JP3882872B2 - Process for producing alkenylphenol polymer - Google Patents

Process for producing alkenylphenol polymer Download PDF

Info

Publication number
JP3882872B2
JP3882872B2 JP19825298A JP19825298A JP3882872B2 JP 3882872 B2 JP3882872 B2 JP 3882872B2 JP 19825298 A JP19825298 A JP 19825298A JP 19825298 A JP19825298 A JP 19825298A JP 3882872 B2 JP3882872 B2 JP 3882872B2
Authority
JP
Japan
Prior art keywords
polymer
alkenylphenol
producing
copolymer
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19825298A
Other languages
Japanese (ja)
Other versions
JP2000026536A (en
Inventor
博雄 村本
仁志 松本
茂起 藪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP19825298A priority Critical patent/JP3882872B2/en
Publication of JP2000026536A publication Critical patent/JP2000026536A/en
Application granted granted Critical
Publication of JP3882872B2 publication Critical patent/JP3882872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • C08F12/24Phenols or alcohols

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルケニルフェノール系重合体の製造方法に係り、さらに詳しくはフェノール残基の水酸基が飽和脂肪族系保護基により保護された化合物の単独重合体、あるいはこれとビニル芳香族化合物との共重合体を、特定の試剤を用いて飽和脂肪族系保護基を脱離すこととにより得られるアルケニルフェノール系重合体の製造方法に関する。
【0002】
【従来の技術】
従来、アルケニルフェノール系重合体は、好適なエキシマレーザーレジスト材料として知られており、その他分離膜、生体適合性材料、エポキシ樹脂硬化剤等広範な分野での利用が期待されている。特にp−ビニルフェノールに代表されるアルケニルフェノール系重合体は、従来、レジスト材料をはじめとしてエポキシ樹脂の硬化剤、酸化防止剤等として有用であることが知られている。
【0003】
アルケニルフェノール系重合体の製造方法としては様々な方法が提案されているが、フェノール残基の水酸基が飽和脂肪族系保護基により保護された化合物をラジカル重合法、又はアニオン重合法により重合した後、有機溶媒中において、酸性試剤により処理して飽和脂肪族系保護基を脱離させる方法が、特公昭63−36602号公報、特開平4−279608号公報、特開平6−298862号公報等に開示されている。これらの方法において、飽和脂肪族系保護基の脱離用として用いられる酸性試剤としては、塩酸、硫酸、塩化水素ガス、臭化水素酸、1,1,1−トリフロロ酢酸、p−トルエンスルホン酸、硼フッ化水素酸等の有機または無機の酸一般的に用いられている。
【0004】
【発明が解決しようとする課題】
上記従来の飽和脂肪族系保護基を脱離させる方法において用いられた酸性試剤は、いずれも反応後の反応液中に溶け込んで均一溶液を形成するため、その除去方法としては反応液を水洗し、さらに分液する方法が一般的に用いられている。しかし、水洗、分液を数多く繰り返しても、使用した酸性試剤を完全に除去することは困難であり、特に工業的スケールで実施する場合においては経済性がきわめて悪い上に、アルケニルフェノール系重合体を粉体として取り出すための濾過処理や乾燥処理時等に、残留した酸により周辺の装置機器が腐食される結果、腐食により生成した金属イオンによりアルケニルフェノール系重合体粉体が汚染されることがあり、汚染されたアルケニルフェノール系重合体粉体を半導体用レジスト材料として使用することは実用上問題であった。
【0005】
本発明の課題は、フェノール残基の水酸基が飽和脂肪族系保護基により保護された化合物を単独重合、あるいはこれとビニル芳香族化合物とを共重合した後、飽和脂肪族系保護基を、固体で取り扱いやすく、安価であり、かつ反応後の除去が容易な特定の試剤で脱離させるアルケニルフェノール系重合体の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく鋭意検討した結果、アルケニルフェノールの水酸基を飽和脂肪族系保護基により保護した化合物を単独重合、あるいは、これとビニル芳香族化合物とを共重合した後、飽和脂肪族系保護基を脱離処理してアルケニルフェノール系重合体を得る方法において、脱離剤として重硫酸のアルカリ金属塩を用いることにより経済性に優れ、かつ高純度なアルケニルフェノール系重合体が製造できることを見出し本発明を完成するに至った。
【0007】
すなわち、本発明は、下記一般式(I)
【化2】

Figure 0003882872
(式中R1は、水素原子又はメチル基を表し、R2は、炭素数が1〜6のアルキル基を表す)で表されるフェノール残基の水酸基が飽和脂肪族系保護基により保護された化合物を単独重合、あるいはこれとビニル芳香族化合物とを共重合した後、飽和脂肪族系保護基を脱離させて、単独重合体又は共重合体からなるアルケニルフェノール系重合体を得る方法において、脱離剤として下記一般式(II)
XHSO4 ……(II)
(式中Xは、アルカリ金属を表す)で表される重硫酸塩を用いることを特徴とするアルケニルフェノール系重合体の製造方法に関する。
【0008】
また本発明は、共重合体がランダム共重合体又はブロック共重合体である上記アルケニルフェノール系重合体の製造方法や、上記一般式(II)XHSO4 におけるXがリチウム、カリウム、又はナトリウムである上記アルケニルフェノール系重合体の製造方法や、一般式(II)で表される重硫酸塩の添加量が、重合体100重量部に対して0.1〜100重量部である上記のアルケニルフェノール系重合体の製造方法に関する。
【0009】
【発明の実施の形態】
本発明において用いられる一般式(I)で表される化合物としては、p−n−ブトキシスチレン、p−sec−ブトキシスチレン、p−tert−ブトキシスチレン、p−tert−ブトキシ−α−メチルスチレン、m−tert−ブトキシスチレン、m−tert−ブトキシ−α−メチルスチレン等を具体的に例示することができ、これらは一種単独又は二種以上の混合物として使用することができる。
【0010】
本発明において用いられるビニル芳香族化合物としては、スチレン、o−メチルスチレン、p−メチルスチレン、p−tert−ブチルスチレン、α−メチルスチレン等を具体的に例示することができ、これらは一種単独又は二種以上の混合物として使用することができる。
【0011】
本発明においては、上記一般式(I)で示される、フェノール残基の水酸基が飽和脂肪族系保護基により保護された化合物を単独重合、あるいは該化合物とビニル芳香族化合物とを併用して共重合が行われるが、これらの重合方法としては公知のアニオン重合法又はラジカル重合法を適用することができる。
【0012】
アニオン重合法は、アルカリ金属又は有機アルカリ金属を重合開始剤として、通常、窒素、アルゴン等の不活性ガス雰囲気下、有機溶媒中において、−100〜50℃の温度で行われる。そして、共重合においては、モノマー類を反応系に逐次添加して重合することによりブロック共重合体が、また、前記一般式(I)で示される化合物とビニル芳香族化合物との混合物を反応系に添加して重合することによりランダム共重合体が得られる。
【0013】
上記重合開始剤のアルカリ金属としては、リチウム、ナトリウム、カリウム、セシウム等が例示され、有機アルカリ金属としては、上記アルカリ金属のアルキル化物、アリル化物及びアリール化物が使用することができ、具体的には、エチルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、エチルナトリウム、リチウムビフェニル、リチウムナフタレン、リチウムトリフェニル、ナトリウムナフタレン、α−メチルスチレンナトリウムジアニオン、1,1−ジフェニルヘキシルリチウム、1,1−ジフェニル−3−メチルペンチルリチウム等を例示することができる。
【0014】
また、有機溶媒としては、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素類、シクロヘキサン、シクロペンタン等の脂環族炭化水素類、ベンゼン、トルエン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類の他、アニソール、ヘキサメチルホスホルアミド等の通常アニオン重合において使用される有機溶媒を挙げることができ、これらは単独溶媒又は二種以上の混合溶媒として使用される。
【0015】
ラジカル重合法は、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル等のアゾ化合物や、過酸化ベンゾイル、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイドなどの有機過酸化物のような公知のラジカル重合開始剤を用い、必要に応じて1−ドデカンチオール等の公知の連鎖移動剤を併用して、通常、ベンゼン、トルエンなどの芳香族炭化水素類、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどの多価アルコール誘導体類などの有機溶媒中において、窒素、アルゴン等の不活性ガス雰囲気下、50〜200℃の温度で行われる。
【0016】
この方法においては、全モノマーを混合物として反応系に添加することによりランダム共重合体が、いずれかのモノマーの全部又は一部を後から添加することによりテーバブロック共重合体が得られる。また、TEMPO(2,2,6,6−テトラメチルピペリジン−1−オキシル)を用いたラジカル重合法やCu(I)/Cu(II)レドックスプロセスを用いた原子移動ラジカル重合法などのいわゆるリビングラジカル重合法により得られる、前記構成成分からなる重合体も本発明に包含される。
【0017】
次に、アニオン重合法又はラジカル重合法により得られる重合体から飽和脂肪族系保護基を脱離させ、アルケニルフェノール骨格を生成せしめる反応は、通常、溶媒の存在下、下記一般式(II)
XHSO4 ……(II)
(式中、Xはアルカリ金属を表す)で表される重硫酸塩を加えて、室温〜150℃の温度で行われる。溶媒としては、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素類、シクロヘキサン、シクロペンタン等の脂環族炭化水素類、ベンゼン、トルエン等の芳香族炭化水素類、メタノール、エタノール等のアルコール類、メチルエチルケトン等のケトン類、メチルセロソルブ、エチルセロソルブ等の多価アルコール誘導体類、水などを例示することができ、これらは単独溶媒又は二種以上の混合溶媒として用いられる。
【0018】
上記一般式(II)で表される重硫酸塩としては、硫酸水素リチウム、硫酸水素カリウム、硫酸水素ナトリウムなどのアルカリ金属塩の一種又は二種以上の混合物を使用することができるが、その中でも特にカリウム塩やナトリウム塩が好ましい。また、これらの重硫酸塩は水和物となっていてもよい。重硫酸塩の添加量は、重合体100重量部に対して重硫酸塩0.1〜100重量部が好ましく用いられる。
【0019】
【実施例】
本発明を実施例、および比較例により、更に詳細に説明する。但し、本発明の範囲は、下記実施例により何ら制限を受けるものではない。
実施例1
窒素雰囲気下において、トルエン1400gとテトラヒドロフラン(以下、THFと略す)100gとからなる混合溶媒中に、n−ブチルリチウム(以下、NBLと略す)30ミリモルを加え、撹拌下、−40℃に保持しながら、p−tert−ブトキシスチレン(以下、PTBSTと略す)1.0モルを1時間かけて滴下、さらに反応を1時間継続し、ガスクロマトグラフィー(以下、GCと略す)により反応完結を確認した。ついで、反応系にメタノールを加えて反応を停止させ、反応液を大量のメタノール中に投入してポリマーを析出させ、濾過、洗浄後、60℃で15時間減圧乾燥して白色粉体状のポリマーを得た。用いたモノマー総量に対する重合収率は99.5%であった。このポリマーについて、ゲルパーミィエイションクロマトグラフィー(以下、GPCと略す)により分析したところ、Mn=6500、Mw/Mn=1.08の単分散ポリマーであった。
【0020】
次に、得られたポリマー20gをトルエン/エタノール=1/4(重量比)の混合溶媒に溶解して20%溶液とし、硫酸水素ナトリウム2g(16.66ミリモル)を加えて65℃で反応を行った。反応経過は赤外線吸収スペクトル(以下、IRと略す)で追跡し、t−ブトキシ基由来の890cm-1の吸収が2.5時間後に消失したので終点とした。反応液を濾過して析出している硫酸水素ナトリウムを除去した後、濾液に濾液と同量の酢酸エチル及び2倍量の水を加えて分液を行った。この操作により得られた水層のpHは4であり、また、有機層(ポリマー層)中のナトリウム含有量について誘導結合プラズマ質量分析装置(以下、ICP−MSと略す)により分析したところ、その測定値から推定される硫酸水素ナトリウムの残留量は約0.12ミリモルであった。
【0021】
次いで、前記有機層を濃縮し、エタノールに再溶解した後、大量の水中に投入してポリマーを析出させ、濾過、洗浄後、70℃で15時間減圧乾燥を行い、白色粉体状のポリマー13.6gを得た。得られたポリマーについて、1H NMRを測定したところ、1.3ppm付近のt−ブチル基由来のピークの消失が確認され、また、GPCを測定したところ、Mn=5600、Mw/Mn=1.08の単分散ポリマーであった。また、ICP−MSによりナトリウム及び鉄の含有量を定量したところ、双方とも100ppb以下であった。このことから、保護基の脱離反応は短時間に完了し、濾過処理、1回の分液処理、粉末化処理により完全に硫酸水素ナトリウムが除去されることが確認された。
また、金属腐食の有無確認のため、前記有機層を鉄製の撹拌羽根を用いて1時間撹拌処理を行ったところ、金属腐食は皆無に近いレベルであることが確認された。
【0022】
実施例2
窒素雰囲気下において、トルエン1800gとTHF200gとからなる混合溶媒中に、NBL15ミリモルを加え、撹拌下、−50℃に保持しながら、PTBST1モルとスチレン0.3モルとの混合物を1時間かけて滴下し、更に1時間反応を継続し、GCにより反応完結を確認した。この段階でのPTBST−スチレンコポリマーは、Mn=11000、Mw/Mn=1.05の単分散ポリマーであった。
【0023】
次に、得られたポリマー20gをプロピレングリコールモノメチルエーテルに溶解して20%溶液とし、硫酸水素カリウム0.4g(2.93ミリモル)を加えて95℃で反応を行った。反応経過は実施例1同様IRで追跡し、3時間で反応を終了した。反応液を濾過して析出している硫酸水素カリウムを除去した後、濾液に濾液と同量の酢酸エチル及び2倍量の水を加えて分液を行った。この操作により得られた水層のpHは5であり、また、有機層(ポリマー層)中のカリウム含有量についてICP−MSにより分析したところ、その測定値から推定される硫酸水素カリウムの残留量は約0.01ミリモルであった。
【0024】
次いで、前記有機層を濃縮し、エタノールに再溶解した後、大量の水中に投入してポリマーを析出させ、濾過、洗浄後、70℃で15時間減圧乾燥を行い、白色粉体状のポリマー13.6gを得た。得られたポリマーについて、1H NMRを測定したところ、1.3ppm付近のt−ブチル基由来のピークの消失が確認され、また、GPCを測定したところ、Mn=8300、Mw/Mn=1.05の単分散ポリマーであった。また、ICP−MSによりカリウム及び鉄の含有量を定量したところ、それぞれ100ppb以下であった。このことから、保護基の脱離反応は短時間に完了し、また、濾過処理、1回の分液処理、粉末化処理によりほとんどの硫酸水素カリウムが除去されることが確認された。
また、金属腐食の有無確認のため、前記有機層を鉄製の撹拌羽根を用いて1時間撹拌処理を行ったところ、金属腐食は皆無に近いレベルであることが確認された。
【0025】
実施例3
窒素雰囲気下において、プロピレングリコールモノエチルエーテル280g中に、PTBST0.71モル、アゾビスイソブチロニトリル0.04モル、1−ドデカンチオール0.007モルを加えて、撹拌下、70℃で5時間、更に85℃で5時間反応を行った。次いで、反応液に、反応液と同量のヘキサン、倍量のメタノール及び少量の水を加えて分液精製により未反応のモノマーを除去した後、ポリマー層から溶媒分を減圧溜去して淡褐色粉体状のポリマーを得た。用いたモノマー総量に対する収率は88.6%であった。このポリマーのGPC分析を行ったところ、Mn=9200,Mw/Mn=1.45の低分子量側にショルダーを有するポリマーであった。
【0026】
次に、得られたポリマー20gをトルエン/エタノール=1/4の混合溶媒に溶解して20%溶液とし、硫酸水素ナトリウム水和物6g(43.45ミリモル)を加えて50℃で反応を行った。反応経過は実施例1同様IRで追跡し、3時間で反応を終了した。反応液を濾過して析出している硫酸水素ナトリウムを除去した後、濾液に濾液と同量の酢酸エチル及び2倍量の水を加えて分液を行った。この操作により得られた水層のpHは4であり、また、有機層(ポリマー層)中のナトリウム含有量についてICP−MSにより分析、その測定値から推定される硫酸水素ナトリウムの残留量は約0.21ミリモルであった。
【0027】
次いで、前記有機層を濃縮し、エタノールに再溶解した後、大量の水中に投入してポリマーを析出させ、濾過、洗浄後、70℃で15時間減圧乾燥を行い、白色粉体状のポリマー13.6gを得た。得られたポリマーについて、1H NMRを測定したところ、1.3ppm付近のt−ブチル基由来のピークの消失が確認され、また、GPCを測定したところ、Mn=8300、Mw/Mn=1.05の低分子量側にショルダーを有するポリマーであった。また、ICP−MSによりナトリウム及び鉄の含有量を定量したところ、両金属とも100ppb以下であった。このことから、保護基の脱離反応は短時間に完了し、濾過処理、1回の分液処理、粉末化処理により完全に硫酸水素カリウムが除去されることが確認された。
また、金属腐食の有無確認のため、前記有機層を鉄製の撹拌羽根を用いて1時間撹拌処理を行ったところ、金属腐食は皆無に近いレベルであることが確認された。
【0028】
比較例1
実施例1で得られたPTBSTポリマー20gをトルエン/エタノール=1/4(重量比)の混合溶媒に溶解して20%溶液とし、35%濃塩酸3.55gを加えて65℃で反応を行った。反応経過は実施例1同様にIRで追跡し、4時間で反応を終了した。反応液に同量の酢酸エチル及び2倍量の水を加えて分液処理を行った。この段階の水層のpHは1であった。さらに、有機層に水を加えて分液する水洗処理を5回繰り返し、5回目に得られた水層のpHを測定したところ4であった。次いで、この有機層を濃縮し、エタノールに再溶解した後、大量の水中に投入してポリマーを析出させ、濾過、洗浄後、70℃で15時間減圧乾燥を行い、白色粉体状のポリマー13.6gを得た。
【0029】
得られたポリマーの1H NMR及びGPCの測定結果は実施例1と同様であったが、ICP−MSにより鉄の含有量を定量したところ、25ppmであった。
以上のことから、保護基の脱離反応は完了しているが、合計6回の水洗処理では塩酸を完全に除去することが出来ないことがわかった。また、金属腐食の有無確認のため、前記有機層を鉄製の撹拌羽根を用いて1時間の撹拌処理を行ったところ、金属が腐食されていることが確認された。
【0030】
比較例2
比較例1において、トルエン/エタノール混合溶媒に代えてプロピレングリコールモノメチルエーテルを、また、濃塩酸3.55gに代えて硫酸1g、反応温度を90℃とする以外は比較例1と同様にして白色粉末状のポリマー13.6gを得た。反応所要時間は5時間、水洗5回目のpHは5であった。
【0031】
得られたポリマーの1H NMR及びGPCの測定結果は実施例1と同様であったが、ICP−MSにより鉄の含有量を定量したところ、3ppmであった。以上のことから、保護基の脱離反応は完了しているが、合計6回の水洗処理では硫酸を完全に除去することができないことがわかった。また、金属腐食の有無確認のため、前記有機層を鉄製の撹拌羽根を用いて1時間の撹拌処理を行ったところ、比較例1と同様に、金属が腐食されていることが確認された。
【0032】
【発明の効果】
本発明の方法によると、アルケニルフェノールのフェノール残基の水酸基が飽和脂肪族系保護基により保護された化合物を重合させて得られる重合体から相当するアルケニルフェノール系重合体を得るに際し、飽和脂肪族系保護基の脱離剤として、固体で取り扱いやすく、安価であり、且つ反応後の除去が容易な重硫酸塩を用いるため経済性に優れ、かつ、高純度なアルケニルフェノール系重合体を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an alkenylphenol-based polymer. More specifically, the present invention relates to a homopolymer of a compound in which a hydroxyl group of a phenol residue is protected with a saturated aliphatic protecting group, or a copolymer of this with a vinyl aromatic compound. The present invention relates to a method for producing an alkenylphenol polymer obtained by removing a saturated aliphatic protecting group from a polymer using a specific reagent.
[0002]
[Prior art]
Conventionally, alkenylphenol-based polymers are known as suitable excimer laser resist materials, and are expected to be used in a wide range of fields such as separation membranes, biocompatible materials, and epoxy resin curing agents. In particular, alkenylphenol polymers represented by p-vinylphenol have been known to be useful as curing agents and antioxidants for epoxy resins as well as resist materials.
[0003]
Various methods for producing alkenylphenol-based polymers have been proposed. After a hydroxyl group of a phenol residue is protected by a saturated aliphatic protecting group, the compound is polymerized by radical polymerization or anionic polymerization. A method for removing a saturated aliphatic protecting group by treating with an acidic reagent in an organic solvent is disclosed in JP-B-63-36602, JP-A-4-279608, JP-A-6-298862, and the like. It is disclosed. In these methods, acidic reagents used for elimination of saturated aliphatic protecting groups include hydrochloric acid, sulfuric acid, hydrogen chloride gas, hydrobromic acid, 1,1,1-trifluoroacetic acid, p-toluenesulfonic acid Organic or inorganic acids such as borohydrofluoric acid are generally used.
[0004]
[Problems to be solved by the invention]
Any of the acidic reagents used in the above conventional method for removing a saturated aliphatic protecting group dissolves in the reaction solution after the reaction to form a uniform solution. Therefore, as the removal method, the reaction solution is washed with water. Further, a method of further separating the liquid is generally used. However, it is difficult to completely remove the used acidic reagent even if it is repeatedly washed with water and separated, and the alkenylphenol-based polymer is not very economical, especially when carried out on an industrial scale. As a result of corrosion of peripheral equipment by residual acid during filtration or drying for removing the powder as a powder, alkenylphenol polymer powder may be contaminated by metal ions generated by the corrosion. In addition, the use of contaminated alkenylphenol polymer powder as a resist material for semiconductors has been a practical problem.
[0005]
An object of the present invention is to homopolymerize a compound in which the hydroxyl group of the phenol residue is protected by a saturated aliphatic protecting group, or copolymerize it with a vinyl aromatic compound, and then convert the saturated aliphatic protecting group to a solid It is an object of the present invention to provide a method for producing an alkenylphenol-based polymer that is easy to handle, inexpensive, and desorbed with a specific reagent that can be easily removed after the reaction.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have homopolymerized a compound in which the hydroxyl group of alkenylphenol is protected with a saturated aliphatic protecting group, or after copolymerizing it with a vinyl aromatic compound. In the method for obtaining an alkenylphenol polymer by removing a saturated aliphatic protecting group, an alkali metal salt of bisulfuric acid is used as a leaving agent, which is economical and highly pure. The inventors have found that a coalescence can be produced and have completed the present invention.
[0007]
That is, the present invention provides the following general formula (I)
[Chemical 2]
Figure 0003882872
(Wherein R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 1 to 6 carbon atoms), the hydroxyl group of the phenol residue represented by is protected by a saturated aliphatic protecting group. In a method for obtaining an alkenylphenol polymer comprising a homopolymer or a copolymer by homopolymerizing the obtained compound or copolymerizing it with a vinyl aromatic compound and then removing the saturated aliphatic protecting group. As a desorbing agent, the following general formula (II)
XHSO 4 (II)
(Wherein X represents an alkali metal). The present invention relates to a method for producing an alkenylphenol polymer characterized by using a bisulfate represented by the following formula.
[0008]
The present invention also provides a method for producing the alkenylphenol-based polymer, wherein the copolymer is a random copolymer or a block copolymer, or X in the general formula (II) XHSO 4 is lithium, potassium, or sodium. The production method of the alkenylphenol-based polymer and the alkenylphenol-based, wherein the addition amount of the bisulfate represented by the general formula (II) is 0.1 to 100 parts by weight with respect to 100 parts by weight of the polymer The present invention relates to a method for producing a polymer.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the compound represented by the general formula (I) used in the present invention include pn-butoxystyrene, p-sec-butoxystyrene, p-tert-butoxystyrene, p-tert-butoxy-α-methylstyrene, Specific examples include m-tert-butoxystyrene, m-tert-butoxy-α-methylstyrene, and the like can be used alone or as a mixture of two or more.
[0010]
Specific examples of the vinyl aromatic compound used in the present invention include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, α-methylstyrene, and the like. Or it can be used as a mixture of two or more.
[0011]
In the present invention, a compound represented by the above general formula (I) in which the hydroxyl group of the phenol residue is protected by a saturated aliphatic protecting group is homopolymerized, or the compound and a vinyl aromatic compound are used in combination. Polymerization is carried out, and as these polymerization methods, known anionic polymerization methods or radical polymerization methods can be applied.
[0012]
The anionic polymerization method is usually performed at a temperature of −100 to 50 ° C. in an organic solvent under an inert gas atmosphere such as nitrogen or argon using an alkali metal or an organic alkali metal as a polymerization initiator. In the copolymerization, a block copolymer is obtained by sequentially adding monomers to the reaction system for polymerization, and a mixture of the compound represented by the general formula (I) and the vinyl aromatic compound is reacted in the reaction system. A random copolymer is obtained by adding to the polymer and polymerizing.
[0013]
Examples of the alkali metal of the polymerization initiator include lithium, sodium, potassium, cesium and the like. As the organic alkali metal, alkylated products, allylated products and arylated products of the above alkali metals can be used. Is ethyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, ethyl sodium, lithium biphenyl, lithium naphthalene, lithium triphenyl, sodium naphthalene, α-methylstyrene sodium dianion, 1,1-diphenylhexyl lithium 1,1-diphenyl-3-methylpentyl lithium and the like.
[0014]
Examples of the organic solvent include aliphatic hydrocarbons such as n-hexane and n-heptane, alicyclic hydrocarbons such as cyclohexane and cyclopentane, aromatic hydrocarbons such as benzene and toluene, diethyl ether, and tetrahydrofuran. In addition to ethers such as dioxane, organic solvents such as anisole and hexamethylphosphoramide, which are usually used in anionic polymerization, can be used, and these are used as a single solvent or a mixed solvent of two or more kinds.
[0015]
Radical polymerization methods are known radical polymerization initiators such as azo compounds such as azobisisobutyronitrile and azobisisovaleronitrile, and organic peroxides such as benzoyl peroxide, methyl ethyl ketone peroxide and cumene hydroperoxide. And optionally using a known chain transfer agent such as 1-dodecanethiol, usually aromatic hydrocarbons such as benzene and toluene, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, propylene glycol In an organic solvent such as polyhydric alcohol derivatives such as monomethyl ether and propylene glycol monoethyl ether, the reaction is performed at a temperature of 50 to 200 ° C. under an inert gas atmosphere such as nitrogen and argon.
[0016]
In this method, a random copolymer is obtained by adding all the monomers as a mixture to the reaction system, and a taber block copolymer is obtained by adding all or part of any of the monomers later. In addition, a so-called living such as a radical polymerization method using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) and an atom transfer radical polymerization method using a Cu (I) / Cu (II) redox process. Polymers comprising the above-described constituents obtained by radical polymerization are also included in the present invention.
[0017]
Next, the reaction for removing a saturated aliphatic protecting group from a polymer obtained by an anionic polymerization method or a radical polymerization method to form an alkenylphenol skeleton is usually carried out in the presence of a solvent in the following general formula (II).
XHSO 4 (II)
(Wherein X represents an alkali metal) is added, and the reaction is performed at a temperature of room temperature to 150 ° C. Examples of the solvent include aliphatic hydrocarbons such as n-hexane and n-heptane, alicyclic hydrocarbons such as cyclohexane and cyclopentane, aromatic hydrocarbons such as benzene and toluene, and alcohols such as methanol and ethanol. And ketones such as methyl ethyl ketone, polyhydric alcohol derivatives such as methyl cellosolve and ethyl cellosolve, water and the like can be exemplified, and these are used as a single solvent or a mixed solvent of two or more kinds.
[0018]
As the bisulfate represented by the general formula (II), one or a mixture of two or more alkali metal salts such as lithium hydrogen sulfate, potassium hydrogen sulfate, and sodium hydrogen sulfate can be used. In particular, potassium salt and sodium salt are preferable. These bisulfates may be hydrates. The amount of bisulfate added is preferably 0.1 to 100 parts by weight of bisulfate with respect to 100 parts by weight of the polymer.
[0019]
【Example】
The present invention will be described in more detail with reference to examples and comparative examples. However, the scope of the present invention is not limited by the following examples.
Example 1
Under a nitrogen atmosphere, 30 mmol of n-butyllithium (hereinafter abbreviated as NBL) was added to a mixed solvent consisting of 1400 g of toluene and 100 g of tetrahydrofuran (hereinafter abbreviated as THF), and the mixture was kept at -40 ° C. with stirring. However, 1.0 mol of p-tert-butoxystyrene (hereinafter abbreviated as PTBST) was added dropwise over 1 hour, and the reaction was continued for 1 hour, and the completion of the reaction was confirmed by gas chromatography (hereinafter abbreviated as GC). . Next, methanol is added to the reaction system to stop the reaction, the reaction solution is poured into a large amount of methanol to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 15 hours to obtain a white powdery polymer. Got. The polymerization yield based on the total amount of monomers used was 99.5%. When this polymer was analyzed by gel permeation chromatography (hereinafter abbreviated as GPC), it was a monodisperse polymer with Mn = 6500 and Mw / Mn = 1.08.
[0020]
Next, 20 g of the obtained polymer was dissolved in a mixed solvent of toluene / ethanol = 1/4 (weight ratio) to make a 20% solution, 2 g (16.66 mmol) of sodium hydrogen sulfate was added, and the reaction was performed at 65 ° C. went. The course of the reaction was followed by an infrared absorption spectrum (hereinafter abbreviated as IR), and the end point was determined because the absorption at 890 cm −1 derived from the t-butoxy group disappeared after 2.5 hours. The reaction solution was filtered to remove precipitated sodium hydrogen sulfate, and then the same amount of ethyl acetate and double amount of water as the filtrate were added to the filtrate for liquid separation. The pH of the aqueous layer obtained by this operation was 4, and the sodium content in the organic layer (polymer layer) was analyzed by an inductively coupled plasma mass spectrometer (hereinafter abbreviated as ICP-MS). The residual amount of sodium hydrogen sulfate estimated from the measured value was about 0.12 mmol.
[0021]
Next, the organic layer is concentrated and redissolved in ethanol, and then poured into a large amount of water to precipitate a polymer. After filtration and washing, the polymer is dried under reduced pressure at 70 ° C. for 15 hours to obtain a white powdery polymer 13 0.6 g was obtained. When 1 H NMR of the obtained polymer was measured, the disappearance of the peak derived from the t-butyl group near 1.3 ppm was confirmed, and when GPC was measured, Mn = 5600, Mw / Mn = 1. It was a monodisperse polymer of 08. Moreover, when content of sodium and iron was quantified by ICP-MS, both were 100 ppb or less. From this, it was confirmed that the elimination reaction of the protecting group was completed in a short time, and sodium hydrogen sulfate was completely removed by filtration, one liquid separation treatment, and powdering treatment.
Moreover, when the said organic layer was stirred for 1 hour using the iron stirring blade in order to confirm the presence or absence of metal corrosion, it was confirmed that there was almost no metal corrosion.
[0022]
Example 2
Under a nitrogen atmosphere, 15 mmol of NBL was added to a mixed solvent consisting of 1800 g of toluene and 200 g of THF, and a mixture of 1 mol of PTBST and 0.3 mol of styrene was added dropwise over 1 hour while maintaining at −50 ° C. with stirring. The reaction was further continued for 1 hour, and the completion of the reaction was confirmed by GC. The PTBST-styrene copolymer at this stage was a monodisperse polymer with Mn = 11000 and Mw / Mn = 1.05.
[0023]
Next, 20 g of the obtained polymer was dissolved in propylene glycol monomethyl ether to form a 20% solution, and 0.4 g (2.93 mmol) of potassium hydrogensulfate was added and reacted at 95 ° C. The reaction progress was followed by IR as in Example 1, and the reaction was completed in 3 hours. The reaction solution was filtered to remove precipitated potassium hydrogen sulfate, and the filtrate was subjected to liquid separation by adding the same amount of ethyl acetate and double amount of water as the filtrate. The pH of the aqueous layer obtained by this operation was 5, and when the potassium content in the organic layer (polymer layer) was analyzed by ICP-MS, the residual amount of potassium hydrogen sulfate estimated from the measured value Was about 0.01 mmol.
[0024]
Next, the organic layer is concentrated and redissolved in ethanol, and then poured into a large amount of water to precipitate a polymer. After filtration and washing, the polymer is dried under reduced pressure at 70 ° C. for 15 hours to obtain a white powdery polymer 13 0.6 g was obtained. When 1 H NMR of the obtained polymer was measured, the disappearance of the peak derived from the t-butyl group near 1.3 ppm was confirmed, and when GPC was measured, Mn = 8300, Mw / Mn = 1. 05 monodisperse polymer. Moreover, when content of potassium and iron was quantified by ICP-MS, it was 100 ppb or less, respectively. From this, it was confirmed that the elimination reaction of the protecting group was completed in a short time, and most of the potassium hydrogen sulfate was removed by filtration, one liquid separation treatment, and powdering treatment.
Moreover, when the said organic layer was stirred for 1 hour using the iron stirring blade in order to confirm the presence or absence of metal corrosion, it was confirmed that there was almost no metal corrosion.
[0025]
Example 3
Under a nitrogen atmosphere, 0.71 mol of PTBST, 0.04 mol of azobisisobutyronitrile and 0.007 mol of 1-dodecanethiol were added to 280 g of propylene glycol monoethyl ether, and the mixture was stirred at 70 ° C. for 5 hours. The reaction was further carried out at 85 ° C. for 5 hours. Next, after adding the same amount of hexane, double amount of methanol and a small amount of water to the reaction solution and removing the unreacted monomer by liquid separation purification, the solvent component is distilled off under reduced pressure from the polymer layer to obtain a lighter solution. A brown powdery polymer was obtained. The yield based on the total amount of monomers used was 88.6%. When GPC analysis of this polymer was conducted, it was a polymer having a shoulder on the low molecular weight side with Mn = 9200 and Mw / Mn = 1.45.
[0026]
Next, 20 g of the obtained polymer was dissolved in a mixed solvent of toluene / ethanol = 1/4 to form a 20% solution, and 6 g (43.45 mmol) of sodium hydrogensulfate hydrate was added and reacted at 50 ° C. It was. The reaction progress was followed by IR as in Example 1, and the reaction was completed in 3 hours. The reaction solution was filtered to remove precipitated sodium hydrogen sulfate, and then the same amount of ethyl acetate and double amount of water as the filtrate were added to the filtrate for liquid separation. The pH of the aqueous layer obtained by this operation was 4, and the sodium content in the organic layer (polymer layer) was analyzed by ICP-MS. The residual amount of sodium hydrogen sulfate estimated from the measured value was about 0.21 mmol.
[0027]
Next, the organic layer is concentrated and redissolved in ethanol, and then poured into a large amount of water to precipitate a polymer. After filtration and washing, the polymer is dried under reduced pressure at 70 ° C. for 15 hours to obtain a white powdery polymer 13 0.6 g was obtained. When 1 H NMR of the obtained polymer was measured, the disappearance of the peak derived from the t-butyl group near 1.3 ppm was confirmed, and when GPC was measured, Mn = 8300, Mw / Mn = 1. The polymer had a shoulder on the low molecular weight side of 05. Moreover, when content of sodium and iron was quantified by ICP-MS, both metals were 100 ppb or less. From this, it was confirmed that the elimination reaction of the protecting group was completed in a short time, and potassium hydrogen sulfate was completely removed by filtration treatment, one liquid separation treatment, and powdering treatment.
Moreover, when the said organic layer was stirred for 1 hour using the iron stirring blade in order to confirm the presence or absence of metal corrosion, it was confirmed that there was almost no metal corrosion.
[0028]
Comparative Example 1
20 g of the PTBST polymer obtained in Example 1 was dissolved in a mixed solvent of toluene / ethanol = 1/4 (weight ratio) to make a 20% solution, and 3.55 g of 35% concentrated hydrochloric acid was added and reacted at 65 ° C. It was. The reaction progress was followed by IR as in Example 1, and the reaction was completed in 4 hours. A liquid separation treatment was performed by adding the same amount of ethyl acetate and twice the amount of water to the reaction solution. The pH of the aqueous layer at this stage was 1. Furthermore, it was 4 when the water washing process which adds water to an organic layer and liquid-separates was repeated 5 times, and pH of the water layer obtained 5th was measured. Next, the organic layer is concentrated and redissolved in ethanol, and then poured into a large amount of water to precipitate a polymer. After filtration and washing, the polymer is dried under reduced pressure at 70 ° C. for 15 hours to obtain a white powdery polymer 13 0.6 g was obtained.
[0029]
The measurement results of 1 H NMR and GPC of the obtained polymer were the same as in Example 1, but the iron content was quantified by ICP-MS and found to be 25 ppm.
From the above, it was found that although the elimination reaction of the protecting group was completed, hydrochloric acid could not be completely removed by a total of 6 water washing treatments. Moreover, when the said organic layer was stirred for 1 hour using the iron stirring blade for the presence or absence confirmation of metal corrosion, it was confirmed that the metal is corroded.
[0030]
Comparative Example 2
In Comparative Example 1, white powder was obtained in the same manner as Comparative Example 1 except that propylene glycol monomethyl ether was used instead of the toluene / ethanol mixed solvent, 1 g of sulfuric acid was used instead of 3.55 g of concentrated hydrochloric acid, and the reaction temperature was 90 ° C. 13.6 g of a polymer was obtained. The time required for the reaction was 5 hours, and the pH at the fifth wash was 5.
[0031]
The results of 1 H NMR and GPC measurement of the obtained polymer were the same as in Example 1, but the iron content quantified by ICP-MS was 3 ppm. From the above, it was found that although the elimination reaction of the protecting group was completed, sulfuric acid could not be completely removed by a total of 6 water washing treatments. Moreover, when the said organic layer was stirred for 1 hour using the iron stirring blade for the presence or absence confirmation of metal corrosion, it was confirmed similarly to the comparative example 1 that the metal is corroded.
[0032]
【The invention's effect】
According to the method of the present invention, when a corresponding alkenylphenol-based polymer is obtained from a polymer obtained by polymerizing a compound in which the hydroxyl group of the phenol residue of alkenylphenol is protected by a saturated aliphatic protecting group, a saturated aliphatic group is obtained. A bisulfate that is solid, easy to handle, inexpensive, and easy to remove after the reaction is used as a deprotecting agent for the protective group of the system, so that it produces an economical and highly pure alkenylphenol polymer. be able to.

Claims (5)

下記一般式(I)
Figure 0003882872
(式中R1は、水素原子又はメチル基を表し、R2は、炭素数が1〜6のアルキル基を表す)で表されるフェノール残基の水酸基が飽和脂肪族系保護基により保護された化合物を単独重合、あるいはこれとビニル芳香族化合物とを共重合した後、飽和脂肪族系保護基を脱離させて、単独重合体又は共重合体からなるアルケニルフェノール系重合体を得る方法において、脱離剤として下記一般式(II)
XHSO4 ……(II)
(式中Xは、アルカリ金属を表す)で表される重硫酸塩を用いることを特徴とするアルケニルフェノール系重合体の製造方法。
The following general formula (I)
Figure 0003882872
(Wherein R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 1 to 6 carbon atoms). The hydroxyl group of the phenol residue represented by In a method for obtaining an alkenylphenol polymer comprising a homopolymer or a copolymer by homopolymerizing the obtained compound or copolymerizing it with a vinyl aromatic compound and then removing the saturated aliphatic protecting group. As a releasing agent, the following general formula (II)
XHSO 4 (II)
(Wherein X represents an alkali metal) a bisulfate represented by the formula (1) is used.
共重合体が、ランダム共重合体であることを特徴とする請求項1記載のアルケニルフェノール系重合体の製造方法。The method for producing an alkenylphenol-based polymer according to claim 1, wherein the copolymer is a random copolymer. 共重合体が、ブロック共重合体であることを特徴とする請求項1記載のアルケニルフェノール系重合体の製造方法。2. The method for producing an alkenylphenol polymer according to claim 1, wherein the copolymer is a block copolymer. 一般式(II)XHSO4 におけるXが、リチウム、カリウム、又はナトリウムであることを特徴とする請求項1〜3のいずれか記載のアルケニルフェノール系重合体の製造方法。Formula X is the (II) XHSO 4, lithium, potassium, or method for producing alkenyl phenols polymer according to any one of claims 1 to 3, characterized in that it is sodium. 一般式(II)で表される重硫酸塩の添加量が、重合体100重量部に対して0.1〜100重量部であることを特徴とする請求項1〜4のいずれか記載のアルケニルフェノール系重合体の製造方法。The alkenyl according to any one of claims 1 to 4, wherein the addition amount of the bisulfate represented by the general formula (II) is 0.1 to 100 parts by weight with respect to 100 parts by weight of the polymer. A method for producing a phenolic polymer.
JP19825298A 1998-07-14 1998-07-14 Process for producing alkenylphenol polymer Expired - Fee Related JP3882872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19825298A JP3882872B2 (en) 1998-07-14 1998-07-14 Process for producing alkenylphenol polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19825298A JP3882872B2 (en) 1998-07-14 1998-07-14 Process for producing alkenylphenol polymer

Publications (2)

Publication Number Publication Date
JP2000026536A JP2000026536A (en) 2000-01-25
JP3882872B2 true JP3882872B2 (en) 2007-02-21

Family

ID=16388044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19825298A Expired - Fee Related JP3882872B2 (en) 1998-07-14 1998-07-14 Process for producing alkenylphenol polymer

Country Status (1)

Country Link
JP (1) JP3882872B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2478069T3 (en) * 2009-08-21 2014-07-18 Nippon Soda Co., Ltd. Process for the production of modified polysiloxane compound

Also Published As

Publication number Publication date
JP2000026536A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
Coessens et al. Dehalogenation of polymers prepared by atom transfer radical polymerization
Haddleton et al. Monohydroxy terminally functionalised poly (methyl methacrylate) from atom transfer radical polymerisation
Rizzardo et al. RAFT polymerization: Adding to the picture
JP2010255008A (en) Star block copolymer
CN111356712B (en) (meth) acrylic block copolymer and active energy ray-curable composition containing same
JP4101853B2 (en) Method for producing anionic polymer
Varshney et al. Anionic polymerization of acrylic monomers. 8. Synthesis and characterization of (meth) acrylic end-functionalized polymers: macromonomers and telechelics
JP2001139647A (en) Star block copolymer
Zhen et al. Atom transfer radical polymerization of solketal acrylate using cyclohexanone as the solvent
JP3882872B2 (en) Process for producing alkenylphenol polymer
JP4116788B2 (en) Star polymers and polyelectrolytes
JP4223641B2 (en) Process for producing alkenylphenol copolymer
JP4727801B2 (en) Alkenylphenol-based star block copolymer and method for producing the same
JP2005281688A (en) Method for producing anion polymer
JP3157033B2 (en) Method for producing terminal-modified conjugated diene polymer
KR100494212B1 (en) Alkenylphenol copolymer and process for producing the same
JP3882871B2 (en) Process for producing alkenylphenol copolymer
JP4727795B2 (en) Alkenylphenol copolymer and process for producing the same
EP3736302A1 (en) Block copolymer comprising photo-sensitive group
Cho et al. Controlled Anionic Synthesis of Poly [2‐(3‐nitrocarbazolyl) ethyl methacrylate]
JP3667074B2 (en) Narrowly dispersible poly {1- (1-alkoxyethoxy) -4- (1-methylethenyl) benzene} and process for producing the same
JP3744246B2 (en) Process for producing poly (pt-butoxystyrene)
JPH0258505A (en) Method for anionic polymerization
KR102063054B1 (en) Block copolymer containing photo-sensitive moiety
JPH0453807A (en) Production of p-alkenylphenol polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees