JP3877910B2 - Plating equipment - Google Patents

Plating equipment Download PDF

Info

Publication number
JP3877910B2
JP3877910B2 JP19491999A JP19491999A JP3877910B2 JP 3877910 B2 JP3877910 B2 JP 3877910B2 JP 19491999 A JP19491999 A JP 19491999A JP 19491999 A JP19491999 A JP 19491999A JP 3877910 B2 JP3877910 B2 JP 3877910B2
Authority
JP
Japan
Prior art keywords
plating
plating solution
tank
plated
anode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19491999A
Other languages
Japanese (ja)
Other versions
JP2001024307A (en
Inventor
憲一 笹部
明久 本郷
敏 千代
賢哉 富岡
勝巳 津田
正行 粂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP19491999A priority Critical patent/JP3877910B2/en
Priority to US09/612,218 priority patent/US6558518B1/en
Priority to EP00114663A priority patent/EP1067221A3/en
Priority to TW089113509A priority patent/TW497143B/en
Priority to KR1020000038883A priority patent/KR100637890B1/en
Publication of JP2001024307A publication Critical patent/JP2001024307A/en
Application granted granted Critical
Publication of JP3877910B2 publication Critical patent/JP3877910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハ等の被めっき基板のめっきに用いて好適なめっき装置に関するものである。
【0002】
【従来の技術】
近年、半導体ウエハ等の表面に配線用の微細な溝や穴が形成された被めっき基板の該溝や穴等を埋めるのに、銅めっき等の金属めっき装置を用い、金属めっきで該溝や穴を埋める手法が採用されている。従来この種のめっき装置として、フェースダウン方式の噴流めっき装置がある。このめっき装置は、図10に示すように、めっき槽200の上部に半導体ウエハ等の被めっき基板Wをその被めっき面を下向きに配置し(被めっき基板Wは基板保持部220に保持されている)、めっき液貯留槽203内のめっき液をポンプ205によりめっき液供給管207を通して、めっき槽200の底部から噴出させ、陽極板211に設けた孔又は網目を通して、被めっき基板Wの被めっき面中央に垂直にめっき液の噴流を当接してめっきするようにしている。
【0003】
めっき槽200をオーバーフローしためっき液は、めっき槽200の外側に配置されためっき液受け209により回収されめっき液貯留槽203に戻される。そして陽極板211と被めっき基板Wの間に所定の電圧Eを印加することにより陽極電極211と被めっき基板W間にめっき電流が流れ、被めっき基板Wの被めっき面にめっき膜が形成される。
【0004】
しかしながら上記従来の噴流式めっき装置では、噴流が陽極板211に設けられた1又は複数の孔又は網目を通って被めっき基板Wの被めっき面に流れていくため、陽極板211として溶解性電極を用いた場合、陽極板211表面に付着していたブラックフィルムの剥離片等がめっき液と共に被めっき面に運搬され、めっき品質を低下させるという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたものでありその目的は、溶解性の陽極電極を用いためっき装置であっても、ブラックフィルム等に起因するパーティクルによるめっき品質の低下を防止できるめっき装置を提供することにある。
【0006】
【課題を解決するための手段】
上記問題点を解決するため本発明は、めっき槽内に陽極電極を配設し、めっき槽内にめっき液を流入してめっき槽の上縁部からオーバーフローさせると同時に前記めっき槽内のめっき液面の位置に設置した被めっき基板の被めっき面に前記めっき液の噴流を当接し、前記陽極電極と被めっき基板間に通電することでめっきを行うめっき装置において、前記陽極電極は溶解性電極板で構成され、且つ前記めっき槽内へのめっき液の噴出口より下側に設置され、前記めっき槽に流入しためっき液の一部を、陽極電極に設けた貫通孔又は陽極電極の周囲を通して陽極電極よりも下の位置に設けた流出口からめっき槽外部に流出せしめることを特徴とする。
また本発明は、前記めっき液の噴出口は、前記陽極電極の上部中央にあることを特徴とする。
また本発明は、前記めっき槽の内周側面にめっき液供給部を設けるとともに、このめっき液供給部の上部に被めっき基板の直径よりも小さい穴を持つ仕切り板を設置し、めっき液供給部からめっき槽内に流出されためっき液は、その一部が前記穴から被めっき基板に向かって流れ、他の一部が流出口からめっき槽外部へ流出することを特徴とする。
また本発明は、前記流出口からめっき槽外部に流出しためっき液は、フィルターによってパーティクルが除去されることを特徴とする。
【0007】
このような流出口を設けることにより、陽極電極表面に形成されたブラックフィルムが剥離し、微小なパーティクルになったものをめっき液と共にめっき槽外部に流出でき、微小なパーティクルがめっき液に混合して被めっき基板の被めっき面に運搬されて付着することを防止できる。ブラックフイルム以外の陽極電極への付着物や堆積物の被めっき基板の被めっき面への付着も同様に防止できる。
【0008】
また本発明は、めっき槽内にめっき液を流入してめっき槽の上縁部からオーバーフローさせると同時に前記めっき槽内のめっき液面の位置に設置した被めっき基板の被めっき面に前記めっき液の噴流を当接し、めっき槽内に配設した陽極電極と被めっき基板間に通電することでめっきを行うめっき方法において、前記めっき槽内に流入しためっき液の一部を、溶解性電極板からなり且つ前記めっき槽内へのめっき液の噴出口より下側に設置された陽極電極に設けた貫通孔又は陽極電極の周囲を通して陽極電極よりも下の位置に設けた流出口からめっき槽外部に流出せしめることを特徴とする。
【0009】
また本発明にかかるめっき装置は、めっき槽の側壁又は底面の中心から離れた位置で、めっき槽の中心軸に対して対称の複数の位置にめっき液噴射管を配設すると共に、これらめっき液噴射管からめっき液面の概ね中央部に向けてめっき液面中央部が盛り上がるようにめっき液を噴射する構成とし、一方陽極電極をめっき槽の下部に配置し、めっき液をめっき槽の上部からオーバーフローさせながら、被めっき基板の被めっき面をめっき液面に接触又はめっき液中に浸漬して陽極電極と被めっき基板間に通電することでめっきを行うことを特徴とする。
【0010】
これによってめっき液中に設置した陽極電極にめっき液の噴流が直接触れないようにすることが容易に行える。まためっき液面の中央部が盛り上がる。めっき液面の中央部を盛り上げることは、被めっき基板をめっき液中に浸漬してめっきを行う場合でも、めっきを開始する前に被めっき基板とめっき液を接触させる段階で、被めっき基板の被めっき面とめっき液の間から気泡を除去するのに有効である。
【0011】
また本発明は、めっき槽の側壁又は底面の中心から離れた位置で、めっき槽の中心軸に対して対称の複数の位置にめっき液噴射管を配設し、一方陽極電極をめっき槽の下部に配置し、これらめっき液噴射管からめっき液を噴射し、めっき液をめっき槽の上部からオーバーフローさせながら、被めっき基板の被めっき面をめっき液面に接触又はめっき液中に浸漬して陽極電極と被めっき基板間に通電することでめっきを行うめっき装置であって、前記めっき液噴射管によるめっき液の噴射方向は、めっき液がオーバーフローする液面とめっき槽の中心軸より該めっき液噴射管に近い側で交わり、中心軸の部分では被めっき基板半径の1/2より小さい距離だけ中心軸から離れた位置を通過し、且つ全てのめっき液噴射管によるめっき液の噴射方向は中心軸に向かって同じ側に略同じ角度だけ傾斜していることを特徴とする。
【0012】
これによってめっき液中に設置した陽極電極にめっき液の噴流が直接触れないようにすることが容易に行えるばかりか、めっき槽内で緩やかな渦流を生じさせ、流れを安定させると共に、噴流だけでは流速が低下する外周部に流速を与え、被めっき面全体の流速分布を改善する。めっき液の液面の中央部を高くした状態でめっき液に回転を与えるためには、噴流の方向は被めっき基板半径の1/2より小さい距離だけ中心軸から離れた位置を通過することが良い。
【0013】
また本発明は、前記めっき槽の側壁又は底面にめっき液噴射管を取り付けた構造のめっき装置に、更にめっき槽に流入しためっき液の一部が、めっき槽の内部のめっき液中に配設された陽極電極に設けた貫通孔を通して又は陽極電極の周囲からめっき槽の外部に流出する構造を持つことを特徴とする。
【0014】
これによって陽極電極表面に形成されたブラックフィルムが剥離し、微小なパーティクルになったものをめっき液と共にめっき槽外部に流出でき、微小なパーティクルがめっき液に混合して被めっき基板の被めっき面に運搬されて付着することを防止できる。ブラックフイルム以外の陽極電極への付着物や堆積物の被めっき基板の被めっき面への付着も同様に防止できる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は本発明の1実施形態のめっき装置を示す全体概略構成図である。同図に示すようにこのめっき装置は、めっき槽10のめっき液中の下部中央に陽極板(陽極電極)30を設置し、陽極板30の中央にめっき液噴射管35を貫通して設け、まためっき槽10のめっき液面の位置に半導体ウエハ(被めっき基板)Wが位置するように半導体ウエハWを基板保持部63によって保持して構成されている。以下各構成部品について説明する。
【0016】
めっき槽10は上面が開放された略円筒形の容器であって、底部は中央が低いテーパ形状(円錐形状)となっている。そしてめっき槽10の最も低い中央の部分には前記めっき液噴射管35が突出しており、まためっき液噴射管35の周囲の位置にはめっき液をめっき槽10の外部に流出させる流出孔11が設けられている。流出孔11から流出しためっき液は、フィルター(又はセパレータ)37を介してめっき液貯留槽39に戻され、ポンプ41とフィルター43を介してめっき液噴射管35から噴出される。
【0017】
一方めっき槽10の上縁部の外周にはこれを囲むようにめっき液受け13が設けられ、めっき液受け13内のめっき液も前記めっき液貯留槽39に戻されるように構成されている。
【0018】
陽極板30はめっき槽10の液中の下部中央であって、その面がめっき槽10の中心軸に対して垂直になるように配設されている。この陽極板30としては溶解性電極板を用い、銅めっきの場合には含リン銅を用いる。そしてこの実施形態の陽極板30は円板状であって、その中央に前記めっき液噴射管35を通す開口31を形成している。
【0019】
一方基板保持部63の上部には基板保持部63の昇降のための基板保持部上下駆動機構57と、下記する基板押え板67昇降のための基板押え板上下駆動機構61とを設けている。基板押え板上下駆動機構61は下方向にはバネ力、上方向にはエアによって駆動するシリンダで構成され、モータ(回転駆動機構)59によって支えられた枠61a内に収容され、エア配管はモータ軸中央を貫通してモータ59上部でロータリージョイントにより外部に接続される。モータ59及び基板押え板上下駆動機構61は、基板保持部上下駆動機構57によって昇降される。51は支持アームである。
【0020】
ここで図2は基板保持部63の部分を示す断面図であり、図3は基板保持部63を図2に直交する方向から見たときの要部拡大断面図であり、図4はシール部材71の部分の要部拡大断面図である。これらの図に示すように基板保持部63は、内部に半導体ウエハWを収納できるウエハ径よりやや大きい径の円筒形状であって、その下面はウエハ径より若干小さい径の開口を持ち、上部が閉じられ、上面の中央に基板保持部63を支持する基板保持部回転軸68を持ち、又その側壁に半導体ウエハWを出し入れする際のスリット状の開口69を持つ絶縁材からなる基板保持ケース65と、基板保持ケース65内に配設され、ウエハ径と略同じ径の円板状の基板押え板67とから構成されている。基板押え板67は絶縁材からなり、基板押え板67を上下に移動させる押え軸69を上部に持ち、押え軸69は基板保持部回転軸68内を通って上方に伸びている。基板保持ケース65下面の開口の周囲にはリング状のシール部材71を設け、シール部材71は半導体ウエハW表面と密着することによりめっき液の侵入を防止する。このシール部材71より径の大きい側に複数又はリング状のカソードピン73を基板保持ケース65下面の内側に設け、カソードピン73が半導体ウエハW表面の外周部に当接するようにしている。半導体ウエハWのめっき面の電位を均一にするためには、カソードピン73は半導体ウエハW表面外周の全域に接触するようカソードピン73を密に並べた形状又は半導体ウエハWと線接触するようにカソードピン73をリング状の板で形成し、内周部を半導体ウエハW側に折り曲げ弾性を持たせた構造にすると良い。なお図4に示すように基板保持ケース65の下部で半導体ウエハWを押えている周縁部65aの内側と外側とをつなぐように空気通路65bが設けられている。
【0021】
一方基板保持部63は図1に示すように基板保持部上下駆動機構57により上下されるが、その上昇位置では基板保持部63と内部に保持された半導体ウエハWがめっき槽10内のめっき液に触れない位置になり、この位置においてめっき済みの半導体ウエハWを取り出し、未処理の半導体ウエハWを搭載する。一方その下降位置では半導体ウエハWの被めっき面がめっき液内に浸漬される位置となる。
【0022】
そしてこの基板保持部63からの半導体ウエハWの取り出しは、基板保持部63をめっき液に接触しない位置まで上昇させ、基板押え板67を図2の点線で示す位置(67´の位置)まで上昇させた後、図3に示すように基板保持ケース65の開口69からロボットハンド75を挿入し、半導体ウエハW裏面を真空吸着して持ち上げ、開口69の部分から半導体ウエハWを取り出す。一方基板保持部63への半導体ウエハWの挿入・保持は、逆に未処理の半導体ウエハWの被めっき面を下にしてその裏面をロボットハンド75により真空吸着して開口69から基板保持ケース65内部に半導体ウエハWを挿入し、ロボットハンド75の真空吸着を解除して前記シール部材71及びカソードピン73上に載置し、ロボットハンド75を開口69から引き出し、基板押え板67を下降して半導体ウエハWの上部を押し下げてシール部材71及びカソードピン73に確実に当接させることによって行われる。基板押え板67の上下動は図1に示す基板押え軸上下駆動機構61によって行う。なお開口69の中央部分は、ロボットハンド75を通過させるために大きく開口している。
【0023】
ここで半導体ウエハW表面に銅を電解メッキする場合は、銅はシリコン中へ拡散しやすいため、ウエハ表面の被めっき面にはバリヤ層としてTi,Ta,TiN,TaN等の金属又はその化合物を成膜し、バリヤ層又はその上に薄く成膜された銅層を陰極とし、又前記陽極板30を陽極として電解めっきを行う。
【0024】
なお半導体ウエハWに給電するためのカソードピン73はめっき液が触れるとカソードピン73の部分にもめっき層が析出し、半導体ウエハWを取り出す際にカソードピン73近傍のめっき層を破損する危険性が高いので、半導体ウエハWを基板保持部63により保持した際に、半導体ウエハWの表面の外周部をめっき液が浸入しないようシール部材71でシールし、カソードピン73を基板保持ケース65と半導体ウエハWとシール部材71で形成されためっき液に触れない空間において半導体ウエハW表面に接触させている。
【0025】
従来、めっき槽の下方からめっき液を噴出させる噴流めっき方式では、半導体ウエハWの被めっき面を下にして、半導体ウエハWはめっき槽のめっき液面より上に位置し、噴流によって盛り上がっためっき液面に被めっき面を接触させる方法が一般的であった。しかし本実施形態では、シール部材71によって被めっき面以外をめっき液に接触させない基板保持部63を用いているため、基板保持部63と基板保持部63に保持された半導体ウエハWを、めっき液中に浸漬してめっきを行うことができる。これにより被めっき面と陽極板30との距離を自由に調整できる。また半導体ウエハWを基板保持部63に保持させたままめっき槽10外部に移動し、半導体ウエハW及び基板保持部63を水洗浄することも可能である。
【0026】
ところでめっき槽10内部のめっき液流れや陽極板30と被めっき面との間の電界などは円周方向に必ずしも一様にはならないため、めっきの均一性を向上するために、半導体ウエハWの電解めっき中に半導体ウエハWをめっき槽10内で回転させることが有効である。このため前記図1に示すモータ(回転駆動機構)59によって基板保持部63を水平面内で回転させる。なお半導体ウエハWを回転させる他の目的は、半導体ウエハW表面とめっき液の相対速度を増加することによって半導体ウエハW表面近傍の濃度拡散層を薄くし、これによってめっきが供給律速になることを防止し、全面均一なめっき皮膜を形成し、更に電流密度を大きくし高速めっきを可能にするためである。
【0027】
基板保持部63の回転は、上記めっき時だけでなく、半導体ウエハWを基板保持部63に装着後めっき液に接触させる際の気泡除去、電解めっき終了後に基板保持部63及び半導体ウエハWをめっき液面上に上昇させた後の回転による液切りにも有効である。
【0028】
基板保持部60のめっき中の回転は、10〜300rpmの低速回転であるが、めっき終了後基板保持部63及び半導体ウエハWをめっき液に接触しない位置まで上昇させて液切りを行うには、500rpm以上の回転(望ましくは1000rpm以上の回転)が必要になる。
【0029】
次に図1に示すめっき装置を用いてめっき槽10内でめっきを行う方法を説明する。
【0030】
まず未処理の半導体ウエハWを基板保持部63に装着後、ポンプ41を駆動することでめっき液貯留槽39内のめっき液をめっき液噴射管35からめっき槽10内に噴射する。基板保持部63を50〜300rpm程度で回転させながら中央部の盛り上がっためっき液面に半導体ウエハWが接触するまで降下し、めっき液面中央が半導体ウエハWに接触した状態から更にゆっくりと基板保持部63を降下させ、電解めっきを行う。この時の降下速度は30mm/秒以下が望ましい。めっき液面の中央部を盛り上げることは、半導体ウエハWをめっき液中に浸漬してめっきを行う場合でも、めっきを開始する前に半導体ウエハWとめっき液を接触させる段階で半導体ウエハWの被めっき面とめっき液の間から気泡を除去するために有効である。こうすることにより、半導体ウエハW下面にめっき液が充填され、半導体ウエハWと基板保持ケース65下部との空間から空気を排出する。この空気の排出をさらに効率良く行うため、図4に示す空気通路65bが設けられている。なおこの空気通路65bは、めっき後の回転液切り時の液排出用の通路としても有効である。
【0031】
噴射されためっき液は、めっき槽10の上縁部からオーバーフローし、めっき液受け13に回収され、配管15を通ってめっき液貯留槽39に流入する。まためっき液噴射管35から噴射されためっき液の一部は、前記陽極板30の外周を通って流出孔11からめっき槽10の外部に流出させられ、フィルター(又はセパレータ)37によってブラックフイルムの剥離片や陽極板30への付着物、堆積物等を除去した後、めっき液貯留槽39に流入する。図1に示す実施形態では流出孔11からめっき液貯留槽39の間は重力によって流下させているが、流出孔11からフィルター(又はセパレータ)37の間にポンプを設けても良い。
【0032】
以上のように陽極板30の近傍に流出孔11を設けたので、陽極板30表面に形成されたブラックフィルムが剥離し、微小なパーティクルになったものをめっき液と共にめっき層10の外部に流出させることができ、前記パーティクルがめっき液に混合して半導体ウエハWの被めっき面にまで運ばれて被めっき面に付着することが防止される。又ブラックフィルム以外にも陽極板30への付着物や堆積物が噴流に乗って被めっき面にまで運搬されて被めっき面に付着することも防止される。
【0033】
硫酸銅電解めっきにおいて使用する含リン銅陽極板は、表面に形成するブラックフィルムの働きにより、陽極の不動態化を防ぎ、銅の不均化反応を抑制しており、健全なめっき膜を作るに当たり重要な役割をなしている。しかしこのブラックフィルムは陽極面から剥離してパーティクルになり、めっき膜の異常析出にも影響を与えるため、ブラックフィルムが付着した陽極板30と半導体ウエハWとの位置関係やその間のめっき液の流れに注意を要する。特に陽極板30表面を流れためっき液の下流に被めっき面を位置させないことが重要である。ブラックフィルムはめっき液より重く、ブラックフィルムの剥離した破片の大部分はめっき層10底部に沈み、ブラックフィルム以外の陽極板30への付着物や堆積物もめっき液より重いものが多いため、流出孔11はこの実施形態のように陽極板30付近の陽極板30よりも下の位置に設けることが望ましく、またこの実施形態のようにめっき層10の底部が錐形状になっている場合にはその最下点付近に設けることが望ましい。流出孔11から流出されるめっき液流れは、陽極板30表面部にできるだけ沿った穏やかな流れとし、陽極板30表面のブラックフィルムの剥離片や付着物、堆積物等を、流れと共に流出孔11から流出させる。陽極板30表面に強い流れを当てることはブラックフィルムの剥離を促進し、ブラックフィルムの状態を安定に保つ上で望ましくないので、避けるべきである。
【0034】
上記実施形態においてはめっき液噴射管35を陽極板30の中央に通すとともに、めっき液の一部を陽極板30の周囲から陽極板30の下方にある流出孔11を通してめっき槽10の外部に流出するようにしているが、図5に示すように、陽極板30自体に複数の貫通孔33を設け、これらの貫通孔33を通っためっき液を流出孔11からめっき槽10の外部に流出するようにしても良い。このように構成しても陽極板30の表面から剥離したブラックフィルムや陽極板30への付着物や堆積物が噴流に乗って被めっき面にまで運搬されて被めっき面に付着することを防止できる。
【0035】
陽極板30は半導体ウエハWの被めっき面と略同じ程度の大きさがあれば図5に示すように半導体ウエハWに対向した平面とするが、陽極板30が半導体ウエハWの被めっき面に比べて大幅に小さく、且つ半導体ウエハWの被めっき面と陽極板30との間隔が小さい場合には、図6に示すように球面状にすることが望ましい。
【0036】
また図5,図6に示す実施形態においては、めっき液噴射管35を、噴流が陽極板30に直接触れないように、めっき槽10の底面(側壁であってもよい)の外周の近傍(中心軸から離れた位置)に、同一高さで円周に沿って等間隔に複数本(図では4本)設置している。めっき液噴射管35の噴射方向は、めっき槽10の上端部と噴流の方向線がめっき槽10の中央より該めっき液噴射管35に近い側で交わり、且つめっき槽10の中心軸から若干横方向にずれた方向を向き、さらにめっき槽10の中心軸部分では半導体ウエハWの半径の1/2より小さい距離だけ中心軸から離れた位置を通過するようにしている。なお半導体ウエハWの中心軸とめっき槽10の中心軸とは一致している。同一のめっき槽10に配設された全てのめっき液噴射管35について、めっき液がオーバーフローする平面と噴射方向線との交点とめっき槽10の中心軸との間隔は全てのめっき液噴射管35について略同一の間隔であり、噴射方向は全てのめっき液噴射管35について、めっき槽10の中心軸に向かって同じ側に略同じ角度だけずれているように、めっき液噴射管35の方向を調節する。全てのめっき液噴射管35の流量は、相互に略等しくなるように各めっき液噴射管35に設けた図示しない流量調整弁によって調整する。
【0037】
これら複数のめっき液噴射管35を用いることにより、陽極板30をめっき槽10の中央に配置すると共に、めっき液噴射管35からの噴流により、液面中央部を盛り上げることができ、前述のように半導体ウエハWを下降することでその被めっき面のめっき液との接触を徐々に広げ、半導体ウエハW下面の気泡を除去することが容易に可能になる。
【0038】
まためっき液噴射管35によるめっき液の噴射方向を上述のように設定したので、略円筒形のめっき槽10内に緩やかな渦流が生じ、流れが安定すると共に、噴流だけでは流速が低下するめっき槽10の外周部に流速を与え、被めっき面全体の流速分布を改善することができる。めっき槽10内のめっき液を回転させるだけであれば噴流の方向はめっき槽10外周に沿う方向(水平面方向)に向けることが効果的であるが、その場合めっき液面は中央が低く外周が高くなり、半導体ウエハW下面の気泡を除去しにくい。そこで液面の中央部を高くした状態でめっき液に回転を与えるため、噴流の方向は上述の様に半導体ウエハW半径の1/2より小さい距離だけ中心軸から離れた位置を通過させるのが良い。
【0039】
また図7に示すように陽極板30を貫通しためっき液を配管からなる流出孔11からめっき槽10外部に流出させるようにしても良い。この実施形態の場合、めっき液噴射管35を陽極板30の上部中央にその噴出口が真上を向くように設置している。
【0040】
このように構成しても陽極板30の表面から剥離したブラックフィルムや陽極板30への付着物や堆積物が噴流に乗って半導体ウエハWの被めっき面にまで運搬されて被めっき面に付着することを防止できる。まためっき液面中央を盛り上げることができることも言うまでもない。
【0041】
また図8に示す実施形態は、めっき槽10を略円筒形に形成し、底部の周囲部分は中央が低くなるようなテーパ形状で、中央部は略平面とし、めっき槽10内の下部中央に設けた陽極板30の外周の略下方にめっき液をめっき槽10の外部に排出する複数の流出孔11を設けている。
【0042】
めっき槽10の内周側面には、めっき液供給部45が設けられ、その内部は多孔板47によって仕切られ、多孔板47の下の部屋にはめっき液供給管49が接続されている。多孔板47によって仕切られた上側の部屋にはめっき槽10の内側に向かう第2の多孔板48が同一高さで円周に沿って設けられている。従ってめっき液供給管49からめっき液供給部45内に導入されためっき液は、多孔板47,48を通過してめっき槽10の内部に略水平で且つめっき槽10の中心軸方向を向いて流出される。
【0043】
まためっき槽10内の第2の多孔板48よりも上の位置に仕切り板80を設け、仕切り板80の中央にはウエハ直径より小さい直径を持つ1つの穴81を設けている。これによって仕切り板80より下側は、仕切り板80に設けた穴81と底面の流出孔11だけが開口となるため、めっき液供給管49から供給されるめっき液の流量の大半が穴81から半導体ウエハWに向かって流れる。仕切り板80の穴81から上昇しためっき液は半導体ウエハW表面に新たなめっき液を供給し、めっき槽10の上端部からオーバーフローする。オーバフローしためっき液は上記実施形態と同様にめっき液受け13によって回収される。
【0044】
一方めっき液の一部は、下方の陽極板30に向かって流れ、陽極板30表面のブラックフィルム剥離片や付着物等と共に、底面の流出孔11から流出する。
【0045】
オーバーフローしためっき液及び流出孔11から流出しためっき液をろ過してめっき液供給管49に供給する手段は、前記図1で説明した手段と同様である。また半導体ウエハWを保持する手段も図1で説明した機構(または下記する図 9で説明する機構)を用いることができる。
【0046】
ところで噴流による半導体ウエハWの被めっき面の中央から外周に至る流れは、半径方向の流速の不均一をもたらし、めっき液をめっき槽の中心周りに渦流とすることや、半導体ウエハWを回転させることは不均一を低減させる効果はあっても完全に解消することは難しい。被めっき面と流れの相対速度を被めっき面全体で均一にする方法として、被めっき面に沿った平行流を用いる方法があるが、基板保持部63の被めっき面の開口の周囲に段差や勾配ができるため、平行流を実現することは困難が多い。
【0047】
一方半導体ウエハWを並進回転運動させることにより、被めっき面全体のめっき液との相対速度分布を改善することが可能である。並進回転運動はスクロール運動とも呼ばれ、半導体ウエハW自体の方向を変化させることなく、半導体ウエハW全体を小さな円運動させる運動であり、半導体ウエハW上の全ての点で周囲に対して同じ相対速度を持つことが特徴である。この場合でも、めっき槽10内の流れや電界の不均一の影響を低減するため、基板保持部回転軸周りにゆっくりとした回転を行わせる。
【0048】
このための機構の1例を図9に示す。この機構は、駆動部100の下に基板保持部110を取り付けて構成されている。基板保持部110はL1を回転中心として設けられた回転軸111の下部に固定された回転板113に複数のクランク軸115によって回転可能に固定されている。回転軸111には回転中心L1からスクロール半径だけ偏芯した位置にあるスクロール中心L2に中心を持つスクロール軸117が回転可能に貫通固定されている。スクロール軸117の下部はスクロール軸117からスクロール半径だけ偏芯した位置に中心を持ち、スクロール軸117より大きな半径の円柱状に加工されて、基板保持部110上面に回転可能に固定されている。各クランク軸115の中心及びスクロール軸117の中心の相対位置は、回転板113と基板保持ケース119上面において同一の相対位置になっている。これによって回転軸111を固定してスクロール軸117を回転することにより、基板保持ケース119はスクロール中心の周りに並進回転運動(スクロール運動)を行う。回転軸111が回転するとスクロール軸117の位置が移動するため、スクロール軸117を回転させるスクロール用モータ121は駆動部100内部において回転軸111上端に固定する。基板押え板123を上下させる基板押え軸125は、スクロール軸117のスクロール中心L2を貫通し、下方は基板保持ケース119内でスクロール半径に等しい距離だけクランク状に曲げて、下端は基板押え板123の中心に回転可能で軸方向の力を伝達するように固定する。基板押え軸125の上部はスクロール軸117を貫通後、軸力及び曲げモーメントを伝達するが回転は自在なジョイント2個とクランク軸を用い、回転中心L1上に配置したエアシリンダ等の押え板上下駆動機構127に接続する。これによりスクロール運動によっても押え板上下駆動機構127の押し付け力を基板押え板123に伝達できる。回転軸111は駆動部100内で回転用モータ129により駆動される。
【0049】
めっき終了後の回転液切りにおいて、回転部分の重心を回転中心に近づけるため、スクロールの停止時に基板保持ケース119の中心が回転中心に重なるようスクロール軸117の停止位置を制御する。この手段としては光センサ又は磁気センサなどを用いて、スクロール軸117の駆動歯車の位置をモニタし、スクロール用モータ121の停止位置を制御すれば良い。
【0050】
基板保持部110の昇降は駆動部100内において各駆動機構と軸受けを保持する移動フレーム133を上下駆動機構131によって昇降させることにより行う。なお、図9では上下の移動量を小さくして示してあるが、実際にはめっき槽上部に液切り時の飛散防止カバーを設けるため、100mm程度の移動量が必要である。上下駆動機構131による移動は半導体ウエハWの浸漬位置、めっき液面上の回転液切り位置、ウエハ取り出し位置の3箇所に停止すると共に、めっき開始前の接液時に回転させながらゆっくりと下降させる必要があるため、上下駆動機構131はこれらに対応する制御可能な機構とする。
【0051】
基板保持ケース119、基板押え板123、シール部材、カソードピンを用いた半導体ウエハWを保持する機構は、図2と略同じである。なお135は基板取り出し口である。カソードピンと電源とを接続する配線は、基板保持ケース119の壁内部を通過させて、スライド可能なスリップリングにより基板押え軸125に伝え、押え板上下駆動機構127に設けた同様のスライド可能なスリップリングにより外部に取り出し、図示しない電源の陰極に接続する。
【0052】
なお上記各実施形態ではめっきする被めっき基板として半導体ウエハを用いたが、他の各種基板のめっきに用いても良いことは言うまでもない。
【0053】
【発明の効果】
以上詳細に説明したように本発明によれば、以下のような優れた効果を有する。
(1)請求項1,に記載するように、めっき槽に流入しためっき液の一部を、陽極電極に設けた貫通孔又は陽極電極の周囲からめっき槽外部に流出せしめるようにしたので、めっき液中への陽極電極からのパーティクル混入が低減することにより、めっき品質が向上し、歩留まりが向上する。まためっき膜厚の均一性の向上ができる。
【0054】
(2)請求項に記載するようにめっき液噴射管を設置したので、めっき液面の中央部を盛り上げて基板の被めっき面とめっき液の間から気泡を効果的に除去できると共に、めっき液中に設置した陽極電極にめっき液の噴流が直接触れないようにすることが容易に行える。
【0055】
(3)請求項に記載するようにめっき液噴射管を設置したので、めっき液中に設置した陽極電極にめっき液の噴流が直接触れないようにすることが容易に行えるばかりか、めっき槽内で緩やかな渦流が生じ、流れが安定できると共に、噴流だけでは流速が低下する外周部に流速を与え、被めっき面全体の流速分布を改善できる。
【図面の簡単な説明】
【図1】本発明の1実施形態を示す全体概略構成図である。
【図2】基板保持部63の部分を示す断面図である。
【図3】基板保持部63を図2に直交する方向から見たときの要部拡大断面図である。
【図4】シール部材71の要部拡大断面図である。
【図5】他の実施形態を示す図である。
【図6】他の実施形態を示す図である。
【図7】他の実施形態を示す図である。
【図8】他の実施形態を示す図である。
【図9】半導体ウエハWを並進回転運動させる機構の1例を示す図である。
【図10】従来のめっき装置を示す図である。
【符号の説明】
10 めっき槽
11 流出口
30 陽極板(陽極電極)
33 貫通孔
35 めっき液噴射管
63 基板保持部
W 半導体ウエハ(被めっき基板)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plating apparatus suitable for use in plating a substrate to be plated such as a semiconductor wafer.
[0002]
[Prior art]
In recent years, a metal plating apparatus such as copper plating is used to fill the groove or hole of a substrate to be plated in which fine grooves or holes for wiring are formed on the surface of a semiconductor wafer or the like. A technique to fill holes is used. Conventionally, as this type of plating apparatus, there is a face-down type jet plating apparatus. In this plating apparatus, as shown in FIG. 10, a substrate W such as a semiconductor wafer is placed on an upper part of a plating tank 200 with a surface to be plated facing downward (the substrate W to be plated is held by a substrate holding unit 220. The plating solution in the plating solution storage tank 203 is ejected from the bottom of the plating tank 200 through the plating solution supply pipe 207 by the pump 205, and through the holes or meshes provided in the anode plate 211, Plating is performed by bringing a jet of plating solution into contact with the center of the surface perpendicularly.
[0003]
The plating solution overflowed from the plating tank 200 is collected by the plating solution receiver 209 disposed outside the plating tank 200 and returned to the plating solution storage tank 203. Then, by applying a predetermined voltage E between the anode plate 211 and the substrate to be plated W, a plating current flows between the anode electrode 211 and the substrate to be plated W, and a plating film is formed on the surface to be plated of the substrate to be plated W. The
[0004]
However, in the above conventional jet type plating apparatus, the jet flows through one or a plurality of holes or meshes provided in the anode plate 211 to the surface to be plated of the substrate W to be plated. When the film is used, there is a problem in that the peeled piece of the black film attached to the surface of the anode plate 211 is transported to the surface to be plated together with the plating solution, and the plating quality is deteriorated.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and the object thereof is a plating apparatus capable of preventing a decrease in plating quality due to particles caused by a black film or the like even if it is a plating apparatus using a soluble anode electrode. Is to provide.
[0006]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention provides an anode electrode in a plating tank, and flows a plating solution into the plating tank.At the same time as overflowing from the upper edge of the plating tank and installed at the position of the plating solution surface in the plating tankOn the plating surface of the substrate to be platedAboveContact the jet of plating solutionAndIn a plating apparatus for performing plating by energizing between the anode electrode and the substrate to be plated,The anode electrode is composed of a soluble electrode plate, and is installed below the plating solution outlet into the plating tank,A part of the plating solution that has flowed into the plating tank, a through hole provided in the anode electrode or the periphery of the anode electrodeThrough the outlet located below the anode electrodeIt flows out of the plating tank.
  Further, the invention is characterized in that the plating solution outlet is in the upper center of the anode electrode.
  Further, the present invention provides a plating solution supply unit on the inner peripheral side surface of the plating tank, and installs a partition plate having a hole smaller than the diameter of the substrate to be plated at the upper part of the plating solution supply unit. A part of the plating solution that has flowed into the plating tank from the hole flows toward the substrate to be plated from the hole, and the other part flows out from the outlet to the outside of the plating tank.
  Moreover, the present invention is characterized in that particles are removed by a filter from the plating solution that has flowed out of the plating tank from the outlet.
[0007]
By providing such an outlet, the black film formed on the surface of the anode electrode peels off, and the fine particles can flow out of the plating tank together with the plating solution, and the fine particles are mixed with the plating solution. Thus, it can be prevented from being transported and adhered to the surface to be plated of the substrate to be plated. It is also possible to prevent the deposits on the anode electrode other than the black film and the deposits from adhering to the plated surface of the substrate to be plated.
[0008]
  The present invention also allows the plating solution to flow into the plating tank.At the same time as overflowing from the upper edge of the plating tank and installed at the position of the plating solution surface in the plating tankOn the plating surface of the substrate to be platedAboveContact the jet of plating solutionAndIn the plating method for performing plating by energizing between the anode electrode disposed in the plating tank and the substrate to be plated, a part of the plating solution that has flowed into the plating tank,It is composed of a soluble electrode plate and installed below the plating solution outlet into the plating tank.Around the through-hole or anode electrode provided in the anode electrodeThrough the outlet located below the anode electrodeIt flows out of the plating tank.
[0009]
  In addition, the plating apparatus according to the present invention includes a plating solution injection pipe disposed at a plurality of positions symmetrical to the central axis of the plating tank at positions away from the center of the side wall or bottom surface of the plating tank, and these plating solutions. From the spray tube toward the center of the plating solutionThe plating solution is sprayed so that the central portion of the plating solution rises, while the anode electrode is placed at the bottom of the plating tank,While overflowing the plating solution from the upper part of the plating tank, contact the plating surface of the substrate to be plated with the plating solution surface or immerse it in the plating solution.By energizing between the anode electrode and the substrate to be platedPlating is performed.
[0010]
Thus, it is possible to easily prevent the jet of the plating solution from directly contacting the anode electrode installed in the plating solution. Moreover, the central part of the plating solution surface rises. Raising the central portion of the plating solution surface means that even when the substrate to be plated is immersed in the plating solution and plating, the substrate to be plated is brought into contact with the plating solution before starting plating. It is effective for removing bubbles from between the surface to be plated and the plating solution.
[0011]
  Further, the present invention is arranged at a position away from the center of the side wall or the bottom surface of the plating tank, and the plating solution injection pipes are disposed at a plurality of positions symmetrical with respect to the central axis of the plating tank,On the other hand, the anode electrode is placed at the bottom of the plating tank,While spraying the plating solution from these plating solution injection pipes and overflowing the plating solution from the upper part of the plating tank, the surface to be plated of the substrate to be plated is in contact with the plating solution surface or immersed in the plating solution.By energizing between the anode electrode and the substrate to be platedA plating apparatus for performing plating, wherein the plating solution spraying direction by the plating solution spraying tube intersects with the liquid surface where the plating solution overflows on the side closer to the plating solution spraying tube than the central axis of the plating tank, In the part, it passes through a position separated from the central axis by a distance smaller than ½ of the radius of the substrate to be plated, and the spraying direction of the plating solution by all the plating solution injection pipes is substantially the same angle on the same side toward the central axis. It is characterized by being inclined.
[0012]
This not only makes it easy to prevent the plating solution jet from directly touching the anode electrode installed in the plating solution, but also creates a gentle vortex flow in the plating tank to stabilize the flow. The flow velocity is given to the outer peripheral portion where the flow velocity is reduced, and the flow velocity distribution of the entire surface to be plated is improved. In order to give rotation to the plating solution in a state where the central portion of the plating solution level is raised, the direction of the jet may pass through a position away from the central axis by a distance smaller than 1/2 of the radius of the substrate to be plated. good.
[0013]
Further, the present invention provides a plating apparatus having a structure in which a plating solution injection pipe is attached to the side wall or bottom surface of the plating tank, and a part of the plating solution flowing into the plating tank is disposed in the plating solution inside the plating tank. It has a structure in which it flows out to the outside of the plating tank through a through hole provided in the formed anode electrode or from the periphery of the anode electrode.
[0014]
As a result, the black film formed on the surface of the anode electrode peels off, and the fine particles can flow out to the outside of the plating tank together with the plating solution. It can be prevented from being transported and adhered. It is also possible to prevent the deposits on the anode electrode other than the black film and the deposits from adhering to the plated surface of the substrate to be plated.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall schematic configuration diagram showing a plating apparatus according to an embodiment of the present invention. As shown in the figure, this plating apparatus is provided with an anode plate (anode electrode) 30 in the center of the lower part of the plating solution in the plating tank 10, and provided with a plating solution injection pipe 35 penetrating in the center of the anode plate 30. In addition, the semiconductor wafer W is held by the substrate holding part 63 so that the semiconductor wafer (substrate to be plated) W is positioned at the position of the plating solution surface of the plating tank 10. Each component will be described below.
[0016]
The plating tank 10 is a substantially cylindrical container having an open upper surface, and the bottom has a tapered shape (conical shape) with a low center. The plating solution injection pipe 35 protrudes from the lowest central portion of the plating tank 10, and an outflow hole 11 through which the plating solution flows out of the plating tank 10 is located around the plating solution injection pipe 35. Is provided. The plating solution flowing out from the outflow hole 11 is returned to the plating solution storage tank 39 through the filter (or separator) 37, and is ejected from the plating solution injection pipe 35 through the pump 41 and the filter 43.
[0017]
On the other hand, a plating solution receiver 13 is provided on the outer periphery of the upper edge portion of the plating tank 10 so as to surround it, and the plating solution in the plating solution receiver 13 is also returned to the plating solution storage tank 39.
[0018]
The anode plate 30 is disposed at the center in the lower part of the plating tank 10 so that the surface thereof is perpendicular to the central axis of the plating tank 10. As the anode plate 30, a soluble electrode plate is used, and in the case of copper plating, phosphorous copper is used. The anode plate 30 of this embodiment is disk-shaped and has an opening 31 through which the plating solution spray pipe 35 passes.
[0019]
On the other hand, a substrate holding unit vertical drive mechanism 57 for raising and lowering the substrate holding unit 63 and a substrate pressing plate vertical driving mechanism 61 for raising and lowering the substrate pressing plate 67 described below are provided above the substrate holding unit 63. The substrate pressing plate vertical drive mechanism 61 is composed of a cylinder driven by spring force in the downward direction and air in the upward direction, and is housed in a frame 61a supported by a motor (rotary drive mechanism) 59, and the air piping is a motor. It passes through the center of the shaft and is connected to the outside by a rotary joint above the motor 59. The motor 59 and the substrate pressing plate vertical drive mechanism 61 are moved up and down by the substrate holding unit vertical drive mechanism 57. Reference numeral 51 denotes a support arm.
[0020]
2 is a cross-sectional view showing a portion of the substrate holding part 63, FIG. 3 is an enlarged cross-sectional view of the main part when the substrate holding part 63 is viewed from a direction orthogonal to FIG. 2, and FIG. It is a principal part expanded sectional view of the 71 part. As shown in these drawings, the substrate holding part 63 has a cylindrical shape with a diameter slightly larger than the diameter of the wafer that can accommodate the semiconductor wafer W therein, and the lower surface has an opening slightly smaller than the wafer diameter, and the upper part is A substrate holding case 65 made of an insulating material that is closed and has a substrate holding portion rotating shaft 68 that supports the substrate holding portion 63 in the center of the upper surface and has a slit-like opening 69 when the semiconductor wafer W is taken in and out of the side wall. And a disc-shaped substrate pressing plate 67 which is disposed in the substrate holding case 65 and has substantially the same diameter as the wafer diameter. The substrate pressing plate 67 is made of an insulating material, and has a pressing shaft 69 for moving the substrate pressing plate 67 up and down. The pressing shaft 69 extends upward through the substrate holding portion rotating shaft 68. A ring-shaped seal member 71 is provided around the opening on the lower surface of the substrate holding case 65, and the seal member 71 is in close contact with the surface of the semiconductor wafer W to prevent the plating solution from entering. Plural or ring-shaped cathode pins 73 are provided on the inner side of the lower surface of the substrate holding case 65 on the larger diameter side than the seal member 71 so that the cathode pins 73 are in contact with the outer peripheral portion of the surface of the semiconductor wafer W. In order to make the potential of the plating surface of the semiconductor wafer W uniform, the cathode pins 73 are arranged so that the cathode pins 73 are in close contact with the entire outer periphery of the surface of the semiconductor wafer W or in line contact with the semiconductor wafer W. The cathode pins 73 may be formed of a ring-shaped plate, and the inner peripheral portion may be bent toward the semiconductor wafer W to have elasticity. As shown in FIG. 4, an air passage 65b is provided so as to connect the inner side and the outer side of the peripheral edge portion 65a holding the semiconductor wafer W under the substrate holding case 65.
[0021]
On the other hand, the substrate holding part 63 is moved up and down by the substrate holding part vertical drive mechanism 57 as shown in FIG. 1, but at the raised position, the substrate holding part 63 and the semiconductor wafer W held therein are plated liquid in the plating tank 10. In this position, the plated semiconductor wafer W is taken out and an unprocessed semiconductor wafer W is mounted. On the other hand, at the lowered position, the surface to be plated of the semiconductor wafer W is immersed in the plating solution.
[0022]
Then, the removal of the semiconductor wafer W from the substrate holding part 63 raises the substrate holding part 63 to a position where it does not come into contact with the plating solution, and raises the substrate pressing plate 67 to the position shown by the dotted line in FIG. Then, as shown in FIG. 3, the robot hand 75 is inserted from the opening 69 of the substrate holding case 65, the back surface of the semiconductor wafer W is vacuum-sucked and lifted, and the semiconductor wafer W is taken out from the opening 69. On the other hand, the insertion / holding of the semiconductor wafer W to the substrate holding part 63 is performed by conversely vacuum-adsorbing the back surface of the unprocessed semiconductor wafer W with the robot hand 75 and opening the substrate holding case 65 from the opening 69. The semiconductor wafer W is inserted inside, the vacuum suction of the robot hand 75 is released and placed on the seal member 71 and the cathode pin 73, the robot hand 75 is pulled out from the opening 69, and the substrate pressing plate 67 is lowered. This is performed by pushing down the upper part of the semiconductor wafer W and bringing it into contact with the seal member 71 and the cathode pin 73 securely. The vertical movement of the substrate pressing plate 67 is performed by the substrate pressing shaft vertical driving mechanism 61 shown in FIG. The central portion of the opening 69 is greatly opened to allow the robot hand 75 to pass therethrough.
[0023]
Here, when copper is electroplated on the surface of the semiconductor wafer W, since copper easily diffuses into silicon, a metal such as Ti, Ta, TiN, TaN or a compound thereof is used as a barrier layer on the surface to be plated of the wafer. The film is formed, and electrolytic plating is performed using the barrier layer or a thin copper layer formed thereon as a cathode and the anode plate 30 as an anode.
[0024]
The cathode pin 73 for supplying power to the semiconductor wafer W has a risk of damaging the plating layer near the cathode pin 73 when the semiconductor wafer W is taken out when the plating solution comes into contact with the plating solution. Therefore, when the semiconductor wafer W is held by the substrate holding portion 63, the outer peripheral portion of the surface of the semiconductor wafer W is sealed with the sealing member 71 so that the plating solution does not enter, and the cathode pin 73 is connected to the substrate holding case 65 and the semiconductor. The surface of the semiconductor wafer W is brought into contact with a space not touching the plating solution formed by the wafer W and the seal member 71.
[0025]
Conventionally, in the jet plating method in which a plating solution is ejected from the lower side of a plating tank, the semiconductor wafer W is positioned above the plating solution surface of the plating tank with the surface to be plated of the semiconductor wafer W down, and the plating swelled by the jet flow A method of bringing the surface to be plated into contact with the liquid surface has been common. However, in the present embodiment, since the substrate holding part 63 that does not contact the plating solution except for the surface to be plated by the seal member 71 is used, the substrate holding part 63 and the semiconductor wafer W held by the substrate holding part 63 are used as the plating solution. It can be immersed in the plating. Thereby, the distance of a to-be-plated surface and the anode plate 30 can be adjusted freely. It is also possible to move the semiconductor wafer W and the substrate holding part 63 with water by moving the semiconductor wafer W to the outside of the plating tank 10 while being held by the substrate holding part 63.
[0026]
By the way, since the plating solution flow in the plating tank 10 and the electric field between the anode plate 30 and the surface to be plated are not necessarily uniform in the circumferential direction, in order to improve the uniformity of plating, It is effective to rotate the semiconductor wafer W in the plating tank 10 during the electrolytic plating. Therefore, the substrate holder 63 is rotated in the horizontal plane by the motor (rotary drive mechanism) 59 shown in FIG. Another purpose of rotating the semiconductor wafer W is to reduce the concentration diffusion layer near the surface of the semiconductor wafer W by increasing the relative speed of the surface of the semiconductor wafer W and the plating solution, thereby making the plating rate-controlled. This is for the purpose of preventing, forming a uniform plating film on the entire surface, and further increasing the current density to enable high-speed plating.
[0027]
The rotation of the substrate holding part 63 is not limited to the above-described plating, but also removes bubbles when the semiconductor wafer W is attached to the substrate holding part 63 and then comes into contact with the plating solution. After the electrolytic plating is finished, the substrate holding part 63 and the semiconductor wafer W are plated. It is also effective for draining liquid by rotation after raising the liquid level.
[0028]
The rotation of the substrate holding unit 60 during plating is a low-speed rotation of 10 to 300 rpm. After the completion of plating, the substrate holding unit 63 and the semiconductor wafer W are raised to a position where they do not come into contact with the plating solution to perform liquid draining. A rotation of 500 rpm or more (preferably a rotation of 1000 rpm or more) is required.
[0029]
Next, a method for performing plating in the plating tank 10 using the plating apparatus shown in FIG. 1 will be described.
[0030]
First, an unprocessed semiconductor wafer W is mounted on the substrate holder 63 and then the pump 41 is driven to spray the plating solution in the plating solution storage tank 39 from the plating solution injection pipe 35 into the plating tank 10. While rotating the substrate holding part 63 at about 50 to 300 rpm, the semiconductor wafer W is lowered until the semiconductor wafer W comes into contact with the raised plating liquid surface at the center, and the substrate is held more slowly from the state in which the center of the plating liquid contacted the semiconductor wafer W. The part 63 is lowered and electrolytic plating is performed. The descending speed at this time is preferably 30 mm / second or less. Raising the central portion of the plating solution surface means that even when the semiconductor wafer W is immersed in the plating solution for plating, the coating of the semiconductor wafer W is performed at the stage where the semiconductor wafer W is brought into contact with the plating solution before starting the plating. This is effective for removing bubbles from between the plating surface and the plating solution. By doing so, the lower surface of the semiconductor wafer W is filled with the plating solution, and air is discharged from the space between the semiconductor wafer W and the lower part of the substrate holding case 65. In order to discharge this air more efficiently, an air passage 65b shown in FIG. 4 is provided. The air passage 65b is also effective as a liquid discharge passage when the rotating liquid is drained after plating.
[0031]
The sprayed plating solution overflows from the upper edge of the plating tank 10, is collected in the plating solution receiver 13, and flows into the plating solution storage tank 39 through the pipe 15. Further, a part of the plating solution sprayed from the plating solution spray pipe 35 flows out from the outflow hole 11 to the outside of the plating tank 10 through the outer periphery of the anode plate 30, and the black film is formed by the filter (or separator) 37. After removing the exfoliation pieces and the deposits, deposits, etc. on the anode plate 30, they flow into the plating solution storage tank 39. In the embodiment shown in FIG. 1, gravity flows down from the outflow hole 11 to the plating solution storage tank 39, but a pump may be provided between the outflow hole 11 and the filter (or separator) 37.
[0032]
Since the outflow hole 11 is provided in the vicinity of the anode plate 30 as described above, the black film formed on the surface of the anode plate 30 is peeled off, and the fine particles are discharged out of the plating layer 10 together with the plating solution. It is possible to prevent the particles from being mixed with the plating solution and transported to the surface to be plated of the semiconductor wafer W to adhere to the surface to be plated. In addition to the black film, deposits and deposits on the anode plate 30 are also prevented from being transported to the surface to be plated by being jetted and adhering to the surface to be plated.
[0033]
Phosphorus-containing copper anode plate used in copper sulfate electrolytic plating prevents the anode from being passivated by the function of the black film formed on the surface, and suppresses the disproportionation reaction of copper, creating a healthy plating film It plays an important role. However, since this black film peels off from the anode surface and becomes particles, which also affects the abnormal deposition of the plating film, the positional relationship between the anode plate 30 to which the black film adheres and the semiconductor wafer W and the flow of the plating solution therebetween Attention is required. In particular, it is important not to position the surface to be plated downstream of the plating solution that has flowed on the surface of the anode plate 30. The black film is heavier than the plating solution, and most of the debris peeled off from the black film sinks to the bottom of the plating layer 10, and the deposits and deposits on the anode plate 30 other than the black film are also heavier than the plating solution. The hole 11 is desirably provided at a position below the anode plate 30 in the vicinity of the anode plate 30 as in this embodiment, and when the bottom portion of the plating layer 10 has a conical shape as in this embodiment. It is desirable to provide near the lowest point. The plating solution flowing out from the outflow hole 11 is a gentle flow along the surface of the anode plate 30 as much as possible, and the stripped pieces, deposits, deposits, etc. of the black film on the surface of the anode plate 30 together with the flow outflow hole 11. Spill from. Applying a strong flow to the surface of the anode plate 30 is not desirable for promoting the peeling of the black film and keeping the state of the black film stable, and should be avoided.
[0034]
In the above embodiment, the plating solution injection pipe 35 is passed through the center of the anode plate 30, and part of the plating solution flows out of the plating tank 10 from the periphery of the anode plate 30 through the outflow hole 11 below the anode plate 30. However, as shown in FIG. 5, a plurality of through holes 33 are provided in the anode plate 30 itself, and the plating solution that has passed through these through holes 33 flows out of the plating tank 10 from the outflow holes 11. You may do it. Even if comprised in this way, it prevents that the black film peeled off from the surface of the anode plate 30, the deposit | attachment to the anode plate 30, and a deposit get carried to a to-be-plated surface on a jet, and adhere to a to-be-plated surface. it can.
[0035]
If the anode plate 30 is approximately the same size as the surface to be plated of the semiconductor wafer W, the anode plate 30 is a flat surface facing the semiconductor wafer W as shown in FIG. When the distance between the surface to be plated of the semiconductor wafer W and the anode plate 30 is small, it is desirable to make it spherical as shown in FIG.
[0036]
In the embodiment shown in FIGS. 5 and 6, the plating solution injection pipe 35 is disposed near the outer periphery of the bottom surface (which may be a side wall) of the plating tank 10 so that the jet does not directly touch the anode plate 30 ( A plurality (four in the figure) are installed at equal intervals along the circumference at the same height at positions apart from the central axis. The injection direction of the plating solution injection pipe 35 is such that the upper end portion of the plating tank 10 and the direction line of the jet intersect at a side closer to the plating solution injection pipe 35 than the center of the plating tank 10 and slightly lateral from the central axis of the plating tank 10. The direction is shifted in the direction, and the central axis portion of the plating tank 10 passes through a position separated from the central axis by a distance smaller than ½ of the radius of the semiconductor wafer W. Note that the central axis of the semiconductor wafer W coincides with the central axis of the plating tank 10. For all the plating solution injection pipes 35 disposed in the same plating tank 10, the distance between the intersection of the plane in which the plating solution overflows and the injection direction line and the central axis of the plating tank 10 is all the plating solution injection pipes 35. About the direction of the plating solution injection pipe 35 so that the injection direction is shifted by substantially the same angle toward the central axis of the plating tank 10 with respect to all the plating solution injection pipes 35. Adjust. The flow rates of all the plating solution injection pipes 35 are adjusted by a flow rate adjusting valve (not shown) provided in each plating solution injection pipe 35 so as to be substantially equal to each other.
[0037]
By using the plurality of plating solution injection pipes 35, the anode plate 30 can be arranged in the center of the plating tank 10, and the liquid surface center can be raised by the jet flow from the plating solution injection pipe 35, as described above. When the semiconductor wafer W is lowered, the contact of the surface to be plated with the plating solution is gradually expanded, and the bubbles on the lower surface of the semiconductor wafer W can be easily removed.
[0038]
In addition, since the spraying direction of the plating solution by the plating solution spraying pipe 35 is set as described above, a gentle vortex flow is generated in the substantially cylindrical plating tank 10, the flow is stabilized, and the flow rate is reduced only by the jet flow. A flow rate is given to the outer peripheral part of the tank 10, and the flow rate distribution of the whole to-be-plated surface can be improved. If only the plating solution in the plating tank 10 is rotated, it is effective to direct the direction of the jet to the direction along the outer periphery of the plating tank 10 (horizontal plane direction). It becomes high and it is difficult to remove bubbles on the lower surface of the semiconductor wafer W. Therefore, in order to rotate the plating solution in a state where the central portion of the liquid level is raised, the direction of the jet should pass through a position away from the central axis by a distance smaller than ½ of the radius of the semiconductor wafer W as described above. good.
[0039]
Further, as shown in FIG. 7, the plating solution penetrating the anode plate 30 may be allowed to flow out of the plating tank 10 from the outflow hole 11 made of a pipe. In the case of this embodiment, the plating solution injection pipe 35 is installed at the center of the upper portion of the anode plate 30 so that its injection port faces directly above.
[0040]
Even in such a configuration, the black film peeled off from the surface of the anode plate 30 and the deposits and deposits on the anode plate 30 are transported to the plated surface of the semiconductor wafer W and adhered to the plated surface. Can be prevented. Needless to say, the center of the plating solution can be raised.
[0041]
In the embodiment shown in FIG. 8, the plating tank 10 is formed in a substantially cylindrical shape, the peripheral portion of the bottom is tapered so that the center is lowered, the center is substantially flat, and the lower part in the plating tank 10 is centered. A plurality of outflow holes 11 for discharging the plating solution to the outside of the plating tank 10 are provided substantially below the outer periphery of the provided anode plate 30.
[0042]
A plating solution supply unit 45 is provided on the inner peripheral side surface of the plating tank 10, and the inside thereof is partitioned by a porous plate 47, and a plating solution supply pipe 49 is connected to a chamber below the porous plate 47. In the upper chamber partitioned by the perforated plate 47, a second perforated plate 48 facing the inside of the plating tank 10 is provided at the same height along the circumference. Accordingly, the plating solution introduced from the plating solution supply pipe 49 into the plating solution supply unit 45 passes through the perforated plates 47 and 48, is substantially horizontal inside the plating tank 10, and faces the central axis direction of the plating tank 10. Leaked.
[0043]
A partition plate 80 is provided above the second porous plate 48 in the plating tank 10, and one hole 81 having a diameter smaller than the wafer diameter is provided in the center of the partition plate 80. Accordingly, since only the hole 81 provided in the partition plate 80 and the outflow hole 11 on the bottom surface are opened below the partition plate 80, most of the flow rate of the plating solution supplied from the plating solution supply pipe 49 is from the hole 81. It flows toward the semiconductor wafer W. The plating solution rising from the hole 81 of the partition plate 80 supplies a new plating solution to the surface of the semiconductor wafer W and overflows from the upper end of the plating tank 10. The overflowed plating solution is collected by the plating solution receiver 13 as in the above embodiment.
[0044]
On the other hand, a part of the plating solution flows toward the lower anode plate 30 and flows out from the outflow hole 11 on the bottom surface together with the black film peeling pieces and deposits on the surface of the anode plate 30.
[0045]
The means for filtering the overflowed plating solution and the plating solution flowing out from the outflow hole 11 and supplying it to the plating solution supply pipe 49 are the same as the means described in FIG. Further, as the means for holding the semiconductor wafer W, the mechanism described in FIG. 1 (or the mechanism described in FIG. 9 described below) can be used.
[0046]
By the way, the flow from the center to the outer periphery of the surface to be plated of the semiconductor wafer W caused by the jet brings about nonuniformity of the flow velocity in the radial direction, and makes the plating solution vortex around the center of the plating tank or rotates the semiconductor wafer W. Although it has the effect of reducing non-uniformity, it is difficult to completely eliminate it. As a method of making the relative velocity of the surface to be plated and the flow uniform over the entire surface to be plated, there is a method of using a parallel flow along the surface to be plated. Because of the gradient, it is often difficult to achieve parallel flow.
[0047]
On the other hand, it is possible to improve the relative velocity distribution with the plating solution on the entire surface to be plated by causing the semiconductor wafer W to translate and rotate. The translational rotary motion is also called scroll motion, and is a motion that moves the entire semiconductor wafer W in a small circular motion without changing the direction of the semiconductor wafer W itself, and is the same relative to the surroundings at all points on the semiconductor wafer W. It is characterized by having speed. Even in this case, in order to reduce the influence of the flow in the plating tank 10 and the unevenness of the electric field, the substrate holder is rotated slowly around the rotation axis of the substrate holder.
[0048]
An example of a mechanism for this purpose is shown in FIG. This mechanism is configured by attaching a substrate holding unit 110 under the driving unit 100. The substrate holding part 110 is fixed to a rotating plate 113 fixed to a lower part of a rotating shaft 111 provided with L1 as a rotation center so as to be rotatable by a plurality of crankshafts 115. A scroll shaft 117 having a center at a scroll center L2 that is eccentric from the rotation center L1 by the scroll radius is rotatably fixed to the rotation shaft 111. The lower portion of the scroll shaft 117 is centered at a position eccentric from the scroll shaft 117 by the scroll radius, is processed into a cylindrical shape having a larger radius than the scroll shaft 117, and is rotatably fixed to the upper surface of the substrate holder 110. The relative positions of the center of each crankshaft 115 and the center of the scroll shaft 117 are the same relative positions on the upper surface of the rotating plate 113 and the substrate holding case 119. Thus, by rotating the scroll shaft 117 while fixing the rotation shaft 111, the substrate holding case 119 performs a translational rotation motion (scroll motion) around the scroll center. Since the position of the scroll shaft 117 moves when the rotation shaft 111 rotates, the scroll motor 121 that rotates the scroll shaft 117 is fixed to the upper end of the rotation shaft 111 inside the drive unit 100. The substrate pressing shaft 125 for moving the substrate pressing plate 123 up and down passes through the scroll center L2 of the scroll shaft 117, the lower portion is bent in a crank shape within the substrate holding case 119 by a distance equal to the scroll radius, and the lower end is the substrate pressing plate 123. It is fixed so that it can rotate and transmit axial force to the center. The upper part of the substrate presser shaft 125 passes through the scroll shaft 117, transmits axial force and bending moment, but uses two freely rotatable joints and a crankshaft. The upper and lower sides of the presser plate such as an air cylinder arranged on the rotation center L1 Connected to the drive mechanism 127. Accordingly, the pressing force of the presser plate vertical drive mechanism 127 can be transmitted to the substrate presser plate 123 also by scrolling motion. The rotation shaft 111 is driven by a rotation motor 129 in the drive unit 100.
[0049]
In order to bring the center of gravity of the rotating part closer to the center of rotation when the rotating liquid is removed after plating, the stop position of the scroll shaft 117 is controlled so that the center of the substrate holding case 119 overlaps the center of rotation when the scroll is stopped. As this means, an optical sensor or a magnetic sensor may be used to monitor the position of the drive gear of the scroll shaft 117 and control the stop position of the scroll motor 121.
[0050]
The substrate holding unit 110 is moved up and down by moving up and down a moving frame 133 that holds each drive mechanism and bearing in the drive unit 100 by the vertical drive mechanism 131. In FIG. 9, the vertical movement amount is shown with a small amount, but in actuality, a movement prevention amount of about 100 mm is necessary to provide a splash prevention cover at the upper part of the plating tank. The movement by the vertical drive mechanism 131 needs to stop at three positions, ie, the immersion position of the semiconductor wafer W, the position of rotating the liquid on the plating liquid surface, and the position of taking out the wafer, and slowly descend while rotating at the time of liquid contact before the start of plating. Therefore, the vertical drive mechanism 131 is a controllable mechanism corresponding to these.
[0051]
The mechanism for holding the semiconductor wafer W using the substrate holding case 119, the substrate pressing plate 123, the seal member, and the cathode pins is substantially the same as that in FIG. Reference numeral 135 denotes a substrate outlet. The wiring for connecting the cathode pin and the power source passes through the wall of the substrate holding case 119 and is transmitted to the substrate presser shaft 125 by a slidable slip ring, and the same slidable slip provided on the presser plate vertical drive mechanism 127. It is taken out by a ring and connected to a power source cathode (not shown).
[0052]
In each of the above embodiments, a semiconductor wafer is used as a substrate to be plated. However, it goes without saying that it may be used for plating of other various substrates.
[0053]
【The invention's effect】
  As described above in detail, the present invention has the following excellent effects.
  (1)Claim 1,5As described in the above, since a part of the plating solution that has flowed into the plating tank is allowed to flow out of the plating tank from the periphery of the through-hole or anode electrode provided in the anode electrode, As a result, the plating quality is improved and the yield is improved. Moreover, the uniformity of the plating film thickness can be improved.
[0054]
  (2)Claim6Since the plating solution injection tube is installed as described in 1., the central portion of the plating solution surface can be raised to effectively remove bubbles from between the plating surface of the substrate and the plating solution, and the anode installed in the plating solution It is easy to prevent the jet of plating solution from directly touching the electrode.
[0055]
  (3)Claim7The plating solution injection tube is installed as described in 1. As a result, the flow can be stabilized, and the flow velocity can be given to the outer peripheral portion where the flow velocity is lowered only by the jet flow, thereby improving the flow velocity distribution of the entire surface to be plated.
[Brief description of the drawings]
FIG. 1 is an overall schematic configuration diagram showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a portion of a substrate holder 63. FIG.
3 is an enlarged cross-sectional view of a main part when a substrate holding part 63 is viewed from a direction orthogonal to FIG.
4 is an enlarged cross-sectional view of a main part of a seal member 71. FIG.
FIG. 5 is a diagram showing another embodiment.
FIG. 6 is a diagram showing another embodiment.
FIG. 7 is a diagram showing another embodiment.
FIG. 8 is a diagram showing another embodiment.
FIG. 9 is a diagram illustrating an example of a mechanism that translates and rotates a semiconductor wafer W;
FIG. 10 is a view showing a conventional plating apparatus.
[Explanation of symbols]
10 Plating tank
11 Outlet
30 Anode plate (anode electrode)
33 Through hole
35 Plating solution injection pipe
63 Substrate holder
W Semiconductor wafer (substrate to be plated)

Claims (8)

めっき槽内に陽極電極を配設し、めっき槽内にめっき液を流入してめっき槽の上縁部からオーバーフローさせると同時に前記めっき槽内のめっき液面の位置に設置した被めっき基板の被めっき面に前記めっき液の噴流を当接し、前記陽極電極と被めっき基板間に通電することでめっきを行うめっき装置において、
前記陽極電極は溶解性電極板で構成され、且つ前記めっき槽内へのめっき液の噴出口より下側に設置され、
前記めっき槽に流入しためっき液の一部を、陽極電極に設けた貫通孔又は陽極電極の周囲を通して陽極電極よりも下の位置に設けた流出口からめっき槽外部に流出せしめることを特徴とするめっき装置。
An anode electrode is disposed in the plating tank, and the plating solution is allowed to flow into the plating tank and overflow from the upper edge of the plating tank. At the same time, the substrate to be plated placed at the position of the plating liquid surface in the plating tank is covered. abut the jet of the plating solution to the plating surface in the plating apparatus for performing plating by energizing between the anode electrode and the object to be plated substrate,
The anode electrode is composed of a soluble electrode plate, and is installed below the plating solution outlet into the plating tank,
A part of the plating solution that has flowed into the plating tank flows out of the plating tank from a through hole provided in the anode electrode or an outlet provided at a position below the anode electrode through the periphery of the anode electrode. Plating equipment.
前記めっき液の噴出口は、前記陽極電極の上部中央にあることを特徴とする請求項1に記載のめっき装置。2. The plating apparatus according to claim 1, wherein the plating solution outlet is located in the upper center of the anode electrode. 前記めっき槽の内周側面にめっき液供給部を設けるとともに、このめっき液供給部の上部に被めっき基板の直径よりも小さい穴を持つ仕切り板を設置し、めっき液供給部からめっき槽内に流出されためっき液は、その一部が前記穴から被めっき基板に向かって流れ、他の一部が流出口からめっき槽外部へ流出することを特徴とする請求項1に記載のめっき装置。A plating solution supply unit is provided on the inner peripheral side surface of the plating tank, and a partition plate having a hole smaller than the diameter of the substrate to be plated is installed on the upper part of the plating solution supply unit. 2. The plating apparatus according to claim 1, wherein a part of the plating solution that has flowed out flows from the hole toward the substrate to be plated, and another part flows out from the outlet to the outside of the plating tank. 前記流出口からめっき槽外部に流出しためっき液は、フィルターによってパーティクルが除去されることを特徴とする請求項1又は2又は3に記載のめっき装置。The plating apparatus according to claim 1, wherein particles are removed from the plating solution that has flowed out of the plating tank from the outlet through a filter. めっき槽内にめっき液を流入してめっき槽の上縁部からオーバーフローさせると同時に前記めっき槽内のめっき液面の位置に設置した被めっき基板の被めっき面に前記めっき液の噴流を当接し、めっき槽内に配設した陽極電極と被めっき基板間に通電することでめっきを行うめっき方法において、
前記めっき槽内に流入しためっき液の一部を、溶解性電極板からなり且つ前記めっき槽内へのめっき液の噴出口より下側に設置された陽極電極に設けた貫通孔又は陽極電極の周囲を通して陽極電極よりも下の位置に設けた流出口からめっき槽外部に流出せしめることを特徴とするめっき方法。
Abutting a jet of said plating solution to be plated surface of the plated substrate placed in the position of the plating liquid surface of the plating solution at the same time the plating tank when the overflow from the upper edge of the inlet to the plating tank into the plating tank In the plating method of plating by energizing between the anode electrode and the substrate to be plated disposed in the plating tank,
A part of the plating solution that has flowed into the plating tank is a through-hole or anode electrode that is made of a soluble electrode plate and provided in an anode electrode that is disposed below the plating solution outlet into the plating tank. A plating method, characterized by causing the outside to flow out of the plating tank from an outlet provided at a position below the anode electrode through the periphery.
めっき槽の側壁又は底面の中心から離れた位置で、めっき槽の中心軸に対して対称の複数の位置にめっき液噴射管を配設すると共に、これらめっき液噴射管からめっき液面の概ね中央部に向けてめっき液面中央部が盛り上がるようにめっき液を噴射する構成とし、一方陽極電極をめっき槽の下部に配置し、めっき液をめっき槽の上部からオーバーフローさせながら、被めっき基板の被めっき面をめっき液面に接触又はめっき液中に浸漬して陽極電極と被めっき基板間に通電することでめっきを行うことを特徴とするめっき装置。The plating solution injection pipes are disposed at a plurality of positions symmetrical to the central axis of the plating tank at positions away from the center of the side wall or bottom surface of the plating tank, and from the plating solution injection pipes to the center of the plating solution surface. The plating solution is sprayed so that the central portion of the plating solution surface rises toward the surface. On the other hand, the anode electrode is placed at the bottom of the plating tank, and the plating solution overflows from the top of the plating tank. A plating apparatus for performing plating by contacting a plating surface with a plating solution surface or dipping in a plating solution and energizing between an anode electrode and a substrate to be plated . めっき槽の側壁又は底面の中心から離れた位置で、めっき槽の中心軸に対して対称の複数の位置にめっき液噴射管を配設し、一方陽極電極をめっき槽の下部に配置し、これらめっき液噴射管からめっき液を噴射し、めっき液をめっき槽の上部からオーバーフローさせながら、被めっき基板の被めっき面をめっき液面に接触又はめっき液中に浸漬して陽極電極と被めっき基板間に通電することでめっきを行うめっき装置であって、
前記めっき液噴射管によるめっき液の噴射方向は、めっき液がオーバーフローする液面とめっき槽の中心軸より該めっき液噴射管に近い側で交わり、中心軸の部分では被めっき基板半径の1/2より小さい距離だけ中心軸から離れた位置を通過し、且つ全てのめっき液噴射管によるめっき液の噴射方向は中心軸に向かって同じ側に略同じ角度だけ傾斜していることを特徴とするめっき装置。
The plating solution injection pipes are disposed at a plurality of positions symmetrical to the central axis of the plating tank at positions away from the center of the side wall or bottom surface of the plating tank, while the anode electrode is disposed at the lower part of the plating tank. While injecting the plating solution from the plating solution injection pipe and overflowing the plating solution from the upper part of the plating tank, the surface to be plated is in contact with the surface of the plating solution or immersed in the plating solution and the anode electrode and the substrate to be plated It is a plating apparatus that performs plating by energizing in between ,
The spraying direction of the plating solution by the plating solution spraying tube intersects the surface of the plating solution overflowing on the side closer to the plating solution spraying tube than the central axis of the plating tank, and the central axis part is 1 / of the radius of the substrate to be plated. It passes through a position separated from the central axis by a distance less than 2, and the plating solution injection directions of all the plating solution injection pipes are inclined at substantially the same angle toward the same side toward the central axis. Plating equipment.
めっき槽に流入しためっき液の一部が、めっき槽の内部のめっき液中に配設された陽極電極に設けた貫通孔を通して又は陽極電極の周囲からめっき槽の外部に流出する構造を持つことを特徴とする請求項6または7記載のめっき装置。Part of the plating solution that has flowed into the plating tank has a structure that flows out through the through hole provided in the anode electrode disposed in the plating solution inside the plating tank or from the periphery of the anode electrode to the outside of the plating tank. The plating apparatus according to claim 6 or 7, wherein:
JP19491999A 1999-07-08 1999-07-08 Plating equipment Expired - Lifetime JP3877910B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19491999A JP3877910B2 (en) 1999-07-08 1999-07-08 Plating equipment
US09/612,218 US6558518B1 (en) 1999-07-08 2000-07-07 Method and apparatus for plating substrate and plating facility
EP00114663A EP1067221A3 (en) 1999-07-08 2000-07-07 Method and apparatus for plating substrate and plating facility
TW089113509A TW497143B (en) 1999-07-08 2000-07-07 Plating device, plating method and equipment for plating process
KR1020000038883A KR100637890B1 (en) 1999-07-08 2000-07-07 Plating apparatus, plating method, plating process equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19491999A JP3877910B2 (en) 1999-07-08 1999-07-08 Plating equipment

Publications (2)

Publication Number Publication Date
JP2001024307A JP2001024307A (en) 2001-01-26
JP3877910B2 true JP3877910B2 (en) 2007-02-07

Family

ID=16332536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19491999A Expired - Lifetime JP3877910B2 (en) 1999-07-08 1999-07-08 Plating equipment

Country Status (1)

Country Link
JP (1) JP3877910B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068151A (en) * 2002-07-25 2004-03-04 Matsushita Electric Ind Co Ltd Plating method of substrate and plating device
JP5992396B2 (en) * 2010-04-01 2016-09-14 ゾモント・ゲーエムベーハー Solar cell and method of manufacturing solar cell
US20230151507A1 (en) * 2021-02-22 2023-05-18 Ebara Corporation Plating apparatus
CN113718305A (en) * 2021-08-31 2021-11-30 东莞奥美特科技有限公司 Electroplating equipment and electroplating bath for integrated circuit lead frame
WO2023073860A1 (en) * 2021-10-28 2023-05-04 株式会社荏原製作所 Plating device
CN115116899B (en) * 2022-06-17 2023-10-27 苏州智程半导体科技股份有限公司 Wafer vacuum wetting mechanism and wafer vacuum wetting method
CN114980541B (en) * 2022-07-19 2023-08-04 广德正大电子科技有限公司 Leakage-proof high-order HDI plate segmented jet flow equipment

Also Published As

Publication number Publication date
JP2001024307A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
US6632335B2 (en) Plating apparatus
KR100637890B1 (en) Plating apparatus, plating method, plating process equipment
US6599402B2 (en) Electro-chemical deposition cell for face-up processing of single semiconductor substrates
JP3274457B2 (en) Processing chamber and method for depositing and / or removing material from a substrate
US20050247567A1 (en) Method of plating
EP1793017B1 (en) Plating apparatus and plating liquid removing method
US7374646B2 (en) Electrolytic processing apparatus and substrate processing method
US20030070695A1 (en) N2 splash guard for liquid injection on the rotating substrate
JP3877910B2 (en) Plating equipment
JP3513130B2 (en) Plating apparatus and plating method
JP3698596B2 (en) Plating apparatus and plating method
JP6982432B2 (en) Board processing equipment
JP3877911B2 (en) Plating equipment
JP2004300462A (en) Plating method and plating apparatus
JP3836632B2 (en) Plating equipment
JP2002294495A (en) Liquid treatment apparatus
JP2001342597A (en) Apparatus for plating substrate
JP2001049499A (en) Plating device
WO2019039066A1 (en) Substrate treatment device
JP2002220700A (en) Substrate plating equipment
WO2019039067A1 (en) Substrate treatment device and substrate treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060626

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061101

R150 Certificate of patent or registration of utility model

Ref document number: 3877910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term