JP3877656B2 - Semiconductor manufacturing apparatus and method of forming semiconductor element processed using the same - Google Patents

Semiconductor manufacturing apparatus and method of forming semiconductor element processed using the same Download PDF

Info

Publication number
JP3877656B2
JP3877656B2 JP2002215396A JP2002215396A JP3877656B2 JP 3877656 B2 JP3877656 B2 JP 3877656B2 JP 2002215396 A JP2002215396 A JP 2002215396A JP 2002215396 A JP2002215396 A JP 2002215396A JP 3877656 B2 JP3877656 B2 JP 3877656B2
Authority
JP
Japan
Prior art keywords
reaction
tube
flange
manufacturing apparatus
joint portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002215396A
Other languages
Japanese (ja)
Other versions
JP2004063485A (en
Inventor
明 諸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2002215396A priority Critical patent/JP3877656B2/en
Publication of JP2004063485A publication Critical patent/JP2004063485A/en
Application granted granted Critical
Publication of JP3877656B2 publication Critical patent/JP3877656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、反応管を設置する管体継手部のOリング冷却構造を改良した半導体製造装置に関する。
【0002】
【従来の技術】
半導体製造装置は、ウェーハ或いはガラス基板等の被処理基板に種々の薄膜を生成し、或はエッチング等を行い、被処理基板表面に多数の半導体素子を形成するものである。
【0003】
斯かる半導体製造装置の一連の処理工程に於いて、被処理基板に成膜処理する工程があり、成膜処理を行う装置の一つに縦型炉がある。
【0004】
縦型炉は、図3に示す様に、加熱装置である有天筒状のヒータ1、上端が閉塞し下端が開放された筒状のアウターチューブ2、上端が開放された筒状のインナーチューブ3、筒状のインレットフランジ4、蓋体である円盤状の炉口キャップ5により構成されており、また、前記アウターチューブ2、前記インナーチューブ3、前記インレットフランジ4、前記炉口キャップ5により反応室6を形成している。
【0005】
被処理基板への成膜処理は、前記反応室6内を高温で、真空状態に維持して行う必要がある為、前記アウターチューブ2下端に前記インレットフランジ4がOリングを介在させ気密に接合され、該インレットフランジ4下端は前記炉口キャップ5により気密に閉塞されているが、前記Oリングは熱で劣化する特性を有する。
【0006】
従って、従来より前記インレットフランジ4内部に冷却水を流通させ、前記Oリングが熱により劣化するのを防止している。
【0007】
上記したインレットフランジ4では、冷却水が循環されると、前記インレットフランジ4の内壁面も冷却され、前記反応室6内でウェーハ成膜時に生成される反応副生成物の一部は前記内壁面により冷却され固化し、排出されずに該内壁面に付着する。付着堆積した前記反応副生成物は剥離するとパーティクルとなって前記反応室6内に拡散し、前記ウェーハに付着して製品品質、歩留まりを低下させるという課題があった。
【0008】
上記課題を解決すべく、特開平11−40505に開示される冷却構造が提案された。
【0009】
【発明が解決しようとする課題】
この冷却構造では、冷却水路と管体継手部内壁面との間に遮断溝を設けており、管体継手部内壁面に反応副生成物が付着しなくなるが、発明者が鋭意研究した結果、反応管と前記管体継手部の間の微小な隙間から反応ガスが入り込み、冷却水路に近く低温となっている前記遮断溝に反応副生成物が溜まり、パーティクルが前記反応管と前記管体継手部との間を通って拡散するという新たな問題が発生していることを突き止めた。
【0010】
本発明は斯かる実情に鑑み、インレットフランジ等の管体継手部の遮断溝に反応副生成物が付着してパーティクルを発生するという課題を解決した半導体製造装置を提供しようとするものである。
【0011】
【課題を解決するための手段】
本発明は、反応管と、上端フランジを有し該上端フランジにシール部材を介して前記反応管を立設する管体継手部と、該管体継手部を塞ぐ蓋体を有し、少なくとも前記反応管と前記シール部材と前記管体継手部と前記蓋体とより反応室が形成される半導体製造装置に於いて、前記上端フランジの上面と前記反応管との間を気密に接合する前記シール部材を冷却するよう前記上端フランジの内部に冷却媒体流通路が設けられ、該冷却媒体流通路と前記管体継手部の前記反応室内の反応ガスが接する内壁面との間であって前記上端フランジに前記反応室外部と連通する溝が設けられる半導体製造装置に係り、前記溝には、ヒータが挿入されている半導体製造装置に係り、また、本発明は、反応管と、上端フランジを有し該上端フランジにシール部材を介して前記反応管を立設する管体継手部と、該管体継手部を塞ぐ蓋体とを有し、少なくとも前記反応管と前記シール部材と前記管体継手部と前記蓋体とより反応室が形成される半導体製造装置に於いて、前記上端フランジの上面と前記反応管との間を気密に接合する前記シール部材を冷却するよう前記上端フランジの内部に冷却媒体流通路が設けられ、該冷却媒体流通路と前記管体継手部の前記反応室内の反応ガスが接する内壁面との間であって前記上端フランジに前記反応室外部と連通する溝が設けられる半導体製造装置を用いて処理する半導体素子の形成方法であって、前記反応室内で被処理基板に成膜処理が成されている間、前記冷却媒体流通路に冷却媒体が循環される工程を有する半導体素子の形成方法に係り、前記管体継手部内壁面から冷却水路への熱移動を遮断し、前記管体継手部内壁面を高温状態に維持し、更に前記遮断溝に反応ガスが接することを防ぐ。
【0012】
【発明の実施の形態】
以下、図1を参照しつつ本発明の第1の実施の形態を説明する。尚、図1中、図3中で示したものと同等のものには同符号を付してある。
【0013】
図中25は金属製で筒状の管体継手部であるインレットフランジを示し、該インレットフランジ25は上部に顎状の上端フランジ26、下部に下端フランジ27を有し、内面に内顎28を有し、前記上端フランジ26の上面には凸部29及び段差面30を形成する。
前記凸部29上面には下部クッション材41が嵌入され、該下部クション材41を介して石英又はSiC製の前記アウターチューブ2のフランジ部14が立設され、該フランジ部14と前記段差面30で形成される下部空隙35には前記凸部29側から上端Oリング36、側部クッション材37が嵌入され、前記段差面30外側上面には断面が逆L字形のカバー38が前記フランジ部14の外周部を全周に亘り覆う様に設けられ、又、前記フランジ部14の上面と前記カバー38の下面で形成される上部空隙39に上部クッション材40が嵌入され、前記アウターチューブ2と前記インレットフランジ25は気密に接合されている。
【0014】
前記上端Oリング36及び側部クッション材37下方の前記上端フランジ26の内部には、前記上端Oリング36及び側部クッション材37を冷却するための第1の冷却水路が設けられ、該第1の冷却水路は断面形状が横長短冊状の円環状であり、前記インレットフランジ25と同心に設けられている。また、前記カバー38には前記上部クッション材40を冷却するための第2の冷却水路42が設けられている。
【0015】
前記第1の冷却水路31と前記インレットフランジ25の内壁面33との間であって、上端フランジ26の下面より遮断溝34が刻設される。該遮断溝34は反応室6の外側と連通し、即ち大気雰囲気に開放される。また前記遮断溝34は断面形状が縦長短冊形状であり、前記冷却水路31と同心に全周に亘り設けられている。好ましくは、該遮断溝34の上端は前記冷却水路31の上端と同一、若しくは更に上方まで伸びている。
【0016】
前記下端フランジ27の下面は前記炉口キャップ5により下端Oリング21を介在させて気密に閉塞され、前記内顎28には円環状のインナーチューブ受け22が下側から内嵌され、該インナーチューブ受け22には前記インナーチューブ3が立設されている。
【0017】
前記反応室6内で成膜処理が行われている間、前記第1の冷却水路31及び第2の冷却水路42には図示しない冷却水配管を介して冷却水が循環され、該冷却水により前記上端Oリング36、側部クッション材37、及び上部クション材39が冷却される。一方、前記反応室6内は前記ヒータ1により加熱され高温となり、前記インレットフランジ25の内壁面33も高温となる。高温となった該内壁面33から前記冷却水路31方向への熱移動は、前記内壁面33と冷却水31間の距離が延長されたことにより困難となると共に、前記遮断溝34により効果的に遮断される。
【0018】
尚、高温となった前記内壁面33から逆L字形のカバー38内の第2の冷却水路42方向への熱移動は距離が離れている分、影響は小さいので、この間には遮断溝34が設けられていないが、冷却の効果が大きければ前記内壁面33と第2の冷却水路の間となる位置にインレットフランジ25の反応室6の外側から遮断溝を刻設することも可能である。
【0019】
また、前記第1の冷却水路31、第2の冷却水路42には冷却水を流す例を説明したが、冷却水に限らず、他の冷却するための液体や気体の冷却媒体を流すことができる。
【0020】
従って、前記内壁面33に対する前記冷却水路31を流通する冷却水による冷却効果が大幅に減少し、前記内壁面33は高温状態に維持され、該内壁面33には反応副生成物の付着が防止され、また、前記遮断溝34は反応室6とは連通せず大気雰囲気に開放されている状態であるので、反応ガスによる反応副生成物の付着が完全になくなった。
【0021】
以上述べた如く本発明の第1の実施の形態によれば、反応室内でウェーハ成膜時に生成される反応副生成物は第1の冷却水路31が形成されたインレットフランジ25等の管体継手部の内壁面より冷却されず固化しない為、管体継手部の内壁面に付着することなく外部に排出され、また、第1の冷却水路に近く冷却され易い遮断溝34には反応ガスが流入しない構造とした。従って、反応副生成物が管体継手部の内壁面や遮断溝34から反応副生成物が剥離してパーティクルとなって反応室6内に拡散し、ウェーハに付着することもなく、製品の品質、歩留まりを向上させることができる。又、管体継手部の内壁面や遮断溝34に反応副生成物が付着しない為、管体継手部のメンテナンス時の作業が容易となり、更に管体継手部のメンテナンスサイクルを延長でき、装置の稼働率が向上する。更に、反応副生成物が腐食性のものであっても管体継手部内壁面や遮断溝34の腐食を防止でき、管体継手部の耐用年数を延長することが可能となる等、種々の優れた効果を発揮する。
【0022】
以下、図2を参照しつつ本発明の第2の実施の形態を説明する。図2では図1の装置を部分的に拡大しており、図2中、図1中で示したものと同等のものには同符号を付してある。
【0023】
本発明の第2の実施の形態は、前記第1の実施の形態の遮断溝34に対して、更にヒータを挿入した装置である。この装置によれば、前記遮断溝34に例えば帯状ヒータ43を巻きつけ、例えば反応ガスにジクロルシランとアンモニアにより窒化膜を形成する場合には反応副生成物は塩化アンモニウムであり、この場合には120℃以上に加熱して反応副生成物である塩化アンモニウムが生成しない温度として塩化アンモニウムの付着を防止し、また加熱温度の上限値としては、Oリングの耐熱温度以下、例えば耐熱性Oリングを用いて200℃以下の範囲で加熱するとよい。この第2の実施の形態では、冷却水の冷却効率の変動や、管体継手のヒータからの加熱量が変動した場合であって、管体継手部の温度低下が生じるようなことが起きても、確実に管体継手部内壁面に反応副生成物の付着が防止されるようになる。
【0024】
【発明の効果】
以上述べた如く本発明によれば、インレットフランジ等の管体継手部の遮断溝に反応副生成物が付着してパーティクルが発生するという課題を解決することができ、製品である半導体装置の品質、歩留まりを向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す正断面図である。
【図2】本発明の第2の実施の形態を示す正断面図である。
【図3】縦型炉についての概略説明図である。
【符号の説明】
5 炉口キャップ
6 反応室
25 インレットフランジ
26 上端フランジ
29 凸部
30 段差面
31 第1の冷却水路
33 内壁面
34 遮断溝
36 上端Oリング
[0001]
[Technical field to which the invention belongs]
The present invention relates to a semiconductor manufacturing apparatus having an improved O-ring cooling structure of a tube joint portion in which a reaction tube is installed.
[0002]
[Prior art]
A semiconductor manufacturing apparatus generates various thin films on a substrate to be processed such as a wafer or a glass substrate, or performs etching or the like to form a large number of semiconductor elements on the surface of the substrate to be processed.
[0003]
In a series of processing steps of such a semiconductor manufacturing apparatus, there is a process of forming a film on a substrate to be processed, and a vertical furnace is one of apparatuses for performing the film forming process.
[0004]
As shown in FIG. 3, the vertical furnace includes a covered cylindrical heater 1 as a heating device, a cylindrical outer tube 2 whose upper end is closed and whose lower end is opened, and a cylindrical inner tube whose upper end is opened. 3. It is comprised by the cylindrical inlet flange 4 and the disk-shaped furnace port cap 5 which is a cover body, and also reacts by the said outer tube 2, the said inner tube 3, the said inlet flange 4, and the said furnace port cap 5. A chamber 6 is formed.
[0005]
Since the film forming process on the substrate to be processed needs to be performed while maintaining the inside of the reaction chamber 6 at a high temperature and in a vacuum state, the inlet flange 4 is joined to the lower end of the outer tube 2 with an O-ring interposed in an airtight manner. The lower end of the inlet flange 4 is hermetically closed by the furnace port cap 5, but the O-ring has a property of being deteriorated by heat.
[0006]
Therefore, conventionally, cooling water is circulated inside the inlet flange 4 to prevent the O-ring from being deteriorated by heat.
[0007]
In the inlet flange 4, when the cooling water is circulated, the inner wall surface of the inlet flange 4 is also cooled, and a part of the reaction by-product generated during film formation in the reaction chamber 6 is the inner wall surface. It cools and solidifies, and adheres to the inner wall surface without being discharged. When the deposited reaction by-product is peeled off, it becomes particles and diffuses into the reaction chamber 6 and adheres to the wafer to reduce product quality and yield.
[0008]
In order to solve the above problems, a cooling structure disclosed in JP-A-11-40505 has been proposed.
[0009]
[Problems to be solved by the invention]
In this cooling structure, a blocking groove is provided between the cooling water channel and the inner wall surface of the tube joint portion, and reaction byproducts do not adhere to the inner wall surface of the tube joint portion. And a reaction gas enters from a minute gap between the tube joint part and the reaction by-product accumulates in the blocking groove which is close to the cooling water channel and is at a low temperature, and particles are formed between the reaction tube and the tube joint part. I found out that there was a new problem of spreading through.
[0010]
In view of such circumstances, the present invention intends to provide a semiconductor manufacturing apparatus that solves the problem that reaction by-products adhere to a blocking groove of a pipe joint portion such as an inlet flange to generate particles.
[0011]
[Means for Solving the Problems]
The present invention comprises a reaction tube, and the tube joint portion erected the reaction tube through the seal member to the upper end flange having an upper flange, and a lid for closing the tube body joint, at least wherein the said reaction tube and said sealing member and the tube joint portion at the semiconductor manufacturing apparatus further reaction chamber is formed with the lid, joining between the reaction tube and the upper surface of the upper flange hermetically internal cooling medium flow passage of said upper flange is provided so as to cool the sealing member, the upper end a between the cooling medium flow passage and the inner wall surface of the reaction gas in contact in the reaction chamber of the tubular body joint relates to semi-conductor manufacturing apparatus said reaction chamber with the outside groove that pass through the flange that is provided, on the groove, relates to a semiconductor manufacturing device in which the heater is inserted, also, the present invention includes a reaction tube, the upper end Has a flange and seals to the top flange A tube joint portion for erecting the reaction tube via a material, and a lid body for closing the tube joint portion, at least the reaction tube, the seal member, the tube joint portion, and the lid body. In a semiconductor manufacturing apparatus in which a reaction chamber is further formed, a cooling medium flow passage is provided in the upper end flange so as to cool the seal member that hermetically joins the upper surface of the upper end flange and the reaction tube. And a semiconductor manufacturing apparatus in which a groove communicating with the outside of the reaction chamber is provided in the upper end flange between the cooling medium flow passage and an inner wall surface of the tube joint portion where the reaction gas in the reaction chamber contacts. A method for forming a semiconductor element, comprising: a step of circulating a cooling medium through the cooling medium flow passage while film formation is being performed on a substrate to be processed in the reaction chamber. It relates to the tube fitting To block heat transfer from the inner wall surface to the cooling water channel, maintaining the tube fitting portion inner wall heated to a high temperature, further prevent the reaction gas is in contact with the blocking groove.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. In FIG. 1, the same components as those shown in FIG.
[0013]
In the figure, reference numeral 25 denotes an inlet flange which is a metallic tube joint portion, and the inlet flange 25 has a jaw-like upper end flange 26 at the upper portion, a lower end flange 27 at the lower portion, and an inner jaw 28 on the inner surface. And a convex portion 29 and a stepped surface 30 are formed on the upper surface of the upper end flange 26.
A lower cushion material 41 is fitted on the upper surface of the convex portion 29, and the flange portion 14 of the outer tube 2 made of quartz or SiC is erected via the lower action material 41, and the flange portion 14 and the step surface 30. An upper end O-ring 36 and a side cushion material 37 are fitted into the lower gap 35 formed from the side of the convex portion 29, and a cover 38 having a reverse L-shaped cross section is formed on the outer upper surface of the stepped surface 30. The upper cushion material 40 is fitted into an upper space 39 formed by the upper surface of the flange portion 14 and the lower surface of the cover 38, so as to cover the entire outer periphery of the outer tube 2 and the outer tube 2. The inlet flange 25 is airtightly joined.
[0014]
A first cooling water channel for cooling the upper end O-ring 36 and the side cushion material 37 is provided inside the upper end flange 26 below the upper end O-ring 36 and the side cushion material 37. The cooling water channel has an annular shape with a cross-sectional shape that is horizontally long and is provided concentrically with the inlet flange 25. The cover 38 is provided with a second cooling water channel 42 for cooling the upper cushion material 40.
[0015]
A blocking groove 34 is formed on the lower surface of the upper end flange 26 between the first cooling water channel 31 and the inner wall surface 33 of the inlet flange 25. The blocking groove 34 communicates with the outside of the reaction chamber 6, that is, is opened to the atmosphere. The blocking groove 34 has a vertically long strip shape in cross section, and is provided concentrically with the cooling water channel 31 over the entire circumference. Preferably, the upper end of the blocking groove 34 is the same as or higher than the upper end of the cooling water channel 31.
[0016]
The lower surface of the lower end flange 27 is hermetically closed by the furnace port cap 5 with a lower end O-ring 21 interposed therebetween. An annular inner tube receiver 22 is fitted into the inner jaw 28 from below, and the inner tube The inner tube 3 is erected on the receptacle 22.
[0017]
During the film formation process in the reaction chamber 6, cooling water is circulated through the cooling water pipe (not shown) in the first cooling water channel 31 and the second cooling water channel 42, The upper end O-ring 36, the side cushion material 37, and the upper section material 39 are cooled. On the other hand, the inside of the reaction chamber 6 is heated by the heater 1 and becomes high temperature, and the inner wall surface 33 of the inlet flange 25 also becomes high temperature. Heat transfer from the inner wall surface 33 that has become high temperature toward the cooling water channel 31 becomes difficult due to the extension of the distance between the inner wall surface 33 and the cooling water 31, and more effectively by the blocking groove 34. Blocked.
[0018]
Note that the heat transfer from the inner wall surface 33 that has become high temperature toward the second cooling water channel 42 in the inverted L-shaped cover 38 has a small influence, so the blocking groove 34 is formed between them. Although not provided, if the effect of cooling is great, it is possible to cut a blocking groove from the outside of the reaction chamber 6 of the inlet flange 25 at a position between the inner wall surface 33 and the second cooling water channel.
[0019]
Moreover, although the example which flows cooling water to the said 1st cooling water channel 31 and the 2nd cooling water channel 42 was demonstrated, not only cooling water but the liquid and gaseous cooling media for cooling other may be flowed. it can.
[0020]
Accordingly, the cooling effect of the cooling water flowing through the cooling water passage 31 with respect to the inner wall surface 33 is greatly reduced, the inner wall surface 33 is maintained at a high temperature, and adhesion of reaction by-products to the inner wall surface 33 is prevented. In addition, since the blocking groove 34 is not in communication with the reaction chamber 6 and is open to the atmosphere, the reaction by-product due to the reaction gas is completely removed.
[0021]
As described above, according to the first embodiment of the present invention, the reaction by-product generated during wafer deposition in the reaction chamber is a pipe joint such as the inlet flange 25 in which the first cooling water channel 31 is formed. Since it is not cooled and solidified from the inner wall surface of the tube portion, it is discharged to the outside without adhering to the inner wall surface of the tube joint portion, and the reactive gas flows into the shut-off groove 34 that is close to the first cooling water channel and is easily cooled. The structure was not. Therefore, the reaction by-product is peeled off from the inner wall surface of the tube joint or the blocking groove 34 and diffused into the reaction chamber 6 as a particle, and does not adhere to the wafer. Yield can be improved. In addition, since reaction by-products do not adhere to the inner wall surface of the pipe joint or the blocking groove 34, the maintenance work of the pipe joint becomes easy, and the maintenance cycle of the pipe joint can be extended. Occupancy rate improves. Furthermore, even if the reaction by-product is corrosive, it is possible to prevent corrosion of the inner wall surface of the tube joint and the blocking groove 34, and to extend the service life of the tube joint portion. Show the effect.
[0022]
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. 2, the apparatus shown in FIG. 1 is partially enlarged. In FIG. 2, the same components as those shown in FIG.
[0023]
The second embodiment of the present invention is an apparatus in which a heater is further inserted into the blocking groove 34 of the first embodiment. According to this apparatus, for example, when a belt-like heater 43 is wound around the blocking groove 34 and a nitride film is formed of, for example, dichlorosilane and ammonia as a reaction gas, the reaction by-product is ammonium chloride. As a temperature at which the reaction by-product ammonium chloride is not formed by heating to a temperature of ℃ or higher, adhesion of ammonium chloride is prevented. It is good to heat in the range below 200 degreeC. In the second embodiment, the cooling efficiency of cooling water or the amount of heating from the heater of the pipe joint fluctuates, and a temperature drop of the pipe joint portion occurs. However, it is possible to reliably prevent the reaction by-product from adhering to the inner wall surface of the pipe joint.
[0024]
【The invention's effect】
As described above, according to the present invention, it is possible to solve the problem that particles are generated due to adhesion of reaction by-products to the blocking groove of the pipe joint portion such as the inlet flange. Yield can be improved.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing a first embodiment of the present invention.
FIG. 2 is a front sectional view showing a second embodiment of the present invention.
FIG. 3 is a schematic explanatory diagram of a vertical furnace.
[Explanation of symbols]
5 Furnace cap 6 Reaction chamber 25 Inlet flange 26 Upper end flange 29 Convex part 30 Step surface 31 First cooling water channel 33 Inner wall surface 34 Cut groove 36 Upper end O-ring

Claims (3)

反応管と、上端フランジを有し該上端フランジにシール部材を介して前記反応管を立設する管体継手部と、該管体継手部を塞ぐ蓋体を有し、少なくとも前記反応管と前記シール部材と前記管体継手部と前記蓋体とより反応室が形成される半導体製造装置に於いて、前記上端フランジの上面と前記反応管との間を気密に接合する前記シール部材を冷却するよう前記上端フランジの内部に冷却媒体流通路が設けられ、該冷却媒体流通路と前記管体継手部の前記反応室内の反応ガスが接する内壁面との間であって前記上端フランジに前記反応室外部と連通する溝が設けられことを特徴とする半導体製造装置。It has a reaction tube, and the tube joint portion erected the reaction tube through the seal member to the upper end flange having an upper flange, and a lid for closing the tube body joint, at least the reaction tube in the semiconductor manufacturing apparatus further reaction chamber is formed between the sealing member and the tube joint portion and the lid member, cooling said seal member for joining between the upper surface of the upper flange and the reaction tube in an airtight internal cooling medium flow passage of said upper flange is provided to said reaction in said upper flange a between the cooling medium flow passage and the inner wall surface of the reaction gas in contact in the reaction chamber of the tubular body joint the semiconductor manufacturing apparatus characterized by the outdoor unit and communicating groove that passes Ru provided. 前記溝には、ヒータが挿入されている請求項1の半導体製造装置。The semiconductor manufacturing apparatus according to claim 1, wherein a heater is inserted into the groove. 反応管と、上端フランジを有し該上端フランジにシール部材を介して前記反応管を立設する管体継手部と、該管体継手部を塞ぐ蓋体とを有し、少なくとも前記反応管と前記シール部材と前記管体継手部と前記蓋体とより反応室が形成される半導体製造装置に於いて、前記上端フランジの上面と前記反応管との間を気密に接合する前記シール部材を冷却するよう前記上端フランジの内部に冷却媒体流通路が設けられ、該冷却媒体流通路と前記管体継手部の前記反応室内の反応ガスが接する内壁面との間であって前記上端フランジに前記反応室外部と連通する溝が設けられる半導体製造装置を用いて処理する半導体素子の形成方法であって、A reaction tube, a tube joint portion having an upper end flange and standing the reaction tube on the upper end flange via a seal member, and a lid for closing the tube joint portion, and at least the reaction tube, In a semiconductor manufacturing apparatus in which a reaction chamber is formed by the seal member, the tube joint portion, and the lid, the seal member that airtightly joins the upper surface of the upper end flange and the reaction tube is cooled. A cooling medium flow path is provided in the upper end flange, and the reaction medium is provided between the cooling medium flow path and an inner wall surface of the tube joint portion in contact with the reaction gas in the reaction chamber. A method for forming a semiconductor element to be processed using a semiconductor manufacturing apparatus provided with a groove communicating with the outside of the room,
前記反応室内で被処理基板に成膜処理が成されている間、前記冷却媒体流通路に冷却媒体が循環される工程を有することを特徴とする半導体素子の形成方法。A method for forming a semiconductor element, comprising: a step of circulating a cooling medium in the cooling medium flow path while a film formation process is performed on a substrate to be processed in the reaction chamber.
JP2002215396A 2002-07-24 2002-07-24 Semiconductor manufacturing apparatus and method of forming semiconductor element processed using the same Expired - Lifetime JP3877656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215396A JP3877656B2 (en) 2002-07-24 2002-07-24 Semiconductor manufacturing apparatus and method of forming semiconductor element processed using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215396A JP3877656B2 (en) 2002-07-24 2002-07-24 Semiconductor manufacturing apparatus and method of forming semiconductor element processed using the same

Publications (2)

Publication Number Publication Date
JP2004063485A JP2004063485A (en) 2004-02-26
JP3877656B2 true JP3877656B2 (en) 2007-02-07

Family

ID=31937438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215396A Expired - Lifetime JP3877656B2 (en) 2002-07-24 2002-07-24 Semiconductor manufacturing apparatus and method of forming semiconductor element processed using the same

Country Status (1)

Country Link
JP (1) JP3877656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487863B2 (en) 2015-02-06 2016-11-08 Hitachi Kokusai Electric Inc. Substrate processing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901206B2 (en) 2005-03-28 2011-03-08 Hitachi Kokusai Electric Inc. Heat-treating apparatus and method of producing substrates
US20210317574A1 (en) * 2020-04-14 2021-10-14 Wonik Ips Co., Ltd. Substrate processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487863B2 (en) 2015-02-06 2016-11-08 Hitachi Kokusai Electric Inc. Substrate processing apparatus

Also Published As

Publication number Publication date
JP2004063485A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
US5976260A (en) Semiconductor producing apparatus, and wafer vacuum chucking device, gas cleaning method and nitride film forming method in semiconductor producing apparatus
US4817558A (en) Thin-film depositing apparatus
US7494545B2 (en) Epitaxial deposition process and apparatus
US6796316B2 (en) Atomic layer deposition (ALD) thin film deposition equipment having cleaning apparatus and cleaning method
US20080072822A1 (en) System and method including a particle trap/filter for recirculating a dilution gas
KR100463663B1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
US20110200749A1 (en) Film deposition apparatus and method
US8172946B2 (en) Semiconductor device manufacturing apparatus and manufacturing method of semiconductor device
JP4015791B2 (en) Heat treatment equipment
JP3877656B2 (en) Semiconductor manufacturing apparatus and method of forming semiconductor element processed using the same
JP2004263209A (en) Vacuum treatment apparatus
JP4963336B2 (en) Heat treatment equipment
JP4914085B2 (en) Substrate processing apparatus, exhaust trap apparatus, and semiconductor device manufacturing method
JPH1140505A (en) Cooling structure for pipe joint part
KR200406614Y1 (en) Flange of Low Pressure Chemical Vapor Deposition
CN101457350A (en) Air-intake installation, low pressure chemical vapor deposition equipment and chemical vapor deposition method
JP3611780B2 (en) Semiconductor manufacturing equipment
JPH0560256B2 (en)
TW201734251A (en) Cooled gas feed block with baffle & nozzle for HDP-CVD
JP2002280374A (en) Substrate treatment apparatus and method of manufacturing semiconductor device
KR20200082512A (en) Prevention of SiH4 contact to quartz tube used for deposition of wafer
JPH0831743A (en) Method and equipment for preventing contamination of cvd system
KR20080110481A (en) Vapor phase growing apparatus and vapor phase growing method
JPH07115064A (en) Device and method for forming film, and cleaning method for film forming device
JP2002299245A (en) Semiconductor manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3877656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term