JP3882648B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP3882648B2
JP3882648B2 JP2002069865A JP2002069865A JP3882648B2 JP 3882648 B2 JP3882648 B2 JP 3882648B2 JP 2002069865 A JP2002069865 A JP 2002069865A JP 2002069865 A JP2002069865 A JP 2002069865A JP 3882648 B2 JP3882648 B2 JP 3882648B2
Authority
JP
Japan
Prior art keywords
semiconductor device
thickness
thick film
electrode
insulating thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002069865A
Other languages
Japanese (ja)
Other versions
JP2003273357A (en
Inventor
良成 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2002069865A priority Critical patent/JP3882648B2/en
Publication of JP2003273357A publication Critical patent/JP2003273357A/en
Application granted granted Critical
Publication of JP3882648B2 publication Critical patent/JP3882648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、極めて厚みを薄くしたIGBTなどの半導体チップであって、回路パターンを形成した絶縁基板に、半田等で接合する半導体装置に関する。
【0002】
【従来の技術】
IGBTモジュールなどの半導体装置において、オン電圧とスイッチング損失のトレードオフを改善する手法として、IGBTチップの厚みを薄くする場合がある。
近年は、そのIGBTチップの厚みが、1000V以上の耐圧クラスで100μm〜150μmであり、600V程度の耐圧クラスで50μm〜80μm程度が検討されている。
【0003】
図10は、従来の半導体装置の要部断面図である。この半導体装置は、IGBTモジュールなどのパワー半導体デバイスである。この半導体装置は、ヒートシンク51、銅貼り絶縁基板52(回路パターンが形成されている)、IGBTチップ53が半田57、58で接合され、この一体となった構造を樹脂成形されたケース54に接着した構造である。
【0004】
そして、半導体チップ53、ワイヤ56および銅貼り絶縁基板52を水分、湿気、塵から保護する目的でケース54内はシリコーンゲル等のゲル59が封止されている。IGBTチップ53の表面にはワイヤボンディングがなされ、IGBTチップ53の裏面は、銅貼り絶縁基板52上の図示していない回路パターンに半田58で接合され、電気的接続が行われている。図中の55は外部導出導体である。
【0005】
図11は、従来のIGBTチップの構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のY−Y線で切断した要部断面図である。
IGBTチップ53の表面側はゲート電極62とエミッタ電極61、図示しない保護膜で被覆されている接合終端耐圧構造65で構成され、裏面側にはコレクタ電極63が形成されている。半導体基板100内には図12で説明する多数のセルが形成されている。
【0006】
図12は、図11のX−X線で切断した、IGBTチップに形成されたセルの要部断面図である。
IGBTチップ53は、半導体基板100に多数のセルが形成されている。このセル構造は、半導体基板100(例えばシリコン)の表面層にpウエル領域72が形成され、このpウエル領域72の表面層にnエミッタ領域73が形成され、このnエミッタ領域73と半導体基板100に挟まれたpウエル領域72上およびpウエル領域72に挟まれた半導体基板100上にゲート絶縁膜74を介してポリシリコンのゲート内部電極75が形成されている。このゲート内部電極75と図11のゲート電極62は電気的に接続されている。
【0007】
ゲート内部電極75上に層間絶縁膜76が形成され、nエミッタ領域73上にはエミッタ電極61が形成されている。また、半導体基板100の裏面の表面層にpコレクタ領域77が形成され、その上にコレクタ電極63が形成されている。このコレクタ電極63は、図10の銅貼り絶縁基板52との半田接合を良好とするためにAl膜81、Ti膜82、Ni膜83およびAu膜84の多層構造となっている。
【0008】
尚、pウエル領域72とpコレクタ領域77に挟まれた半導体基板100がn- ドリフト層71である。
従来のIGBTチップ53の厚さは、約350μm程度であり、ゲート電極62、エミッタ電極61はアルミ線などのワイヤ56がボンディングされ、コレクタ電極63は銅貼り絶縁基板52と半田58で接合されていた。この場合、IGBTチップ53が350μmと十分に厚かったため、実装前のIGBTチップ11の反り量は僅か数μmと少なかった。
【0009】
【発明が解決しようとする課題】
しかし最近、IGBTチップ53の電気的特性向上を目的に、IGBTチップ53の薄板化が検討されてきている。IGBTチップ53を薄板化すると、半導体基板100裏面にコレクタ電極63を形成するとき、熱膨張係数の違いによるバイメタル効果で、図13に示すようにIGBTチップ53の表面電極側(エミッタ電極側)が凸状に大きく反るようになる。
【0010】
図14は、従来のIGBTチップの厚さを減らした場合の反り量を示す図である。IGBTチップの大きさは10mm□、厚さは50μmから300μmである。特に厚さが150μmより小さくなると反り量は急激に大きくなり、その反り量の増加割合は厚みが小さくなる程大きくなり、50μm程度になると反り量は200μmにも達する。
【0011】
このように反り量が大きくなると、IGBTチップ53を銅貼り絶縁基板52に半田58で接合するとき、IGBTチップ53の中央部下の半田層が厚く(最悪の場合、ボイドを巻込む)、また、ボンディングワイヤの接合強度も弱く、実使用(スイッチング)では熱抵抗の悪化で接合温度の上昇が大きく、パワーサイクル耐量の低いIGBTモジュールとなる。
【0012】
この発明の目的は、前記の課題を解決して、薄板化された半導体チップのバイメタル効果による反り量を抑制した半導体装置およびその製造方法を提供することである。
【0013】
【課題を解決するための手段】
前記の目的を達成するために、半導体チップの表面側に形成した表面電極と、前記半導体チップの裏面側に形成した裏面電極とを有し、半導体チップを構成する半導体基板の厚さが150μm以下である半導体装置において、半導体チップの表面上に選択的に5μm以上で50μm以下の絶縁性厚膜が形成される構成とする。
【0014】
また、前記絶縁性厚膜が、半導体チップの表面側の外周部上に形成されるとよい。
また、前記絶縁性厚膜が、表面電極上で選択的に形成されるとよい。
また、前記絶縁性厚膜が、表面電極上で帯状に形成されるとよい。
また、半導体チップの表面側に形成した表面電極と、前記半導体チップの裏面側に形成した裏面電極とを有し、半導体チップを構成する半導体基板の厚さが150μm以下である半導体装置において、半導体チップの表面上全面に10μm以上で50μm以下に形成された絶縁性厚膜と、該絶縁性厚膜に開けた開口部を介して表面電極に電気的に接続する構成とする。
【0015】
また、前記金属膜が選択的に形成され、前記絶縁性厚膜がポリイミドもしくは窒化珪素で形成されるとよい。
また、素子ユニットが多数形成された150μm以下の厚さのウエハ上の裏面側を支持基板に貼り付ける工程と、前記ウエハの表面側全面に絶縁性厚膜を5μm〜50μmの厚さに被覆する工程と、前記絶縁性厚膜を選択的に除去する工程と、前記ウエハをダイシングして各素子ユニットをそれぞれ分離する工程とを有する製造方法とする。
【0016】
また、1層目の表面電極と裏面電極を有する素子ユニットが多数形成された150μm以下の厚さのウエハ上の裏面側を支持基板に貼り付ける工程と、該ウエハの表面側全面に絶縁性厚膜を5μm〜50μmの厚さに被覆する工程と、前記素子ユニットの1層目の表面電極上の絶縁性厚膜を選択的に除去する工程と、前記表面電極直上の前記絶縁性厚膜上に2層目の表面電極を形成する工程と、前記ウエハをダイシングして各素子ユニットをそれぞれ分離する工程とを有する製造方法とする。
【0017】
【発明の実施の形態】
図1は、この発明の第1実施例の半導体装置であり、同図(a)は要部平面図、同図(b)は同図(a)のY−Y線で切断した要部断面図である。ここでは半導体装置を構成するIGBTチップを示した。半導体基板100の内部構造は図12と同じである。図1のエミッタ電極2、コレクタ電極4、ゲート電極3および接合終端耐圧構造5は、図11のエミッタ電極61、コレクタ電極63、ゲート電極62および接合終端耐圧構造65にそれぞれ相当する。
【0018】
ゲート電極3とエミッタ電極2を有するIGBTチップ1の接合終端耐圧構造5部上に絶縁性厚膜であるポリイミドの枠6を形成する。IGBTチップ1の裏面側には裏面電極であるコレクタ電極4が形成されている。IGBTチップ1の厚み(半導体基板100の厚さ)は150μm以下であり、ポリイミドの枠6の厚みは5μm〜50μmで、枠6の幅は0.5mmである。このポリイミドの枠6の厚みをこの範囲にすることで、IGBTチップ1のエミッタ電極2側に凸状に反ることが抑制される。尚、絶縁性厚膜は窒化珪素であっても構わない。この場合の窒化珪素膜の厚みは5μm〜8μm程度が好ましい。また、前記のようにIGBTチップ1の厚さを150μm以下としたのは、反り量が図14に示したように急激に増大するためである。また、下限値としては、素子耐圧に依存するが、600Vクラスの耐圧を維持するとしたら、50μm程度である。
【0019】
図2は、図1の半導体装置の製造方法で、同図(a)から同図(f)は工程順に示した要部工程断面図である。
IGBTチップ1となる素子ユニットが複数個作り込まれた厚み50μm〜150μmのウエハ200をホットプレート21(あるいは恒温層)にセットし、ウエハ200の反りが無くなる温度(裏面電極膜のアニール温度300℃程度)まで昇温する。素子ユニットの表面側にはゲート電極とエミッタ電極の表面電極11、裏面側にはコレクタ電極の裏面電極12を形成する(同図(a))。
【0020】
つぎに、ウエハ200の裏面にシリコンと線膨張係数が等しいガラス基板22をUVテープ23(紫外線を照射すると剥離できるテープ)で接着する。ウエハ200をガラス基板22に接着することで、IGBTチップ1のエミッタ電極2側が凸状に反っていたウエハ200は平坦となり、ガラス基板22の温度を下げても、ウエハ200は反らなくなる(同図(b))。
【0021】
つぎに、室温に戻したガラス基板22上に接着したウエハ200に絶縁性厚膜であるポリイミド13を被覆する(同図(c))。
つぎに、ウエハ200表面に被覆したポリイミド13を硬化させ、その後、接合終端耐圧構造5(保護膜として窒化膜などが形成されている)が形成されているIGBTチップ1の外周部上のポリイミド13を残し、他の箇所のポリイミドを除去して、ポリイミドの枠6を形成する。このIGBTチップ1の外周部に形成されたポリイミドの枠6は、IGBTチップ1の反りを抑制する働きをする。この枠6を厚くすると、反りを抑制する効果は大きくなる。枠6の厚さは5μm未満では反りを抑制する効果が小さく実用的でない。また、50μmを超えると、IGBTチップ1にねじれが生じるために、枠6の厚みは5μm〜50μmの範囲が好ましい。(同図(d))
つぎに、ウエハ200を切断線31でダイシングにより切断し、各素子ユニットに分離し(同図(e))、この各素子ユニットをガラス基板22から外してIGBTチップ1とする(同図(f))。
【0022】
IGBTチップ1の外周部に形成されたポリイミドの枠6が、前記に示したようにIGBTチップ1の反りを抑制する。
また、ポリイミドの代わりに、IGBTチップ1の接合終端耐圧構造5上に形成されている図示しない保護膜を用いても構わない。通常、この保護膜は、窒化珪素膜で形成されているが、この膜をIGBTチップ1の外周部のみ複数回スパッタあるいは蒸着で成膜し、厚膜化することで枠6を形成してもよい。この場合の膜厚は5μm〜8μm程度がよい。さらに前記した枠6であるポリイミドを保護膜として利用しても構わない。
【0023】
図3は、IGBTチップの反りとポリイミドの膜厚の関係を示す図である。IGBTチップのサイズは10mm□、厚さは60μm、チップ周辺部のポリイミドの枠の幅は0.5mmである。また、IGBTチップの裏面電極(コレクタ電極4)のアニール温度は325℃で、室温との温度差は300℃である。反り量の測定温度は25℃である。
【0024】
ポリイミドの膜厚(枠の厚み)を厚くすると反り量は小さく抑制される。反り量を150μm以下とするためには、ポリイミドの厚さは7μm以上とするとよい。また、ポリイミドの代わりに窒化珪素膜とすると、膜厚を5μm以上とするとよい。このことから、絶縁性厚膜(ポリイミド膜、窒化珪素膜)の膜厚、つまり枠6の厚みは5μm以上とするとよい。また、ポリイミドの場合は、好ましくは、10μm以上とするとよい。
【0025】
前記のポリイミドの膜厚が60μmを越すと、反りは低下するが、後述の図4で示すように、IGBTチップのコーナー部で、ねじれ現象が生じるために、ボンディング時にIGBTチップに割れが生じ易くなる。そのため、ポリイミドの膜厚は50μm以下が望ましい。
図4は、有限要素法(FEM)でIGBTチップの熱変形を模擬した解析を行った結果を等高線で示す図である。IGBTチップを模擬したこの解析モデル(シェル要素を使用)は、IGBTチップの対称性を利用して、縦、横それぞれ2分割した、1/4モデルで行った。図中の反りが最大となっている箇所がIGBTチップの中心である。
【0026】
IGBTチップのサイズは前記と同様に、10mm□、厚さ60μmとし、プロセスでの温度差はΔT=−300℃(25℃−325℃)として計算を行ない、ポリイミドの枠6の幅は0.5mmであり、ポリイミドの枠の厚さは20μm(同図(a))、40μm(同図(b))および80μm(同図(c))の3通りの等高線図で示す。20μmの場合(同図(a))では反りは123μm、40μmの場合(同図(b))では反りは77μm、80μmの場合(同図(c))では反りは40μmである。また、80μmではコーナー部でねじれが生じている。図では示さないが、このねじれは50μmを超えると生じる。そのことから、前記したように、枠の厚みを50μm以下とするとよい。
【0027】
図5は、この発明の第2実施例の半導体装置の要部平面図で、同図(a)は梁が1本の場合、同図(b)は梁を十字状とした場合である。図1の枠6に加え、IGBTチップ1の対向するIGBTチップ1のエッジ部を繋ぐように帯状のポリイミドで梁7、8を形成することで、図1よりさらにIGBTチップ1の反り量を低減することが可能となる。梁7、8の形成方法は第1実施例と同様の方法で可能である。このポリイミドの梁7、8が形成されない箇所(ポリイミド膜の開口部)のゲート電極3とエミッタ電極2がボンディングパッドとなり、図10のボンディング用のワイヤ56が接続される。
【0028】
図6は、この発明の第3実施例の半導体装置の要部平面図である。図1の枠6に加え、IGBTチップ1の対向するコーナー部を繋ぐように帯状のポリイミドで梁9を形成することで、さらにIGBTチップ1の反り量を低減することが可能となる。梁9の形成方法は第1実施例と同様の方法で可能である。
図7は、この発明の第3実施例の半導体装置の要部平面図である。図1の枠6に加え、IGBTチップ1表面の中心部から放射状に帯状のポリイミドで梁10を形成することで、さらにIGBTチップ1の反り量を低減することが可能となる。梁10の形成方法は第1実施例と同様の方法で可能である。
【0029】
上記のように、IGBTチップ1の表面側にポリイミドで外周部に枠6、さらには対向するエッジ部あるいはコーナー部をつなぐように帯状のポリイミドで梁7〜10を形成することで、バイメタル効果によるIGBTチップ1の反り量を軽減でき、組立工程での不良を抑え、高品質な半導体装置を提供できる。
図8は、この発明の第5実施例の半導体装置であり、同図(a)は要部平面図、同図(b)は同図(a)のY−Y線で切断した要部断面図である。ここでは半導体装置を構成するIGBTチップを示した。
【0030】
1層目のゲート電極(2層目のゲート電極43の直下に形成されている)、1層目のエミッタ電極2が表面側に形成されたIGBTチップ1の表面側全面に絶縁性厚膜としてポリイミド41を被覆する。1層目のゲート電極上および1層目のエミッタ電極2上のポリイミド41にそれぞれコンタクトホール44を開口し、このポリイミド41上に1層目のゲート電極および1層目のエミッタ電極2に対応するように、金属膜で2層目のゲート電極43および2層目のエミッタ電極42を形成する。この2層目のゲート電極43と1層目のゲート電極、2層目のエミッタ電極42と1層目のエミッタ電極2とは前記のコンタクトホール44を介して電気的に接続する。
【0031】
このように、ポリイミド41を全面に被覆し、その上に金属膜を形成することで、前記の実施例より、さらにウエハの反りの抑制効果は大きくなる。この場合も、ポリイミドの厚みは前記した5μm〜10μmの範囲で、2層目のゲート電極43および2層目のエミッタ電極42の厚さは、例えば、Ni膜で形成した場合は、0.1μm程度で、反り量を殆ど無しにすることができる。
【0032】
また、絶縁性厚膜は、ポリイミドの代わりに窒化珪素膜でも構わない。その場合の窒化珪素膜の厚さは、5μm〜8μm程度がよい。
図9は、図8の半導体装置の製造方法であり、同図(a)から同図(e)は工程順に示した要部製造工程断面図である。製造工程は図2(c)までの部分は同じであるため、それ以降の工程について記載してある。
【0033】
ウエハ200表面に全面被覆したポリイミド41を硬化させる(同図(a))。
つぎに、1層目の表面電極11上のポリイミド41にコンタクトホール44を開ける(同図(b))。
つぎに、1層目の表面電極11上のポリイミド上に、2層目の表面電極42を形成する(同図(c))。
【0034】
つぎに、ウエハ200を切断線31でダイシングし(同図(d))、各素子ユニットに分離し、この各素子ユニットをガラス基板22から外してIGBTチップ1とする(同図(e))。
【0035】
【発明の効果】
この発明によれば、半導体チップの表面側(エミッタ電極側)の外周部に絶縁性厚膜で枠を形成することで、バイメタル効果による半導体チップの反りを抑制できる。
さらにこの枠をつなぐように梁を形成することで、バイメタル効果による半導体チップの反りを抑制できる。
【0036】
また、半導体チップの表面側を絶縁性厚膜と金属膜で被覆することで、半導体チップの反りをさらに抑制できる。
このように、半導体チップの反りを抑制することで、半導体チップを回路パターンに接合する際の接合不良やワイヤボンディング時のチップ不良発生を抑えることができる。
【0037】
その結果、銅などの金属でパターンを形成した導電膜貼り絶縁基板と半導体チップとの半田による接合状態を安定化できて、高信頼性の半導体装置およびその製造方法を提供することができる。
【図面の簡単な説明】
【図1】この発明の第1実施例の半導体装置であり、(a)は要部平面図、(b)は(a)のY−Y線で切断した要部断面図
【図2】図1の半導体装置の製造方法で、(a)から(f)は工程順に示した要部工程断面図
【図3】IGBTチップの反りとポリイミドの膜厚の関係を示す図
【図4】有限要素法(FEM)でIGBTチップの熱変形を模擬した解析を行った結果を等高線で示す図
【図5】この発明の第2実施例の半導体装置の要部平面図で、(a)は梁が1本の場合、(b)は梁が十字状とした場合の図
【図6】この発明の第3実施例の半導体装置の要部平面図
【図7】この発明の第3実施例の半導体装置の要部平面図
【図8】この発明の第5実施例の半導体装置であり、(a)は要部平面図、(b)(a)のY−Y線で切断した要部断面図
【図9】図8の半導体装置の製造方法であり、(a)から(e)は工程順に示した要部製造工程断面図
【図10】従来の半導体装置の要部断面図
【図11】従来のIGBTチップの構成図であり、(a)は要部平面図、(b)は(a)のY−Y線で切断した要部断面図
【図12】図11のX−X線で切断したIGBTチップに形成されたセルの要部断面図
【図13】IGBTチップの反り状態を示す図
【図14】従来のIGBTチップの厚さを減らした場合の反り量を示す図
【符号の説明】
1 IGBTチップ
2 エミッタ電極
3 ゲート電極
4 コレクタ電極
5 接合終端耐圧構造
6 枠
7〜10 梁
11 表面電極
12 裏面電極
13、41 ポリイミド
21 ホットプレート
22 ガラス基板
23 UVテープ
42 2層目のエミッタ電極
43 2層目のゲート電極
44 コンタクトホール
100 半導体基板
200 ウエハ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device such as an IGBT having a very small thickness, which is joined to an insulating substrate on which a circuit pattern is formed by solder or the like.
[0002]
[Prior art]
In a semiconductor device such as an IGBT module, as a technique for improving the trade-off between on-voltage and switching loss, the thickness of the IGBT chip may be reduced.
In recent years, the thickness of the IGBT chip has been considered to be 100 μm to 150 μm for a withstand voltage class of 1000 V or more, and about 50 μm to 80 μm for a withstand voltage class of about 600 V.
[0003]
FIG. 10 is a cross-sectional view of a main part of a conventional semiconductor device. This semiconductor device is a power semiconductor device such as an IGBT module. In this semiconductor device, a heat sink 51, a copper-clad insulating substrate 52 (circuit pattern is formed), and an IGBT chip 53 are joined by solders 57 and 58, and this integrated structure is bonded to a resin-molded case 54. This is the structure.
[0004]
A gel 59 such as silicone gel is sealed in the case 54 for the purpose of protecting the semiconductor chip 53, the wires 56, and the copper-clad insulating substrate 52 from moisture, moisture, and dust. The front surface of the IGBT chip 53 is wire-bonded, and the back surface of the IGBT chip 53 is joined to a circuit pattern (not shown) on the copper-clad insulating substrate 52 with solder 58 to make electrical connection. In the figure, 55 is an external lead-out conductor.
[0005]
11A and 11B are configuration diagrams of a conventional IGBT chip, where FIG. 11A is a plan view of the main part, and FIG. 11B is a cross-sectional view of the main part taken along line YY in FIG. .
The front surface side of the IGBT chip 53 is composed of a gate electrode 62 and an emitter electrode 61, and a junction termination withstand voltage structure 65 covered with a protective film (not shown), and a collector electrode 63 is formed on the back surface side. A large number of cells described in FIG. 12 are formed in the semiconductor substrate 100.
[0006]
FIG. 12 is a cross-sectional view of the main part of the cell formed on the IGBT chip, cut along line XX in FIG.
The IGBT chip 53 has a large number of cells formed on the semiconductor substrate 100. In this cell structure, a p-well region 72 is formed in a surface layer of a semiconductor substrate 100 (for example, silicon), an n-emitter region 73 is formed in the surface layer of the p-well region 72, and the n-emitter region 73 and the semiconductor substrate 100 are formed. A polysilicon gate internal electrode 75 is formed on the p-well region 72 sandwiched between and the semiconductor substrate 100 sandwiched between the p-well regions 72 via a gate insulating film 74. The gate internal electrode 75 and the gate electrode 62 in FIG. 11 are electrically connected.
[0007]
An interlayer insulating film 76 is formed on the gate internal electrode 75, and an emitter electrode 61 is formed on the n emitter region 73. A p collector region 77 is formed on the front surface layer of the semiconductor substrate 100, and a collector electrode 63 is formed thereon. The collector electrode 63 has a multilayer structure of an Al film 81, a Ti film 82, a Ni film 83, and an Au film 84 in order to improve the solder joint with the copper-clad insulating substrate 52 of FIG.
[0008]
The semiconductor substrate 100 sandwiched between the p well region 72 and the p collector region 77 is the n drift layer 71.
The thickness of the conventional IGBT chip 53 is about 350 μm, the gate electrode 62 and the emitter electrode 61 are bonded to a wire 56 such as an aluminum wire, and the collector electrode 63 is bonded to the copper-bonded insulating substrate 52 and the solder 58. It was. In this case, since the IGBT chip 53 was sufficiently thick as 350 μm, the amount of warpage of the IGBT chip 11 before mounting was as small as several μm.
[0009]
[Problems to be solved by the invention]
Recently, however, the thickness reduction of the IGBT chip 53 has been studied for the purpose of improving the electrical characteristics of the IGBT chip 53. When the IGBT chip 53 is thinned, when the collector electrode 63 is formed on the back surface of the semiconductor substrate 100, the surface electrode side (emitter electrode side) of the IGBT chip 53 is formed as shown in FIG. It becomes warped greatly in a convex shape.
[0010]
FIG. 14 is a diagram showing the amount of warpage when the thickness of a conventional IGBT chip is reduced. The size of the IGBT chip is 10 mm □, and the thickness is 50 μm to 300 μm. In particular, when the thickness is smaller than 150 μm, the amount of warpage increases rapidly, and the rate of increase in the amount of warpage increases as the thickness decreases, and when the thickness is about 50 μm, the amount of warpage reaches 200 μm.
[0011]
When the amount of warping increases in this way, when the IGBT chip 53 is joined to the copper-clad insulating substrate 52 with the solder 58, the solder layer below the center of the IGBT chip 53 is thick (in the worst case, a void is wound). The bonding strength of the bonding wire is weak, and in actual use (switching), the thermal resistance is deteriorated, the bonding temperature is increased greatly, and the IGBT module has a low power cycle resistance.
[0012]
An object of the present invention is to solve the above-described problems and provide a semiconductor device in which the amount of warpage due to the bimetal effect of a thinned semiconductor chip is suppressed and a method for manufacturing the same.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the thickness of a semiconductor substrate that has a front surface electrode formed on the front surface side of the semiconductor chip and a back surface electrode formed on the back surface side of the semiconductor chip, and that constitutes the semiconductor chip is 150 μm or less. In the semiconductor device, an insulating thick film of 5 μm or more and 50 μm or less is selectively formed on the surface of the semiconductor chip.
[0014]
The insulating thick film may be formed on the outer peripheral portion on the surface side of the semiconductor chip.
The insulating thick film may be selectively formed on the surface electrode.
The insulating thick film may be formed in a band shape on the surface electrode.
Further, in a semiconductor device having a front surface electrode formed on a front surface side of a semiconductor chip and a back surface electrode formed on a rear surface side of the semiconductor chip, the thickness of a semiconductor substrate constituting the semiconductor chip is 150 μm or less. An insulating thick film formed to be 10 μm or more and 50 μm or less on the entire surface of the chip and electrically connected to the surface electrode through an opening formed in the insulating thick film.
[0015]
The metal film may be selectively formed, and the insulating thick film may be formed of polyimide or silicon nitride.
Also, a step of attaching the back side of a wafer having a thickness of 150 μm or less on which a large number of element units are formed to a support substrate, and covering the entire surface side of the wafer with an insulating thick film to a thickness of 5 μm to 50 μm The manufacturing method includes a step, a step of selectively removing the insulating thick film, and a step of dicing the wafer to separate each element unit.
[0016]
Also, a step of attaching the back side of a wafer having a thickness of 150 μm or less on which a large number of element units each having a front electrode and a back electrode of the first layer are formed to a supporting substrate, and an insulating thickness on the entire front side of the wafer Covering the film with a thickness of 5 μm to 50 μm, selectively removing the insulating thick film on the first surface electrode of the element unit, and on the insulating thick film immediately above the surface electrode And a step of forming a second surface electrode and a step of dicing the wafer to separate each element unit.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B show a semiconductor device according to a first embodiment of the present invention. FIG. 1A is a plan view of the main part, and FIG. 1B is a cross-sectional view of the main part taken along line YY in FIG. FIG. Here, an IGBT chip constituting a semiconductor device is shown. The internal structure of the semiconductor substrate 100 is the same as FIG. The emitter electrode 2, collector electrode 4, gate electrode 3, and junction termination withstand voltage structure 5 in FIG. 1 correspond to the emitter electrode 61, collector electrode 63, gate electrode 62, and junction termination withstand voltage structure 65 in FIG.
[0018]
A polyimide frame 6, which is an insulating thick film, is formed on the junction termination withstand voltage structure 5 portion of the IGBT chip 1 having the gate electrode 3 and the emitter electrode 2. A collector electrode 4, which is a back electrode, is formed on the back side of the IGBT chip 1. The thickness of the IGBT chip 1 (the thickness of the semiconductor substrate 100) is 150 μm or less, the thickness of the polyimide frame 6 is 5 μm to 50 μm, and the width of the frame 6 is 0.5 mm. By setting the thickness of the polyimide frame 6 within this range, it is possible to suppress warping in a convex shape toward the emitter electrode 2 side of the IGBT chip 1. The insulating thick film may be silicon nitride. In this case, the thickness of the silicon nitride film is preferably about 5 μm to 8 μm. The reason why the thickness of the IGBT chip 1 is set to 150 μm or less as described above is that the amount of warpage increases rapidly as shown in FIG. The lower limit depends on the element breakdown voltage, but is about 50 μm if the 600V class breakdown voltage is maintained.
[0019]
FIG. 2 is a manufacturing method of the semiconductor device of FIG. 1, and FIG. 2A to FIG.
A wafer 200 having a thickness of 50 μm to 150 μm in which a plurality of element units to be the IGBT chip 1 are formed is set on the hot plate 21 (or a constant temperature layer), and a temperature at which the wafer 200 does not warp (an annealing temperature of the back electrode film is 300 ° C. Temperature). A surface electrode 11 of a gate electrode and an emitter electrode is formed on the surface side of the element unit, and a back electrode 12 of a collector electrode is formed on the back surface side (FIG. 5A).
[0020]
Next, a glass substrate 22 having the same linear expansion coefficient as that of silicon is bonded to the back surface of the wafer 200 with a UV tape 23 (a tape that can be peeled off when irradiated with ultraviolet rays). By bonding the wafer 200 to the glass substrate 22, the wafer 200 on which the emitter electrode 2 side of the IGBT chip 1 is warped in a convex shape becomes flat, and even if the temperature of the glass substrate 22 is lowered, the wafer 200 does not warp (same as above). (B).
[0021]
Next, polyimide 13 which is an insulating thick film is coated on the wafer 200 adhered on the glass substrate 22 which has been returned to room temperature ((c) in the figure).
Next, the polyimide 13 coated on the surface of the wafer 200 is cured, and then the polyimide 13 on the outer peripheral portion of the IGBT chip 1 on which the junction termination withstand voltage structure 5 (a nitride film or the like is formed as a protective film) is formed. The polyimide frame 6 is formed by removing polyimide at other locations. The polyimide frame 6 formed on the outer periphery of the IGBT chip 1 functions to suppress warping of the IGBT chip 1. When the frame 6 is thickened, the effect of suppressing warpage is increased. If the thickness of the frame 6 is less than 5 μm, the effect of suppressing warpage is small and impractical. Moreover, since it will twist in IGBT chip | tip 1 when it exceeds 50 micrometers, the thickness of the frame 6 has the preferable range of 5 micrometers-50 micrometers. (Fig. (D))
Next, the wafer 200 is cut by a cutting line 31 by dicing and separated into element units (FIG. 5E), and the element units are removed from the glass substrate 22 to form the IGBT chip 1 (FIG. 5F). )).
[0022]
The polyimide frame 6 formed on the outer peripheral portion of the IGBT chip 1 suppresses the warp of the IGBT chip 1 as described above.
Further, instead of polyimide, a protective film (not shown) formed on the junction termination breakdown voltage structure 5 of the IGBT chip 1 may be used. Usually, this protective film is formed of a silicon nitride film. However, even if the frame 6 is formed by forming this film only on the outer peripheral portion of the IGBT chip 1 by sputtering or vapor deposition a plurality of times and increasing the film thickness. Good. In this case, the film thickness is preferably about 5 μm to 8 μm. Furthermore, the polyimide which is the frame 6 described above may be used as a protective film.
[0023]
FIG. 3 is a diagram showing the relationship between the warpage of the IGBT chip and the film thickness of the polyimide. The size of the IGBT chip is 10 mm □, the thickness is 60 μm, and the width of the polyimide frame around the chip is 0.5 mm. The annealing temperature of the back electrode (collector electrode 4) of the IGBT chip is 325 ° C., and the temperature difference from room temperature is 300 ° C. The measurement temperature of the amount of warpage is 25 ° C.
[0024]
When the polyimide film thickness (frame thickness) is increased, the amount of warpage is suppressed to be small. In order to make the amount of warpage 150 μm or less, the thickness of the polyimide is preferably 7 μm or more. Further, when a silicon nitride film is used instead of polyimide, the film thickness is preferably 5 μm or more. Therefore, the thickness of the insulating thick film (polyimide film, silicon nitride film), that is, the thickness of the frame 6 is preferably 5 μm or more. In the case of polyimide, the thickness is preferably 10 μm or more.
[0025]
When the polyimide film thickness exceeds 60 μm, the warpage decreases, but as shown in FIG. 4 to be described later, the twisting phenomenon occurs at the corner portion of the IGBT chip, so that the IGBT chip is easily cracked during bonding. Become. Therefore, the film thickness of polyimide is desirably 50 μm or less.
FIG. 4 is a diagram showing the result of analysis by simulating thermal deformation of an IGBT chip by a finite element method (FEM) with contour lines. This analysis model (using a shell element) simulating an IGBT chip was performed as a ¼ model, which was divided into two parts in the vertical and horizontal directions using the symmetry of the IGBT chip. The center of the IGBT chip is the portion where the warp is maximum in the figure.
[0026]
The size of the IGBT chip is 10 mm □, the thickness is 60 μm, and the temperature difference in the process is calculated as ΔT = −300 ° C. (25 ° C.-325 ° C.), and the width of the polyimide frame 6 is 0. The thickness of the polyimide frame is shown by three contour maps of 20 μm (FIG. (A)), 40 μm (FIG. (B)) and 80 μm (FIG. (C)). In the case of 20 μm ((a) in the figure), the warp is 123 μm, in the case of 40 μm ((b) in the figure), the warp is 77 μm and in the case of 80 μm ((c) in the same figure), the warp is 40 μm. Further, when the thickness is 80 μm, the corner portion is twisted. Although not shown in the figure, this twist occurs when the thickness exceeds 50 μm. Therefore, as described above, the thickness of the frame is preferably 50 μm or less.
[0027]
FIGS. 5A and 5B are plan views of the main part of the semiconductor device according to the second embodiment of the present invention. FIG. 5A shows a case where one beam is used, and FIG. 5B shows a case where the beam is formed in a cross shape. In addition to the frame 6 in FIG. 1, the beams 7 and 8 are formed of band-shaped polyimide so as to connect the edge portions of the IGBT chip 1 facing the IGBT chip 1, thereby further reducing the amount of warpage of the IGBT chip 1 than in FIG. It becomes possible to do. The method for forming the beams 7 and 8 can be the same as that in the first embodiment. The gate electrode 3 and the emitter electrode 2 at a portion where the polyimide beams 7 and 8 are not formed (an opening portion of the polyimide film) serve as a bonding pad, and the bonding wire 56 shown in FIG. 10 is connected.
[0028]
FIG. 6 is a plan view of the main part of the semiconductor device according to the third embodiment of the present invention. In addition to the frame 6 in FIG. 1, it is possible to further reduce the amount of warping of the IGBT chip 1 by forming the beam 9 with a strip-shaped polyimide so as to connect opposite corner portions of the IGBT chip 1. The beam 9 can be formed by the same method as in the first embodiment.
FIG. 7 is a fragmentary plan view of the semiconductor device according to the third embodiment of the present invention. In addition to the frame 6 in FIG. 1, the warpage amount of the IGBT chip 1 can be further reduced by forming the beam 10 with a band-shaped polyimide radially from the center of the surface of the IGBT chip 1. The beam 10 can be formed by the same method as in the first embodiment.
[0029]
As described above, by forming the beams 7 to 10 with the polyimide on the surface side of the IGBT chip 1 and with the frame 6 on the outer peripheral portion and with the strip-like polyimide so as to connect the opposing edge portion or corner portion, the bimetal effect is achieved. The amount of warpage of the IGBT chip 1 can be reduced, defects in the assembly process can be suppressed, and a high-quality semiconductor device can be provided.
8A and 8B show a semiconductor device according to a fifth embodiment of the present invention. FIG. 8A is a plan view of the main part, and FIG. 8B is a cross-sectional view of the main part taken along line YY in FIG. FIG. Here, an IGBT chip constituting a semiconductor device is shown.
[0030]
A first-layer gate electrode (formed immediately below the second-layer gate electrode 43) is formed as an insulating thick film over the entire surface side of the IGBT chip 1 on which the first-layer emitter electrode 2 is formed on the surface side. The polyimide 41 is covered. Contact holes 44 are respectively opened in the polyimide 41 on the first-layer gate electrode and the first-layer emitter electrode 2, and the first-layer gate electrode and the first-layer emitter electrode 2 correspond to the polyimide 41. As described above, the second-layer gate electrode 43 and the second-layer emitter electrode 42 are formed of a metal film. The second-layer gate electrode 43 and the first-layer gate electrode, the second-layer emitter electrode 42 and the first-layer emitter electrode 2 are electrically connected through the contact hole 44.
[0031]
Thus, by covering the entire surface with polyimide 41 and forming a metal film thereon, the effect of suppressing the warpage of the wafer is further increased than in the above-described embodiment. Also in this case, the thickness of the polyimide is in the range of 5 μm to 10 μm, and the thickness of the second-layer gate electrode 43 and the second-layer emitter electrode 42 is 0.1 μm, for example, when formed of a Ni film. The amount of warpage can be almost eliminated.
[0032]
The insulating thick film may be a silicon nitride film instead of polyimide. In this case, the thickness of the silicon nitride film is preferably about 5 μm to 8 μm.
FIG. 9 shows a method of manufacturing the semiconductor device of FIG. 8, and FIGS. 9A to 9E are cross-sectional views of the main part manufacturing process shown in the order of steps. Since the manufacturing process is the same as that up to FIG. 2C, only the subsequent processes are described.
[0033]
The polyimide 41 coated on the entire surface of the wafer 200 is cured ((a) in the figure).
Next, a contact hole 44 is opened in the polyimide 41 on the surface electrode 11 of the first layer ((b) in the figure).
Next, the second surface electrode 42 is formed on the polyimide on the first surface electrode 11 (FIG. 2C).
[0034]
Next, the wafer 200 is diced along a cutting line 31 (FIG. (D)), separated into element units, and each element unit is removed from the glass substrate 22 to form the IGBT chip 1 (FIG. (E)). .
[0035]
【The invention's effect】
According to this invention, the warp of the semiconductor chip due to the bimetal effect can be suppressed by forming the frame with the insulating thick film on the outer peripheral portion on the surface side (emitter electrode side) of the semiconductor chip.
Furthermore, the warp of the semiconductor chip due to the bimetal effect can be suppressed by forming the beam so as to connect the frames.
[0036]
Further, the warp of the semiconductor chip can be further suppressed by covering the surface side of the semiconductor chip with an insulating thick film and a metal film.
In this way, by suppressing the warpage of the semiconductor chip, it is possible to suppress the bonding failure when the semiconductor chip is bonded to the circuit pattern and the chip failure during wire bonding.
[0037]
As a result, it is possible to stabilize the bonding state of the semiconductor chip with the conductive film-bonded insulating substrate having a pattern formed of a metal such as copper, and provide a highly reliable semiconductor device and a method for manufacturing the same.
[Brief description of the drawings]
1A is a plan view of a main part of a semiconductor device according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view of the main part taken along line YY of FIG. (A) to (f) are main part process cross-sectional views shown in the order of steps in the method of manufacturing a semiconductor device of FIG. 3 [FIG. 3] A diagram showing the relationship between the warpage of the IGBT chip and the film thickness of the polyimide [FIG. FIG. 5 is a plan view of a principal part of a semiconductor device according to a second embodiment of the present invention, in which a result of an analysis simulating thermal deformation of an IGBT chip by the FEM method (FEM) is shown. FIG. FIG. 6 is a plan view of the main part of the semiconductor device according to the third embodiment of the present invention. FIG. 7 is a plan view of the semiconductor device according to the third embodiment of the present invention. FIG. 8 is a plan view of a semiconductor device according to a fifth embodiment of the present invention, (a) is a plan view of the main part, and (b) is cut along line YY in (a). FIG. 9 is a method for manufacturing the semiconductor device of FIG. 8, wherein (a) to (e) are cross-sectional views of the main part manufacturing process shown in the order of the processes. FIG. 11A and 11B are configuration diagrams of a conventional IGBT chip, where FIG. 12A is a plan view of the main part, and FIG. 11B is a cross-sectional view of the main part taken along line YY of FIG. FIG. 13 is a cross-sectional view of the principal part of a cell formed on an IGBT chip cut by X-ray. FIG. 13 is a view showing a warp state of the IGBT chip. FIG. 14 is a view showing a warp amount when the thickness of the conventional IGBT chip is reduced. [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 IGBT chip | tip 2 Emitter electrode 3 Gate electrode 4 Collector electrode 5 Junction termination pressure | voltage resistant structure 6 Frame 7-10 Beam 11 Front surface electrode 12 Back surface electrode 13, 41 Polyimide 21 Hotplate 22 Glass substrate 23 UV tape 42 Second layer emitter electrode 43 Second layer gate electrode 44 Contact hole 100 Semiconductor substrate 200 Wafer

Claims (9)

半導体チップの表面側に形成した表面電極と、前記半導体チップの裏面側に形成した裏面電極とを有し、半導体チップを構成する半導体基板の厚さが150μm以下である半導体装置において、
半導体チップの表面上に選択的に5μm以上で50μm以下の絶縁性厚膜を形成することを特徴とする半導体装置。
In a semiconductor device having a front surface electrode formed on a front surface side of a semiconductor chip and a back surface electrode formed on a rear surface side of the semiconductor chip, wherein a semiconductor substrate constituting the semiconductor chip has a thickness of 150 μm or less.
A semiconductor device, wherein an insulating thick film of 5 μm or more and 50 μm or less is selectively formed on a surface of a semiconductor chip.
前記絶縁性厚膜が、半導体チップの表面側の外周部上に形成されることを特徴とする請求項1に記載の半導体装置。The semiconductor device according to claim 1, wherein the insulating thick film is formed on an outer peripheral portion on a surface side of a semiconductor chip. 前記絶縁性厚膜が、表面電極上で選択的に形成されることを特徴とする請求項1に記載の半導体装置。The semiconductor device according to claim 1, wherein the insulating thick film is selectively formed on a surface electrode. 前記絶縁性厚膜が、表面電極上で帯状に形成されることを特徴とする請求項3に記載の半導体装置。The semiconductor device according to claim 3, wherein the insulating thick film is formed in a band shape on the surface electrode. 半導体チップの表面側に形成した表面電極と、前記半導体チップの裏面側に形成した裏面電極とを有し、半導体チップを構成する半導体基板の厚さが150μm以下である半導体装置において、
半導体チップの表面上全面に5μm以上で50μm以下に形成された絶縁性厚膜と、該絶縁性厚膜に開けた開口部を介して表面電極に電気的に接続した金属膜とを有することを特徴とする半導体装置。
In a semiconductor device having a front surface electrode formed on a front surface side of a semiconductor chip and a back surface electrode formed on a rear surface side of the semiconductor chip, wherein a semiconductor substrate constituting the semiconductor chip has a thickness of 150 μm or less.
An insulating thick film formed on the entire surface of the semiconductor chip to have a thickness of 5 μm or more and 50 μm or less, and a metal film electrically connected to the surface electrode through an opening formed in the insulating thick film. A featured semiconductor device.
前記金属膜が選択的に形成した金属膜であることを特徴とする請求項5に記載の半導体装置。6. The semiconductor device according to claim 5, wherein the metal film is a selectively formed metal film. 前記絶縁性厚膜が、ポリイミドもしくは窒化珪素で形成されることを特徴とする請求項1から6のいづれか一項に記載の半導体装置。The semiconductor device according to claim 1, wherein the insulating thick film is made of polyimide or silicon nitride. 素子ユニットが多数形成された150μm以下の厚さのウエハ上の裏面側を支持基板に貼り付ける工程と、前記ウエハの表面側全面に絶縁性厚膜を5μm〜50μmの厚さに被覆する工程と、前記絶縁性厚膜を選択的に除去する工程と、前記ウエハをダイシングして各素子ユニットをそれぞれ分離する工程とを有することを特徴とする半導体装置の製造方法。A step of attaching a back side of a wafer having a thickness of 150 μm or less on which a large number of element units are formed to a support substrate; a step of covering an entire surface of the wafer with an insulating thick film to a thickness of 5 μm to 50 μm; A method of manufacturing a semiconductor device, comprising: a step of selectively removing the insulating thick film; and a step of dicing the wafer to separate each element unit. 1層目の表面電極と裏面電極を有する素子ユニットが多数形成された150μm以下の厚さのウエハ上の裏面側を支持基板に貼り付ける工程と、該ウエハの表面側全面に絶縁性厚膜を5μm〜50μmの厚さに被覆する工程と、前記素子ユニットの1層目の表面電極上の絶縁性厚膜を選択的に除去する工程と、前記表面電極直上の前記絶縁性厚膜上に2層目の表面電極を形成する工程と、前記ウエハをダイシングして各素子ユニットをそれぞれ分離する工程とを有することを特徴とする半導体装置の製造方法。A step of attaching the back side of a wafer having a thickness of 150 μm or less on which a large number of element units each having a front electrode and a back electrode of the first layer are formed to a support substrate; and an insulating thick film over the entire front side of the wafer A step of covering 5 μm to 50 μm, a step of selectively removing the insulating thick film on the first surface electrode of the element unit, and 2 on the insulating thick film immediately above the surface electrode. A method of manufacturing a semiconductor device, comprising: forming a surface electrode of a layer; and a step of dicing the wafer to separate each element unit.
JP2002069865A 2002-03-14 2002-03-14 Semiconductor device and manufacturing method thereof Expired - Lifetime JP3882648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002069865A JP3882648B2 (en) 2002-03-14 2002-03-14 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002069865A JP3882648B2 (en) 2002-03-14 2002-03-14 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003273357A JP2003273357A (en) 2003-09-26
JP3882648B2 true JP3882648B2 (en) 2007-02-21

Family

ID=29200588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002069865A Expired - Lifetime JP3882648B2 (en) 2002-03-14 2002-03-14 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3882648B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020097B2 (en) * 2004-05-11 2007-12-12 セイコーエプソン株式会社 Semiconductor chip, semiconductor device, manufacturing method thereof, and electronic device
KR100652395B1 (en) 2005-01-12 2006-12-01 삼성전자주식회사 Semiconductor device having reduced die-warpage and method of manufacturing the same
JP5245485B2 (en) 2008-03-25 2013-07-24 富士電機株式会社 Manufacturing method of semiconductor device
JP5585133B2 (en) * 2010-03-15 2014-09-10 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
US10818630B2 (en) 2016-11-21 2020-10-27 Mitsubishi Electric Corporation Semiconductor device

Also Published As

Publication number Publication date
JP2003273357A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
JP4815905B2 (en) Semiconductor device and manufacturing method thereof
US6569764B1 (en) Method of manufacturing a semiconductor package by attaching a lead frame to a semiconductor chip via projecting electrodes and an insulating sheet of resin material
US20180053737A1 (en) Power semiconductor device
US4996586A (en) Crimp-type semiconductor device having non-alloy structure
JP2956786B2 (en) Synthetic hybrid semiconductor structure
JP3882648B2 (en) Semiconductor device and manufacturing method thereof
JPH0590452A (en) Resin-sealed type semiconductor device
JP4409064B2 (en) Semiconductor device including power element
JP3601529B2 (en) Semiconductor device
JP3442721B2 (en) Semiconductor device
CN1983573B (en) Semiconductor device and method for fabricating the same
JP3226082B2 (en) Semiconductor device
JPH0758112A (en) Semiconductor device
JP3454192B2 (en) Lead frame, resin-sealed semiconductor device using the same, and method of manufacturing the same
EP0405501B1 (en) Semiconductor device
JP3013810B2 (en) Method for manufacturing semiconductor device
JP3213507B2 (en) Semiconductor device
JP2003224275A (en) Semiconductor device
US11646249B2 (en) Dual-side cooling semiconductor packages and related methods
JP4047572B2 (en) Power semiconductor device
JP2713141B2 (en) Semiconductor device
JP3049410B2 (en) Semiconductor package
JP2865224B2 (en) Resin-sealed semiconductor device
JP2024054535A (en) Semiconductor Device
JP2822996B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3882648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term