JP3876458B2 - Manufacturing method of aluminum alloy material with excellent deep drawability - Google Patents

Manufacturing method of aluminum alloy material with excellent deep drawability Download PDF

Info

Publication number
JP3876458B2
JP3876458B2 JP18278496A JP18278496A JP3876458B2 JP 3876458 B2 JP3876458 B2 JP 3876458B2 JP 18278496 A JP18278496 A JP 18278496A JP 18278496 A JP18278496 A JP 18278496A JP 3876458 B2 JP3876458 B2 JP 3876458B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
alloy material
weight
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18278496A
Other languages
Japanese (ja)
Other versions
JPH108226A (en
Inventor
丕植 趙
張弓 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP18278496A priority Critical patent/JP3876458B2/en
Publication of JPH108226A publication Critical patent/JPH108226A/en
Application granted granted Critical
Publication of JP3876458B2 publication Critical patent/JP3876458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、自動車のボディシート、骨格材及びホイールや船舶、電気製品の外板等に適した、深絞り加工性に優れたMgを含むアルミニウム合金材の製造法に関する。
【0002】
【従来の技術】
アルミニウム合金材は鋼材と比べて軽量化が可能であり、しかもリサイクルし易いところから省エネルギー化や省資源化の要求に応えて、自動車のボディシート、骨格材、ホイールや船舶、電気製品の外板材などに鋼材に代わって使用され始めている。このような用途向けのアルミニウム合金として、従来より、Mgを含有する強度及び成形性の良好なアルミニウム合金が提案されている。
【0003】
しかしながら、これらMgを含む合金材は一般に鋼材に比較して深絞り加工性に劣るという問題があった。前記のような用途においては、例えば自動車部材のボディインナー材の成形加工に見るように、立体的な構造・形状とするため、張り出し加工のほか深絞り加工が多用されており、深絞り加工性の向上が求められている。深絞り加工性の指標として塑性ひずみ比r値による平均r値が広く用いられているが、従来のMg含有アルミニウム合金材は鋼材と比べ、この平均r値が低く、厳しい深絞り加工に対してはしばしば破断するケースがあり、高度の成形加工に耐えられなかった。このようなことから、これまでのアルミニウム合金材は、自動車部材などの成形材としての要求に十分応えることができず、平均r値を向上し、深絞り加工性を改善することが望まれていた。
【0004】
このような要求に応えるため、従来種々の提案がなされており、例えば、特開平4−301055号公報には、Mg:3.5〜6.5重量%のアルミニウム合金を圧延率50%以上で冷間圧延し、280〜440℃の温度で0.5〜12時間保持して中間焼鈍し、10〜50%の圧延率で冷間圧延し、最終熱処理を100℃/分以上の昇温速度で450〜560℃に加熱し、その温度範囲で10〜300秒間保持して溶体化処理し、然る後150℃以下の温度まで100℃/分以上の速度で冷却することによって伸びが28%以上、平均r値が0.7以上の深絞り加工性に優れた自動車部品用アルミニウム合金材を得る製造方法が開示されている。
【0005】
また、特開平4−9445号公報には、Mg:4〜6重量%、Zr:0.05〜0.2重量%のアルミニウム合金に均質化熱処理を施し、熱間圧延と冷間圧延を行った後、軟質化焼鈍を施し、次いで30%以上の圧延率で冷間圧延を行った後、450〜550℃の温度で高温短時間の焼鈍を施し、その後80〜1000℃/分の平均冷却速度で100℃以下の温度まで冷却することにより、200〜500オングストロームのZr系金属間化合物が0.5〜2.0%の体積率で含まれることを特徴とする、伸びが高い自動車部品用アルミニウム合金材を得る製造方法が開示されている。しかしながら、これらに提案されるアルミニウム合金によっても、平均r値はまだ低く、前記のような深絞り性の要求に十分応えることはできなかった。
【0006】
【発明が解決しようとする課題】
本発明は、このような問題を解消すべく案出されたものであり、平均r値が高く、深絞り加工性に優れたアルミニウム合金材の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、その目的を達成するため、Mg:2〜6重量%、Zr:0.10〜0.3重量%含有し、さらに必要に応じてFe:0 . 5重量%以下,Cu:0 . 5重量%以下,Zn:0 . 5重量%以下,Ti:0 . 1重量%以下,B:0 . 05重量%以下及びBe:0 . 005重量%以下の内の一種又は二種以上を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金材を冷間圧延し後に焼鈍処理を施す工程において、最終焼鈍処理直前の冷間圧延率を60%以上とし、該最終焼鈍処理において、該冷間圧延材を60℃/時間以下の昇温速度で加熱して再結晶焼鈍させることにより、平均r値の高い、深絞り加工性の向上したアルミニウム合金材を製造する。
また、前記再結晶焼鈍温度を、330〜550℃として、適切に再結晶焼鈍を進行せしめる。
【0008】
【作用】
すなわち、本発明者らは、前記従来技術の欠点を解消するため種々検討した結果、Mgを特定量含有するアルミニウム合金に特定量のZrを含有せしめて、アルミニウム合金材の圧延組織を再結晶させるに際して、該合金材を強度に冷間圧延して圧延集合組織とし、再結晶温度に至るまでの昇温速度を可及的低速として再結晶させると、平均r値が高く、深絞り加工性の優れたアルミニウム合金材を得ることができることを見いだして、本発明を完成したものである。
【0009】
ここにいうr値は、ランクフォードの塑性ひずみ比r値であって、引張試験片の幅方向の真ひずみεW と厚さ方向の真ひずみεt との比、r=εW /εt によって定義され、深絞り性との関係から成形性の評価において極めて重要な特性値とされているが、圧延材を対象とすることから、異方性が著しい。このため、圧延方向のr値をr0 、圧延方向と45度及び直角方向のr値をそれぞれr45及びr90として、下記(1)式によりこれらを平均した平均r値を求めて成形性を評価することが一般的であり、以下本発明においてもJIS5号引張試験片を用いて測定した平均r値による。
平均r値=(r0 +r90+2r45)/4 (1)
このように平均r値は、深絞り性を評価するパラメータで、平均r値が高いほど材料の深絞り加工性が優れる。また、この値は材料の結晶方位と関係し、圧延集合組織を有するものは平均r値が高くなる。従って、平均r値を向上させるためには、圧延集合組織を強く発達させ、しかも再結晶焼鈍する時にその圧延集合組織をできるだけ残存させる必要がある。
【0010】
本発明者らは、強化元素のMgと共にZrを加えたアルミニウム合金を、強度の圧延により圧延集合組織を強く発達させて後、再結晶温度以上で焼鈍する際に、再結晶温度に至る昇温速度を一定範囲内に小さくすると、圧延集合組織の方位が保持されて、高い平均r値が得られることを突き止め、本発明を完成させたものである。これは、昇温速度を小さくして再結晶に至るまで時間をかけて緩やかに温度を上げることで、その間にAl3 Zr金属間化合物の析出反応が、再結晶の進行に先行して進み、Al3 Zr金属間化合物が転位及びセルの境界へ析出するために、再結晶の方位がこれによって規制され、圧延集合組織の方位が保持されるものと理解される。
【0011】
【発明の実施の形態】
以下に、本発明のアルミニウム合金材の具体的な成分及び製造工程によって本発明を説明する。
本発明のアルミニウム合金の化学成分は、Mg:2〜6重量%、Zr:0.10〜0.3重量%、残部Alからなり、その他、Mg、Zr以外の合金元素は、必要に応じて添加することができる。すなわち、更に高強度を必要とする場合は、Fe、Cu、Znの一種又は二種以上を各々最大0.5重量%程度添加する。鋳造する際の割れ防止のため、Tiを0.1重量%以下とBを0.05重量%以下添加することができる。合金溶湯の溶製に当たっては不純物元素はアルミニウムインゴット及び返り材からJIS規格程度含有されていてもよい。また、本発明によるMg:2〜6重量%を含有するアルミニウム合金溶湯を溶製するに当たってはMgの酸化防止のため0.005重量%以下のBeを添加することが望ましい。
【0012】
Mg及びZrの作用及び化学成分の限定理由は、次のとおりである。
Mgは、アルミニウム合金に強度を付与する元素である。2重量%未満であると十分な強度が得られず、一方6重量%を超えると熱間加工時に加工割れが発生するなど熱間圧延が困難となり、また応力腐食割れに敏感になるため、Mg含有量は2〜6重量%の範囲とする。
【0013】
Zrは、アルミニウム合金材の最終焼鈍中に、Al3 Zrとして微細な析出物を転位及びセル境界に析出し、転位及びセルの移動を妨げてその圧延方位を残存させ、平均r値を高める効果がある。そのZr量が0.10未満であるとその効果が小さく、高い平均r値が得られない。しかし、Zrが0.3重量%を超えると、鋳造する時巨大な晶出物を生成し、その延性が劣化する。従って、Zrの含有量は0.10〜0.30重量%に規制する必要がある。
【0014】
次に、本発明のアルミニウム合金材を得る製造法について説明する。
上記組成のAl−Mg合金材は、通常のDC鋳造、或いはベルトキャスター法、双ロール法や3C法などの連続鋳造法で製造することができ、これらの鋳造方法について特に限定されるものではない。鋳造後、必要に応じてソーキングを施し、熱間圧延を行い、その後冷間圧延を行う。冷間圧延の途中で、必要に応じて1回又は2回以上の中間焼鈍を行ってもよいが、最終焼鈍直前の冷間圧延率が60%以上とすることが必要である。
【0015】
最終焼鈍直前の冷間加工率が60%以上となると、圧延集合組織が強く発達し、次の再結晶焼鈍工程により、この圧延集合組織が残存して平均r値が高くなる。しかし、冷間加工率が60%未満では圧延集合組織の発達が不十分であるため再結晶焼鈍後の平均r値が低く、十分な深絞り加工性が得られない。従って、最終焼鈍直前の冷間圧延率を60%以上に規定する必要がある。
【0016】
最終焼鈍は、再結晶温度以上の温度で行うが、好ましい温度範囲は、330〜550℃である。330℃未満では、再結晶が進行し難く、550℃を超えると、局部的に溶融が起こる虞れがあり、好ましくない。
最終焼鈍の昇温速度は60℃/時間以下で、好ましくは20〜60℃/時間である。すなわち、60℃/時間以下とすることで微細なAl−Zr系金属間化合物(Al3 Zr)が転位及びセル境界に十分に析出し、再結晶温度において、圧延集合組織を残存させたまま再結晶させることができるため、平均r値の高いアルミニウム合金材を得ることができる。
60℃/時間を超える速度で昇温させると、Al3 Zrが転位及びセル境界での析出が不十分なまま、再結晶が進行するため圧延集合組織を十分に残存させることができず、平均r値が低くなる。しかし、昇温速度が20℃/時間以下になると、生産効率が低下して工業的に不経済であるから、20℃/時間以上とすることが好ましい。焼鈍後の冷却速度は特に限定する必要はない。最終焼鈍後、必要に応じて焼入れ歪みを解消するために矯正加工を施し、更に安定化処理を行う。
以上の工程により得られたアルミニウム合金板の平均r値は0.9以上となり、優れた深絞り加工性が得られる。
【0017】
実施例
本発明及び比較例のアルミニウム合金の化学成分を表1に示す。合金番号1〜5は、本発明の範囲にあるが、合金番号6の組成は、Zrを含有せず、本発明の範囲外である。
【0018】

Figure 0003876458
本発明例及び比較例のアルミニウム合金材の製造条件を表2に示す。
【0019】
Figure 0003876458
【0020】
本発明例は、アルミニウム合金溶湯を半連続鋳造(DC)で厚さ500mmの鋳塊を得て後、7mmの面削を施し、500℃で4時間保持してソーキングし、300〜500℃で熱間圧延後、所定の圧延率で冷間圧延し最終焼鈍したもの(製造番号:I 、II、III 、IV、 V )、及び連続鋳造(CC)後そのまま熱間圧延及び所定の圧延率で冷間圧延し、最終焼鈍したもの(製造番号:VI)であり、最終焼鈍は、48℃/時間と58℃/時間(製造番号:III )の昇温速度で480℃に加熱し、1時間保持後水冷した。
【0021】
比較例として、Zrを含有しないもの(製造番号:VII )、最終焼鈍時の冷延率が60%未満のもの(製造番号:VIII)及び最終焼鈍の昇温速度が速いもの(製造番号:IX、 X )がある。これらにおいて、鋳造法、面削及びソーキングの条件は本発明例と同じである。
【0022】
このようにして製造したアルミニウム合金材の機械的性質、平均r値を表3に示す。
表3において、本発明の化学成分、Zr含有量、冷間圧延率及び最終熱処理の昇温速度及び温度の要件を満たす試験符号A〜Fの例は、いずれも平均r値が0.9以上を示すことが判る。これに対して、比較例のこれらの要件のいずれかを外れるもの、すなわち、Zrを含まないもの(試験符号:G、合金番号:6)、最終焼鈍時の冷延率が23%であって60%未満のもの(試験符号:H、製造番号:VIII)、最終焼鈍時の昇温速度が100℃/時間(試験符号:I、製造番号: IX )及び昇温速度106 ℃/時間(試験符号:J、製造番号: X )のものは、平均r値が低く、本発明の目的とする深絞り加工性が得られないことが判る。
【0023】
Figure 0003876458
【0024】
【発明の効果】
以上に説明したように、本発明によれば、平均r値が0.9以上で、深絞り加工性の優れたアルミニウム合金材を製造することができる。従って、自動車のボディシート、骨格部材及びホイールや船舶その他電気機器の外板に至る広い用途の構造材に適したアルミニウム合金圧延材を製造することができる。[0001]
[Industrial application fields]
The present invention relates to a method for producing an aluminum alloy material containing Mg, which is suitable for automobile body seats, skeleton materials, wheels, ships, outer plates of electrical products, and the like and excellent in deep drawing workability.
[0002]
[Prior art]
Aluminum alloy materials can be reduced in weight compared to steel materials, and because they are easy to recycle, meeting the demands for energy and resource savings, automotive body seats, skeletal materials, wheels and ships, and outer plate materials for electrical products It is starting to be used instead of steel. As an aluminum alloy for such applications, conventionally, an aluminum alloy containing Mg and having good strength and formability has been proposed.
[0003]
However, these alloy materials containing Mg generally have a problem that they are inferior in deep drawability as compared with steel materials. In applications such as those mentioned above, deep drawing work is often used in addition to overhanging to create a three-dimensional structure and shape, as seen in the molding of body inner materials for automobile parts, for example. Improvement is demanded. The average r value based on the plastic strain ratio r value is widely used as an index of deep drawing workability, but the conventional Mg-containing aluminum alloy material has a lower average r value than steel materials, and is difficult for severe deep drawing. In many cases, ruptured and could not withstand a high degree of molding. For these reasons, conventional aluminum alloy materials cannot sufficiently meet the demands for molding materials such as automobile members, and it is desired to improve the average r value and improve the deep drawing workability. It was.
[0004]
In order to meet such demands, various proposals have been made in the past. For example, in Japanese Patent Laid-Open No. 4-301055, an aluminum alloy with Mg: 3.5 to 6.5% by weight at a rolling rate of 50% or more is disclosed. Cold-rolled, held at a temperature of 280-440 ° C. for 0.5-12 hours, subjected to intermediate annealing, cold-rolled at a rolling rate of 10-50%, and the final heat treatment was performed at a heating rate of 100 ° C./min or more. The solution is heated to 450 to 560 ° C., held in the temperature range for 10 to 300 seconds, and subjected to a solution treatment, and then cooled to a temperature of 150 ° C. or less at a rate of 100 ° C./min or more to achieve an elongation of 28%. As mentioned above, the manufacturing method which obtains the aluminum alloy material for motor vehicle parts excellent in the deep drawing workability whose average r value is 0.7 or more is disclosed.
[0005]
Japanese Patent Laid-Open No. 4-9445 discloses that an aluminum alloy with Mg: 4 to 6% by weight and Zr: 0.05 to 0.2% by weight is subjected to a homogenization heat treatment to perform hot rolling and cold rolling. After performing softening annealing and then cold rolling at a rolling rate of 30% or more, annealing is performed at a temperature of 450 to 550 ° C. for a short time at a high temperature, and thereafter average cooling of 80 to 1000 ° C./min. For automotive parts with high elongation, characterized by containing 200 to 500 angstroms of Zr-based intermetallic compounds at a volume ratio of 0.5 to 2.0% by cooling to a temperature of 100 ° C. or lower at a speed. A manufacturing method for obtaining an aluminum alloy material is disclosed. However, even with these proposed aluminum alloys, the average r value is still low, and the above-described requirements for deep drawability cannot be sufficiently met.
[0006]
[Problems to be solved by the invention]
The present invention has been devised to solve such problems, and an object of the present invention is to provide a method for producing an aluminum alloy material having a high average r value and excellent deep drawing workability.
[0007]
[Means for Solving the Problems]
The present invention, in order to achieve its objectives, Mg: 2 to 6 wt%, Zr: .10-.3 containing wt%, Fe if necessary:. 0 5 wt% or less, Cu: 0 . 5 wt% or less, Zn:. 0 5 wt% or less, Ti:. 0 1 wt% or less, B:. 0 05 wt% or less, and Be:. 0 of the 005 wt% or less one or two or more containing, in the step of performing an annealing process after the aluminum alloy material and the balance being Al and unavoidable impurities was cold-rolled to a final annealing the cold-rolling reduction immediately before is 60% or more, in the final annealing process, The cold-rolled material is heated at a temperature increase rate of 60 ° C./hour or less and recrystallized to produce an aluminum alloy material having a high average r value and improved deep drawing workability.
The recrystallization annealing temperature is set to 330 to 550 ° C., and the recrystallization annealing is appropriately advanced.
[0008]
[Action]
That is, as a result of various studies to eliminate the drawbacks of the prior art, the present inventors recrystallized the rolled structure of an aluminum alloy material by adding a specific amount of Zr to an aluminum alloy containing a specific amount of Mg. At this time, when the alloy material is cold-rolled to a strength to form a rolled texture, and the recrystallization temperature is as low as possible, the average r value is high and deep drawing workability is increased. The present invention has been completed by finding that an excellent aluminum alloy material can be obtained.
[0009]
The r value referred to here is the Lankford plastic strain ratio r value, which is the ratio of the true strain ε W in the width direction and the true strain ε t in the thickness direction of the tensile specimen, r = ε W / ε t And is a very important characteristic value in the evaluation of formability from the relationship with the deep drawability, but the anisotropy is remarkable because it is intended for rolled materials. Therefore, the r value in the rolling direction is r 0 , the r value in the rolling direction is 45 degrees and the r value in the direction perpendicular to the rolling direction is r 45 and r 90 , respectively. It is generally based on the average r value measured using a JIS No. 5 tensile test piece in the present invention.
Average r value = (r 0 + r 90 + 2r 45 ) / 4 (1)
Thus, the average r value is a parameter for evaluating deep drawability. The higher the average r value, the better the deep drawability of the material. This value is related to the crystal orientation of the material, and those having a rolling texture have a higher average r value. Therefore, in order to improve the average r value, it is necessary to develop the rolling texture strongly and to leave the rolling texture as much as possible during recrystallization annealing.
[0010]
The inventors of the present invention, when an aluminum alloy to which Zr is added together with Mg as a strengthening element develops a rolling texture strongly by strong rolling and then anneals at a recrystallization temperature or higher, raises the temperature to reach the recrystallization temperature. When the speed is reduced within a certain range, the orientation of the rolling texture is maintained and a high average r value is obtained, and the present invention has been completed. This is because the temperature rise rate is decreased and the temperature is gradually increased over time until recrystallization, during which the precipitation reaction of the Al 3 Zr intermetallic compound proceeds prior to the progress of recrystallization, It is understood that since the Al 3 Zr intermetallic compound precipitates at the boundary between dislocations and cells, the orientation of recrystallization is thereby restricted and the orientation of the rolling texture is maintained.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Below, this invention is demonstrated with the specific component and manufacturing process of the aluminum alloy material of this invention.
The chemical composition of the aluminum alloy of the present invention consists of Mg: 2 to 6% by weight, Zr: 0.10 to 0.3% by weight, the balance Al, and other alloy elements other than Mg and Zr, if necessary. Can be added. That is, when higher strength is required, one or more of Fe, Cu, and Zn are added at a maximum of about 0.5% by weight. In order to prevent cracking during casting, 0.1% by weight or less of Ti and 0.05% by weight or less of B can be added. In melting the molten alloy, the impurity element may be contained in the order of JIS standards from the aluminum ingot and the return material. In addition, in melting an aluminum alloy melt containing 2 to 6% by weight of Mg according to the present invention, it is desirable to add 0.005% by weight or less of Be to prevent oxidation of Mg.
[0012]
The reasons for limiting the action and chemical components of Mg and Zr are as follows.
Mg is an element that imparts strength to the aluminum alloy. If it is less than 2% by weight, sufficient strength cannot be obtained. On the other hand, if it exceeds 6% by weight, hot rolling becomes difficult because hot cracks occur during hot working, and it becomes sensitive to stress corrosion cracking. The content is in the range of 2 to 6% by weight.
[0013]
Zr has the effect of precipitating fine precipitates as Al 3 Zr at the dislocations and cell boundaries during the final annealing of the aluminum alloy material, preventing the dislocations and the movement of the cells, leaving the rolling orientation, and increasing the average r value. There is. If the amount of Zr is less than 0.10, the effect is small and a high average r value cannot be obtained. However, if Zr exceeds 0.3% by weight, a huge crystallized product is produced when casting, and its ductility deteriorates. Therefore, the content of Zr needs to be regulated to 0.10 to 0.30% by weight.
[0014]
Next, a production method for obtaining the aluminum alloy material of the present invention will be described.
The Al—Mg alloy material having the above composition can be manufactured by a normal DC casting or a continuous casting method such as a belt caster method, a twin roll method, or a 3C method, and these casting methods are not particularly limited. . After casting, soaking is performed as necessary, hot rolling is performed, and then cold rolling is performed. In the course of cold rolling, intermediate annealing may be performed once or twice as necessary, but the cold rolling rate immediately before the final annealing needs to be 60% or more.
[0015]
When the cold work rate immediately before the final annealing is 60% or more, the rolling texture develops strongly, and this rolling texture remains in the next recrystallization annealing process, and the average r value increases. However, if the cold work rate is less than 60%, the development of the rolling texture is insufficient, so the average r value after recrystallization annealing is low, and sufficient deep drawing workability cannot be obtained. Therefore, it is necessary to regulate the cold rolling rate immediately before the final annealing to 60% or more.
[0016]
Although the final annealing is performed at a temperature equal to or higher than the recrystallization temperature, a preferable temperature range is 330 to 550 ° C. If it is less than 330 ° C., recrystallization hardly proceeds, and if it exceeds 550 ° C., melting may occur locally, which is not preferable.
The temperature increase rate of the final annealing is 60 ° C./hour or less, preferably 20 to 60 ° C./hour. That is, by setting the temperature to 60 ° C./hour or less, fine Al—Zr intermetallic compounds (Al 3 Zr) are sufficiently precipitated at the dislocations and cell boundaries, and the rolling texture remains at the recrystallization temperature. Since it can be crystallized, an aluminum alloy material having a high average r value can be obtained.
When the temperature is increased at a rate exceeding 60 ° C./hour, Al 3 Zr is not sufficiently precipitated at the dislocations and cell boundaries, and recrystallization proceeds, so that the rolling texture cannot be sufficiently retained, and the average The r value is lowered. However, when the rate of temperature increase is 20 ° C./hour or less, the production efficiency is lowered and it is industrially uneconomical. The cooling rate after annealing is not particularly limited. After the final annealing, if necessary, corrective processing is performed to eliminate quenching distortion, and further stabilization processing is performed.
The average r value of the aluminum alloy plate obtained by the above steps is 0.9 or more, and excellent deep drawing workability is obtained.
[0017]
Examples Table 1 shows the chemical components of the aluminum alloys of the present invention and comparative examples. Alloy numbers 1-5 are within the scope of the present invention, but the composition of alloy number 6 does not contain Zr and is outside the scope of the present invention.
[0018]
Figure 0003876458
Table 2 shows the production conditions of the aluminum alloy materials of the present invention example and the comparative example.
[0019]
Figure 0003876458
[0020]
In the present invention example, an aluminum alloy melt is obtained by semi-continuous casting (DC) to obtain an ingot having a thickness of 500 mm, then 7 mm chamfering is performed, and holding is performed at 500 ° C. for 4 hours, soaking is performed at 300 to 500 ° C. After hot rolling, cold-rolled at a predetermined rolling rate and finally annealed (Product No .: I, II, III, IV, V), and after continuous casting (CC), hot-rolled and at a predetermined rolling rate. Cold-rolled and final annealed (Production Number: VI). The final annealing was performed at a heating rate of 48 ° C / hour and 58 ° C / hour (Production Number: III) at 480 ° C for 1 hour. After holding, it was cooled with water.
[0021]
As comparative examples, those containing no Zr (Production Number: VII), those having a cold rolling rate of less than 60% (Production Number: VIII) at the time of final annealing, and those having a fast heating rate in the final annealing (Production Number: IX) , X). In these, the conditions of casting method, chamfering and soaking are the same as those of the present invention example.
[0022]
Table 3 shows the mechanical properties and average r values of the aluminum alloy materials thus produced.
In Table 3, examples of test codes A to F that satisfy the requirements of the chemical component, Zr content, cold rolling rate, temperature increase rate of final heat treatment and temperature of the present invention all have an average r value of 0.9 or more. It can be seen that On the other hand, those that do not meet any of these requirements of the comparative example, that is, those that do not contain Zr (test code: G, alloy number: 6), and the cold rolling rate during the final annealing is 23%. Less than 60% (test code: H, production number: VIII), temperature rising rate during final annealing is 100 ° C./hour (test code: I, production number: IX) and temperature rising rate is 10 6 ° C./hour ( It can be seen that the test code: J, production number: X) has a low average r value, and the deep drawing workability intended by the present invention cannot be obtained.
[0023]
Figure 0003876458
[0024]
【The invention's effect】
As described above, according to the present invention, an aluminum alloy material having an average r value of 0.9 or more and excellent deep drawing workability can be produced. Accordingly, it is possible to produce an aluminum alloy rolled material suitable for a structural material for a wide range of applications, ranging from body sheets of automobiles, frame members, wheels, and outer plates of ships and other electrical equipment.

Claims (5)

Mg:2〜6重量%、Zr:0.10〜0.3重量%含有し、残部がAl及び不可避的不純物からなるアルミニウム合金材を冷間圧延し後に焼鈍処理を施す工程において、最終焼鈍処理直前の冷間圧延率を60%以上とし、該最終焼鈍処理において、該冷間圧延材を60℃/時間以下の昇温速度で加熱して再結晶焼鈍させることを特徴とする深絞り加工性の優れたアルミニウム合金材の製造方法。Mg: 2 to 6 wt%, Zr: from 0.10 to 0.3 and containing by weight%, the aluminum alloy material and the balance being Al and unavoidable impurities in the step of performing an annealing process after cold rolling, final annealing Deep drawing processing, characterized in that the cold rolling rate immediately before the treatment is 60% or more, and in the final annealing treatment, the cold rolled material is recrystallized by heating at a heating rate of 60 ° C./hour or less. For producing an aluminum alloy material having excellent properties. さらに、Fe:0Furthermore, Fe: 0 .. 5重量%以下,Cu:05 wt% or less, Cu: 0 .. 5重量%以下及びZn:05 wt% or less and Zn: 0 .. 5重量%以下の一種又は二種以上を含有する請求項1に記載の深絞り加工性の優れたアルミニウム合金材の製造方法。The manufacturing method of the aluminum alloy material excellent in deep drawing workability of Claim 1 containing 5 weight% or less of 1 type, or 2 or more types. さらに、Ti:0Furthermore, Ti: 0 .. 1重量%以下及び/又はB:01% by weight or less and / or B: 0 .. 05重量%以下を含有する請求項1又は2に記載の深絞り加工性の優れたアルミニウム合金材の製造方法。The manufacturing method of the aluminum alloy material excellent in deep drawing workability of Claim 1 or 2 containing 05 weight% or less. さらに、Be:0Furthermore, Be: 0 .. 005重量%以下を含有する請求項1〜3のいずれかに記載の深絞り加工性の優れたアルミニウム合金材の製造方法。The manufacturing method of the aluminum alloy material excellent in deep drawing workability in any one of Claims 1-3 containing 005 weight% or less. 前記再結晶焼鈍温度が、330〜550℃であることを特徴とする請求項1〜4のいずれかに記載の深絞り加工性の優れたアルミニウム合金材の製造方法。The said recrystallization annealing temperature is 330-550 degreeC, The manufacturing method of the aluminum alloy material excellent in deep drawing workability in any one of Claims 1-4 characterized by the above-mentioned.
JP18278496A 1996-06-24 1996-06-24 Manufacturing method of aluminum alloy material with excellent deep drawability Expired - Fee Related JP3876458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18278496A JP3876458B2 (en) 1996-06-24 1996-06-24 Manufacturing method of aluminum alloy material with excellent deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18278496A JP3876458B2 (en) 1996-06-24 1996-06-24 Manufacturing method of aluminum alloy material with excellent deep drawability

Publications (2)

Publication Number Publication Date
JPH108226A JPH108226A (en) 1998-01-13
JP3876458B2 true JP3876458B2 (en) 2007-01-31

Family

ID=16124365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18278496A Expired - Fee Related JP3876458B2 (en) 1996-06-24 1996-06-24 Manufacturing method of aluminum alloy material with excellent deep drawability

Country Status (1)

Country Link
JP (1) JP3876458B2 (en)

Also Published As

Publication number Publication date
JPH108226A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP2823797B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP2614686B2 (en) Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability
JPS621467B2 (en)
JP2013525608A (en) Damage-resistant aluminum material with hierarchical microstructure
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP3590685B2 (en) Manufacturing method of aluminum alloy sheet for automobile outer panel
WO2019025227A1 (en) 6xxxx-series rolled sheet product with improved formability
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
WO2018206696A1 (en) Method of manufacturing an al-si-mg alloy rolled sheet product with excellent formability
JPH0747808B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
EP1260600B1 (en) Aluminum alloy sheet material and method for producing the same
JPS60258454A (en) Manufacture of aluminum alloy rigid plate for molding
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH08176764A (en) Production of aluminum alloy sheet for forming
JPH0138866B2 (en)
JP3876458B2 (en) Manufacturing method of aluminum alloy material with excellent deep drawability
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH0480979B2 (en)
JPH10219412A (en) Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
KR960007633B1 (en) Al-mg alloy & the preparation
JP3218099B2 (en) Method for producing aluminum alloy sheet with low ear ratio and excellent formability
JP2003328095A (en) Production method for aluminum alloy plate for forming

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees