JP3877296B2 - Microchip substrate - Google Patents

Microchip substrate Download PDF

Info

Publication number
JP3877296B2
JP3877296B2 JP2002070812A JP2002070812A JP3877296B2 JP 3877296 B2 JP3877296 B2 JP 3877296B2 JP 2002070812 A JP2002070812 A JP 2002070812A JP 2002070812 A JP2002070812 A JP 2002070812A JP 3877296 B2 JP3877296 B2 JP 3877296B2
Authority
JP
Japan
Prior art keywords
substrate
sample fixing
jig
fixing surface
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002070812A
Other languages
Japanese (ja)
Other versions
JP2003270245A (en
Inventor
秀行 島岡
兼久 横山
博 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002070812A priority Critical patent/JP3877296B2/en
Priority to US10/495,743 priority patent/US20050176003A1/en
Priority to PCT/JP2002/011938 priority patent/WO2003046562A1/en
Publication of JP2003270245A publication Critical patent/JP2003270245A/en
Application granted granted Critical
Publication of JP3877296B2 publication Critical patent/JP3877296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はマイクロチップ用基板に関する。例えば核酸、タンパク質、酵素、その他の生理物質などを固相基板表面に配置・固定したデバイスであるマイクロチップ用基板に関する。
【0002】
【従来の技術】
DNAチップの解析には共焦点蛍光顕微鏡の原理を応用したスキャナーと呼ばれる専用装置を利用することが多いが、共焦点顕微鏡は焦点から数μm以内の信号を検出するため、基板全面にわたって正確な測定を行うためには基板表面の平面性を数μmのオーダーで保つ必要がある。しかしながらプラスチックの一般的性質として、ガラスと比較して剛性が低く、外部からの力により容易に変形するため、スキャナーの基板固定用治具などから加わる力により基板表面に歪み、反りなどの変形が生じることがある。
例えば、板バネにより基板下面に力を加え、基板上部の治具に押さえつけて固定する方法では、板バネの力が過大であるとプラスチック製基板は変形してしまう。基板が変形すると測定面全体に焦点を合わせることができず、基板上の位置によって信号量にばらつきが生じ、正確な評価を行うことが不可能となる。
【0003】
【発明が解決しようとする課題】
本発明の目的は、測定装置の基板固定用治具からの不均一な力付加による試料固定面の変形が起こらないマイクロチップ用基板を提供することである。
【0004】
【課題を解決するための手段】
本発明は、
(1)測定装置の基板固定用治具との接触面を限定する手段を試料固定面の裏面に設けたことを特徴とするマイクロチップ用基板であって、接触面を限定する手段が、試料固定面の裏面の一部に凸部を設けることであり、凸部は、試料固定面の厚みよりも厚い外縁部であり、基板の材料が飽和環状ポリオレフィンであるマイクロチップ用基板、
である。
【0005】
【発明の実施の形態】
本発明についてさらに詳しく説明する。検出系が共焦点であるスキャナーを用いて評価を行う場合、DNAチップ基板の試料固定面に歪みや反り等の変形が生じると焦点を合わせることが困難となり、正確なデータが得られない。基板変形の原因としては、スキャナー内の基板固定用治具から受ける力によるものが多い。治具からの力に基づく変形を回避するためには、(A)基板の剛性を増大させる、(B)試料固定面と治具が直接接触しない構造とし、試料固定面への力の伝達を最小化する、等の方法が挙げられる。
【0006】
(A)の具体的な方法としては、基板の厚みを増大させる、充填物の混練により材料自体の強度を上昇させる、等がある。しかしながら、基板の厚みを増大させることにより、従来の機器・器具の使用が不可能になるという重大な弊害が生じる可能性がある。また、充填物の混練による方法では、成型用金型の磨耗促進、表面処理性の変化などの問題があり、実用上好ましくない。一方、(B)の方法では上記のような問題は生じない。すなわち、基板全体としての厚みは従来品と変わらないため機器・器具の切り替えは不要であり、基板の素材自体も不変のため製造面での問題も発生しない。
【0007】
(基板の形状)
スキャナーの基板固定用治具の形状は機種により多様であるが、現在最も多く用いられているのは、基板下面を板バネにより押し上げ、上部治具に押さえつけて固定する方式である。この方式では、板バネの押し上げる力が大きすぎた場合に、基板中央部が押し上げられて測定面に歪みの生じることがある。そこで、基板の外縁部に試料固定面よりも突出した領域を設け、治具との接触を突出部のみに限定することにより試料固定面への不均一な応力付加を解消し、変形を回避することができる。突出部の形状としては、図1〜4に示すように試料固定部の裏面の外縁部に額縁状の領域をもうけ、この部分の厚さを試料固定面よりも厚くすることが好ましい。外縁部を厚くすることにより、この領域の剛性が増大して基板固定用治具からの力の大部分を負担するため、試料固定面への応力付加が減少し、変形を避けることが可能となる。
【0008】
基板固定用治具からの力による変形は20〜100μm程度であることから、試料固定部と外縁部の厚さの差は、好ましくは20〜500μm、より好ましくは20〜200μmであり、20〜100μmであることが最も好ましい。
【0009】
さらに、上記の形状とすることで、基板を取り扱う際に試料固定面に傷が付くことを防止する効果が得られる。すなわち、通常の全面が平坦である基板の場合、作業台等に基板を置いた際に試料固定面やその裏面に微小な傷が付き、測定時にノイズとして検出されることがあるが、本発明の基板では直接接触することはないため傷の付く可能性が低くなり、精度の高い測定が可能となる。
【0010】
(基板の材料)
上記の形状を有するプラスチック基板は、熱成形により安価かつ大量生産が可能である。基板の材質となる合成樹脂としては熱可塑性樹脂、熱硬化性樹脂を用いることができるが、熱可塑性樹脂が製造効率の観点から好ましい。低蛍光性の熱可塑性樹脂として、たとえばポリエチレン、ポリプロピレン等の直鎖状ポリオレフィン、環状ポリオレフィン、含フッ素樹脂等を用いることが好ましく、耐熱性、耐薬品性、低蛍光性、成形性に特に優れる環状ポリオレフィンを用いることがより好ましい。ここで環状ポリオレフィンとは、環状オレフィン構造を有する重合体単独または環状オレフィンとα−オレフィンとの共重合体を水素添加した飽和重合体をさす。
【0011】
前者の例としては、たとえばノルボルネン、ジシクロペンタジエン、テトラシクロドデセンに代表されるノルボルネン系モノマー、及び、これらのアルキル置換体を開環重合して得られる重合体を水素添加して製造される飽和重合体である。
【0012】
後者の共重合体はエチレンやプロピレン、イソプロピレン、1−ブテン、3−メチル−1−ブテン、1−ペンテン、3−メチル−1−ペンテン、1−ヘキセン、1−オクテン等のα−オレフィンと環状オレフィン系モノマーのランダム共重合体を水素添加することにより製造される飽和重合体である。共重合体では、エチレンとの共重合体が最も好ましい。これらの樹脂は単独で用いてもよく、2種類またはそれ以上の共重合体あるいは混合物であってもよい。
【0013】
【実施例】
本発明を以下の実施例により具体的に説明する。
(実施例1)
ノルボルネン系ポリオレフィン樹脂を用いて、縦76mm、横26mm、試料固定部の厚さ0.9mm、外縁部の厚さ1mmの図1に示した基板を射出成形した。成形品の表面粗さは0.002〜0.003μmであり、基板全体にわたって歪み、反りは認められなかった。この基板をPackard BioChip Technologies社製マイクロアレイスキャナー 'ScanArray LITE' を用いてスキャンした。スキャン条件はレーザー出力90%、PMT感度90%であった。図5のヒストグラムに示すようにバックグラウンド蛍光量にはムラが少なく、基板表面に反り、歪みなどの変形の無いことが示された。
【0014】
(比較例1)
実施例1と同じ樹脂を用いて76×26×1mmのスライドグラス形状の基板を射出成形した。成形品の表面粗さは0.002〜0.003μmであり、基板全体にわたって歪み・反りは認められなかった。実施例と同様の条件でスキャンした結果、図5のヒストグラムに示すようにバックグラウンド蛍光量にはムラが認められた。これは、固定用治具からの応力により基板表面が変形したためである。
【0015】
【発明の効果】
本発明により、測定装置の基板固定用治具からの応力による試料固定面の変形が起こらないマイクロチップ用基板の作成が可能である。試料固定面の変形は検出器の焦点調整を妨げ、信号量のバラツキの原因となっていたが、本発明により正確な評価の行える基板の作製が可能となった。
【図面の簡単な説明】
【図1】本発明の基板形状の一実施例を示す概念図
【図2】本発明の基板形状の他の実施例を示す概念図
【図3】本発明の基板形状の他の実施例を示す概念図
【図4】本発明の基板形状の他の実施例を示す概念図
【図5】実施例および比較例のバックグラウンド蛍光量の分布を示すヒストグラムである。
【符号の説明】
1:試料固定面の裏面
2:肉厚部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microchip substrate. For example, the present invention relates to a microchip substrate which is a device in which nucleic acids, proteins, enzymes, other physiological substances, etc. are arranged and fixed on the surface of a solid phase substrate.
[0002]
[Prior art]
For analysis of DNA chips, a dedicated device called a scanner that applies the principle of confocal fluorescence microscopy is often used, but confocal microscopy detects signals within a few μm from the focal point, so accurate measurement over the entire surface of the substrate In order to perform this, it is necessary to maintain the flatness of the substrate surface on the order of several μm. However, as a general property of plastic, it is less rigid than glass and easily deforms by external force. Therefore, the surface of the substrate is distorted and warped by the force applied from the substrate fixing jig of the scanner. May occur.
For example, in a method of applying a force to the lower surface of the substrate with a plate spring and pressing and fixing it to a jig on the upper portion of the substrate, if the force of the plate spring is excessive, the plastic substrate is deformed. When the substrate is deformed, the entire measurement surface cannot be focused, and the signal amount varies depending on the position on the substrate, making it impossible to perform accurate evaluation.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a microchip substrate in which deformation of a sample fixing surface due to non-uniform force application from a substrate fixing jig of a measuring apparatus does not occur.
[0004]
[Means for Solving the Problems]
The present invention
(1) A microchip substrate , characterized in that means for limiting the contact surface with the substrate fixing jig of the measuring apparatus is provided on the back surface of the sample fixing surface, and the means for limiting the contact surface is the sample Providing a convex part on a part of the back surface of the fixing surface, the convex part is an outer edge part thicker than the thickness of the sample fixing surface, and the substrate material for the microchip is a saturated cyclic polyolefin;
It is.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in more detail. When the evaluation is performed using a scanner whose detection system is confocal, if deformation such as distortion or warpage occurs on the sample fixing surface of the DNA chip substrate, it becomes difficult to focus and accurate data cannot be obtained. The cause of substrate deformation is often due to the force received from the substrate fixing jig in the scanner. In order to avoid deformation based on the force from the jig, (A) the rigidity of the substrate is increased, (B) the specimen fixing surface and the jig are not in direct contact, and the force is transmitted to the specimen fixing surface. A method such as minimization can be mentioned.
[0006]
Specific methods of (A) include increasing the thickness of the substrate and increasing the strength of the material itself by kneading the filler. However, increasing the thickness of the substrate may cause a serious adverse effect that makes it impossible to use conventional devices and instruments. Further, the method of kneading the filler has problems such as accelerated wear of the molding die and changes in surface treatment properties, which is not preferable in practice. On the other hand, the above problem does not occur in the method (B). That is, since the thickness of the entire substrate is the same as that of the conventional product, it is not necessary to switch between devices and instruments, and the substrate material itself does not change, so that there is no problem in manufacturing.
[0007]
(Board shape)
The shape of the substrate fixing jig of the scanner varies depending on the model, but the most widely used method is to push up the lower surface of the substrate with a leaf spring and press the upper jig to fix it. In this method, when the force of pushing up the leaf spring is too large, the center portion of the substrate is pushed up, and the measurement surface may be distorted. Therefore, an area protruding from the sample fixing surface is provided on the outer edge of the substrate, and contact with the jig is limited to only the protruding portion, thereby eliminating uneven stress on the sample fixing surface and avoiding deformation. be able to. As the shape of the protruding portion, it is preferable to provide a frame-like region on the outer edge of the back surface of the sample fixing portion as shown in FIGS. 1 to 4 and to make the thickness of this portion thicker than the sample fixing surface. By increasing the thickness of the outer edge, the rigidity of this area increases and the majority of the force from the substrate fixing jig is borne, so stress applied to the sample fixing surface is reduced and deformation can be avoided. Become.
[0008]
Since the deformation due to the force from the substrate fixing jig is about 20 to 100 μm, the difference in thickness between the sample fixing portion and the outer edge portion is preferably 20 to 500 μm, more preferably 20 to 200 μm. Most preferably, it is 100 μm.
[0009]
Furthermore, by setting it as said shape, the effect which prevents a sample fixing surface from being damaged when handling a board | substrate is acquired. That is, in the case of a substrate having a flat entire surface, a fine scratch may be attached to the sample fixing surface or the back surface when the substrate is placed on a work table or the like, and may be detected as noise during measurement. Since this substrate is not in direct contact, the possibility of scratches is reduced, and high-accuracy measurement is possible.
[0010]
(Substrate material)
The plastic substrate having the above shape can be inexpensively and mass-produced by thermoforming. A thermoplastic resin or a thermosetting resin can be used as the synthetic resin used as the material of the substrate, but a thermoplastic resin is preferable from the viewpoint of manufacturing efficiency. As the low-fluorescence thermoplastic resin, it is preferable to use, for example, linear polyolefins such as polyethylene and polypropylene, cyclic polyolefins, fluorine-containing resins, and the like, and cyclic that is particularly excellent in heat resistance, chemical resistance, low fluorescence, and moldability. More preferably, polyolefin is used. Here, the cyclic polyolefin refers to a saturated polymer obtained by hydrogenating a polymer having a cyclic olefin structure or a copolymer of a cyclic olefin and an α-olefin.
[0011]
Examples of the former are produced by hydrogenating norbornene monomers represented by, for example, norbornene, dicyclopentadiene, and tetracyclododecene, and polymers obtained by ring-opening polymerization of these alkyl-substituted products. It is a saturated polymer.
[0012]
The latter copolymer is composed of α-olefin such as ethylene, propylene, isopropylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 1-hexene and 1-octene. It is a saturated polymer produced by hydrogenating a random copolymer of cyclic olefin monomers. As the copolymer, a copolymer with ethylene is most preferable. These resins may be used alone, or two or more copolymers or a mixture may be used.
[0013]
【Example】
The present invention will be specifically described by the following examples.
Example 1
A substrate shown in FIG. 1 having a length of 76 mm, a width of 26 mm, a sample fixing portion thickness of 0.9 mm, and an outer edge portion thickness of 1 mm was injection molded using a norbornene-based polyolefin resin. The surface roughness of the molded product was 0.002 to 0.003 μm, and no distortion or warping was observed over the entire substrate. This substrate was scanned using a microarray scanner 'ScanArray LITE' manufactured by Packard BioChip Technologies. Scanning conditions were laser output 90% and PMT sensitivity 90%. As shown in the histogram of FIG. 5, the background fluorescence amount was less uneven, warped on the substrate surface, and was not deformed such as distortion.
[0014]
(Comparative Example 1)
A 76 × 26 × 1 mm slide glass substrate was injection molded using the same resin as in Example 1. The surface roughness of the molded product was 0.002 to 0.003 μm, and no distortion or warpage was observed over the entire substrate. As a result of scanning under the same conditions as in the examples, as shown in the histogram of FIG. This is because the substrate surface is deformed by the stress from the fixing jig.
[0015]
【The invention's effect】
According to the present invention, it is possible to produce a microchip substrate in which the sample fixing surface does not deform due to stress from the substrate fixing jig of the measuring apparatus. Although the deformation of the sample fixing surface hinders the focus adjustment of the detector and causes variations in signal amount, the present invention makes it possible to produce a substrate that can be accurately evaluated.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of a substrate shape of the present invention. FIG. 2 is a conceptual diagram showing another example of a substrate shape of the present invention. FIG. 4 is a conceptual diagram showing another embodiment of the substrate shape of the present invention. FIG. 5 is a histogram showing the distribution of background fluorescence in the examples and comparative examples.
[Explanation of symbols]
1: Back surface of sample fixing surface 2: Thick part

Claims (1)

測定装置の基板固定用治具との接触面を限定する手段を試料固定面の裏面に設けたことを特徴とするマイクロチップ用基板であって、接触面を限定する手段が、試料固定面の裏面の一部に凸部を設けることであり、凸部は、試料固定面の厚みよりも厚い外縁部であり、基板の材料が飽和環状ポリオレフィンであるマイクロチップ用基板A microchip substrate characterized in that means for limiting the contact surface with the substrate fixing jig of the measuring apparatus is provided on the back surface of the sample fixing surface, and the means for limiting the contact surface is provided on the sample fixing surface. A microchip substrate in which a convex portion is provided on a part of the back surface, the convex portion is an outer edge portion thicker than the thickness of the sample fixing surface, and the substrate material is a saturated cyclic polyolefin .
JP2002070812A 2001-11-27 2002-03-14 Microchip substrate Expired - Fee Related JP3877296B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002070812A JP3877296B2 (en) 2002-03-14 2002-03-14 Microchip substrate
US10/495,743 US20050176003A1 (en) 2001-11-27 2002-11-15 Plastic substrate for microchips
PCT/JP2002/011938 WO2003046562A1 (en) 2001-11-27 2002-11-15 Plastic substrate for microchips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002070812A JP3877296B2 (en) 2002-03-14 2002-03-14 Microchip substrate

Publications (2)

Publication Number Publication Date
JP2003270245A JP2003270245A (en) 2003-09-25
JP3877296B2 true JP3877296B2 (en) 2007-02-07

Family

ID=29201281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002070812A Expired - Fee Related JP3877296B2 (en) 2001-11-27 2002-03-14 Microchip substrate

Country Status (1)

Country Link
JP (1) JP3877296B2 (en)

Also Published As

Publication number Publication date
JP2003270245A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
KR20170113160A (en) Scanning probe microscope and probe contact detection method
US11691151B2 (en) Systems and methods for tagging and acoustically characterizing containers
US8039270B2 (en) Apparatus and method for performing ligand binding assays on microarrays in multiwell plates
JP3877296B2 (en) Microchip substrate
US9238224B2 (en) Microchip
WO2010016372A1 (en) Microchip
JP2511240Y2 (en) Test pieces
CN108242406B (en) Cavity, plastic package body and adhesion detection method
JP2003139705A (en) Substrate for micro chip
JPWO2010021263A1 (en) Microchip and manufacturing method of microchip
CN101952731A (en) Microchip and method for manufacturing the same
CN101999078A (en) Microchip and method for manufacturing microchip
KR20090070742A (en) Formability evaluation apparatus and method ofthere
JP4927969B2 (en) Biosensor chip assembly kit, biosensor chip manufacturing method, and biosensor chip
US11806710B2 (en) Semiconductor package structures and methods of manufacturing the same
CN109922736B (en) Acoustic lens for ultrasonic endoscope and ultrasonic endoscope device
US20200315577A1 (en) Ultrasound probe
JP4175210B2 (en) Optical measurement method
US20200376484A1 (en) Pillar structure for biochip
JP4102541B2 (en) Semiconductor device
JP2001105485A (en) Method for measuring distortion rate generated by thermoforming
JP2014206471A (en) Detection method for optical sensor
US20080197432A1 (en) Microchip Assembly Produced by Transfer Molding
KR20240015042A (en) Release film and method of producing semiconductor package
JP2004330038A (en) Chemical micro device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees