JP3875567B2 - 偏波保持フォトニッククリスタルファイバ - Google Patents

偏波保持フォトニッククリスタルファイバ Download PDF

Info

Publication number
JP3875567B2
JP3875567B2 JP2002019529A JP2002019529A JP3875567B2 JP 3875567 B2 JP3875567 B2 JP 3875567B2 JP 2002019529 A JP2002019529 A JP 2002019529A JP 2002019529 A JP2002019529 A JP 2002019529A JP 3875567 B2 JP3875567 B2 JP 3875567B2
Authority
JP
Japan
Prior art keywords
fiber
polarization
width
photonic crystal
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002019529A
Other languages
English (en)
Other versions
JP2003222740A (ja
Inventor
正俊 田中
真也 山取
盛行 藤田
悟基 川西
和宣 鈴木
寛和 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002019529A priority Critical patent/JP3875567B2/ja
Publication of JP2003222740A publication Critical patent/JP2003222740A/ja
Application granted granted Critical
Publication of JP3875567B2 publication Critical patent/JP3875567B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コアの周囲に、光ファイバ軸方向に延びる多数の細孔が結晶状に配列されたクラッド部と、該クラッド部の周囲に設けられたオーバークラッド部とを備えた偏波保持フォトニッククリスタルファイバに関する。
【0002】
【従来の技術】
近年、コア及びクラッドからなる通常の光ファイバでは得ることのできない大きな波長分散を発現するものとしてフォトニッククリスタルファイバが注目されている。このフォトニッククリスタルファイバは、コアの周囲に、光ファイバ軸方向に延びる多数の細孔が結晶状に配列されたクラッド部と、さらにクラッド部をサポートするためにクラッド部の周囲に設けられたオーバークラッド部とを備えている。
【0003】
一方、偏光や干渉を利用した光ファイバセンサやコヒーレント光ファイバ通信等には、偏波安定性が高い偏波保持ファイバを使用している。上記フォトニッククリスタルファイバも、その波長分散特性を生かして偏波保持フォトニッククリスタルファイバとしての使用が検討されている。このようにフォトニッククリスタルファイバを偏波保持ファイバにするには、コア、あるいはコア近辺の細孔配置に工夫を凝らし、例えばコアの断面形状を楕円形状や長方形状にしたり、コアに隣接する細孔の一部を他の細孔とは異なる径にしたりすればよい。
【0004】
ところで、二本の光ファイバの端部同士を融着し接合する際には、光ファイバ側面を拡大観察して、コアの位置を合わせて端面同士を突き合わせてから融着を行っている。このように拡大観察するのには、顕微鏡等を用いる。偏波保持ファイバの接合においては、さらに二本のファイバの偏波面を一致させる必要がある。従来偏波保持ファイバとして使用されているPANDAファイバは、コアの両脇に配置された応力付与部分が他の部分と屈折率が異なるため、顕微鏡観察により偏波面が判別できるので、比較的容易に二本のファイバの偏波面を合わせることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、偏波保持フォトニッククリスタルファイバは側方から顕微鏡観察すると、細孔部分の屈折率が石英ガラスよりも低いためクラッド部は黒く見えるが、偏波面が判別できるコア近辺の部分は、その周囲の多数の細孔に隠されてしまっていて偏波面を判別することができないので、二本の偏波保持フォトニッククリスタルファイバの偏波面を一致させて接合することは非常に困難であった。
【0006】
本発明はこのような事情に鑑みてなされたものであり、その目的とするところは、顕微鏡観察により偏波面が容易に判別できる偏波保持フォトニッククリスタルファイバを提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、ファイバ側方から観察されるクラッド部の最大幅又は最小幅のいずれかが、ファイバを中心軸周りに回転させたときに90度あるいは180度毎に表れるようにクラッド部を形成した偏波保持フォトニッククリスタルファイバとした。
【0008】
具体的には、請求項1の発明は、コアの周囲に、光ファイバ軸方向に延びる多数の細孔が結晶状に配列されたクラッド部と、該クラッド部の周囲に設けられたオーバークラッド部とを備えた偏波保持フォトニッククリスタルファイバを前提とする。
【0009】
そして、上記ファイバ側方から観察される上記クラッド部の幅がファイバの中心軸周りの回転により変化するとともに、該クラッド部の最大幅又は最小幅のいずれかが観察された位置からファイバを中心軸周りに回転させたとき、該クラッド部の幅が回転角が0度よりも大きく180度よりも小さいときには回転角0度における最大幅よりも小さく又は最小幅よりも大きくて、回転角が180度になったときに回転角0度における最大幅又は最小幅のいずれかと略同じ幅になるよう上記細孔が配置されていることにより、保持される偏波面が表示されるように構成されているものとする。
【0010】
ここで、多数の細孔が結晶状に配列されたというのは、多数の細孔がファイバ横断面において規則的に配列していることであって、例えば、最小単位が正三角形、正方形又は長方形である格子配列等を挙げることができる。細孔は、径が0.1〜10μmであることがファイバ特性上好ましい。また、ファイバ側方から観察される上記クラッド部の幅がファイバの中心軸周りの回転により変化するというのは、ファイバ横断面におけるクラッド部が、形状が円形とは異なることに由来して、ファイバが360度回転する間に少なくとも一つの最大径と少なくとも一つの最小径とが現れることである。
【0011】
請求項1の発明であれば、ファイバ側方から顕微鏡観察することでファイバ横断面の特定の径方向が判別できるため、互いに直交する二つの偏波面をそれぞれ区別して判別できて、容易に偏波保持フォトニッククリスタルファイバと他の光ファイバとを、偏波面を一致させて接合することができる。すなわち、ファイバ側方から見たクラッド部の最大幅又は最小幅の幅方向は、ファイバ横断面において、特定の一つの径方向であるから、180度ファイバを中心軸周りに回転させたときに再度最大幅又は最小幅が表れるのであって、それ故に、上記特定の径方向と互いに直交する二つの偏波面のそれぞれの偏波方向とを予め関係づけておけば、該二つの偏波面をそれぞれ区別して判別できるのである。別の言葉で言うと、請求項1の発明の光ファイバは、クラッド部の最大幅又は最小幅のいずれかが観察された位置からファイバを中心軸周りに回転させたとき、再度回転角0度における最大幅又は最小幅が観察される回転角の最小値が180度である偏波保持フォトニッククリスタルファイバである。
【0012】
請求項1の発明の光ファイバは、互いに直交する二つの偏波面の両方において光が伝搬する複屈折光ファイバである偏波保持フォトニッククリスタルファイバでも良いが、互いに直交する二つの偏波面のうち一方のみが光を伝搬する単一偏波光ファイバである偏波保持フォトニッククリスタルファイバであることが好ましい。ファイバ接合する他の光ファイバは、偏波保持フォトニッククリスタルファイバ、あるいは他の種類の偏波保持ファイバが挙げられる。
【0013】
また、ファイバ側方から観察されるクラッド部の最大幅と最小幅の比が1.2〜5であれば、顕微鏡観察において最大幅又は最小幅のいずれかとそれ以外の幅との見分けがつきやすく且つフォトニッククリスタルファイバとして製造が容易であるので好ましい。
【0014】
次に、請求項2の発明は、コアの周囲に、光ファイバ軸方向に延びる多数の細孔が結晶状に配列されたクラッド部と、該クラッド部の周囲に設けられたオーバークラッド部とを備えた偏波保持フォトニッククリスタルファイバを前提とする。
【0015】
そして、上記ファイバ側方から観察される上記クラッド部の幅がファイバの中心軸周りの回転により変化するとともに、該クラッド部の最大幅又は最小幅のいずれかが観察された位置からファイバを中心軸周りに回転させたとき、該クラッド部の幅が回転角が0度よりも大きく90度よりも小さいときには回転角0度における最大幅よりも小さく又は最小幅よりも大きくて、回転角が90度になったときに回転角0度における最大幅又は最小幅のいずれかと略同じ幅になるよう上記細孔が配置されていることにより、保持される偏波面が表示されるように構成されているものとする。
【0016】
請求項2の発明であれば、ファイバ側方から顕微鏡観察することで偏波面を判別できるので、容易に偏波保持フォトニッククリスタルファイバと他の光ファイバとを、偏波面を一致させて接合することができる。すなわち、ファイバ側方から見たクラッド部の最大幅又は最小幅のいずれかの幅方向は、ファイバ横断面において、特定の直交する二つの径方向であるために、ファイバを中心軸周りに90度回転させたときに再度最大幅又は最小幅が表れるのであって、それ故に前記特定の径方向と偏波面の偏波方向とを予め関係づけておけば、互いに直交する二つの偏波面をそれぞれ区別しないで判別できるのである。別の言葉で言うと、請求項2の発明の光ファイバは、クラッド部の最大幅又は最小幅のいずれかが観察された位置からファイバを中心軸周りに回転させたとき、再度回転角0度における最大幅又は最小幅が観察される回転角の最小値が90度である偏波保持フォトニッククリスタルファイバである。
【0017】
請求項2の発明の光ファイバは、互いに直交する二つの偏波面を区別しないため、両方の偏波面において光が伝搬する複屈折光ファイバである偏波保持フォトニッククリスタルファイバであることが好ましい。接合する他の光ファイバは、偏波保持フォトニッククリスタルファイバ、あるいは他の種類の偏波保持ファイバが挙げられる。
【0018】
また、ファイバ側方から観察されるクラッド部の最大幅と最小幅の比が1.2〜5であれば、顕微鏡観察において最大幅又は最小幅のいずれかとそれ以外の幅との見分けがつきやすく且つフォトニッククリスタルファイバとして製造が容易であるので好ましい。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0020】
−第一の実施の形態−
図1(A)に第一の実施の形態に係る偏波保持フォトニッククリスタルファイバ10の端面を示す。この偏波保持フォトニッククリスタルファイバ10は、石英ガラスよりなるコア1の周囲に、光ファイバ軸方向に延びる多数の細孔4a,4bが、最小単位が正三角形格子の結晶状に配列されたクラッド部2と、このクラッド部2の周囲に石英ガラスよりなるオーバークラッド部3とを備えている。上記クラッド部2は、端面における外形が菱形となるよう細孔4a,4bが配置されて形成されている。
【0021】
この偏波保持フォトニッククリスタルファイバ10では、コア1に隣接する六つの細孔4a,4bのうち、コア1を挟んで相対向する一対の細孔4bが、他の四つの細孔4aよりも径が大きい。このような細孔4a,4b配置にすることで、偏波保持機能が光ファイバ10に備わる。すなわち、大きい径の一対の細孔4bの中心を結ぶ直線を含みファイバ横断面に垂直な偏波面(以下、第一の偏波面という)と、それに直交する偏波面(以下、第二の偏波面という)とでは、コア1隣接の細孔4a,4b配置により、伝搬する二つの偏波モード間の伝搬定数に差ができるので、この光ファイバ10において偏波が保持される。
【0022】
上記クラッド部2は、外形である菱形の二つの対角線のうち、短い方の対角線が第一の偏波面の偏波方向に延びていて、長い方の対角線が第二の偏波面の偏波方向に延びている。
【0023】
次に、偏波保持フォトニッククリスタルファイバ10を顕微鏡観察したときに偏波面の方向が判別できることについて説明する。
【0024】
図1(B)は、偏波保持フォトニッククリスタルファイバ10の端面の概略図である。偏波保持フォトニッククリスタルファイバ10を側方から顕微鏡観察すると、細孔4a,4bからなるクラッド部2の部分は、石英ガラスだけの部分であるオーバークラッド部3よりも屈折率が低いため、黒く見える。図1(C)に示すように、ファイバ10を中心軸周りに回転させると、ファイバ10側方から観察されるクラッド部2の幅は、サインカーブのように変化していく。図1(B)のX方向から見ると、クラッド部2の最大幅が観察され、そこからファイバ10を時計回りに回転させていくと、クラッド部2の幅は段々減少していき、90度回転させると(Y方向から見ていることになる)最小幅が観察される。さらに回転させると、段々クラッド部2の幅は増加していき、Xから180度回転させると(Z方向から見ていることになる)再度最大幅が観察される。従って、このX又はZ方向に直交する面が第二の偏波面であることが判別でき、Y方向に直交する面が第一の偏波面であることが判別できて、二本の偏波保持フォトニッククリスタルファイバ10を接合するときに顕微鏡観察することで、直交する二つの偏波面をそれぞれ区別して容易に一致させることができる。
【0025】
すなわち、ファイバ10側方から観察されるクラッド部2の幅が、ファイバ10の中心軸周りの回転により変化するとともに、このクラッド部2の最大幅又は最小幅のいずれかが観察された位置からファイバ10を中心軸周りに回転させたとき、クラッド部2の幅が、回転角が0度よりも大きく180度よりも小さいときには、回転角0度における最大幅よりも小さく又は最小幅よりも大きくなって、回転角が180度になったときに回転角0度における最大幅又は最小幅のいずれかと略同じ幅になるように細孔4a,4bが配置されてクラッド部2が形成されている。このことは、クラッド部2が断面菱形になるよう細孔4a,4bが配置されていることにより、保持される偏波面が表示されるように構成されていると言うことである。しかも、本実施形態では、クラッド部2の最大幅と最小幅の比が約1.7なので、ファイバ10を回転させていったときにX、Y、Z方向が判別しやすくなっている。
【0026】
本実施形態に係る偏波保持フォトニッククリスタルファイバ10に比べて、図10に示すクラッド部2の外形が六角形である従来の偏波保持フォトニッククリスタルファイバ20では、ファイバ20側方から観察すると、クラッド部2の最大幅又は最小幅のいずれかがファイバ20を60度回転させる毎に現れるので、偏波面を判別することができない。また、クラッド部2の最大幅と最小幅の比が、約1.16なので、最大幅と最小幅との判別が困難である。従って、従来の偏波保持フォトニッククリスタルファイバ20では、ファイバ20側方からの顕微鏡観察によっては、二本のファイバ20の偏波方向を一致させて接合することはできない。
【0027】
次に、本実施形態に係る偏波保持フォトニッククリスタルファイバ10の製造方法について説明する。
【0028】
まず、SiO2製の円筒であるサポート管を用意する。このサポート管はオーバークラッド部3になる部分であって、管としての厚みが大きく、外径が内径の2〜5倍程度である。それから、サポート管の内壁を横断面が菱形となるように研削する。
【0029】
そして次に、互いに同一外径を有する、一本のSiO2製の円柱(ロッド)と、二本のSiO2製の大内径細管(キャピラリー)と、多数のSiO2製の小内径細管(キャピラリー)とを用意する。上記ロッドは、コアになるものとして上記サポート管の中心部に配置し、このロッドの両脇であって、上記菱形の短い方の対角線上に上記大内径キャピラリーを配置し、サポート管内部空間の残りの部分には上記小内径キャピラリーを詰めて、ファイバ母材であるプリフォームを作製する。なお、プリフォームでのロッドやキャピラリーの配置は、図1(A)の配置と同様である。
【0030】
上記サポート管及びロッドは、VAD法、OVD法又はMCVD法等の公知の方法で作製すればよい。上記キャピラリーは、比較的大径の円筒部材であるキャピラリー母材を加熱延伸して細径化する線引き加工によって形成すればよい。
【0031】
こうして作製されたプリフォームは、塩素ガス等で脱水処理を施された後、線引き炉内で加熱した後に延伸する線引き加工を施されて細径化(ファイバ化)され光ファイバとなる。線引き工程の前に、プリフォームの端部を封止しておくと、線引き工程時に細孔が潰れてしまうことが防止されるため好ましい。
【0032】
光ファイバに線引きされると、サポート管とキャピラリー、キャピラリーとロッド、キャピラリー同士は同じ素材であるので、融着一体化して境目がなくなり、図1(A)に示す偏波保持フォトニッククリスタルファイバ10となる。
【0033】
これまで説明したように、本実施形態に係る偏波保持フォトニッククリスタルファイバ10は、クラッド部2が細孔4a,4bを菱形に配置して形成され、ファイバ10側方からの観察において、ファイバ10を中心軸周りに180度回転させる毎に、クラッド部2の最大幅が現れ、最小幅も同様に現れて、その最大幅及び最小幅が観察される方向が、直交する二つの偏波面の偏波方向とそれぞれ一致するので、顕微鏡によりファイバ10側面を拡大して観察することにより、直交する二つの偏波面の方向をそれぞれ区別して容易に判別できる。このため、偏波保持フォトニッククリスタルファイバ10同士、あるいは偏波保持フォトニッククリスタルファイバ10と他の偏波保持ファイバ等との偏波面を一致させての接合作業が、短時間で簡単に行える上、作業者の熟練度が低くても正確な接合が行える。従って接合作業のコストを低減できる。また、本実施形態に係る偏波保持フォトニッククリスタルファイバ10の製造は、オーバークラッド部3となるサポート管の内側を断面菱形となるように研削し、そこにキャピラリーとロッドとを詰め込むだけなので、容易に短時間で製造でき、製造コストも低くできる。
【0034】
−第二の実施の形態−
図2(A)は、第二の実施の形態に係る偏波保持フォトニッククリスタルファイバ10の端面の概略図である。本実施の形態は、クラッド部2の断面外形が楕円となるように細孔4a,4bを配置したものである。楕円の長径方向が、第一の偏波面の偏波方向に略一致している。本実施形態もファイバ10を中心軸周りに回転させながらファイバ10側方から観察すると、図2(B)に示すようにファイバ10を180度回転させる毎にクラッド部2の最大幅が現れ、最小幅も同様に現れるので、作用効果は、第一の実施形態と同様である。また、本実施形態の偏波保持フォトニッククリスタルファイバ10は、クラッド部2の最大幅と最小幅の比をフォトニッククリスタルとしての機能を維持したまま容易に大きくできるので、最大径及び最小径を判別しやすい。また、製造方法も第一の実施形態と同様である。
【0035】
−第三の実施の形態−
図3(A)は、第三の実施の形態に係る偏波保持フォトニッククリスタルファイバ10の端面の概略図である。本実施の形態は、クラッド部2の断面外形を円の外周が一部外方に矩形状に突出している鍵穴形状となるように細孔4a,4bを配置したものである。本実施の形態は、ファイバ10を中心軸周りに回転させながらファイバ10側方から観察すると、図3(B)に示すようにクラッド部2の最大幅が180度回転させる毎に現れ、この最大幅の幅方向が第一の偏波面の偏波方向に略一致しているので、作用効果は、第一の実施形態と同様である。また、製造方法も第一の実施形態と同様である。
【0036】
−第四の実施の形態−
図4(A)は、第四の実施の形態に係る偏波保持フォトニッククリスタルファイバ10の端面の概略図である。本実施の形態は、クラッド部2の断面外形を直角三角形となるように細孔4a,4bを配置したものである。本実施の形態は、ファイバ10を中心軸周りに回転させながらファイバ10側方から観察すると、図4(B)に示すようにクラッド部2の最大幅が180度回転させる毎に現れ、最小幅も同様に現れて、この最大幅の幅方向が第一の偏波面の偏波方向に略一致しているので、作用効果は、第一の実施形態と同様である。さらに、図の時計回りにファイバ10を回転させると、90度より小さい回転角で最小幅から最大幅になるので、判別しやすい。また、製造方法も第一の実施形態と同様である。
【0037】
−第五の実施の形態−
図5(A)は、第五の実施の形態に係る偏波保持フォトニッククリスタルファイバ10の端面の概略図である。本実施の形態は、クラッド部2の断面外形を二等辺三角形となるように細孔4a,4bを配置したものである。本実施の形態は、ファイバ10を中心軸周りに回転させながらファイバ10側方から観察すると、図5(B)に示すようにクラッド部2の最小幅が180度回転させる毎に現れ、この最小幅の幅方向が第一の偏波面の偏波方向に略一致しているので、作用効果は、第一の実施形態と同様である。また、製造方法も第一の実施形態と同様である。
【0038】
−第六の実施の形態−
図6(A)は、第六の実施の形態に係る偏波保持フォトニッククリスタルファイバ10の端面の概略図である。本実施の形態は、クラッド部2の断面外形を長方形となるように細孔4a,4bを配置したものである。本実施の形態は、ファイバ10を中心軸周りに回転させながらファイバ10側方から観察すると、図6(B)に示すようにクラッド部2の最小幅が180度回転させる毎に現れ、この最小幅の幅方向が第一の偏波面の偏波方向に略一致しているので、作用効果は、第一の実施形態と同様である。さらに、90度より小さい回転角で最大幅から最小幅になり且つ最大幅と最小幅の比をフォトニッククリスタルとしての機能を維持したまま容易に大きくできるので、最大径及び最小径を判別しやすい。また、製造方法も第一の実施形態と同様である。
【0039】
−第七の実施の形態−
図7(A)は、第七の実施の形態に係る偏波保持フォトニッククリスタルファイバ10の端面の概略図である。本実施の形態は、クラッド部2の断面外形を正方形となるように細孔4a,4bを配置したものである。本実施の形態は、ファイバ10を中心軸周りに回転させながらファイバ10側方から観察すると、図7(B)に示すようにクラッド部2の最大幅及び最小幅が90度回転させる毎に現れ、この最大幅の幅方向が第一又は第二の偏波面の偏波方向に略一致しているので、直交する二つの偏波面をそれぞれ区別することはできないが、それ以外の作用効果は、第一の実施形態と同様である。すなわち、ファイバ10側方から観察されるクラッド部2の幅が、ファイバ10の中心軸周りの回転により変化するとともに、このクラッド部2の最大幅又は最小幅のいずれかが観察された位置からファイバ10を中心軸周りに回転させたとき、クラッド部2の幅が、回転角が0度よりも大きく90度よりも小さいときには、最大幅よりも小さく又は最小幅よりも大きくなって、回転角が90度になったときに回転角0度における最大幅又は最小幅のいずれかと略同じ幅になるように細孔4a,4bが配置されてクラッド部2が形成されている。このことは、クラッド部2が断面正方形になるよう細孔4a,4bが配置されていることにより、保持される偏波面が表示されるように構成されていると言うことである。また、製造方法も第一の実施形態と同様である。
【0040】
−その他の実施の形態−
上記の実施形態は例であって、本発明はこれらの例に限定されない。偏波保持機能を発現させる構造は、図8や図9に示す構造でも構わない。図8は、コア1に隣接した六個の細孔4a,4bのうち、コア1を挟んで相対向する一対の細孔4aよりも、他の四つの細孔4bの方が径が大きい。これらの周りは、小径の細孔4aが多数結晶状に配置されてクラッド部2になっている。図9は、コア1径が直交する二方向で異なっていて、偏波保持機能を発現している。このコア1の径の比は、図の縦が二に対して横が一の割合となっていて、コア1の周囲は、小径の細孔4aが多数結晶状に配置されてクラッド部2になっている。さらに、上記構造に限らず偏波保持機能さえあれば、どのような構造でも構わない。
【0041】
ファイバ10の構成材料は、石英ガラス以外のガラスやプラスチック等でも構わないし、石英ガラスにGe、B、F等をドープしたガラスでも構わない。クラッド部2の細孔配置は、最小単位が正方形や長方形、ハニカム構造等の規則的な配置でも構わない。また、細孔4a,4b形状は、円形、楕円形、多角形、半円状、その他どのような形でも構わない。クラッド部2を構成する小径の細孔4aの径は、全て同じでも良いし、異なるものがあっても良い。また、コア1にのみGe、B、F等をドープしても構わない。コア1に細孔を設けてもよいし、コア1が空孔であっても構わない。
【0042】
クラッド部2の断面外形も、ファイバ10を中心軸周りに回転させたときに、ファイバ10側方から観察されるクラッド部2の最大幅又は最小幅のいずれかが、180度又は90度回転させる毎に現れるような形状であれば、どのような形状でも良い。また、ファイバ10側方から観察されるクラッド部2の幅も、細孔4a以外のもの、例えば石英とは屈折率の異なる物質で形成されていても構わない。
【0043】
また、クラッド部2の細孔4a,4bに石英ガラス以外の材料、例えば、他の種類のガラスやポリマー、GeやBやF等をドープした石英ガラス等を充填しても構わない。ファイバの製造方法も、細孔4a,4b全て又は一部をドリル等で開けてもよい。
【0044】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に述べる効果を奏する。
【0045】
偏波保持フォトニッククリスタルファイバ10を中心軸周りに回転させたときに、ファイバ10側方から観察されるクラッド部2の最大幅又は最小幅のいずれかが、90度又は180度回転させる毎に現れるので、保持される偏波面をファイバ10側方からの観察で容易に判別することができ、他の偏波保持ファイバとの接合において偏波面合わせ作業が短時間で容易に行えるため、作業コストを低減できる。特に、180度毎に最大幅又は最小幅のいずれかが現れるものでは、直交する二つの偏波面をそれぞれ区別して判別することができる。また、製造も容易であるので、製造コストを低減できる。
【図面の簡単な説明】
【図1】(A)は第一の実施形態の偏波保持フォトニッククリスタルファイバの端面図、(B)は端面の概略図、(C)はファイバ側方から見たクラッド部の幅とファイバ回転角との関係図である。
【図2】(A)は第二の実施形態の偏波保持フォトニッククリスタルファイバの端面の概略図、(B)はファイバ側方から見たクラッド部の幅とファイバ回転角との関係図である。
【図3】(A)は第三の実施形態の偏波保持フォトニッククリスタルファイバの端面の概略図、(B)はファイバ側方から見たクラッド部の幅とファイバ回転角との関係図である。
【図4】(A)は第四の実施形態の偏波保持フォトニッククリスタルファイバの端面の概略図、(B)はファイバ側方から見たクラッド部の幅とファイバ回転角との関係図である。
【図5】(A)は第五の実施形態の偏波保持フォトニッククリスタルファイバの端面の概略図、(B)はファイバ側方から見たクラッド部の幅とファイバ回転角との関係図である。
【図6】(A)は第六の実施形態の偏波保持フォトニッククリスタルファイバの端面の概略図、(B)はファイバ側方から見たクラッド部の幅とファイバ回転角との関係図である。
【図7】(A)は第七の実施形態の偏波保持フォトニッククリスタルファイバの端面の概略図、(B)はファイバ側方から見たクラッド部の幅とファイバ回転角との関係図である。
【図8】偏波保持機能を有する別の構造の図である。
【図9】偏波保持機能を有するさらに別の構造の図である。
【図10】(A)は従来の偏波保持フォトニッククリスタルファイバの端面図、(B)は端面の概略図、(C)はファイバ側方から見たクラッド部の幅とファイバ回転角との関係図である。
【符号の説明】
1 コア
2 クラッド部
3 オーバークラッド部
4a,4b 細孔
10 偏波保持フォトニッククリスタルファイバ
20 偏波保持フォトニッククリスタルファイバ

Claims (1)

  1. コアの周囲に、光ファイバ軸方向に延びる多数の細孔からなるとともに該細孔が結晶状に配列されたクラッド部と、該クラッド部の周囲に設けられ横断面において外形が円であるオーバークラッド部とを備えた偏波保持フォトニッククリスタルファイバであって、
    上記細孔は、最小単位が正三角形格子の結晶状に配列されており、
    上記クラッド部は、横断面において外径が菱形であり、
    上記菱形の2つの対角線は、直交する2つの偏波面の偏波方向にそれぞれ延びており、
    上記ファイバ側方から観察される上記クラッド部の幅がファイバの中心軸周りの回転により変化するとともに、該クラッド部の最大幅又は最小幅のいずれかが観察された位置からファイバを中心軸周りに回転させたとき、該クラッド部の幅が回転角が0度よりも大きく180度よりも小さいときには回転角0度における最大幅よりも小さく又は最小幅よりも大きくて、回転角が180度になったときに回転角0度における最大幅又は最小幅のいずれかと略同じ幅になるよう上記細孔が配置されていることにより、保持される偏波面が表示されるように構成されていることを特徴とする偏波保持フォトニッククリスタルファイバ。
JP2002019529A 2002-01-29 2002-01-29 偏波保持フォトニッククリスタルファイバ Expired - Fee Related JP3875567B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002019529A JP3875567B2 (ja) 2002-01-29 2002-01-29 偏波保持フォトニッククリスタルファイバ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002019529A JP3875567B2 (ja) 2002-01-29 2002-01-29 偏波保持フォトニッククリスタルファイバ

Publications (2)

Publication Number Publication Date
JP2003222740A JP2003222740A (ja) 2003-08-08
JP3875567B2 true JP3875567B2 (ja) 2007-01-31

Family

ID=27743336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002019529A Expired - Fee Related JP3875567B2 (ja) 2002-01-29 2002-01-29 偏波保持フォトニッククリスタルファイバ

Country Status (1)

Country Link
JP (1) JP3875567B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7156161B2 (en) * 2002-01-24 2007-01-02 The United States Of America As Represented By The Secretary Of The Navy Lightweight thermal heat transfer apparatus
US7331954B2 (en) 2004-04-08 2008-02-19 Omniguide, Inc. Photonic crystal fibers and medical systems including photonic crystal fibers
US7167622B2 (en) 2004-04-08 2007-01-23 Omniguide, Inc. Photonic crystal fibers and medical systems including photonic crystal fibers
US7349589B2 (en) 2004-04-08 2008-03-25 Omniguide, Inc. Photonic crystal fibers and medical systems including photonic crystal fibers
US9063299B2 (en) 2009-12-15 2015-06-23 Omni Guide, Inc. Two-part surgical waveguide

Also Published As

Publication number Publication date
JP2003222740A (ja) 2003-08-08

Similar Documents

Publication Publication Date Title
US4978377A (en) Method of assembling a fiber optic preform from discrete preformed elements
JP3630664B2 (ja) 偏波保持フォトニッククリスタルファイバ
WO2010073822A1 (ja) マルチコア光ファイバ
JPWO2010073821A1 (ja) マルチコア光ファイバ
US20040151454A1 (en) Multiple core microstructured optical fibers and methods using said fibers
KR20010113696A (ko) 광자결정 광섬유 관련 또는 광자결정 광섬유에 있어서의개량
JP2584619B2 (ja) 非軸対称光フアイバ母材の製造方法
CN107843953B (zh) 一种高双折射大非线性光子晶体光纤
JPWO2006098471A1 (ja) 光ファイバおよび導波路
US6580860B1 (en) Method for making shaped highly birefringent optical fibers
EP2056135B1 (en) Optical fiber and light guide
WO2011117809A1 (en) Method for manufacturing a birefringent microstructured optical fiber
US11079536B2 (en) Suppressing surface modes in fibers
JP3825381B2 (ja) 偏波保持フォトニッククリスタルファイバ
JP2002296438A (ja) 偏波保持光ファイバおよびその母材の製造方法
JP3875567B2 (ja) 偏波保持フォトニッククリスタルファイバ
CN113721318A (zh) 一种光纤陀螺的空芯保偏光子晶体光纤及制备方法
JP4116479B2 (ja) テーパー加工フォトニック結晶ファイバ、その製造方法、及びフォトニック結晶ファイバの接続方法
JPWO2006098470A1 (ja) 光ファイバおよび導波路
JP2005003932A (ja) 偏波保持フォトニッククリスタルファイバ及びそのファイバ端部加工方法
FR3095703A1 (fr) Dispositif de couplage pour fibres optiques à coeur creux à couplage inhibé
US20020069677A1 (en) Optical fiber and method of making optical fiber
JPH0225806A (ja) 偏波保持光ファイバおよびその製造方法
JP2005140857A (ja) 分散フラットファイバ
CN113126199B (zh) 一种空心内悬挂芯光纤及其制造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees