacement restricting portion for restricting the movement.
 以上説明した本実施形態の懸架装置30は、エンジンEGおよび圧縮機24の一方の振動が棒状部材40を介して他方に伝達されることを抑制する弾性部材として第1コイルバネ51および第2コイルバネ61を備えている。また、懸架装置30は、第1コイルバネ51および第2コイルバネ61における棒状部材40の棒軸方向DRaと交差する交差方向への変形を制限する変形制限部として、第1ホルダ部52および第2ホルダ部62を備えている。 The suspension device 30 according to the present embodiment described above includes the first coil spring 51 and the second coil spring 61 as elastic members that suppress transmission of vibration of one of the engine EG and the compressor 24 to the other through the rod-shaped member 40. It has. In addition, the suspension device 30 includes a first holder portion 52 and a second holder as deformation restriction portions that restrict deformation of the rod-shaped member 40 in the first coil spring 51 and the second coil spring 61 in the intersecting direction intersecting the rod axis direction DRa. A portion 62 is provided.
 本実施形態の第1コイルバネ51および第2コイルバネ61は、棒軸方向DRaに作用する荷重Faが増加するに伴って棒軸方向DRaの弾性定数が増加する特性を有している。これによれば、棒軸方向DRaに振幅の異なる振動が作用した場合であっても、弾性部材を構成する第1コイルバネ51および第2コイルバネ61によってエンジンEGおよび圧縮機24の間の振動の伝達を抑制することができる。 The first coil spring 51 and the second coil spring 61 of the present embodiment have a characteristic that the elastic constant in the rod axis direction DRa increases as the load Fa acting on the rod axis direction DRa increases. According to this, even when vibrations having different amplitudes act in the rod axis direction DRa, vibration transmission between the engine EG and the compressor 24 is performed by the first coil spring 51 and the second coil spring 61 that constitute the elastic member. Can be suppressed.
 さらに、本実施形態の第1コイルバネ51および第2コイルバネ61は、棒軸方向DRaに交差する交差方向への変位量が大きくなるに従って第1ホルダ部52および第2ホルダ部62との接触面積が大きくなるように構成されている。すなわち、本実施形態の第1コイルバネ51および第2コイルバネ61は、交差方向に作用する荷重が増加すると、各ホルダ部52、62との接触面積が大きくなることで、弾性変形可能な範囲が小さくなるように構成されている。 Further, the first coil spring 51 and the second coil spring 61 of the present embodiment have a contact area with the first holder part 52 and the second holder part 62 as the displacement amount in the intersecting direction intersecting the rod axis direction DRa increases. It is configured to be large. That is, the first coil spring 51 and the second coil spring 61 according to the present embodiment have a small contactable area with the holder portions 52 and 62 when the load acting in the intersecting direction is increased. It is comprised so that it may become.
 これによれば、棒径方向DRrに振幅の異なる振動が作用した場合であっても、弾性部材を構成する第1コイルバネ51および第2コイルバネ61によってエンジンEGおよび圧縮機24の間の振動の伝達を抑制することができる。 According to this, even when vibrations having different amplitudes act in the rod radial direction DRr, transmission of vibrations between the engine EG and the compressor 24 by the first coil spring 51 and the second coil spring 61 constituting the elastic member. Can be suppressed.
 このように、本実施形態の懸架装置30によれば、棒状部材40の棒軸方向DRaおよび当該棒軸方向DRaに交差する交差方向という異なる二方向に対して非線形な弾性特性を有する防振装置を実現することができる。 Thus, according to the suspension device 30 of the present embodiment, the vibration isolator having nonlinear elastic characteristics with respect to two different directions, ie, the rod axis direction DRa of the rod-shaped member 40 and the intersecting direction intersecting the rod axis direction DRa. Can be realized.
 具体的には、本実施形態の懸架装置30は、各コイルバネ51、61が、棒軸方向DRaに作用する荷重に対して非線形なバネ特性を有する円錐状のコイルバネで構成されている。また、本実施形態の懸架装置30は、第1ホルダ部52および第2ホルダ部62によって、第1コイルバネ51および第2コイルバネ61における棒状部材40の棒軸方向DRaと交差する交差方向への変位を制限する構成となっている。 Specifically, in the suspension device 30 of the present embodiment, each of the coil springs 51 and 61 is configured by a conical coil spring having a non-linear spring characteristic with respect to a load acting in the rod axis direction DRa. Further, in the suspension device 30 of the present embodiment, the first holder 52 and the second holder 62 are displaced in the intersecting direction intersecting the rod axis direction DRa of the rod-shaped member 40 in the first coil spring 51 and the second coil spring 61. It is the structure which restricts.
 本実施形態の懸架装置30によれば、各コイルバネ51、61および各ホルダ部52、62という簡素な構成によって、異なる二方向に対して非線形な弾性特性を有する防振装置を実現することができる。 According to the suspension device 30 of the present embodiment, a vibration isolator having non-linear elastic characteristics with respect to two different directions can be realized with a simple configuration of the coil springs 51 and 61 and the holder portions 52 and 62. .
 ここで、本実施形態の懸架装置30は、変位規制部を構成する各ホルダ部52、62の各内側壁部520、620が、各コイルバネ51、61の小径側から大径側に向かって大きくなる穴形状となるように構成されている。これによれば、各コイルバネ51、61の大径側だけでなく小径側も各ホルダ部52、62の各内側壁部520、620に当接し易くなるので、バネ定数の可変域を充分に確保することが可能となる。 Here, in the suspension device 30 of the present embodiment, the inner wall portions 520 and 620 of the holder portions 52 and 62 constituting the displacement restricting portion are increased from the small diameter side to the large diameter side of the coil springs 51 and 61. It is comprised so that it may become a hole shape. According to this, not only the large diameter side but also the small diameter side of the coil springs 51 and 61 can easily come into contact with the inner wall portions 520 and 620 of the holder portions 52 and 62, so that a sufficient variable range of the spring constant can be secured. It becomes possible to do.
 また、本実施形態の懸架装置30は、各コイルバネ51、61における各端部位置規定部53、63に対向する部位に平坦状に形成された一対の平坦部512、513、612、613が設けられている。これによれば、各コイルバネ51、61と各端部位置規定部53、63との当接状態を安定させることができるので、例えば、各端部位置規定部53、63の一部に偏って荷重が作用してしまうことを抑制することができる。 In addition, the suspension device 30 of the present embodiment is provided with a pair of flat portions 512, 513, 612, and 613 formed in a flat shape at portions facing the end position defining portions 53 and 63 in the coil springs 51 and 61, respectively. It has been. According to this, since the contact state between the coil springs 51 and 61 and the end position defining portions 53 and 63 can be stabilized, for example, it is biased toward a part of the end position defining portions 53 and 63. It can suppress that a load acts.
 (第2実施形態)
 次に、第2実施形態について、図10、図11を参照して説明する。本実施形態では、第1実施形態に対して、各コイルバネ51、61の両端側の形状を変更した例について説明する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. This embodiment demonstrates the example which changed the shape of the both ends side of each coil spring 51 and 61 with respect to 1st Embodiment.
 上述の第1実施形態では、各コイルバネ51、61における各端部位置規定部53、63に対向する部位に一対の平坦部512、513、612、613が設けられている。このような構成では、一対の平坦部512、513、612、613が棒径方向DRrに弾性変形するバネとして機能すると、各コイルバネ51、61における棒径方向DRrのバネ特性が不安定となってしまう。 In the first embodiment described above, a pair of flat portions 512, 513, 612, 613 are provided at portions of the coil springs 51, 61 that face the end position defining portions 53, 63. In such a configuration, when the pair of flat portions 512, 513, 612, and 613 function as springs that are elastically deformed in the rod radial direction DRr, the spring characteristics of the coil springs 51 and 61 in the rod radial direction DRr become unstable. End up.
 このことを踏まえて、本実施形態の懸架装置30では、各コイルバネ51、61における一対の平坦部512、513、612、613が、棒径方向DRrに弾性変形するバネとして機能しない構成となっている。 Based on this, in the suspension device 30 of the present embodiment, the pair of flat portions 512, 513, 612, 613 in the coil springs 51, 61 does not function as a spring that is elastically deformed in the rod radial direction DRr. Yes.
 本実施形態の第1コイルバネ51は、図10、図11に示すように、線材510のうち、一対の平坦部512、513における小径側の平坦部512に連なる線材510aの少なくとも一巻きが、棒状部材40の外周に当接する大きさとなっている。換言すれば、本実施形態の棒状部材40には、第1コイルバネ51を構成する線材510のうち、小径側の平坦部512に連なる線材510aの少なくとも一巻きが当接している。 As shown in FIGS. 10 and 11, the first coil spring 51 of the present embodiment has a rod-like shape in which at least one turn of the wire rod 510 a connected to the flat portion 512 on the small diameter side of the pair of flat portions 512, 513 is a rod-like shape. The size of the member 40 is in contact with the outer periphery of the member 40. In other words, at least one turn of the wire 510a connected to the flat portion 512 on the small diameter side of the wire 510 constituting the first coil spring 51 is in contact with the rod-shaped member 40 of the present embodiment.
 また、本実施形態の第1コイルバネ51は、線材510のうち、一対の平坦部512、513における大径側の平坦部513に連なる線材510bの少なくとも一巻きが、第1ホルダ部52の第1内側壁部520に当接する大きさとなっている。換言すれば、本実施形態の第1ホルダ部52には、第1コイルバネ51を構成する線材510のうち、大径側の平坦部513に連なる線材510bの少なくとも一巻きが当接している。 Further, in the first coil spring 51 of the present embodiment, at least one turn of the wire rod 510 b connected to the flat portion 513 on the large diameter side of the pair of flat portions 512 and 513 of the wire rod 510 is the first coil portion 51 of the first holder portion 52. The size is abutted against the inner wall portion 520. In other words, at least one turn of the wire rod 510b connected to the flat portion 513 on the large diameter side of the wire rod 510 constituting the first coil spring 51 is in contact with the first holder portion 52 of the present embodiment.
 続いて、本実施形態の第2コイルバネ61は、図10に示すように、線材610のうち、一対の平坦部612、613における小径側の平坦部612に連なる線材610aの少なくとも一巻きが、棒状部材40の外周に当接する大きさとなっている。換言すれば、本実施形態の棒状部材40には、第2コイルバネ61を構成する線材610のうち、小径側の平坦部612に連なる線材610aの少なくとも一巻きが当接している。 Subsequently, in the second coil spring 61 of the present embodiment, as shown in FIG. 10, at least one turn of the wire 610 a connected to the flat portion 612 on the small diameter side of the pair of flat portions 612 and 613 is rod-shaped. The size of the member 40 is in contact with the outer periphery of the member 40. In other words, at least one turn of the wire 610 a connected to the flat portion 612 on the small diameter side of the wire 610 constituting the second coil spring 61 is in contact with the rod-shaped member 40 of the present embodiment.
 また、本実施形態の第2コイルバネ61は、線材610のうち、一対の平坦部612、613における大径側の平坦部613に連なる線材610bの少なくとも一巻きが、第2ホルダ部62の第2内側壁部620に当接する大きさとなっている。換言すれば、本実施形態の第2ホルダ部62には、第2コイルバネ61を構成する線材610のうち、大径側の平坦部613に連なる線材610bの少なくとも一巻きが当接している。 In addition, in the second coil spring 61 of the present embodiment, at least one turn of the wire 610 b connected to the large-diameter flat portion 613 of the pair of flat portions 612 and 613 of the wire 610 is the second of the second holder portion 62. The size is in contact with the inner wall portion 620. In other words, at least one turn of the wire 610b connected to the flat portion 613 on the large diameter side out of the wire 610 constituting the second coil spring 61 is in contact with the second holder portion 62 of the present embodiment.
 その他の構成は、第1実施形態と同様である。本実施形態の懸架装置30は、第1実施形態の懸架装置30と共通の構成から奏される作用効果を第1実施形態と同様に得ることができる。 Other configurations are the same as those in the first embodiment. The suspension device 30 of the present embodiment can obtain the same effects as those of the first embodiment with the same configuration as the suspension device 30 of the first embodiment.
 本実施形態の懸架装置30は、各コイルバネ51、61の小径側の平坦部512、612に連なる線材510a、610aが棒状部材40に当接している。また、本実施形態の懸架装置30は、各コイルバネ51、61の大径側の平坦部513、613に連なる線材510b、610bが各ホルダ部52、62に当接している。これによれば、各コイルバネ51、61に設けた平坦部512、513、612、613が棒径方向DRrに変形するバネとして殆ど機能しないので、コイルバネ51、61における棒径方向DRrのバネ特性を安定させることが可能となる。 In the suspension device 30 of the present embodiment, the wire rods 510a and 610a connected to the flat portions 512 and 612 on the small diameter side of the coil springs 51 and 61 are in contact with the rod-shaped member 40. In the suspension device 30 of the present embodiment, the wire members 510b and 610b connected to the flat portions 513 and 613 on the large diameter side of the coil springs 51 and 61 are in contact with the holder portions 52 and 62, respectively. According to this, since the flat portions 512, 513, 612, 613 provided on the coil springs 51, 61 hardly function as springs deforming in the rod radial direction DRr, the spring characteristics of the coil springs 51, 61 in the rod radial direction DRr are It becomes possible to stabilize.
 従って、本実施形態の懸架装置30によれば、各コイルバネ51、61と各端部位置規定部53、63との当接状態を安定させると共に、各コイルバネ51、61における棒径方向DRrのバネ特性を安定させることが可能となる。 Therefore, according to the suspension device 30 of the present embodiment, the contact state between the coil springs 51 and 61 and the end position defining portions 53 and 63 is stabilized, and the springs in the rod radial direction DRr of the coil springs 51 and 61 are provided. It becomes possible to stabilize the characteristics.
 (第3実施形態)
 次に、第3実施形態について、図12、図13を参照して説明する。本実施形態では、第1実施形態に対して、各コイルバネ51、61の端部形状、および各端部位置規定部53、63の形状を変更した例について説明する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. In the present embodiment, an example in which the shape of the end portions of the coil springs 51 and 61 and the shape of the end position defining portions 53 and 63 are changed with respect to the first embodiment will be described.
 本実施形態の第1コイルバネ51の線材511は、図12、図13に示すように、棒軸方向DRaの両端側の断面形状が、他の部位の断面形状と同様に構成されている。すなわち、本実施形態の第1コイルバネ51には、棒軸方向DRaの両端側に第1実施形態で説明した一対の平坦部512、513に相当する構成が設けられていない。 As shown in FIGS. 12 and 13, the wire 511 of the first coil spring 51 of the present embodiment has a cross-sectional shape on both ends in the rod axis direction DRa that is the same as the cross-sectional shape of other portions. That is, the first coil spring 51 of the present embodiment is not provided with a configuration corresponding to the pair of flat portions 512 and 513 described in the first embodiment on both end sides in the rod axis direction DRa.
 このように構成される第1コイルバネ51は、棒軸方向DRaの両端側に一対の平坦部512、513が設けられた構成に比べて、第1コイルバネ51における棒径方向DRrのバネ特性を安定させることが可能となる。 The first coil spring 51 configured as described above has more stable spring characteristics in the rod radial direction DRr of the first coil spring 51 than the configuration in which the pair of flat portions 512 and 513 are provided on both ends in the rod axis direction DRa. It becomes possible to make it.
 一方、第1コイルバネ51の線材511における第1端部位置規定部53に対向する部位の断面形状が他の部位の断面形状と同様となる構成では、第1コイルバネ51と第1端部位置規定部53との当接状態が安定しないという背反がある。 On the other hand, in the configuration in which the cross-sectional shape of the portion of the wire 511 of the first coil spring 51 facing the first end position defining portion 53 is the same as the cross-sectional shape of the other portions, the first coil spring 51 and the first end position defining There is a contradiction that the contact state with the portion 53 is not stable.
 そこで、本実施形態では、第1端部位置規定部53に対して第1コイルバネ51の両端側に位置する部位の半巻き以上が当接するように、第1端部位置規定部53における第1コイルバネ51に対向する部位を棒径方向DRrに対して傾斜させている。具体的には、本実施形態の第1大径側規定部531および第1小径側規定部532は、第1コイルバネ51に当接する当接部位の反対側の部位が棒径方向DRrに対して傾斜し、第1コイルバネ51に当接部位の反対側の部位が棒径方向DRrに沿って延びている。 Therefore, in the present embodiment, the first end position defining portion 53 has the first end position defining portion 53 so that the first end position defining portion 53 abuts more than half of the portions located on both ends of the first coil spring 51. A portion facing the coil spring 51 is inclined with respect to the rod radial direction DRr. Specifically, the first large-diameter side defining portion 531 and the first small-diameter side defining portion 532 of the present embodiment are such that the portion on the opposite side of the contact portion that contacts the first coil spring 51 is in the rod diameter direction DRr. Inclined, and a portion of the first coil spring 51 opposite to the contact portion extends along the rod radial direction DRr.
 続いて、本実施形態の第2コイルバネ61の線材611は、図12に示すように、棒軸方向DRaの両端側の断面形状が、他の部位の断面形状と同様に構成されている。すなわち、本実施形態の第2コイルバネ61には、棒軸方向DRaの両端側に第1実施形態で説明した一対の平坦部612、613に相当する構成が設けられていない。 Subsequently, as shown in FIG. 12, the wire 611 of the second coil spring 61 of the present embodiment has a cross-sectional shape at both ends in the rod axis direction DRa that is the same as the cross-sectional shape of other portions. In other words, the second coil spring 61 of this embodiment is not provided with a configuration corresponding to the pair of flat portions 612 and 613 described in the first embodiment on both ends in the rod axis direction DRa.
 このように構成される第2コイルバネ61は、棒軸方向DRaの両端側に一対の平坦部612、613が設けられた構成に比べて、第2コイルバネ61における棒径方向DRrのバネ特性を安定させることが可能となる。 The second coil spring 61 configured in this way has more stable spring characteristics in the rod radial direction DRr in the second coil spring 61 than in the configuration in which the pair of flat portions 612 and 613 are provided on both ends in the rod axis direction DRa. It becomes possible to make it.
 また、本実施形態では、第2端部位置規定部63に対して第2コイルバネ61の両端側に位置する部位の半巻き以上が当接するように、第2端部位置規定部63における第2コイルバネ61に対向する部位を棒径方向DRrに対して傾斜させている。具体的には、本実施形態の第2大径側規定部631および第2小径側規定部632は、第2コイルバネ61に当接する当接部位の反対側の部位が棒径方向DRrに対して傾斜し、第2コイルバネ61に当接部位の反対側の部位が棒径方向DRrに沿って延びている。 Further, in the present embodiment, the second end position defining portion 63 has the second end position defining portion 63 so that the second end position defining portion 63 abuts more than half of the portions located on both ends of the second coil spring 61. A portion facing the coil spring 61 is inclined with respect to the rod radial direction DRr. Specifically, the second large-diameter side defining portion 631 and the second small-diameter side defining portion 632 according to the present embodiment are such that the portion on the opposite side of the contact portion that contacts the second coil spring 61 is in the rod diameter direction DRr. Inclined, and a portion of the second coil spring 61 opposite to the contact portion extends along the rod radial direction DRr.
 その他の構成は、第1実施形態と同様である。本実施形態の懸架装置30は、第1実施形態の懸架装置30と共通の構成から奏される作用効果を第1実施形態と同様に得ることができる。 Other configurations are the same as those in the first embodiment. The suspension device 30 of the present embodiment can obtain the same effects as those of the first embodiment with the same configuration as the suspension device 30 of the first embodiment.
 本実施形態の懸架装置30は、各コイルバネ51、61を構成する線材511、611の棒軸方向DRaの両端側の断面形状が他の部位の断面形状と同様となっている。そして、本実施形態の懸架装置30は、各端部位置規定部53、63における各コイルバネ51、61に対向する部位が、各コイルバネ51、61の両端側に位置する部位の半巻き以上が当接するように傾斜している。これによれば、各コイルバネ51、61と各端部位置規定部53、63との当接状態を安定させると共に、各コイルバネ51、61における棒径方向DRrのバネ特性を安定させることが可能となる。 In the suspension device 30 of the present embodiment, the cross-sectional shapes of both ends in the rod axis direction DRa of the wire rods 511 and 611 constituting the coil springs 51 and 61 are the same as the cross-sectional shapes of other portions. In the suspension device 30 of the present embodiment, the portions facing the coil springs 51 and 61 in the end position defining portions 53 and 63 are applied more than half turns of the portions positioned on both ends of the coil springs 51 and 61. Inclined to touch. According to this, it is possible to stabilize the contact state between the coil springs 51 and 61 and the end position defining portions 53 and 63 and to stabilize the spring characteristics of the coil springs 51 and 61 in the rod radial direction DRr. Become.
 (第4実施形態)
 次に、第4実施形態について、図14を参照して説明する。本実施形態では、第1実施形態に対して、各懸架部50、60の内部構造を変更した例について説明する。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIG. This embodiment demonstrates the example which changed the internal structure of each suspension part 50 and 60 with respect to 1st Embodiment.
 図14に示すように、本実施形態の第1懸架部50の第1コイルバネ51は、コイル径が最も大きい大径端部がエンジンEG側に位置するように配置されている。すなわち、本実施形態の第1コイルバネ51は、エンジンEG側から第1収容部242の底面側に向かってコイル径が小さくなっている。 As shown in FIG. 14, the first coil spring 51 of the first suspension part 50 of the present embodiment is arranged so that the large-diameter end having the largest coil diameter is located on the engine EG side. That is, the first coil spring 51 of the present embodiment has a coil diameter that decreases from the engine EG side toward the bottom surface side of the first housing portion 242.
 また、本実施形態の第1ホルダ部52の第1内側壁部520は、エンジンEG側から第1収容部242の底面側に向かって小さくなる穴形状を有する内側壁部で構成されている。 Further, the first inner wall portion 520 of the first holder portion 52 of the present embodiment is configured by an inner wall portion having a hole shape that decreases from the engine EG side toward the bottom surface side of the first housing portion 242.
 さらに、第1端部位置規定部53は、第1大径側規定部531が棒状部材40の雄ネジ部41と中間軸部43との間に配置され、第1小径側規定部532が第1収容部242の底部に配置されている。 Further, in the first end position defining portion 53, the first large diameter side defining portion 531 is disposed between the male screw portion 41 and the intermediate shaft portion 43 of the rod-shaped member 40, and the first small diameter side defining portion 532 is the first end portion defining portion 531. 1 is disposed at the bottom of the accommodating portion 242.
 ここで、本実施形態の第1小径側規定部532は、第1ホルダ部52と一体に構成されている。なお、第1小径側規定部532は、第1ホルダ部52と別体に構成されていてもよい。 Here, the first small diameter side defining portion 532 of the present embodiment is configured integrally with the first holder portion 52. The first small diameter side defining portion 532 may be configured separately from the first holder portion 52.
 続いて、本実施形態の第2懸架部60の第2コイルバネ61は、コイル径が最も大きい大径端部が棒状部材40の頭部42側に位置するように配置されている。すなわち、本実施形態の第2コイルバネ61は、棒状部材40の頭部42側から第2収容部243の底面側に向かってコイル径が小さくなっている。 Subsequently, the second coil spring 61 of the second suspension unit 60 of the present embodiment is arranged so that the large-diameter end having the largest coil diameter is located on the head 42 side of the rod-shaped member 40. That is, the second coil spring 61 of the present embodiment has a coil diameter that decreases from the head portion 42 side of the rod-shaped member 40 toward the bottom surface side of the second housing portion 243.
 また、本実施形態の第2ホルダ部62の第2内側壁部620は、棒状部材40の頭部42側から第2収容部243の底面側に向かって小さくなる穴形状を有する内側壁部で構成されている。 In addition, the second inner wall portion 620 of the second holder portion 62 of the present embodiment is an inner wall portion having a hole shape that decreases from the head portion 42 side of the rod-shaped member 40 toward the bottom surface side of the second housing portion 243. It is configured.
 さらに、第2端部位置規定部63は、第2大径側規定部631が棒状部材40の頭部42と中間軸部43との間に配置、第2小径側規定部632が第2収容部243の底部に配置されている。 Further, in the second end position defining portion 63, the second large diameter side defining portion 631 is disposed between the head portion 42 of the rod-shaped member 40 and the intermediate shaft portion 43, and the second small diameter side defining portion 632 is the second accommodation. It is arranged at the bottom of the part 243.
 ここで、本実施形態の第2小径側規定部632は、第2ホルダ部62と一体に構成されている。なお、第2小径側規定部632は、第2ホルダ部62と別体に構成されていてもよい。 Here, the second small diameter side defining portion 632 of the present embodiment is configured integrally with the second holder portion 62. The second small diameter side defining portion 632 may be configured separately from the second holder portion 62.
 その他の構成は、第1実施形態と同様である。本実施形態の懸架装置30は、各懸架部50、60の内部構造が第1実施形態に対して棒軸方向DRaに反転しているものの、第1実施形態の懸架装置30と共通の構成を備えている。このため、本実施形態の懸架装置30は、第1実施形態と共通の構成から奏される作用効果を第1実施形態と同様に得ることができる。 Other configurations are the same as those in the first embodiment. The suspension device 30 of the present embodiment has the same configuration as that of the suspension device 30 of the first embodiment, although the internal structure of each suspension portion 50, 60 is reversed in the rod axis direction DRa with respect to the first embodiment. I have. For this reason, the suspension apparatus 30 of this embodiment can obtain the effect produced from a structure common to 1st Embodiment similarly to 1st Embodiment.
 (第5実施形態)
 次に、第5実施形態について、図15、図16を参照して説明する。本実施形態では、第1実施形態に対して、各コイルバネ51、61の形状を変更した例について説明する。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. 15 and 16. This embodiment demonstrates the example which changed the shape of each coil spring 51 and 61 with respect to 1st Embodiment.
 各コイルバネ51、61は、自由状態において小径側のコイル中心軸と大径側のコイル中心軸とが一致するように設計されていると、各ホルダ部52、62に収容した際に、自重によって下方に垂れ下がってしまう可能性がある。すなわち、各コイルバネ51、61は、自由状態において小径側のコイル中心軸と大径側のコイル中心軸とが一致するように設計されていると、線材510、610の一部が意図せずに各内側壁部520、620に当接してしまう可能性がある。 When the coil springs 51 and 61 are designed so that the coil center axis on the small diameter side coincides with the coil center axis on the large diameter side in the free state, when the coil springs 51 and 61 are accommodated in the holder portions 52 and 62, There is a possibility of hanging down. That is, when each coil spring 51, 61 is designed so that the small-diameter side coil central axis and the large-diameter side coil central axis coincide with each other in a free state, a part of the wire 510, 610 is not intended. There is a possibility that the inner wall portions 520 and 620 may come into contact with each other.
 線材510、610の一部が意図せずに各内側壁部520、620に当接すると、各コイルバネ51、61における棒径方向DRrの弾性定数が増加してしまう。このことは、棒径方向DRrに振幅の小さい振動が作用した際に、当該振動を各コイルバネ51、61で吸入し難くなってしまう要因となることから好ましくない。 If a part of the wire rods 510 and 610 unintentionally contacts the inner wall portions 520 and 620, the elastic constants in the rod radial direction DRr of the coil springs 51 and 61 are increased. This is not preferable because when the vibration having a small amplitude acts in the rod radial direction DRr, it becomes difficult for the coil springs 51 and 61 to suck the vibration.
 このことを考慮して、本実施形態の各コイルバネ51、61は、図15に示すように、自由状態において小径側のコイル中心軸Csと大径側のコイル中心軸Cbとがずれるように設計されている。すなわち、本実施形態の各コイルバネ51、61は、自由状態において各コイルバネ51、61の小径側が大径側に比べて重力の作用方向とは逆方向にオフセットされている。これにより、本実施形態の各コイルバネ51、61は、図16に示すように、各ホルダ部52、62の内部に設置された際の自重による下方側への垂れ下がりが抑制されている。 Considering this, the coil springs 51 and 61 of the present embodiment are designed so that the small-diameter side coil central axis Cs and the large-diameter side coil central axis Cb are displaced in a free state as shown in FIG. Has been. In other words, in the coil springs 51 and 61 of the present embodiment, the small diameter side of each coil spring 51 and 61 is offset in the direction opposite to the direction of gravity in comparison with the large diameter side in the free state. Accordingly, as shown in FIG. 16, the coil springs 51 and 61 of the present embodiment are prevented from drooping downward due to their own weight when installed in the holder portions 52 and 62.
 その他の構成は、第1実施形態と同様である。本実施形態の懸架装置30は、第1実施形態の懸架装置30と共通の構成から奏される作用効果を第1実施形態と同様に得ることができる。 Other configurations are the same as those in the first embodiment. The suspension device 30 of the present embodiment can obtain the same effects as those of the first embodiment with the same configuration as the suspension device 30 of the first embodiment.
 本実施形態の懸架装置30は、各コイルバネ51、61の小径側が大径側に比べて重力の作用方向とは逆方向にオフセットされている。これによれば、各コイルバネ51、61の自重による変形に伴ってバネ特性が変化してしまうことを抑制することが可能となる。 In the suspension device 30 of the present embodiment, the small diameter side of each of the coil springs 51 and 61 is offset in the direction opposite to the direction of action of gravity compared to the large diameter side. According to this, it becomes possible to suppress that a spring characteristic changes with the deformation | transformation by the dead weight of each coil spring 51,61.
 (第6実施形態)
 第1実施形態の第1端部位置規定部53は、圧縮機側ハウジング240に形成された第1収容部242に配置された第1大径側規定部531および棒状部材40の雄ネジ部41と中間軸部43との間に配置された第1小径側規定部532を有している。また、第1実施形態の第2端部位置規定部63は、圧縮機側ハウジング240に形成された第2収容部243に配置された第2大径側規定部631および棒状部材40の頭部42と中間軸部43との間に配置された第2小径側規定部632を有している。
(Sixth embodiment)
The first end position defining portion 53 of the first embodiment includes a first large-diameter side defining portion 531 disposed in a first accommodating portion 242 formed in the compressor-side housing 240 and a male screw portion 41 of the rod-shaped member 40. And the first small diameter side defining portion 532 disposed between the intermediate shaft portion 43 and the intermediate shaft portion 43. In addition, the second end position defining portion 63 of the first embodiment includes the second large-diameter side defining portion 631 disposed in the second housing portion 243 formed in the compressor-side housing 240 and the head of the rod-shaped member 40. 42 and a second small diameter side defining portion 632 disposed between the intermediate shaft portion 43 and the intermediate shaft portion 43.
 また、第1実施形態では、変位制限部として機能する各内側壁部520、620が、圧縮機側ハウジング240の各収容部242、243に圧入される各ホルダ部52、62に形成されている。このため、第1実施形態では、各大径側規定部531、631および各内側壁部520、620が圧縮機24側に設定され、各小径側規定部532、632がエンジン側ハウジングEGHに固定される棒状部材40側に設定されている。なお、第1実施形態および本実施形態では、各大径側規定部531、631が第1軸方向規定部を構成し、各小径側規定部532、632が第2軸方向規定部を構成している。 Moreover, in 1st Embodiment, each inner wall part 520,620 which functions as a displacement restriction | limiting part is formed in each holder part 52,62 press-fit in each accommodating part 242,243 of the compressor side housing 240. FIG. . For this reason, in the first embodiment, the large diameter side defining portions 531 and 631 and the inner side wall portions 520 and 620 are set on the compressor 24 side, and the small diameter side defining portions 532 and 632 are fixed to the engine side housing EGH. It is set to the rod-shaped member 40 side. In the first embodiment and the present embodiment, the large diameter side defining portions 531 and 631 constitute a first axial direction defining portion, and the small diameter side defining portions 532 and 632 constitute a second axial direction defining portion. ing.
 本発明者らは、懸架装置30の更なる改善を図るべく上述の構造について鋭意検討した。この結果、上述の構造では、棒径方向DRrの荷重が作用する際に、各小径側規定部532、632と各内側壁部520、620とが接触する可能性があることが判った。各小径側規定部532、632と各内側壁部520、620とが接触すると、各コイルバネ51、61の非線形な弾性特性等が発揮されなくなるので、振動伝達の抑制効果が充分に得られなくなってしまう虞がある。 The present inventors diligently studied the above-described structure in order to further improve the suspension device 30. As a result, it has been found that, in the above-described structure, when the load in the rod radial direction DRr acts, the small diameter side defining portions 532 and 632 and the inner side wall portions 520 and 620 may contact each other. When the small diameter side defining portions 532 and 632 and the inner wall portions 520 and 620 come into contact with each other, the nonlinear elastic characteristics of the coil springs 51 and 61 are not exhibited, so that the effect of suppressing vibration transmission cannot be sufficiently obtained. There is a risk of it.
 そこで、本実施形態では、各小径側規定部532、632と各内側壁部520、620との接触を抑えるために、第1実施形態に対して、各小径側規定部532、632の形状を変更している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分についての説明を省略することがある。 Therefore, in the present embodiment, in order to suppress contact between the small diameter side defining portions 532 and 632 and the inner wall portions 520 and 620, the shape of the small diameter side defining portions 532 and 632 is different from that of the first embodiment. It has changed. In the present embodiment, portions different from those in the first embodiment will be mainly described, and descriptions of portions similar to those in the first embodiment may be omitted.
 図17に示すように、本実施形態の懸架装置30は、棒状部材40が筒形状に形成された筒状部44を有している。この筒状部44は、中間軸部43の外周を覆うものであり、中間軸部43の外径と同程度となるように内径が設定されている。 As shown in FIG. 17, the suspension device 30 of the present embodiment has a cylindrical portion 44 in which a rod-shaped member 40 is formed in a cylindrical shape. The cylindrical portion 44 covers the outer periphery of the intermediate shaft portion 43, and the inner diameter is set to be approximately the same as the outer diameter of the intermediate shaft portion 43.
 筒状部44は、中間軸部43と共に圧縮機側ハウジング240の挿通穴241に挿通されている。本実施形態の挿通穴241は、各コイルバネ51、61における棒径方向DRrの変位量が最大となったとしても棒状部材40の筒状部44との間に隙間が形成される大きさに設定されている。これによれば、棒径方向DRrの荷重が作用した際に、棒状部材40と挿通穴241の内壁とが直に接することを防止できる。 The cylindrical portion 44 is inserted into the insertion hole 241 of the compressor side housing 240 together with the intermediate shaft portion 43. The insertion hole 241 of the present embodiment is set to such a size that a gap is formed between the coil springs 51 and 61 and the cylindrical portion 44 of the rod-shaped member 40 even when the displacement amount in the rod radial direction DRr is maximized. Has been. According to this, it is possible to prevent the rod-shaped member 40 and the inner wall of the insertion hole 241 from coming into direct contact when a load in the rod radial direction DRr is applied.
 本実施形態の第1小径側規定部532は、筒状部44における雄ネジ部41側に一体に設けられている。本実施形態の第1小径側規定部532は、第1コイルバネ51に当接する第1規定側当接部位533を有している。第1規定側当接部位533は、第1小径側規定部532のうち、棒軸方向DRaおよび棒径方向DRrのいずれにも荷重が作用していない状態で棒径方向DRrにおいて第1ホルダ部52と重なり合う部位である。 The first small diameter side defining portion 532 of the present embodiment is integrally provided on the male screw portion 41 side in the tubular portion 44. The first small diameter side defining portion 532 of the present embodiment has a first defining side contact portion 533 that contacts the first coil spring 51. The first defining side contact portion 533 is a first holder portion in the rod diameter direction DRr in a state where no load is applied to either the rod axis direction DRa or the rod diameter direction DRr of the first small diameter side defining portion 532. 52 is a part overlapping with 52.
 第1規定側当接部位533は、棒軸方向DRaに荷重が作用した際に、第1コイルバネ51の変位を規定する部位である。このため、第1規定側当接部位533は、図18に示すように、棒軸方向DRaに荷重が作用したとしても第1コイルバネ51との接触状態が維持されるように構成されている。すなわち、第1規定側当接部位533は、その外径Dpe1が第1コイルバネ51の第1バネ側当接部位514の外径Dse1と内径との中間となる線間中心径Dscよりも大きくなっている。前述の第1バネ側当接部位514は、第1コイルバネ51のうち、第1規定側当接部位533に当接する部位である。また、線間中心径Dscは、第1バネ側当接部位514の外径Dse1と内径とを平均化した平均径として解釈することもできる。 The first regulation side contact part 533 is a part that regulates the displacement of the first coil spring 51 when a load is applied in the rod axis direction DRa. For this reason, as shown in FIG. 18, the 1st prescription | regulation side contact part 533 is comprised so that a contact state with the 1st coil spring 51 may be maintained even if a load acts on the rod axial direction DRa. That is, the first prescribed-side contact portion 533 has an outer diameter Dpe1 larger than a line center diameter Dsc that is intermediate between the outer diameter Dse1 and the inner diameter of the first spring-side contact portion 514 of the first coil spring 51. ing. The first spring-side contact portion 514 described above is a portion of the first coil spring 51 that contacts the first specified-side contact portion 533. Further, the line center diameter Dsc can be interpreted as an average diameter obtained by averaging the outer diameter Dse1 and the inner diameter of the first spring-side contact portion 514.
 ここで、第1規定側当接部位533は、棒径方向DRrにおいて第1ホルダ部52と重なり合っており、棒径方向DRrの荷重が作用した際に、第1内側壁面520に接触する可能性がある。 Here, the first prescribed-side contact portion 533 overlaps the first holder portion 52 in the rod radial direction DRr, and may contact the first inner wall surface 520 when a load in the rod radial direction DRr is applied. There is.
 このため、第1規定側当接部位533は、棒径方向DRrの荷重が作用したとしても第1内側壁面520との間に隙間が形成されるように、第1内側壁面520から離間する形状になっている。すなわち、第1規定側当接部位533は、その外径Dpe1が第1バネ側当接部位514の外径Dse1よりも小さくなっている。 For this reason, the 1st regulation side contact part 533 is the shape spaced apart from the 1st inner side wall surface 520 so that a clearance gap may be formed between the 1st inner side wall surface 520 even if the load of rod diameter direction DRr acts. It has become. In other words, the outer diameter Dpe1 of the first specified-side contact portion 533 is smaller than the outer diameter Dse1 of the first spring-side contact portion 514.
 また、棒軸方向DRaに荷重が作用すると、第1小径側規定部532のうち第1規定側当接部位533とは反対側となる部位が、棒径方向DRrにおいて第1ホルダ部52と重なり合う状態になることがある。この状態で棒径方向DRrの荷重が作用すると、第1小径側規定部532のうち第1規定側当接部位533の反対側となる部位が、第1内側壁面520に接触する可能性がある。 Further, when a load is applied in the rod axis direction DRa, a portion of the first small diameter side defining portion 532 that is opposite to the first defining side contact portion 533 overlaps the first holder portion 52 in the rod diameter direction DRr. May be in a state. When a load in the rod diameter direction DRr is applied in this state, a portion of the first small diameter side defining portion 532 that is opposite to the first defining side contact portion 533 may come into contact with the first inner wall surface 520. .
 このため、第1小径側規定部532は、棒軸方向DRaおよび棒径方向DRrの双方に荷重が作用したとしても第1内側壁面520との間に隙間が形成される形状になっている。すなわち、第1小径側規定部532は、第1規定側当接部位533の外径Dpe1が第1規定側当接部位533の反対側となる部位の外径よりも大きくなるように、棒軸方向DRaに対して傾斜した傾斜面534を有している。そして、第1小径側規定部532の傾斜面534は、棒軸方向DRaに対する傾斜角度θα1が、第1内側壁面520における棒軸方向DRaに対する傾斜角度θβ1よりも大きくなるように形成されている。 For this reason, the first small-diameter side defining portion 532 has a shape in which a gap is formed between the first inner wall surface 520 even if a load acts on both the rod axis direction DRa and the rod diameter direction DRr. That is, the first small-diameter side defining portion 532 has a rod shaft so that the outer diameter Dpe1 of the first defining-side contact portion 533 is larger than the outer diameter of the portion on the opposite side of the first defining-side contact portion 533. An inclined surface 534 inclined with respect to the direction DRa is provided. The inclined surface 534 of the first small diameter side defining portion 532 is formed such that the inclination angle θα1 with respect to the rod axis direction DRa is larger than the inclination angle θβ1 with respect to the rod axis direction DRa of the first inner wall surface 520.
 図17に戻り、本実施形態の第2小径側規定部632は、筒状部44における頭部42側の端部と頭部42との間に配置されている。本実施形態の第2小径側規定部632は、第2コイルバネ61に当接する第2規定側当接部位633を有している。第2規定側当接部位633は、第2小径側規定部632のうち、棒軸方向DRaおよび棒径方向DRrのいずれにも荷重が作用していない状態で棒径方向DRrにおいて第2ホルダ部62と重なり合う部位である。 Returning to FIG. 17, the second small-diameter side defining portion 632 of the present embodiment is disposed between the end portion on the head portion 42 side of the tubular portion 44 and the head portion 42. The second small diameter side defining portion 632 of the present embodiment has a second defining side abutting portion 633 that abuts on the second coil spring 61. The second defining side contact portion 633 is a second holder portion in the rod diameter direction DRr in a state where no load is applied to either the rod axis direction DRa or the rod diameter direction DRr of the second small diameter side defining portion 632. This is a part overlapping with 62.
 第2規定側当接部位633は、棒軸方向DRaに荷重が作用した際に、第2コイルバネ61の変位を規定する部位である。このため、第2規定側当接部位633は、棒軸方向DRaに荷重が作用したとしても第1コイルバネ51との接触状態が維持されるように構成されている。すなわち、第2規定側当接部位633は、その外径Dpe2が第2コイルバネ61の第2バネ側当接部位614の外径Dse2と内径との中間となる線間中心径Dscよりも大きくなっている。前述の第2バネ側当接部位614は、第2コイルバネ61のうち、第2規定側当接部位633に当接する部位である。また、線間中心径Dscは、第2バネ側当接部位614の外径Dse2と内径とを平均化した平均径として解釈することもできる。 The second regulation side contact part 633 is a part that regulates the displacement of the second coil spring 61 when a load is applied in the rod axis direction DRa. For this reason, the 2nd regulation side contact part 633 is comprised so that a contact state with the 1st coil spring 51 may be maintained even if a load acts on the rod axial direction DRa. That is, the outer diameter Dpe2 of the second specified-side contact portion 633 is larger than the line center diameter Dsc that is intermediate between the outer diameter Dse2 and the inner diameter of the second spring-side contact portion 614 of the second coil spring 61. ing. The second spring-side contact portion 614 described above is a portion that contacts the second specified-side contact portion 633 in the second coil spring 61. Further, the interline center diameter Dsc can be interpreted as an average diameter obtained by averaging the outer diameter Dse2 and the inner diameter of the second spring-side contact portion 614.
 また、第2規定側当接部位633は、棒径方向DRrの荷重が作用したとしても第2内側壁面620との間に隙間が形成されるように、第2内側壁面620から離間する形状になっている。すなわち、第2規定側当接部位633は、その外径Dpe2が第2バネ側当接部位614の外径Dse2よりも小さくなっている。 In addition, the second prescribed-side contact portion 633 is shaped to be separated from the second inner wall surface 620 so that a gap is formed between the second inner wall surface 620 and the load in the rod radial direction DRr. It has become. In other words, the outer diameter Dpe2 of the second prescribed-side contact portion 633 is smaller than the outer diameter Dse2 of the second spring-side contact portion 614.
 さらに、第2小径側規定部632は、棒軸方向DRaおよび棒径方向DRrの双方に荷重が作用したとしても第1内側壁面520との間に隙間が形成される形状になっている。すなわち、第2小径側規定部632は、第2規定側当接部位633の外径Dpe2が第2規定側当接部位633の反対側となる部位の外径よりも大きくなるように、棒軸方向DRaに対して傾斜した傾斜面634を有している。そして、第2小径側規定部632の傾斜面634は、棒軸方向DRaに対する傾斜角度θα2が、第2内側壁面620における棒軸方向DRaに対する傾斜角度θβ2よりも大きくなるように形成されている。 Furthermore, the second small-diameter side defining portion 632 has a shape in which a gap is formed between the first inner wall surface 520 even if a load acts on both the rod axis direction DRa and the rod diameter direction DRr. That is, the second small-diameter side defining portion 632 is configured so that the outer diameter Dpe2 of the second defining-side contact portion 633 is larger than the outside diameter of the portion on the opposite side of the second defining-side contact portion 633. An inclined surface 634 that is inclined with respect to the direction DRa is provided. The inclined surface 634 of the second small diameter side defining portion 632 is formed such that the inclination angle θα2 with respect to the rod axis direction DRa is larger than the inclination angle θβ2 with respect to the rod axis direction DRa of the second inner wall surface 620.
 続いて、本実施形態の懸架装置30に対して荷重が作用した際の作動状態について説明する。懸架装置30では、例えば、圧縮機24が棒径方向DRrに振動し、各コイルバネ51、61に対して棒径方向DRrの荷重が作用すると、各コイルバネ51、61が、弾性を有した状態で棒径方向DRrに撓む。これにより、棒径方向DRrに作用する振動が各コイルバネ51、61によって吸収される。 Subsequently, an operation state when a load is applied to the suspension device 30 of the present embodiment will be described. In the suspension device 30, for example, when the compressor 24 vibrates in the rod radial direction DRr and a load in the rod radial direction DRr acts on the coil springs 51, 61, the coil springs 51, 61 are in an elastic state. Deflection in the rod radial direction DRr. As a result, vibrations acting in the rod radial direction DRr are absorbed by the coil springs 51 and 61.
 各コイルバネ51、61に対して作用する棒径方向DRrの荷重が増加すると、大径側の部位から順に各ホルダ部52、62の各内側壁部520、620に当接し、最終的には、図19に示すように、小径側の部位が各内側壁部520、620に当接する。 When the load in the rod radial direction DRr acting on the coil springs 51 and 61 is increased, the inner wall portions 520 and 620 of the holder portions 52 and 62 are contacted in order from the portion on the large diameter side, and finally, As shown in FIG. 19, the portion on the small diameter side comes into contact with the respective inner wall portions 520 and 620.
 この際、各小径側規定部532、632は、各規定側当接部位533、633の外径Dpe1、Dpe2が各バネ側当接部位514、614の線間中心径Dscよりも大きいので、各小径側規定部532、632と各コイルバネ51、61との当接状態が維持される。 At this time, each of the small-diameter side defining portions 532 and 632 has an outer diameter Dpe1 and Dpe2 of each defining- side contact portion 533 and 633 larger than the line center diameter Dsc of each spring- side contacting portion 514 and 614. The contact state between the small diameter side defining portions 532 and 632 and the coil springs 51 and 61 is maintained.
 また、各小径側規定部532、632は、各規定側当接部位533、633の外径Dpe1、Dpe2が各バネ側当接部位514、614の外径Dse1、Dse2よりも小さい。このため、各小径側規定部532、632が各内側壁部520、620から離間した状態となる。 Further, in each of the small diameter side defining portions 532 and 632, the outer diameters Dpe1 and Dpe2 of the respective defined side contact portions 533 and 633 are smaller than the outer diameters Dse1 and Dse2 of the respective spring side contact portions 514 and 614. Therefore, the small diameter side defining portions 532 and 632 are in a state of being separated from the inner wall portions 520 and 620.
 このように、本実施形態の懸架装置30では、各コイルバネ51、61に対して棒径方向DRrの荷重が作用しても、各小径側規定部532、632が各内側壁部520、620から離間した状態が維持される構造になっている。このため、本実施形態の懸架装置30では、各コイルバネ51、61に対して棒径方向DRrの荷重が作用しても、各小径側規定部532、632が各内側壁部520、620に直に接することを防止できる。 As described above, in the suspension device 30 according to the present embodiment, even if a load in the rod radial direction DRr acts on the coil springs 51 and 61, the small diameter side defining portions 532 and 632 are separated from the inner wall portions 520 and 620, respectively. It is a structure in which the separated state is maintained. For this reason, in the suspension device 30 of the present embodiment, even if a load in the rod radial direction DRr acts on the coil springs 51 and 61, the small diameter side defining portions 532 and 632 are directly applied to the inner wall portions 520 and 620, respectively. Can be prevented from touching.
 ここで、懸架装置30では、例えば、圧縮機24が棒軸方向DRaに振動した際に、各コイルバネ51、61に対して棒軸方向DRaの荷重と棒径方向DRrの荷重とが同時に作用する。 Here, in the suspension device 30, for example, when the compressor 24 vibrates in the rod axis direction DRa, the load in the rod axis direction DRa and the load in the rod radial direction DRr simultaneously act on the coil springs 51 and 61. .
 この場合、例えば、図20に示すように、第1小径側規定部532のうち第1規定側当接部位533以外の部位が第1ホルダ部52内に位置すると同時に、第1コイルバネ51の小径側の部位が第1内側壁部520に当接することがある。このような状態では、第1小径側規定部532のうち第1規定側当接部位533以外の部位が、第1内側壁面520に接触する可能性がある。 In this case, for example, as shown in FIG. 20, a portion of the first small-diameter side defining portion 532 other than the first defining-side contact portion 533 is located in the first holder portion 52 and at the same time, the small diameter of the first coil spring 51 The side portion may come into contact with the first inner wall portion 520. In such a state, there is a possibility that parts of the first small diameter side defining part 532 other than the first defining side contact part 533 may contact the first inner wall surface 520.
 これに対して、本実施形態では、各小径側規定部532、632に対して傾斜面534、634を設け、当該傾斜面534、634の傾斜角度θα1、θα2を、各内側壁面520、620の傾斜角度θβ1、θβ2よりも大きくしている。これによれば、各小径側規定部532、632と各内側壁面520、620との隙間寸法が、各規定側当接部位533、633から棒軸方向DRaに離れるに伴って大きくなる。 On the other hand, in the present embodiment, inclined surfaces 534 and 634 are provided for the respective small diameter side defining portions 532 and 632, and the inclination angles θα1 and θα2 of the inclined surfaces 534 and 634 are set to the respective inner wall surfaces 520 and 620. The inclination angles are larger than θβ1 and θβ2. According to this, the clearance dimension between each small diameter side definition part 532,632 and each inner wall surface 520,620 becomes large as it leaves | separates from the each definition side contact part 533,633 in the rod axis direction DRa.
 このため、本実施形態の懸架装置30では、棒軸方向DRaおよび棒径方向DRrの荷重が同時に作用しても、各小径側規定部532、632のうち各規定側当接部位533、633以外の部位が各内側壁面520、620に直に接することを防止できる。 For this reason, in the suspension device 30 of the present embodiment, even if the loads in the rod axis direction DRa and the rod radial direction DRr act simultaneously, the small diameter side defining portions 532, 632 other than the defined side contact portions 533, 633 Can be prevented from coming into direct contact with the inner wall surfaces 520 and 620.
 ここで、図21は、本実施形態の比較例となる懸架装置30を用いた際の圧縮機24の振動の測定結果を示している。また、図22は、本実施形態の比較例となる懸架装置30を用いた際の圧縮機24の振動の測定結果を示している。なお、比較例となる懸架装置30は、第1実施形態と同様に構成されている。 Here, FIG. 21 shows a measurement result of vibration of the compressor 24 when the suspension device 30 as a comparative example of the present embodiment is used. FIG. 22 shows a measurement result of vibration of the compressor 24 when the suspension device 30 as a comparative example of the present embodiment is used. The suspension device 30 as a comparative example is configured in the same manner as in the first embodiment.
 図21、図22に示すように、比較例となる懸架装置30を用いた場合、圧縮機24の振動が大きくなる。これは、比較例となる懸架装置30では、各小径側規定部532、632が各内側壁面520、620に直に接することに起因すると考えられる。 As shown in FIGS. 21 and 22, when the suspension device 30 as a comparative example is used, the vibration of the compressor 24 increases. This is considered to be due to the fact that the small diameter side defining portions 532 and 632 are in direct contact with the respective inner wall surfaces 520 and 620 in the suspension device 30 as the comparative example.
 一方、本実施形態の懸架装置30を用いた場合、比較例となる懸架装置30を用いた場合に比べて、圧縮機24の振動が小さくなる。これは、本実施形態の懸架装置30では、各小径側規定部532、632が各内側壁面520、620から離間した状態が維持されていることに起因すると推定される。 On the other hand, when the suspension device 30 of the present embodiment is used, the vibration of the compressor 24 becomes smaller than when the suspension device 30 as a comparative example is used. This is presumed to be due to the fact that in the suspension device 30 of the present embodiment, the respective small diameter side defining portions 532 and 632 are maintained in a state of being separated from the respective inner wall surfaces 520 and 620.
 (第6実施形態の変形例)
 上述の第6実施形態の如く、各小径側規定部532、632に対して傾斜面534、634を設ける構成とすることが望ましいが、これに限定されない。懸架装置30は、例えば、各小径側規定部532、632に対して傾斜面534、634が設けられていない構成になっていてもよい。
(Modification of the sixth embodiment)
As in the sixth embodiment described above, it is desirable to provide the inclined surfaces 534 and 634 with respect to the small diameter side defining portions 532 and 632, but the present invention is not limited to this. For example, the suspension device 30 may have a configuration in which the inclined surfaces 534 and 634 are not provided for the small-diameter side defining portions 532 and 632.
 上述の第6実施形態では、第1小径側規定部532が筒状部44に一体に構成される例について説明したが、これに限定されない。第1小径側規定部532は、筒状部44と別体に構成されていてもよい。 In the above-described sixth embodiment, the example in which the first small diameter side defining portion 532 is configured integrally with the cylindrical portion 44 has been described, but the present invention is not limited to this. The first small diameter side defining portion 532 may be configured separately from the cylindrical portion 44.
 上述の第6実施形態では、棒状部材40に対して筒状部44が追加された構成を例示したが、これに限定されない。棒状部材40は、第1実施形態の如く、筒状部44を有していない構成になっていてもよい。 In the above-described sixth embodiment, the configuration in which the cylindrical portion 44 is added to the rod-shaped member 40 is exemplified, but the present invention is not limited to this. The rod-shaped member 40 may be configured not to have the cylindrical portion 44 as in the first embodiment.
 (第7実施形態)
 次に、第7実施形態について、図23~図28を参照して説明する。本実施形態では、第1懸架部50Aの弾性部材が第1渦巻バネ51Aで構成され、第2懸架部60Aの弾性部材が第2渦巻バネ61Aで構成されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分についての説明を省略することがある。
(Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIGS. This embodiment is different from the first embodiment in that the elastic member of the first suspension part 50A is constituted by the first spiral spring 51A and the elastic member of the second suspension part 60A is constituted by the second spiral spring 61A. is doing. In the present embodiment, portions different from those in the first embodiment will be mainly described, and descriptions of portions similar to those in the first embodiment may be omitted.
 図23に示すように、本実施形態の懸架装置30は、第6実施形態と同様に、棒状部材40が筒形状に形成された筒状部44を有している。この筒状部44は、中間軸部43の外周を覆うものであり、中間軸部43の外径と同程度となるように内径が設定されている。 As shown in FIG. 23, the suspension device 30 of the present embodiment has a cylindrical portion 44 in which a rod-shaped member 40 is formed in a cylindrical shape, similarly to the sixth embodiment. The cylindrical portion 44 covers the outer periphery of the intermediate shaft portion 43, and the inner diameter is set to be approximately the same as the outer diameter of the intermediate shaft portion 43.
 筒状部44は、中間軸部43と共に圧縮機側ハウジング240の挿通穴241に挿通されている。本実施形態の挿通穴241は、後述する各渦巻バネ51A、61Aにおける棒径方向DRrの変位量が最大となったとしても棒状部材40の筒状部44との間に隙間が形成される大きさに設定されている。具体的には、挿通穴241は、棒径方向DRrにおける筒状部44との間に形成される隙間の寸法Gaが、渦巻バネ51Aの板材510Aの板厚tと渦巻バネ51Aの巻き数Nとを乗じた値よりも大きくなるように形成されている。また、挿通穴241は、その外径Dhが後述する各渦巻バネ51A、61Aの外径Dpi1、Dpi2よりも小さくなっている。 The cylindrical portion 44 is inserted into the insertion hole 241 of the compressor side housing 240 together with the intermediate shaft portion 43. The insertion hole 241 of the present embodiment is large enough to form a gap with the cylindrical portion 44 of the rod-like member 40 even if the displacement amount in the rod radial direction DRr of each of the spiral springs 51A and 61A described later is maximized. Is set. Specifically, the insertion hole 241 has a gap Ga formed between the cylindrical portion 44 in the rod radial direction DRr and the thickness t of the plate material 510A of the spiral spring 51A and the number of turns N of the spiral spring 51A. It is formed so as to be larger than a value obtained by multiplying. Further, the insertion hole 241 has an outer diameter Dh smaller than outer diameters Dpi1 and Dpi2 of spiral springs 51A and 61A described later.
 また、本実施形態の第1懸架部50Aは、棒状部材40の中間軸部43におけるエンジン側ハウジングEGHに近接する一端側に設けられている。第1懸架部50Aは、第1渦巻バネ51A、第1渦巻バネ51Aの棒径方向DRrへの変位を制限する第1変位制限部54、第1渦巻バネ51Aの棒軸方向DRaにおける両端部の位置を規定する第1外周側規定部55および第1内周側規定部56を備えている。 Further, the first suspension portion 50A of the present embodiment is provided on one end side of the intermediate shaft portion 43 of the rod-like member 40 that is close to the engine-side housing EGH. The first suspension part 50A includes a first spiral spring 51A, a first displacement restriction part 54 that restricts displacement of the first spiral spring 51A in the rod radial direction DRr, and both ends of the first spiral spring 51A in the rod axis direction DRa. A first outer circumferential side defining portion 55 and a first inner circumferential side defining portion 56 that define the position are provided.
 第1渦巻バネ51Aは、エンジンEGおよび圧縮機24の一方の振動が棒状部材40を介して他方に伝達されることを抑制する弾性部材である。第1渦巻バネ51Aは、コイル径の中心を結んだコイル中心軸が、棒状部材40の棒軸方向DRaに沿って延びる姿勢で配置されている。本実施形態の第1渦巻バネ51Aは、コイル径が最も小さい内周側の端部がエンジンEG側に位置するように配置されている。 The first spiral spring 51 </ b> A is an elastic member that suppresses transmission of vibration of one of the engine EG and the compressor 24 to the other through the rod-shaped member 40. 51 A of 1st spiral springs are arrange | positioned with the attitude | position which the coil center axis | shaft which tied the center of the coil diameter extended along the rod-axis direction DRa of the rod-shaped member 40. As shown in FIG. The first spiral spring 51A of the present embodiment is arranged so that the end portion on the inner peripheral side with the smallest coil diameter is located on the engine EG side.
 ここで、第1渦巻バネ51Aは、図24および図25に示すように、第1渦巻バネ51Aは、長方形状の板材510Aを円錐状に巻いて構成されるバネである。第1渦巻バネ51Aは、板材510Aのうち棒径方向DRrに隣り合う部位同士の間に隙間が生ずるように形成されている。第1渦巻バネ51Aを構成する板材510Aは、棒軸方向DRaにおける長さが均一になっている。第1渦巻バネ51Aは、その内周側が外周側に対して棒軸方向DRaに突き出るように巻かれた渦巻き状をなしている。 Here, as shown in FIGS. 24 and 25, the first spiral spring 51A is a spring configured by winding a rectangular plate 510A in a conical shape. The first spiral spring 51A is formed such that a gap is generated between portions of the plate material 510A adjacent to each other in the rod radial direction DRr. The plate material 510A constituting the first spiral spring 51A has a uniform length in the rod axis direction DRa. 51 A of 1st spiral springs have comprised the spiral shape wound so that the inner peripheral side might protrude in the rod-axis direction DRa with respect to the outer peripheral side.
 また、本実施形態の第1渦巻バネ51Aは、棒径方向DRrに隣り合う板材510Aの一部が棒径方向DRrに重なり合うように構成されている。これにより、第1渦巻バネ51Aは、棒径方向DRrから荷重が作用した際に、隣り合う板材510Aの一部が接触する構成となっている。 Further, the first spiral spring 51A of the present embodiment is configured such that a part of the plate material 510A adjacent to the rod radial direction DRr overlaps with the rod radial direction DRr. Thus, the first spiral spring 51A is configured such that a part of the adjacent plate material 510A contacts when a load is applied from the rod radial direction DRr.
 図23に戻り、第1変位制限部54は、第1収容部242のうち棒軸方向DRaに沿って延びる内側壁面によって構成されている。第1変位制限部54は、その内部に第1渦巻バネ51Aが収容可能な大きさを有している。具体的には、第1変位制限部54は、第1渦巻バネ51Aにおける棒径方向DRrの外周側に位置する部位全体に当接する大きさになっている。 23, the first displacement limiting portion 54 is configured by an inner wall surface extending along the rod axis direction DRa in the first accommodating portion 242. The first displacement limiting portion 54 has a size that allows the first spiral spring 51A to be accommodated therein. Specifically, the first displacement limiting portion 54 is sized to abut on the entire portion located on the outer peripheral side in the rod radial direction DRr of the first spiral spring 51A.
 第1外周側規定部55は、第1渦巻バネ51Aにおける最も外周側に位置する部位の位置を規定するものである。第1外周側規定部55は、第1収容部242のうち棒径方向DRrに沿って拡がる底部で構成されている。 The first outer peripheral side defining portion 55 defines the position of the portion located on the outermost peripheral side in the first spiral spring 51A. The first outer peripheral side defining portion 55 is configured by a bottom portion of the first accommodating portion 242 that extends along the rod radial direction DRr.
 第1外周側規定部55は、第1渦巻バネ51Aにおける最も内周側に位置する部位と棒軸方向DRaにおいて重なり合うように構成されている。これにより、第1外周側規定部55は、第1渦巻バネ51Aに対して棒軸方向DRaに所定の圧縮荷重が作用した際に、第1渦巻バネ51Aにおける外周側の部位だけでなく、内周側の部位も当接し易くなっている。本実施形態では、挿通穴241の外径Dhが第1渦巻バネ51Aの最も内周側に位置する部位の外径Dpi1よりも小さくなっている。このため、第1渦巻バネ51Aの内周側の部位が挿通穴241の内側まで変位することはない。 The first outer circumferential side defining portion 55 is configured to overlap with a portion located on the innermost circumferential side in the first spiral spring 51A in the rod axis direction DRa. Thereby, when a predetermined compressive load is applied to the first spiral spring 51A in the rod axis direction DRa, the first outer peripheral side defining portion 55 is not limited to the inner peripheral portion of the first spiral spring 51A. The peripheral part is also easily abutted. In the present embodiment, the outer diameter Dh of the insertion hole 241 is smaller than the outer diameter Dpi1 of the portion located on the innermost peripheral side of the first spiral spring 51A. For this reason, the site | part on the inner peripheral side of 51 A of 1st spiral springs does not displace to the inner side of the insertion hole 241. FIG.
 第1内周側規定部56は、第1渦巻バネ51Aにおける最も内周側に位置する部位の位置を規定するものである。第1内周側規定部56は、筒状部44における雄ネジ部41側に一体に設けられている。本実施形態の第1内周側規定部56は、第1渦巻バネ51Aに当接する第1規定側当接部位561を有している。 The first inner circumferential side defining portion 56 defines the position of the portion located on the innermost circumferential side in the first spiral spring 51A. The first inner peripheral side defining portion 56 is integrally provided on the male screw portion 41 side in the tubular portion 44. The first inner circumferential side defining portion 56 of the present embodiment has a first defining side contact portion 561 that contacts the first spiral spring 51A.
 第1規定側当接部位561は、第1内周側規定部56のうち、棒軸方向DRaおよび棒径方向DRrのいずれにも荷重が作用していない状態で棒径方向DRrにおいて第1変位制限部54と重なり合う部位である。 The first defining side contact portion 561 has a first displacement in the rod radial direction DRr in a state where no load is applied to either the rod axial direction DRa or the rod radial direction DRr in the first inner circumferential side defining portion 56. This is a part that overlaps with the restriction part 54.
 第1規定側当接部位561は、棒軸方向DRaに荷重が作用した際に、第1渦巻バネ51Aの変位を規定する部位である。このため、第1規定側当接部位561は、棒軸方向DRaに荷重が作用したとしても第1渦巻バネ51Aとの接触状態が維持されるように構成されている。すなわち、図26に示すように、第1規定側当接部位561は、その外径Dve1が第1渦巻バネ51Aの最も内周側に位置する第1バネ側当接部位514の内径Dsi1よりも大きくなっている。なお、前述の第1バネ側当接部位514は、第1渦巻バネ51Aのうち、第1規定側当接部位561に当接する部位である。 The first regulation side contact part 561 is a part that regulates the displacement of the first spiral spring 51A when a load is applied in the rod axis direction DRa. For this reason, the 1st regulation side contact part 561 is comprised so that a contact state with 51 A of 1st spiral springs may be maintained even if a load acts on the rod axial direction DRa. That is, as shown in FIG. 26, the first prescribed-side contact portion 561 has an outer diameter Dve1 larger than the inner diameter Dsi1 of the first spring-side contact portion 514 located on the innermost side of the first spiral spring 51A. It is getting bigger. The first spring-side contact portion 514 described above is a portion that contacts the first specified-side contact portion 561 in the first spiral spring 51A.
 ここで、第1内周側規定部56は、棒径方向DRrにおいて第1変位制限部54と重なり合う部位を有しており、棒径方向DRrの荷重が作用した際に、第1変位制限部54に接触する可能性がある。 Here, the first inner circumferential side defining portion 56 has a portion overlapping the first displacement limiting portion 54 in the rod radial direction DRr, and when the load in the rod radial direction DRr is applied, the first displacement limiting portion 54 may come into contact.
 このため、第1内周側規定部56は、棒径方向DRrの荷重が作用したとしても第1変位制限部54との間に隙間が形成されるように、第1変位制限部54から離間する構成になっている。すなわち、第1内周側規定部56は、棒径方向DRrにおける第1変位制限部54との隙間の寸法Gb1が、第1渦巻バネ51Aの板材510Aの板厚tと渦巻バネ51Aの有効巻き数Neとを乗じた値よりも大きくなるように構成されている。なお、渦巻バネ51Aの有効巻き数Neは、渦巻バネ51Aの実際の巻き数Nから第1バネ側当接部位514を除いた巻き数である(すなわち、Ne=N-1)。 For this reason, the first inner circumferential side defining portion 56 is separated from the first displacement limiting portion 54 so that a gap is formed between the first inner circumferential side defining portion 56 and the first displacement limiting portion 54 even when a load in the rod radial direction DRr is applied. It is configured to do. That is, the first inner circumferential side defining portion 56 has a gap size Gb1 with the first displacement limiting portion 54 in the rod radial direction DRr so that the plate thickness 510 of the plate material 510A of the first spiral spring 51A and the effective winding of the spiral spring 51A. It is configured to be larger than a value obtained by multiplying the number Ne. Note that the effective number of turns Ne of the spiral spring 51A is the number of turns obtained by removing the first spring-side contact portion 514 from the actual number of turns N of the spiral spring 51A (ie, Ne = N−1).
 続いて、本実施形態の第2懸架部60Aについて説明する。本実施形態の第2懸架部60Aは、棒状部材40の中間軸部43における他端側に設けられている。第2懸架部60Aは、第2渦巻バネ61A、第2渦巻バネ61Aの棒径方向DRrへの変位を制限する第2変位制限部64、第2渦巻バネ61Aの棒軸方向DRaにおける両端部の位置を規定する第2外周側規定部65および第2内周側規定部66を備えている。 Subsequently, the second suspension 60A of the present embodiment will be described. The second suspension portion 60 </ b> A of the present embodiment is provided on the other end side of the intermediate shaft portion 43 of the rod-shaped member 40. The second suspension portion 60A includes a second spiral spring 61A, a second displacement restriction portion 64 that restricts displacement of the second spiral spring 61A in the rod radial direction DRr, and both end portions of the second spiral spring 61A in the rod axis direction DRa. A second outer peripheral side defining portion 65 and a second inner peripheral side defining portion 66 that define the position are provided.
 第2渦巻バネ61Aは、エンジンEGおよび圧縮機24の一方の振動が棒状部材40を介して他方に伝達されることを抑制する弾性部材である。第2渦巻バネ61Aは、コイル径の中心を結んだコイル中心軸が、棒状部材40の棒軸方向DRaに沿って延びる姿勢で配置されている。本実施形態の第2渦巻バネ61Aは、コイル径が最も小さい内周側の端部が棒状部材40の頭部42側に位置するように配置されている。 The second spiral spring 61 </ b> A is an elastic member that suppresses transmission of vibration of one of the engine EG and the compressor 24 to the other via the rod-shaped member 40. The second spiral spring 61 </ b> A is arranged in such a posture that the coil center axis connecting the centers of the coil diameters extends along the rod axis direction DRa of the rod-shaped member 40. The second spiral spring 61 </ b> A of the present embodiment is arranged so that the end portion on the inner peripheral side having the smallest coil diameter is located on the head 42 side of the rod-shaped member 40.
 第2渦巻バネ61Aは、長方形状の板材510Aを円錐状に巻いて構成されるバネである。なお、第2渦巻バネ61Aは、第1渦巻バネ51Aと同様に構成されていることからその詳細についての説明を省略する。 The second spiral spring 61A is a spring configured by winding a rectangular plate 510A in a conical shape. Note that the second spiral spring 61A is configured in the same manner as the first spiral spring 51A, and therefore a detailed description thereof is omitted.
 第2変位制限部64は、第2収容部243のうち棒軸方向DRaに沿って延びる内側壁面によって構成されている。第2変位制限部64は、その内部に第2渦巻バネ61Aが収容可能な大きさを有している。具体的には、第2変位制限部64は、第2渦巻バネ61Aにおける棒径方向DRrの外周側に位置する部位全体に当接する大きさになっている。 The second displacement limiting portion 64 is configured by an inner wall surface extending along the rod axis direction DRa in the second accommodating portion 243. The second displacement limiting portion 64 has a size that allows the second spiral spring 61A to be accommodated therein. Specifically, the second displacement limiting portion 64 is sized to abut on the entire portion of the second spiral spring 61A located on the outer peripheral side in the rod radial direction DRr.
 第2外周側規定部65は、第2渦巻バネ61Aにおける最も外周側に位置する部位の位置を規定するものである。第2外周側規定部65は、第2収容部243のうち棒径方向DRrに沿って拡がる底部で構成されている。 The second outer peripheral side defining portion 65 is for defining the position of the most outer peripheral side portion of the second spiral spring 61A. The 2nd outer peripheral side prescription | regulation part 65 is comprised by the bottom part extended along the rod radial direction DRr among the 2nd accommodating parts 243. As shown in FIG.
 第2外周側規定部65は、第2渦巻バネ61Aにおける最も内周側に位置する部位と棒軸方向DRaにおいて重なり合うように構成されている。これにより、第2外周側規定部65は、第2渦巻バネ61Aに対して棒軸方向DRaに所定の圧縮荷重が作用した際に、第2渦巻バネ61Aにおける外周側の部位だけでなく、内周側の部位も当接し易くなっている。本実施形態では、挿通穴241の外径Dhが第2渦巻バネ61Aの最も内周側に位置する部位の外径Dpi2よりも小さくなっている。このため、第2渦巻バネ61Aの内周側の部位が挿通穴241の内側まで変位することはない。 The second outer peripheral side defining portion 65 is configured to overlap in the rod axial direction DRa with a portion located on the innermost peripheral side in the second spiral spring 61A. As a result, the second outer peripheral side defining portion 65 is not limited to the inner peripheral portion of the second spiral spring 61A when a predetermined compressive load is applied to the second spiral spring 61A in the rod axis direction DRa. The peripheral part is also easily abutted. In the present embodiment, the outer diameter Dh of the insertion hole 241 is smaller than the outer diameter Dpi2 of the portion located on the innermost side of the second spiral spring 61A. For this reason, the site | part of the inner peripheral side of 2nd spiral spring 61A does not displace to the inner side of the insertion hole 241. FIG.
 第2内周側規定部66は、第2渦巻バネ61Aにおける最も内周側に位置する部位の位置を規定するものである。第2内周側規定部66は、筒状部44の端部と棒状部材40の頭部42との間に配置されている。本実施形態の第2内周側規定部66は、第2渦巻バネ61Aに当接する第2規定側当接部位661を有している。 The second inner circumferential side defining portion 66 defines the position of the portion located on the innermost circumferential side in the second spiral spring 61A. The second inner peripheral side defining portion 66 is disposed between the end portion of the tubular portion 44 and the head portion 42 of the rod-shaped member 40. The second inner circumferential side defining portion 66 of the present embodiment has a second defined side contact portion 661 that contacts the second spiral spring 61A.
 第2規定側当接部位661は、棒軸方向DRaに荷重が作用した際に、第2渦巻バネ61Aの変位を規定する部位である。このため、第2規定側当接部位661は、棒軸方向DRaに荷重が作用したとしても第2渦巻バネ61Aとの接触状態が維持されるように構成されている。すなわち、第2規定側当接部位661は、その外径Dve2が第2渦巻バネ61Aの最も内周側に位置する第2バネ側当接部位614の内径Dsi2よりも大きくなっている。なお、前述の第2バネ側当接部位614は、第2渦巻バネ61Aのうち、第2規定側当接部位661に当接する部位である。 The second regulation side contact part 661 is a part that regulates the displacement of the second spiral spring 61A when a load is applied in the rod axis direction DRa. For this reason, the 2nd regulation side contact part 661 is comprised so that a contact state with 61 A of 2nd spiral springs may be maintained even if a load acts on the rod axial direction DRa. That is, the second prescribed side contact portion 661 has an outer diameter Dve2 larger than the inner diameter Dsi2 of the second spring side contact portion 614 located on the innermost peripheral side of the second spiral spring 61A. The second spring-side contact portion 614 described above is a portion that contacts the second specified-side contact portion 661 in the second spiral spring 61A.
 また、第2内周側規定部66は、棒径方向DRrの荷重が作用したとしても第2変位制限部64との間に隙間が形成されるように、第2変位制限部64から離間する構成になっている。すなわち、第2内周側規定部66は、棒径方向DRrにおける第2変位制限部64との隙間の寸法Gb2が、第2渦巻バネ61Aの板材610Aの板厚tと渦巻バネ51Aの有効巻き数Neとを乗じた値よりも大きくなるように構成されている。なお、第2渦巻バネ61Aの有効巻き数Neは、第2渦巻バネ61Aの実際の巻き数Nから第2バネ側当接部位614を除いた巻き数である(すなわち、Ne=N-1)。 Further, the second inner circumferential side defining portion 66 is separated from the second displacement limiting portion 64 so that a gap is formed between the second inner circumferential side defining portion 66 and the second displacement limiting portion 64 even when a load in the rod radial direction DRr is applied. It is configured. That is, the second inner circumferential side defining portion 66 has a gap size Gb2 with the second displacement limiting portion 64 in the rod radial direction DRr so that the plate thickness t of the plate material 610A of the second spiral spring 61A and the effective winding of the spiral spring 51A. It is configured to be larger than a value obtained by multiplying the number Ne. Note that the effective number of turns Ne of the second spiral spring 61A is the number of turns obtained by removing the second spring-side contact portion 614 from the actual number of turns N of the second spiral spring 61A (ie, Ne = N−1). .
 ここで、本実施形態では、各変位制限部54、64および各外周側規定部55、65が、圧縮機側ハウジング240の各収容部242、243に設定されている。また、本実施形態では、各内周側規定部56、66がエンジン側ハウジングEGHに固定される棒状部材40側に設定されている。このため、第1実施形態および本実施形態では、各外周側規定部55、65が第1軸方向規定部を構成し、各内周側規定部56、66が第2軸方向規定部を構成している。 Here, in this embodiment, the displacement limiting portions 54 and 64 and the outer peripheral side defining portions 55 and 65 are set in the accommodating portions 242 and 243 of the compressor-side housing 240, respectively. In the present embodiment, the inner peripheral side defining portions 56 and 66 are set on the rod-like member 40 side fixed to the engine side housing EGH. Therefore, in the first embodiment and the present embodiment, the outer peripheral side defining portions 55 and 65 constitute the first axial direction defining portion, and the inner peripheral side defining portions 56 and 66 constitute the second axial direction defining portion. is doing.
 続いて、本実施形態の懸架装置30に対して荷重が作用した際の作動状態について説明する。懸架装置30は、無負荷状態において、各渦巻バネ51A、61Aのうち棒径方向DRrに隣り合う板材510A、610A同士が離れると共に、各渦巻バネ51A、61Aの内側の部位が各外周側規定部55、65から離間した状態となる。 Subsequently, an operation state when a load is applied to the suspension device 30 of the present embodiment will be described. In the suspension device 30, the plate members 510A and 610A adjacent to each other in the rod radial direction DRr of the spiral springs 51A and 61A are separated from each other in the unloaded state, and the inner portions of the spiral springs 51A and 61A are the outer peripheral side defining portions. It is in a state of being separated from 55 and 65.
 この状態において、例えば、圧縮機24が棒径方向DRrに振動し、各渦巻バネ51A、61Aに対して棒径方向DRrの荷重が作用すると、各渦巻バネ51A、61Aが、弾性を有した状態で棒径方向DRrに撓む。これにより、棒径方向DRrに作用する振動が各渦巻バネ51A、61Aによって吸収される。 In this state, for example, when the compressor 24 vibrates in the rod radial direction DRr and a load in the rod radial direction DRr acts on the spiral springs 51A and 61A, the spiral springs 51A and 61A have elasticity. To bend in the rod radial direction DRr. As a result, vibrations acting in the rod radial direction DRr are absorbed by the spiral springs 51A and 61A.
 そして、各渦巻バネ51A、61Aに対して作用する棒径方向DRrの荷重が増加すると、外周側の部位から順に隣り合う板材510A、610Aが密着し始める。板材510A、610A同士が密着した部位は、バネとしての機能が失われる。このため、棒径方向DRrの荷重が増加すると、各渦巻バネ51A、61Aにおける棒径方向DRrに弾性変形可能なバネ有効長さが小さくなる。 When the load in the rod radial direction DRr acting on the spiral springs 51A and 61A increases, the adjacent plate members 510A and 610A start to come into close contact with each other from the outer peripheral side. The part where the plate members 510A and 610A are in close contact with each other loses the function as a spring. For this reason, when the load in the rod radial direction DRr increases, the effective spring length that can be elastically deformed in the rod radial direction DRr in each of the spiral springs 51A and 61A decreases.
 このように、本実施形態の各渦巻バネ51A、61Aは、棒径方向DRrに作用する荷重が増加すると、板材510A、610A同士の接触面積が大きくなることで、弾性変形可能な範囲が小さくなる。このため、本実施形態の各渦巻バネ51A、61Aは、棒径方向DRrに作用する荷重が増加するに伴って、棒径方向DRrの弾性定数が増加する非線形な弾性特性を有することになる。 As described above, the spiral springs 51A and 61A of the present embodiment increase the contact area between the plate members 510A and 610A when the load acting in the rod radial direction DRr increases, thereby reducing the elastically deformable range. . For this reason, each spiral spring 51A, 61A of the present embodiment has nonlinear elastic characteristics in which the elastic constant in the rod radial direction DRr increases as the load acting on the rod radial direction DRr increases.
 一方、例えば、圧縮機24が棒軸方向DRaに振動し、各渦巻バネ51A、61Aに対して棒軸方向DRaの荷重が作用すると、各渦巻バネ51A、61Aが、弾性を有した状態で棒軸方向DRaに撓む。これにより、棒軸方向DRaに作用する振動が各渦巻バネ51A、61Aによって吸収される。 On the other hand, for example, when the compressor 24 vibrates in the rod axis direction DRa and a load in the rod axis direction DRa acts on the spiral springs 51A and 61A, the spiral springs 51A and 61A Deflection in the axial direction DRa. As a result, vibrations acting in the rod axis direction DRa are absorbed by the spiral springs 51A and 61A.
 各渦巻バネ51A、61Aに対して作用する棒径方向DRrの荷重が増加すると、外周側の部位から順に各外周側規定部55、65に当接し始める。各渦巻バネ51A、61Aにおける各外周側規定部55、65に当接する部位は、バネとしての機能が失われる。このため、棒軸方向DRaの荷重が増加すると、各渦巻バネ51A、61Aにおける棒軸方向DRaに弾性変形可能なバネ有効長さが小さくなる。 When the load in the rod radial direction DRr acting on the spiral springs 51A and 61A increases, the outer peripheral side defining portions 55 and 65 start to contact in order from the outer peripheral side portion. The portions of the spiral springs 51A and 61A that are in contact with the outer peripheral side defining portions 55 and 65 lose their function as springs. For this reason, when the load in the rod axis direction DRa increases, the effective spring length that can be elastically deformed in the rod axis direction DRa in each of the spiral springs 51A and 61A decreases.
 このように、本実施形態の各渦巻バネ51A、61Aは、棒軸方向DRaに作用する荷重が増加すると、板材510A、610Aと各外周側規定部55、65との接触面積が大きくなることで、弾性変形可能な範囲が小さくなる。このため、本実施形態の各渦巻バネ51A、61Aは、棒軸方向DRaに作用する荷重が増加するに伴って、棒軸方向DRaの弾性定数が増加する非線形な弾性特性を有することになる。 As described above, the spiral springs 51A and 61A of the present embodiment increase the contact area between the plate members 510A and 610A and the outer peripheral side defining portions 55 and 65 when the load acting in the rod axis direction DRa increases. The range in which elastic deformation is possible is reduced. For this reason, each spiral spring 51A, 61A of the present embodiment has nonlinear elastic characteristics in which the elastic constant in the rod axis direction DRa increases as the load acting in the rod axis direction DRa increases.
 ここで、第1渦巻バネ51Aは、棒軸方向DRaに作用する荷重が増加すると、最終的には、図27に示すように、内周側の部位が第1外周側規定部55に当接する。この状態では、第1内周側規定部56の第1規定側当接部位561が第1収容部242内に位置することになる。 Here, when the load acting on the rod axis direction DRa increases, the first spiral spring 51A finally comes into contact with the first outer peripheral side defining portion 55 as shown in FIG. . In this state, the first defining side contact portion 561 of the first inner circumferential side defining portion 56 is located in the first accommodating portion 242.
 この際、例えば、第1渦巻バネ51Aに対して棒径方向DRrの荷重が作用していると、図28に示すように、第1内周側規定部56が、棒径方向DRrに変位することで第1変位制限部54に接触する可能性がある。 At this time, for example, when a load in the rod radial direction DRr is applied to the first spiral spring 51A, the first inner circumferential side defining portion 56 is displaced in the rod radial direction DRr as shown in FIG. Thus, there is a possibility that the first displacement limiting portion 54 may come into contact.
 これに対して、本実施形態では、第1内周側規定部56と棒径方向DRrにおける第1変位制限部54との隙間の寸法Gb1が、第1渦巻バネ51Aの板材510Aの板厚tと渦巻バネ51Aの有効巻き数Neとを乗じた値よりも大きくなるように構成されている。 On the other hand, in this embodiment, the dimension Gb1 of the gap between the first inner peripheral side defining portion 56 and the first displacement limiting portion 54 in the rod radial direction DRr is the thickness t of the plate material 510A of the first spiral spring 51A. And the effective number of turns Ne of the spiral spring 51A is configured to be larger than the value.
 このため、本実施形態の懸架装置30では、棒軸方向DRaおよび棒径方向DRrの荷重が同時に作用しても、各内周側規定部56、66が各変位制限部54、64に直に接することを防止できる。 For this reason, in the suspension device 30 of the present embodiment, even if the loads in the rod axis direction DRa and the rod radial direction DRr are simultaneously applied, the inner peripheral side defining portions 56 and 66 are directly applied to the displacement limiting portions 54 and 64, respectively. It is possible to prevent contact.
 さらに、本実施形態では、圧縮機側ハウジング240に形成された挿通穴241が、各渦巻バネ51A、61Aにおける棒径方向DRrの変位量が最大となったとしても棒状部材40の筒状部44との間に隙間が形成される大きさに設定されている。これによれば、棒径方向DRrの荷重が作用した際に、棒状部材40と挿通穴241の内壁とが直に接することを防止できる。 Furthermore, in the present embodiment, the insertion hole 241 formed in the compressor-side housing 240 causes the cylindrical portion 44 of the rod-shaped member 40 even if the displacement amount in the rod radial direction DRr of each of the spiral springs 51A and 61A is maximized. Is set to such a size that a gap is formed between them. According to this, it is possible to prevent the rod-shaped member 40 and the inner wall of the insertion hole 241 from coming into direct contact when a load in the rod radial direction DRr is applied.
 (第7実施形態の変形例)
 上述の第7実施形態では、第1内周側規定部56が筒状部44に一体に構成される例について説明したが、これに限定されない。第1内周側規定部56は、筒状部44と別体に構成されていてもよい。
(Modification of the seventh embodiment)
In the above-described seventh embodiment, the example in which the first inner peripheral side defining portion 56 is configured integrally with the cylindrical portion 44 has been described, but the present invention is not limited to this. The first inner circumferential side defining portion 56 may be configured separately from the cylindrical portion 44.
 上述の第7実施形態では、棒状部材40に対して筒状部44が追加された構成を例示したが、これに限定されない。棒状部材40は、第1実施形態の如く、筒状部44を有していない構成になっていてもよい。 In the above-described seventh embodiment, the configuration in which the cylindrical portion 44 is added to the rod-shaped member 40 is exemplified, but the present invention is not limited to this. The rod-shaped member 40 may be configured not to have the cylindrical portion 44 as in the first embodiment.
 上述の第7実施形態では、各変位制限部54、64を各収容部242、243が有する壁面で構成する例について説明したが、これに限定されない。各変位制限部54、64は、第1実施形態の如く、各収容部242、243に圧入されるホルダ部で構成されていてもよい。 In the seventh embodiment described above, the example in which the displacement limiting portions 54 and 64 are configured by the wall surfaces of the accommodating portions 242 and 243 has been described, but the present invention is not limited to this. Each displacement limitation part 54 and 64 may be comprised by the holder part press-fitted in each accommodating part 242 and 243 like 1st Embodiment.
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
(Other embodiments)
As mentioned above, although typical embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
 上述の第1~第6実施形態では、弾性部材として円錐状のコイルバネを例示したが、これに限定されない。弾性部材は、例えば、両端部のコイル径に比べて中間のコイル径が小さい鼓形状のコイルバネや、両端部のコイル径に比べて中間のコイル径が大きい樽形状のコイルバネで構成されていてもよい。 In the first to sixth embodiments described above, the conical coil spring is exemplified as the elastic member, but the present invention is not limited to this. The elastic member may be constituted by, for example, a drum-shaped coil spring having an intermediate coil diameter smaller than the coil diameters at both ends, or a barrel-shaped coil spring having an intermediate coil diameter larger than the coil diameters at both ends. Good.
 上述の第1~第6実施形態では、各ホルダ部52、62の各内側壁部520、620を各コイルバネ51、61の外形状に対応した形状とする例について説明したが、これに限定されない。各ホルダ部52、62の各内側壁部520、620は、例えば、内部に円柱状の空間が形成されるような形状となっていてもよい。 In the first to sixth embodiments described above, the example has been described in which the inner wall portions 520 and 620 of the holder portions 52 and 62 have shapes corresponding to the outer shapes of the coil springs 51 and 61. However, the present invention is not limited to this. . Each inner wall part 520, 620 of each holder part 52, 62 may have a shape such that a cylindrical space is formed therein, for example.
 上述の各実施形態では、棒状部材40が水平方向に沿って延びる姿勢で配置される例について説明したが、これに限定されない。棒状部材40は、例えば、鉛直方向に沿って延びる姿勢や、鉛直方向および水平方向の双方に交差する方向に沿って延びる姿勢で配置されていてもよい。 In each of the above-described embodiments, the example in which the rod-shaped member 40 is arranged in a posture extending along the horizontal direction has been described, but the present invention is not limited to this. The rod-shaped member 40 may be arranged, for example, in a posture extending along the vertical direction or a posture extending along a direction intersecting both the vertical direction and the horizontal direction.
 上述の各実施形態では、棒状部材40の一端側がエンジン側ハウジングEGHに対してネジ締結される例について説明したが、これに限らず、例えば、棒状部材40の一端側がエンジン側ハウジングEGHに対して溶接等によって固定されていてもよい。 In each of the above-described embodiments, the example in which one end side of the rod-shaped member 40 is screw-fastened to the engine-side housing EGH is described. However, the present invention is not limited thereto. It may be fixed by welding or the like.
 上述の第1~第3実施形態では、各ホルダ部52、62が、各収容部242、243と別体で構成される例について説明したが、これに限らず、各ホルダ部52、62は、各収容部242、243と一体に構成されていてもよい。 In the above-described first to third embodiments, the example in which each holder part 52, 62 is configured separately from each accommodating part 242, 243 has been described, but the present invention is not limited thereto, and each holder part 52, 62 has , And may be configured integrally with each of the accommodating portions 242, 243.
 また、上述の第1~第3実施形態では、各大径側規定部531、631が各収容部242、243と別体で構成される例について説明したが、これに限らず、各大径側規定部531、631は、各収容部242、243と一体に構成されていてもよい。 In the above-described first to third embodiments, the example in which each large-diameter side defining portion 531 and 631 is configured separately from each accommodating portion 242 and 243 has been described. The side defining portions 531 and 631 may be configured integrally with the accommodating portions 242 and 243.
 さらに、上述の第1~第3実施形態では、各小径側規定部532、632がエンジン側ハウジングEGHと別体で構成される例について説明したが、これに限らず、各小径側規定部532、632は、エンジン側ハウジングEGHと一体に構成されていてもよい。 Furthermore, in the first to third embodiments described above, an example in which the small diameter side defining portions 532 and 632 are configured separately from the engine side housing EGH has been described. 632 may be integrated with the engine-side housing EGH.
 上述の各実施形態では、防振装置として機能する懸架装置30が、第1懸架部50および第2懸架部60で構成される例について説明したが、これに限定されず、第1懸架部50および第2懸架部60の一方で構成されていてもよい。 In each of the above-described embodiments, the example in which the suspension device 30 that functions as the vibration isolator is configured by the first suspension unit 50 and the second suspension unit 60 has been described. However, the present invention is not limited thereto, and the first suspension unit 50 is not limited thereto. Alternatively, one of the second suspension portions 60 may be configured.
 上述の各実施形態では、本開示の防振装置をエンジンEGおよび圧縮機24を接続する懸架装置30に対して適用する例について説明したが、これに限らず、本開示の防振装置は、振動を発生させる装置同士の接続部に対して広く適用可能である。 In each of the above-described embodiments, the example in which the vibration isolator of the present disclosure is applied to the suspension device 30 that connects the engine EG and the compressor 24 has been described. However, the present invention is not limited thereto, The present invention can be widely applied to a connection portion between devices that generate vibration.
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 In the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle.
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 In the above-described embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. Except in some cases, the number is not limited.
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 In the above embodiment, when referring to the shape, positional relationship, etc. of the component, etc., the shape, positional relationship, etc. unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to etc.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、防止装置は、弾性部材が、棒軸方向に作用する荷重が増加するに伴って棒軸方向における弾性定数が増加する特性を有する。さらに、弾性部材は、弾性部材における交差方向への変位量が大きくなるに従って変位制限部との接触面積が大きくなるように構成されている。
(Summary)
According to the first aspect shown in a part or all of the above-described embodiments, the prevention device has an elastic constant that increases in the rod axis direction as the load acting on the elastic member in the rod axis direction increases. It has the characteristic to do. Furthermore, the elastic member is configured such that the contact area with the displacement limiting portion increases as the amount of displacement in the intersecting direction of the elastic member increases.
 また、第2の観点によれば、防振装置は、弾性部材が、棒軸方向に作用する荷重に対して非線形なバネ特性を有する円錐状のコイルバネを含んで構成されている。また、変位制限部は、弾性部材における交差方向の外側に露出する部位を覆うホルダ部を含んで構成されている。そして、ホルダ部には、コイルバネに対して交差方向に所定の基準荷重を超える荷重が作用した際にコイルバネの一部位と当接し、コイルバネの一部位の変位を規制する変位規制部が設けられている。 Further, according to the second aspect, the vibration isolator is configured such that the elastic member includes a conical coil spring having a non-linear spring characteristic with respect to a load acting in the rod axis direction. Moreover, the displacement limiting part is comprised including the holder part which covers the site | part exposed to the outer side of the cross direction in an elastic member. The holder portion is provided with a displacement restricting portion that abuts against one portion of the coil spring when a load exceeding a predetermined reference load is applied to the coil spring in the crossing direction and restricts the displacement of the one portion of the coil spring. Yes.
 このように構成されたコイルバネは、ホルダ部の変位規制部との接触面積が大きくなると、弾性変形可能なバネ有効長さが小さくなることでバネ定数が増加する。すなわち、本開示によれば、コイルバネおよびホルダ部という簡素な構成によって棒軸方向および当該棒軸方向に交差する交差方向に対して非線形なバネ特性を有する防振装置を実現することが可能となる。 When the contact area of the coil spring configured in this way with the displacement restricting portion of the holder portion increases, the spring effective length that can be elastically deformed decreases, and the spring constant increases. That is, according to the present disclosure, it is possible to realize a vibration isolator having a non-linear spring characteristic with respect to the rod axis direction and the intersecting direction intersecting the rod axis direction with a simple configuration of the coil spring and the holder portion. .
 また、第3の観点によれば、防振装置は、変位規制部が、ホルダ部におけるコイルバネの小径側から大径側に向かって大きくなる穴形状を有する内側壁部で構成されている。このように、変位規制部をコイルバネの小径側から大径側に向かって大きくなる穴形状を有する内側壁部で構成すれば、コイルバネの大径側だけでなく小径側もホルダ部の内側壁部に当接し易くなるので、バネ定数の可変域を充分に確保することが可能となる。 Further, according to the third aspect, the vibration isolator is configured by an inner wall portion having a hole shape in which the displacement restricting portion increases from the small diameter side to the large diameter side of the coil spring in the holder portion. In this way, if the displacement restricting portion is configured by the inner wall portion having a hole shape that increases from the small diameter side to the large diameter side of the coil spring, not only the large diameter side but also the small diameter side of the coil spring is the inner wall portion of the holder portion. Therefore, it is possible to sufficiently secure a variable range of the spring constant.
 また、第4の観点によれば、防振装置は、コイルバネにおける棒軸方向の両端部の位置を規定する端部位置規定部を備える。コイルバネには、棒軸方向の両端部において端部位置規定部に対向する部位に平坦状に形成された一対の平坦部が設けられている。そして、棒状部材には、一対の平坦部における小径側の平坦部に連なる線材の少なくとも一巻きが当接している。さらに、ホルダ部には、一対の平坦部における大径側の平坦部に連なる線材の少なくとも一巻きが当接している。 Further, according to the fourth aspect, the vibration isolator includes end position defining portions that define the positions of both end portions of the coil spring in the rod axis direction. The coil spring is provided with a pair of flat portions formed in a flat shape at portions facing the end position defining portions at both ends in the rod axis direction. The rod-shaped member is in contact with at least one turn of the wire connected to the flat portion on the small diameter side of the pair of flat portions. Further, at least one turn of the wire connected to the large diameter flat portion of the pair of flat portions is in contact with the holder portion.
 コイルバネにおける端部位置規定部に対向する部位に平坦部が設けられた構成では、コイルバネと端部位置規定部との当接状態を安定させることができるので、例えば、端部位置規定部の一部に偏って荷重が作用することを抑制可能となる。 In the configuration in which the flat portion is provided in the portion of the coil spring facing the end position defining portion, the contact state between the coil spring and the end position defining portion can be stabilized. It is possible to suppress the load from acting on the portion.
 一方、コイルバネにおける端部位置規定部に対向する部位に平坦部が設けられた構成では、コイルバネに設けた平坦部が棒径方向に変形するバネとして機能すると、コイルバネにおける棒径方向のバネ特性が不安定となってしまうという背反がある。 On the other hand, in the configuration in which the flat portion is provided in the portion facing the end position defining portion in the coil spring, if the flat portion provided in the coil spring functions as a spring that deforms in the rod radial direction, the spring characteristics in the rod radial direction of the coil spring are reduced. There is a trade-off that it becomes unstable.
 これに対して、本開示のコイルバネは、小径側の平坦部に連なる線材が棒状部材に当接すると共に、大径側の平坦部に連なる線材がホルダ部に当接している。これによれば、コイルバネに設けた平坦部が棒径方向に変形するバネとして殆ど機能しないので、コイルバネと端部位置規定部との当接状態を安定させつつ、コイルバネにおける棒径方向のバネ特性を安定させることが可能となる。 In contrast, in the coil spring of the present disclosure, the wire connected to the flat portion on the small diameter side contacts the rod-shaped member, and the wire connected to the flat portion on the large diameter side contacts the holder portion. According to this, since the flat portion provided in the coil spring hardly functions as a spring that deforms in the rod radial direction, the spring characteristics in the rod radial direction of the coil spring are stabilized while stabilizing the contact state between the coil spring and the end position defining portion. Can be stabilized.
 また、第5の観点によれば、防振装置は、コイルバネにおける棒軸方向の両端部の位置を規定する端部位置規定部を備える。そして、コイルバネを構成する線材は、棒軸方向の両端側の断面形状が、他の部位の断面形状と同様に構成されている。さらに、端部位置規定部は、線材における棒軸方向の両端側に位置する部位の半巻き以上が当接するように棒軸方向に傾斜している。 Further, according to the fifth aspect, the vibration isolator includes end position defining portions that define the positions of both ends of the coil spring in the rod axis direction. And the wire which comprises a coil spring is comprised similarly to the cross-sectional shape of the other site | part of the cross-sectional shape of the both ends side of a rod-axis direction. Further, the end position defining portion is inclined in the rod axis direction so that half or more of the portions located on both ends in the rod axis direction of the wire are in contact with each other.
 コイルバネにおける端部位置規定部に対向する部位の断面形状が他の部位の断面形状と同様となる構成では、端部位置規定部に対向する部位の断面形状が平坦状となる構成に比べて、コイルバネにおける棒径方向のバネ特性を安定させることができる。 In the configuration in which the cross-sectional shape of the portion facing the end position defining portion in the coil spring is the same as the cross-sectional shape of the other portion, compared to the configuration in which the cross-sectional shape of the portion facing the end position defining portion is flat, The spring characteristics in the rod radial direction of the coil spring can be stabilized.
 一方、コイルバネにおける端部位置規定部に対向する部位の断面形状が他の部位の断面形状と同様となる構成では、コイルバネと端部位置規定部との当接状態が安定しないという背反がある。 On the other hand, in the configuration in which the cross-sectional shape of the part facing the end position defining part in the coil spring is the same as the cross-sectional shape of the other part, there is a contradiction that the contact state between the coil spring and the end position defining part is not stable.
 これに対して、本開示の端部位置規定部は、線材における棒軸方向の両端側に位置する部位の半巻き以上が当接するように棒軸方向に傾斜している。これによれば、コイルバネにおける棒径方向のバネ特性を安定させつつ、コイルバネと端部位置規定部との当接状態を安定させることが可能となる。 In contrast, the end position defining portion of the present disclosure is inclined in the rod axis direction so that more than half turns of the portions located on both ends of the wire rod in the rod axis direction come into contact with each other. According to this, it is possible to stabilize the contact state between the coil spring and the end position defining portion while stabilizing the spring characteristics in the rod radial direction of the coil spring.
 また、第6の観点によれば、防振装置は、コイルバネが、ホルダ部の内部において、コイル中心軸が重力の作用方向に交差する姿勢で設置されると共に、自由状態においてコイルバネの小径側が大径側に比べて重力の作用方向とは逆方向にオフセットされている。このように、コイルバネの自重による変形を考慮してコイルバネの小径側をオフセットすることで、コイルバネの自重による変形に伴ってバネ特性が変化してしまうことを抑制することが可能となる。 Further, according to the sixth aspect, in the vibration isolator, the coil spring is installed in a posture in which the coil central axis intersects the direction of gravity in the holder portion, and the small diameter side of the coil spring is large in the free state. Compared to the radial side, the direction of gravity is offset in the opposite direction. In this way, by taking into account deformation due to the weight of the coil spring, by offsetting the small diameter side of the coil spring, it is possible to suppress a change in spring characteristics due to the deformation due to the weight of the coil spring.
 また、第7の観点によれば、防振装置は、弾性部材における棒軸方向の一端側の端部の位置を規定する第1軸方向規定部と、弾性部材における棒軸方向の他端側の端部の位置を規定する第2軸方向規定部と、を備える。変位制限部および第1軸方向規定部は、第1振動発生部および第2振動発生部のうち一方の振動発生部側に設定されている。棒状部材は、第1振動発生部および第2振動発生部のうち他方の振動発生部に固定されると共に、一方の振動発生部に対して弾性部材を介して接続されている。そして、第2軸方向規定部は、棒状部材側に設定されており、第1振動発生部および第2振動発生部の一方が振動したとしても変位制限部との間に隙間が形成されるように、変位制限部から離間している。 Further, according to the seventh aspect, the vibration isolator includes a first axial direction defining portion that defines the position of one end side of the elastic member in the rod axis direction, and the other end side of the elastic member in the rod axis direction. A second axial direction defining portion that defines the position of the end of the first axial direction. The displacement limiting part and the first axial direction defining part are set on one vibration generating part side of the first vibration generating part and the second vibration generating part. The rod-like member is fixed to the other vibration generating part among the first vibration generating part and the second vibration generating part, and is connected to one vibration generating part via an elastic member. And the 2nd axial direction prescription | regulation part is set to the rod-shaped member side, and even if one of a 1st vibration generation part and a 2nd vibration generation part vibrates, a clearance gap will be formed between displacement limitation parts. Further, it is separated from the displacement limiting portion.
 防振装置は、第1振動発生部および第2振動発生部の一方の振動発生部が振動した際に変位制限部と第2軸方向規定部とが接触する構造になっていると、弾性部材のバネとしての機能が発揮されなくなる。 The vibration isolator has a structure in which the displacement restricting portion and the second axial direction defining portion come into contact with each other when one of the first vibration generating portion and the second vibration generating portion vibrates. The function as a spring is not displayed.
 これに対して、本開示の防振装置は、第1振動発生部および第2振動発生部の一方の振動発生部が振動したとしても変位制限部と第2軸方向規定部との間に隙間が形成される構造になるので、弾性部材のバネとしての機能を発揮させることができる。 On the other hand, the vibration isolator of the present disclosure has a gap between the displacement limiting portion and the second axial direction defining portion even if one of the first vibration generating portion and the second vibration generating portion vibrates. Therefore, the function of the elastic member as a spring can be exhibited.
 また、第8の観点によれば、防振装置は、弾性部材が、棒軸方向に作用する荷重に対して非線形なバネ特性を有する円錐状のコイルバネを含んで構成されている。そして、第2軸方向規定部は、コイルバネに当接する規定側当接部位の外径が、コイルバネにおける第2軸方向規定部に接するバネ側当接部位の外径よりも小さく、且つ、バネ側当接部位の外径と内径との中間となる線間中心径よりも大きくなっている。これによれば、第2軸方向規定部と変位制限部との間にコイルバネが介在する構造になるので、変位制限部と第2軸方向規定部とが直に接することを防止できる。 Further, according to the eighth aspect, in the vibration isolator, the elastic member includes a conical coil spring having a non-linear spring characteristic with respect to a load acting in the rod axis direction. In the second axial direction defining portion, the outer diameter of the defined side contact portion that contacts the coil spring is smaller than the outer diameter of the spring side contact portion that contacts the second axial direction defining portion of the coil spring, and the spring side It is larger than the center diameter between the lines, which is intermediate between the outer diameter and the inner diameter of the contact portion. According to this, since the coil spring is interposed between the second axial direction defining portion and the displacement limiting portion, it is possible to prevent the displacement limiting portion and the second axial direction defining portion from coming into direct contact.
 また、第9の観点によれば、防振装置は、変位制限部が、コイルバネの外形状に対応して棒軸方向に対して傾斜した傾斜面を有している。第2軸方向規定部は、規定側当接部位の外径が棒軸方向において規定側当接部位の反対側の部位の外径よりも大きくなるように棒軸方向に対して傾斜した傾斜面を有している。そして、第2軸方向規定部の傾斜面は、棒軸方向に対する傾斜角度が、変位制限部の傾斜面における棒軸方向に対する傾斜角度よりも大きくなっている。これによれば、第2軸方向規定部と変位制限部との間の隙間寸法が、規定側当接部位から棒軸方向に離れるに伴って大きくなるので、第2軸方向規定部の規定側当接部位以外の部位が変位制限部と直に接することを防止できる。 Further, according to the ninth aspect, in the vibration isolator, the displacement restricting portion has an inclined surface inclined with respect to the rod axis direction corresponding to the outer shape of the coil spring. The second axial direction defining portion is an inclined surface inclined with respect to the rod axis direction so that the outer diameter of the defined side contact portion is larger than the outer diameter of the portion opposite to the defined side contact portion in the rod axis direction. have. The inclined surface of the second axial direction defining portion has an inclination angle with respect to the rod axis direction larger than the inclination angle with respect to the rod axis direction of the inclined surface of the displacement limiting portion. According to this, since the gap dimension between the second axial direction defining portion and the displacement limiting portion increases as it moves away from the defined side contact portion in the rod axis direction, the defined side of the second axial direction defining portion. It is possible to prevent a part other than the contact part from coming into direct contact with the displacement limiting portion.
 また、第10の観点によれば、防振装置は、弾性部材が、棒軸方向に交差する交差方向に作用する荷重が増加するに伴って交差方向における弾性定数が増加する特性を有する。さらに、弾性部材は、弾性部材における棒軸方向への変位量が大きくなるに従って第1軸方向規定部および第2軸方向規定部の一方との接触面積が大きくなるように構成されている。 Further, according to the tenth aspect, the vibration isolator has a characteristic that the elastic constant of the elastic member increases in the intersecting direction as the load acting in the intersecting direction intersecting the rod axis direction increases. Furthermore, the elastic member is configured such that the contact area with one of the first axial direction defining portion and the second axial direction defining portion increases as the amount of displacement of the elastic member in the rod axial direction increases.
 また、第11の観点によれば、防振装置は、弾性部材における棒状部材の棒軸方向と交差する交差方向への変位を制限する変位制限部を備える。第1軸方向規定部および変位制限部は、第1振動発生部および第2振動発生部のうち一方の振動発生部側に設定されている。棒状部材は、第1振動発生部および第2振動発生部のうち他方の振動発生部に固定されると共に、一方の振動発生部に対して弾性部材を介して接続されている。第2軸方向規定部は、棒状部材側に設定されており、第1振動発生部および第2振動発生部の一方が振動したとしても変位制限部との間に隙間が形成されるように、変位制限部から離間している。 Further, according to the eleventh aspect, the vibration isolator includes a displacement limiting unit that limits the displacement of the bar-shaped member of the elastic member in the crossing direction intersecting the bar axis direction. The first axial direction defining portion and the displacement limiting portion are set on one vibration generating portion side of the first vibration generating portion and the second vibration generating portion. The rod-like member is fixed to the other vibration generating part among the first vibration generating part and the second vibration generating part, and is connected to one vibration generating part via an elastic member. The second axial direction defining portion is set on the rod-shaped member side, and even if one of the first vibration generating portion and the second vibration generating portion vibrates, a gap is formed between the displacement limiting portion, It is separated from the displacement limiting part.
 このように構成される防振装置は、第1振動発生部および第2振動発生部の一方の振動発生部が振動したとしても変位制限部と第2軸方向規定部との間に隙間が形成される構造になるので、弾性部材のバネとしての機能を発揮させることができる。 The vibration isolator configured in this way forms a gap between the displacement limiting portion and the second axial direction defining portion even if one of the first vibration generating portion and the second vibration generating portion vibrates. Therefore, the function of the elastic member as a spring can be exhibited.
 また、第12の観点によれば、防振装置は、弾性部材が、板状部材が渦巻き状に巻かれて構成され、交差方向に作用する荷重に対して非線形なバネ特性を有する渦巻バネを含んで構成されている。第2軸方向規定部は、渦巻バネに当接する規定側当接部位の外径が、渦巻バネにおける第2軸方向規定部に接するバネ側当接部位の内径よりも大きくなっている。さらに、棒軸方向に直交する方向における第2軸方向規定部と変位制限部との隙間の寸法が、渦巻バネの板厚と渦巻バネの巻き数のうちバネ側当接部位を除いた有効巻き数とを乗じた値よりも大きくなっている。これによれば、第2軸方向規定部と変位制限部との間に渦巻バネが介在する構造になるので、変位制限部と第2軸方向規定部とが直に接することを防止できる。 According to a twelfth aspect, the vibration isolator includes a spiral spring in which the elastic member is formed by winding a plate-like member in a spiral shape and has a non-linear spring characteristic with respect to a load acting in the intersecting direction. It is configured to include. In the second axial direction defining portion, the outer diameter of the defined side contact portion that contacts the spiral spring is larger than the inner diameter of the spring side contact portion that contacts the second axial direction defining portion in the spiral spring. Further, the dimension of the gap between the second axial direction defining portion and the displacement limiting portion in the direction orthogonal to the rod axis direction is an effective winding excluding the spring-side contact portion of the spiral spring plate thickness and the spiral spring winding number. It is larger than the value multiplied by the number. According to this, since the spiral spring is interposed between the second axial direction defining portion and the displacement limiting portion, it is possible to prevent the displacement limiting portion and the second axial direction defining portion from coming into direct contact.
 また、第13の観点によれば、防振装置は、棒状部材が、第1振動発生部および第2振動発生部のうち一方の振動発生部に形成された挿通穴に挿通されている。そして、挿通穴は、弾性部材における交差方向の変位量が最大となったとしても棒状部材との間に隙間が形成される大きさに設定されている。これによれば、第1振動発生部および第2振動発生部の一方の振動発生部が振動したとしても棒状部材と挿通穴の内壁とが直に接することを防止できる。 Further, according to the thirteenth aspect, in the vibration isolator, the rod-shaped member is inserted through an insertion hole formed in one of the first vibration generating unit and the second vibration generating unit. The insertion hole is set to a size that allows a gap to be formed between the elastic member and the rod-shaped member even when the amount of displacement in the intersecting direction of the elastic member is maximized. According to this, even if one vibration generating part of the 1st vibration generating part and the 2nd vibration generating part vibrates, it can prevent that a rod-shaped member and the inner wall of an insertion hole touch directly.

Claims (13)

  1.  第1振動発生部(EG)および第2振動発生部(24)を接続すると共に、振動の伝達を抑制する防振装置であって、
     前記第1振動発生部および前記第2振動発生部を接続する棒状部材(40)と、
     前記第1振動発生部および前記第2振動発生部の一方の振動が前記棒状部材を介して他方に伝達されることを抑制する弾性部材(51、61)と、
     前記弾性部材における前記棒状部材の棒軸方向と交差する交差方向への変位を制限する変位制限部(52、62)と、を備え、
     前記弾性部材は、前記棒軸方向に作用する荷重が増加するに伴って前記棒軸方向における弾性定数が増加する特性を有すると共に、前記弾性部材における前記交差方向への変位量が大きくなるに従って前記変位制限部との接触面積が大きくなるように構成されている防振装置。
    A vibration isolator that connects the first vibration generator (EG) and the second vibration generator (24) and suppresses transmission of vibrations,
    A rod-shaped member (40) connecting the first vibration generating unit and the second vibration generating unit;
    An elastic member (51, 61) for suppressing one vibration of the first vibration generating unit and the second vibration generating unit from being transmitted to the other through the rod-shaped member;
    A displacement restricting portion (52, 62) for restricting displacement of the elastic member in the intersecting direction intersecting the rod axis direction of the rod-shaped member,
    The elastic member has a characteristic that an elastic constant in the rod axis direction increases as a load acting in the rod axis direction increases, and the elastic member has a displacement amount in the intersecting direction increases. A vibration isolator configured to increase a contact area with the displacement limiting portion.
  2.  前記弾性部材は、前記棒軸方向に作用する荷重に対して非線形なバネ特性を有する円錐状のコイルバネ(51、61)を含んで構成されており、
     前記変位制限部は、前記弾性部材における前記交差方向の外側に露出する部位を覆うホルダ部(52、62)を含んで構成されており、
     前記ホルダ部には、前記コイルバネに対して前記交差方向に所定の基準荷重を超える荷重が作用した際に前記コイルバネの一部位と当接し、前記コイルバネの一部位の変位を規制する変位規制部(520、620)が設けられている請求項1に記載の防振装置。
    The elastic member includes a conical coil spring (51, 61) having a non-linear spring characteristic with respect to a load acting in the rod axis direction,
    The displacement limiting portion includes a holder portion (52, 62) that covers a portion of the elastic member that is exposed outside in the intersecting direction.
    A displacement restricting portion that abuts against a portion of the coil spring when a load exceeding a predetermined reference load is applied to the coil spring in the intersecting direction and restricts the displacement of the portion of the coil spring. 520, 620) is provided.
  3.  前記変位規制部は、前記ホルダ部における前記コイルバネの小径側から大径側に向かって大きくなる穴形状を有する内側壁部(520、620)で構成されている請求項2に記載の防振装置。 3. The vibration isolator according to claim 2, wherein the displacement restricting portion includes an inner wall portion (520, 620) having a hole shape that increases from a small diameter side to a large diameter side of the coil spring in the holder portion. .
  4.  前記コイルバネにおける前記棒軸方向の両端部の位置を規定する端部位置規定部(53、63)を備え、
     前記コイルバネには、前記棒軸方向の両端部において前記端部位置規定部に対向する部位に平坦状に形成された一対の平坦部(512、513)が設けられており、
     前記棒状部材には、前記一対の平坦部における小径側の平坦部(512)に連なる線材の少なくとも一巻きが当接しており、
     前記ホルダ部には、前記一対の平坦部における大径側の平坦部(513)に連なる線材の少なくとも一巻きが当接している請求項2または3に記載の防振装置。
    End position defining portions (53, 63) for defining the positions of both ends of the coil spring in the rod axis direction;
    The coil spring is provided with a pair of flat portions (512, 513) formed in a flat shape at portions facing the end position defining portion at both ends in the rod axis direction,
    The rod-shaped member is in contact with at least one turn of the wire connected to the flat portion (512) on the small diameter side of the pair of flat portions,
    The vibration isolator according to claim 2 or 3, wherein at least one turn of the wire connected to the large diameter flat portion (513) of the pair of flat portions is in contact with the holder portion.
  5.  前記コイルバネにおける前記棒軸方向の両端部の位置を規定する端部位置規定部(53、63)を備え、
     前記コイルバネを構成する線材は、前記棒軸方向の両端側の断面形状が、他の部位の断面形状と同様に構成されており、
     前記端部位置規定部は、前記線材における前記棒軸方向の両端側に位置する部位の半巻き以上が当接するように前記棒軸方向に傾斜している請求項2または3に記載の防振装置。
    End position defining portions (53, 63) for defining the positions of both ends of the coil spring in the rod axis direction;
    The wire constituting the coil spring has the same cross-sectional shape at both ends in the rod axis direction as the cross-sectional shape of other parts,
    4. The anti-vibration device according to claim 2, wherein the end position defining portion is inclined in the bar axis direction so that half or more of the portions located on both ends in the bar axis direction of the wire are in contact with each other. apparatus.
  6.  前記コイルバネは、前記ホルダ部の内部において、コイル中心軸が重力の作用方向に交差する姿勢で設置されており、
     前記コイルバネは、自由状態において前記コイルバネの小径側が大径側に比べて重力の作用方向とは逆方向にオフセットされている請求項2ないし5のいずれか1つに記載の防振装置。
    The coil spring is installed in a posture in which the coil central axis intersects the direction of gravity in the holder portion,
    The vibration isolator according to any one of claims 2 to 5, wherein the coil spring is offset in a direction opposite to a direction in which gravity acts as compared with a large diameter side on a small diameter side of the coil spring in a free state.
  7.  前記弾性部材における前記棒軸方向の一端側の端部の位置を規定する第1軸方向規定部(531、631)と、
     前記弾性部材における前記棒軸方向の他端側の端部の位置を規定する第2軸方向規定部(532、632)と、を備え、
     前記変位制限部および前記第1軸方向規定部は、前記第1振動発生部および前記第2振動発生部のうち一方の振動発生部側に設定されており、
     前記棒状部材は、前記第1振動発生部および前記第2振動発生部のうち他方の振動発生部に固定されると共に、前記一方の振動発生部に対して前記弾性部材を介して接続されており、
     前記第2軸方向規定部は、前記棒状部材側に設定されており、前記第1振動発生部および前記第2振動発生部の一方が振動したとしても前記変位制限部との間に隙間が形成されるように、前記変位制限部から離間している請求項1に記載の防振装置。
    A first axial direction defining portion (531, 631) for defining a position of an end portion on one end side in the rod axial direction of the elastic member;
    A second axial direction defining portion (532, 632) for defining the position of the end portion on the other end side in the rod axial direction of the elastic member,
    The displacement limiting part and the first axial direction defining part are set on one vibration generating part side of the first vibration generating part and the second vibration generating part,
    The rod-shaped member is fixed to the other vibration generating portion of the first vibration generating portion and the second vibration generating portion, and is connected to the one vibration generating portion via the elastic member. ,
    The second axial direction defining portion is set on the rod-like member side, and even if one of the first vibration generating portion and the second vibration generating portion vibrates, a gap is formed between the displacement limiting portion and the second axial direction defining portion. The anti-vibration device according to claim 1, wherein the anti-vibration device is spaced apart from the displacement limiting portion.
  8.  前記弾性部材は、前記棒軸方向に作用する荷重に対して非線形なバネ特性を有する円錐状のコイルバネ(51、52)を含んで構成されており、
     前記第2軸方向規定部は、前記コイルバネに当接する規定側当接部位(533、633)の外径(Dpe1、Dpe2)が、前記コイルバネにおける前記第2軸方向規定部に接するバネ側当接部位(514、614)の外径(Dse1、Dse2)よりも小さく、且つ、前記バネ側当接部位の外径と内径との中間となる線間中心径(Dsc)よりも大きくなっている請求項7に記載の防振装置。
    The elastic member includes a conical coil spring (51, 52) having a non-linear spring characteristic with respect to a load acting in the rod axis direction,
    In the second axial direction defining portion, the outer diameters (Dpe1, Dpe2) of defined side contact portions (533, 633) that contact the coil spring are in contact with the second axial direction defining portion in the coil spring. It is smaller than the outer diameter (Dse1, Dse2) of the part (514, 614), and larger than the center diameter (Dsc) between the lines, which is intermediate between the outer diameter and the inner diameter of the spring-side contact part. Item 8. The vibration isolator according to item 7.
  9.  前記変位制限部は、前記コイルバネの外形状に対応して前記棒軸方向に対して傾斜した傾斜面(520、620)を有しており、
     前記第2軸方向規定部は、前記規定側当接部位の外径が前記棒軸方向において前記規定側当接部位の反対側の部位の外径よりも大きくなるように前記棒軸方向に対して傾斜した傾斜面(534、634)を有しており、
     前記第2軸方向規定部の傾斜面は、前記棒軸方向に対する傾斜角度(θα1、θα2)が、前記変位制限部の傾斜面における前記棒軸方向に対する傾斜角度(θβ1、θβ2)よりも大きくなっている請求項8に記載の防振装置。
    The displacement limiting portion has inclined surfaces (520, 620) inclined with respect to the rod axis direction corresponding to the outer shape of the coil spring,
    The second axial direction defining portion is configured so that the outer diameter of the defined-side contact portion is larger than the outer diameter of the portion on the opposite side of the defined-side contact portion in the rod axis direction. And inclined surfaces (534, 634),
    The inclined surface (θα1, θα2) of the inclined surface of the second axial direction defining portion is larger than the inclined angle (θβ1, θβ2) of the inclined surface of the displacement limiting portion with respect to the rod axis direction. The vibration isolator according to claim 8.
  10.  第1振動発生部(EG)および第2振動発生部(24)を接続すると共に、振動の伝達を抑制する防振装置であって、
     前記第1振動発生部および前記第2振動発生部を接続する棒状部材(40)と、
     前記第1振動発生部および前記第2振動発生部の一方の振動が前記棒状部材を介して他方に伝達されることを抑制する弾性部材(51A、61A)と、
     前記弾性部材における前記棒状部材の棒軸方向の一端側の位置を規定する第1軸方向規定部(55、65)と、
     前記弾性部材における前記棒軸方向の他端側の位置を規定する第2軸方向規定部(56、66)と、を備え、
     前記弾性部材は、前記棒軸方向に交差する交差方向に作用する荷重が増加するに伴って前記交差方向における弾性定数が増加する特性を有すると共に、前記弾性部材における前記棒軸方向への変位量が大きくなるに従って前記第1軸方向規定部および前記第2軸方向規定部の一方との接触面積が大きくなるように構成されている防振装置。
    A vibration isolator that connects the first vibration generator (EG) and the second vibration generator (24) and suppresses transmission of vibrations,
    A rod-shaped member (40) connecting the first vibration generating unit and the second vibration generating unit;
    An elastic member (51A, 61A) that suppresses one vibration of the first vibration generating unit and the second vibration generating unit from being transmitted to the other through the rod-shaped member;
    A first axial direction defining portion (55, 65) that defines a position of one end side of the rod-shaped member of the elastic member in the rod axial direction;
    A second axial direction defining portion (56, 66) for defining a position of the elastic member on the other end side in the rod axial direction;
    The elastic member has a characteristic that an elastic constant in the intersecting direction increases as a load acting in the intersecting direction intersecting the rod axis direction increases, and a displacement amount of the elastic member in the rod axis direction An anti-vibration device configured such that a contact area with one of the first axial direction defining portion and the second axial direction defining portion increases as the value increases.
  11.  前記弾性部材における前記交差方向への変位を制限する変位制限部(54、64)を備え、
     前記第1軸方向規定部および前記変位制限部は、前記第1振動発生部および前記第2振動発生部のうち一方の振動発生部側に設定されており、
     前記棒状部材は、前記第1振動発生部および前記第2振動発生部のうち他方の振動発生部に固定されると共に、前記一方の振動発生部に対して前記弾性部材を介して接続されており、
     前記第2軸方向規定部は、前記棒状部材側に設定されており、前記第1振動発生部および前記第2振動発生部の一方が振動したとしても前記変位制限部との間に隙間が形成されるように、前記変位制限部から離間している請求項10に記載の防振装置。
    A displacement restricting portion (54, 64) for restricting displacement in the intersecting direction of the elastic member;
    The first axial direction defining portion and the displacement limiting portion are set on one vibration generating portion side of the first vibration generating portion and the second vibration generating portion,
    The rod-shaped member is fixed to the other vibration generating portion of the first vibration generating portion and the second vibration generating portion, and is connected to the one vibration generating portion via the elastic member. ,
    The second axial direction defining portion is set on the rod-like member side, and even if one of the first vibration generating portion and the second vibration generating portion vibrates, a gap is formed between the displacement limiting portion and the second axial direction defining portion. The anti-vibration device according to claim 10, wherein the anti-vibration device is spaced apart from the displacement limiting portion.
  12.  前記弾性部材は、板状部材が渦巻き状に巻かれて構成され、前記交差方向に作用する荷重に対して非線形なバネ特性を有する渦巻バネ(51A、61A)を含んで構成されており、
     前記第2軸方向規定部は、前記渦巻バネに当接する規定側当接部位(561、661)の外径(Dve1、Dve2)が、前記渦巻バネにおける前記第2軸方向規定部に接するバネ側当接部位の内径(Dsi1、Dsi2)よりも大きくなっており、
     さらに、前記棒軸方向に直交する方向における前記第2軸方向規定部と前記変位制限部との隙間の寸法が、前記渦巻バネの板厚(t)と前記渦巻バネの巻き数(N)のうち前記バネ側当接部位を除いた有効巻き数(Ne)とを乗じた値よりも大きくなっている請求項11に記載の防振装置。
    The elastic member is constituted by a spiral member (51A, 61A) having a non-linear spring characteristic with respect to a load acting in the intersecting direction, the plate-like member being wound in a spiral shape,
    The second axial direction defining portion is a spring side in which outer diameters (Dve1, Dve2) of defined side contact portions (561, 661) that contact the spiral spring are in contact with the second axial direction defining portion of the spiral spring. It is larger than the inner diameter (Dsi1, Dsi2) of the contact part,
    Further, the dimension of the gap between the second axial direction defining portion and the displacement limiting portion in the direction orthogonal to the rod axis direction is determined by the plate thickness (t) of the spiral spring and the number of turns (N) of the spiral spring. The vibration isolator according to claim 11, wherein the vibration isolator is larger than a value obtained by multiplying the effective winding number (Ne) excluding the spring-side contact portion.
  13.  前記棒状部材は、前記第1振動発生部および前記第2振動発生部の一方に形成された挿通穴(241)に挿通されており、
     前記挿通穴は、前記弾性部材における前記交差方向の変位量が最大となったとしても前記棒状部材との間に隙間が形成される大きさに設定されている請求項1ないし12のいずれか1つに記載の防振装置。
    The rod-shaped member is inserted through an insertion hole (241) formed in one of the first vibration generation unit and the second vibration generation unit,
    The said insertion hole is set to the magnitude | size in which a clearance gap is formed between the said rod-shaped members, even if the displacement amount of the said cross direction in the said elastic member becomes the maximum. Anti-vibration device as described in 1.
PCT/JP2017/043184 2017-01-12 2017-11-30 Vibration damping device WO2018131316A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017003464 2017-01-12
JP2017-003464 2017-01-12
JP2017-221141 2017-11-16
JP2017221141A JP2018112309A (en) 2017-01-12 2017-11-16 Vibration control device

Publications (1)

Publication Number Publication Date
WO2018131316A1 true WO2018131316A1 (en) 2018-07-19

Family

ID=62839941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043184 WO2018131316A1 (en) 2017-01-12 2017-11-30 Vibration damping device

Country Status (1)

Country Link
WO (1) WO2018131316A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251498A (en) * 2021-05-27 2021-08-13 珠海格力电器股份有限公司 End cover vibration reduction assembly, compressor and air conditioner
WO2024085066A1 (en) * 2022-10-21 2024-04-25 株式会社デンソー Electric compressor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556512U (en) * 1978-06-23 1980-01-17
JPH01218915A (en) * 1988-02-29 1989-09-01 Sanden Corp Compressor mounting mechanism for vehicle air conditioner
JPH02304228A (en) * 1989-05-16 1990-12-18 Nhk Spring Co Ltd Spring seat member for coil spring
JPH0732242U (en) * 1991-06-28 1995-06-16 東洋電機製造株式会社 Unequal pitch coil spring
JPH11107504A (en) * 1997-09-30 1999-04-20 Osaka Gas Co Ltd Base-isolation floor device
JP2002021728A (en) * 2000-07-05 2002-01-23 Fujitsu General Ltd Compressor support device
JP2011196441A (en) * 2010-03-18 2011-10-06 Nhk Spring Co Ltd Vibration control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556512U (en) * 1978-06-23 1980-01-17
JPH01218915A (en) * 1988-02-29 1989-09-01 Sanden Corp Compressor mounting mechanism for vehicle air conditioner
JPH02304228A (en) * 1989-05-16 1990-12-18 Nhk Spring Co Ltd Spring seat member for coil spring
JPH0732242U (en) * 1991-06-28 1995-06-16 東洋電機製造株式会社 Unequal pitch coil spring
JPH11107504A (en) * 1997-09-30 1999-04-20 Osaka Gas Co Ltd Base-isolation floor device
JP2002021728A (en) * 2000-07-05 2002-01-23 Fujitsu General Ltd Compressor support device
JP2011196441A (en) * 2010-03-18 2011-10-06 Nhk Spring Co Ltd Vibration control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251498A (en) * 2021-05-27 2021-08-13 珠海格力电器股份有限公司 End cover vibration reduction assembly, compressor and air conditioner
WO2024085066A1 (en) * 2022-10-21 2024-04-25 株式会社デンソー Electric compressor

Similar Documents

Publication Publication Date Title
US7866378B2 (en) Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same
JP5974326B2 (en) Expansion valve and anti-vibration spring
US9145040B2 (en) Heat exchanger for an air conditioning system
CN112055800B (en) Damping movable compressor
WO2018131316A1 (en) Vibration damping device
JP6728599B2 (en) Anti-vibration device
KR20160039538A (en) Control valve
JP4489603B2 (en) Check valve
JP2018112309A (en) Vibration control device
KR102009234B1 (en) Expansion valve in vehicle&#39;s air conditioner
JP5643925B2 (en) Expansion valve
JP4834391B2 (en) Expansion valve
KR101552071B1 (en) Control valve
KR102693561B1 (en) Expansion valve
JP3843652B2 (en) Expansion valve for air conditioner
JP2017145863A (en) Vibration isolation device
WO2018168590A1 (en) Thermal expansion valve
US20050081550A1 (en) Piping structure of air conditioner
JP2017020546A (en) Antivibration device
JP2008157605A (en) Heater for compressor and compressor having same
KR20070062318A (en) An air conditioner expansion valve for vehicle
JP4292676B2 (en) Expansion valve
JP2005113989A (en) Structure for fitting vibration generation device
US20240019133A1 (en) Air conditioner
KR101362202B1 (en) Pipe fixing apparatus for automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891375

Country of ref document: EP

Kind code of ref document: A1