JP3875315B2 - Process for producing optically active acylsulfonamides - Google Patents

Process for producing optically active acylsulfonamides Download PDF

Info

Publication number
JP3875315B2
JP3875315B2 JP20834696A JP20834696A JP3875315B2 JP 3875315 B2 JP3875315 B2 JP 3875315B2 JP 20834696 A JP20834696 A JP 20834696A JP 20834696 A JP20834696 A JP 20834696A JP 3875315 B2 JP3875315 B2 JP 3875315B2
Authority
JP
Japan
Prior art keywords
general formula
equivalents
optionally substituted
minutes
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20834696A
Other languages
Japanese (ja)
Other versions
JPH1045705A (en
Inventor
夏樹 石塚
謙一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shionogi and Co Ltd
Original Assignee
Shionogi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi and Co Ltd filed Critical Shionogi and Co Ltd
Priority to JP20834696A priority Critical patent/JP3875315B2/en
Publication of JPH1045705A publication Critical patent/JPH1045705A/en
Application granted granted Critical
Publication of JP3875315B2 publication Critical patent/JP3875315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、α位オキシ基置換不斉炭素を有する光学活性なアシルスルホンアミド類の製造法に関する。
【0002】
アシルスルホンアミド基は、対応するカルボン酸とほぼ等しい弱酸性官能基であるが、分子サイズや分配率などの諸物性が対応するカルボン酸と比較すると大きく異なることから、カルボン酸の生化学的等価体として特に医薬品の有効側鎖として有用である(Schaaf,J.Med.Chem.,1979,22,1340)。
【0003】
【従来の技術】
医薬品など生・薬理学的に有意な活性を発現する化合物においては、分子中に不斉炭素原子を有する化合物が多く存在し、不斉中心の配置と薬理作用には密接な関係があることが知られている。例えば、立体異性体同士が互いに鏡像体の関係にあるとき、両者は薬効や毒性において顕著な差異を示す場合がある。それゆえ、厚生省の医薬品製造指針(1985年度版)においても「該当薬物がラセミ体である場合にはそれぞれの異性体について吸収、分布、代謝、排泄動態を検討しておくことが望ましい。」と記されており、必要としない一方の鏡像異性体を極力排除した高純度な光学活性体の製造法は医薬品の製造にとって必要不可欠である。
【0004】
このような特定の光学活性体の製造法の例としては、出発原料もしくは製造工程における適当な中間体の段階で光学活性体とし、不斉を保持したまま最終生成物に誘導する方法、または最終生成物の段階で光学分割する方法が挙げられる。最終生成物の光学純度が十分高いものであれば、再結晶法等の適当な精製手段を用いることによりさらに光学純度を上げ、最終的には光学的に純粋な医薬品を得ることも可能である。
【0005】
カルボニル基のα位に不斉中心を有する化合物の場合、酸、塩基または熱等によって、不斉中心が非常に容易にエピマー化され立体異性体の混合物を与えることがある。アシルスルホンアミド類の製造においても、同様のエピマー化を伴う可能性があることから、光学活性体を出発原料として製造する場合は、製造工程におけるα位のエピマー化を極力おさえなければならない。
【0006】
一般に、アシルスルホンアミド類はカルボン酸もしくはその誘導体とスルホンアミドとを縮合させるホッヘンロッヘ−オーリンゲン(Hohenloohe−Oehringen)らによる方法を基本として製造される。
カルボン酸は、アミン類と同様にラセミ体を光学分割して光学活性源とするために最も容易かつ多用される官能基の一つであるのに対し、アシルスルホンアミド類はカルボン酸と同程度の酸性度であるにもかかわらず、光学分割の対象とされた例はほとんど無い。
以上の点から、ラセミ体のカルボン酸を光学分割し、しかる後にエピマー化を最小限におさえてアシルスルホンアミド類に変換することができれば、最小限の工程で光学活性なアシルスルホンアミド類に誘導することができ、一般的製造法として極めて有用である。
以下にホッヘンロッヘ−オーリンゲン(Hohenloohe−Oehringen)らの方法を3群に分類する。
【0007】
1)カルボン酸を高温下、スルホニルイソシアナート類と縮合させる方法(K.Hohenloohe−Oehringen,Monatsh,Chem,1972,103,1534−1541)。
2)カルボン酸を縮合剤と塩基の存在下、スルホンアミド類と縮合させる方法。この場合一般的に、縮合剤としてはカルボジイミド類が、また塩基としてスルホンアミド類自体の金属塩もしくはジメチルアミノピリジンなどの有機塩基が用いられる(K.Hohenloohe−Oehringen,Monatsh,Chem,1968,99,1289−1300)。
3)カルボン酸をまず活性エステル、酸塩化物、酸無水物などに変換して活性化させた後、塩基の存在下スルホンアミド類を求核剤として縮合させる方法(K.Hohenloohe−Oehringen,Monatsh,Chem,1972,103,1534−1541;K.Hohenloohe−Oehringen,Monatsh,Chem,1968,99,1301−1312;K.Hohenloohe−Oehringen,Monatsh,Chem,1968,99,1313−1319)。
【0008】
これらの方法はラセミ体のアシルスルホンアミド類の一般的製造法である。しかし、出発原料がα位に不斉炭素を有する光学活性なカルボン酸である場合は、高温条件での反応や強塩基を用いた反応条件であることから、一般的に出発原料の立体を維持することは困難である。
【0009】
ホッヘンロッヘ−オーリンゲン(Hohenloohe−Oehringen)法の改良法として、上記分類の1)、2)、3)にそれぞれ対応した1′)、2′)、3′)を以下に示す。
1′)より温和な条件下での反応にするために、カルボン酸を塩基触媒の存在下室温で、スルホニルイソシアナート類と縮合させる方法(G.Graf,Angew.Chem.Int.Ed.,1968,7,172−182,M.W.Winkley,US−4438031)。
2′)難溶性の副生成物の生成を防ぎ精製を容易にするために、水溶性カルボジイミドを縮合剤として用い、塩基の存在下、カルボン酸とスルホンアミド類とを縮合させる方法(F.Thomas,WO9526360;R.T.Jacobs,J.Med.Chem,1994,37,1282−1297)。
3′)活性化剤として向山の4級ピリジン塩試薬を用いる方法(D.P.Astles,EP411706)、ならびに水素化カリウムや1,8−ジアザビシクロ[5.4.0]−7−ウンデセン(DBU)などの強塩基を加えて反応を促進させる方法(J.L.Belletier,Tetrahedron Lett.,1986,27,131−134,J.T.Drummond,Tetrahedron Lett.,1988,29,1653−1656)。
【0010】
これらの改良法は、ホッヘンロッヘ−オーリンゲン(Hohenloohe−Oehringen)法と比較すれば、反応条件はより温和で精製も容易となるが、高価な縮合剤等を必要とし、製造コストが高騰するのみならず、無水条件を必要とするなど製造工程が複雑になる。また、出発原料がα位に不斉炭素を有する光学活性なカルボン酸である場合は、前記と同様の理由で出発原料の立体を維持することは困難となり、これらの改良法もアシルスルホンアミド類の効率的かつ一般的合成法とはなり得ない。
【0011】
上記製造方法で明らかにラセミ化が生じている具体例として、例えば2′)で示したWO95/26360記載の実施例を挙げることができる。ここでは、カルボン酸からアシルスルホンアミド類へと導く際に、出発原料では(L)-tryptophanと記されているが、生成物では(D,L)-tryptophanと記されていることから、明らかにラセミ化が生じたことが推測される。
また、1′)で示したUS−4438031記載の実施例にも、単一の立体配置を持つ出発原料から2種類の立体異性体の生成が記載されており、縮合過程での不斉中心の反転が示唆されている。
この他にも従来法による製造例では、光学活性体であることの証左となる旋光度の記載例が無い例、明示されていないまでも明らかにラセミ化が起きていることを示唆する例が多数存在する。
【0012】
他方、上記とは異なる方法として、ケトンやアルデヒド誘導体を原料としてウィティッヒ(Wittig)反応を用いる方法(H.J.Bestman,Chem.Ber,1980,113,912−918)や、二重結合を持つ化合物を出発原料として、スルホニルイソシアナート類との親電子付加反応を用いる方法(J.K.Rasmussen,Chem.Rev.,1976,76,389−408;D.Mostwicz,Carbohydra.res.,1991,212,283−288)等も用いられることがある。
しかし、これらの方法は出発原料がしばしば限定され、一般的なアシルスルホンアミド類の製造法とはいえない。
【0013】
また、酸アミド類とスルホン酸塩化物との反応による、アシルスルホンアミド類の合成も原理的には可能である。
しかしこの方法でも、多くの場合O−スルホニル化が優先して進行することから、一般法として用いるには適当ではない(C.R.Stephens,J.Amer.Chem.Soc.,1955,77,1701−1702)。
【0014】
上記のように、従来の技術ではα位に不斉を有する光学活性なアシルスルホンアミド類を得ることは困難であり、簡便かつ効率的に、しかも一般に応用しうる該アシルスルホンアミド類製造法の開発が望まれていた。
【0015】
【発明が解決しようとする課題】
上記に鑑み、本発明者らは、α位に不斉を有する光学活性アシルスルホンアミド類の一般的製造法を確立すべく研究を行ってきた。
【0016】
【課題を解決するための手段】
本発明者らは鋭意研究の結果、安価な試薬のみを用い、かつ単純な製造工程で、α位オキシ基置換不斉炭素を有する光学活性カルボン酸を対応する酸塩化物を中間体として、立体を保持したまま光学活性なアシルスルホンアミド類に変換することのできる製造法を見出した。以下本発明について詳細に説明する。
【0017】
即ち本発明は、α位オキシ基置換不斉炭素を有する、一般式(III):
【化5】

Figure 0003875315
(式中、*は不斉炭素原子の存在位置を示し、R1は置換基を有していてもよいフェニルを示し、R2は置換されていてもよい低級アルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールを示す)
で表わされる光学活性なカルボン酸に、塩素化剤1〜2当量を不活性溶媒中、塩基の不存在下−30℃〜室温で反応させ、一般式(II):
【化6】
Figure 0003875315
(式中、R1とR2は前記と同意義である)
で表わされる酸塩化物とした後、さらに一般式(IV):
【化7】
Figure 0003875315
(式中、R3は置換されていてもよいアリールを示し、R4は水素原子または低級アルキルを示す)
で表わされる化合物1〜2当量を−30℃〜室温で、不活性溶媒中2〜8当量の無機塩基の存在下に反応させるか、または一般式(IV)で表される化合物の金属塩1〜2当量を不活性溶媒中塩基不存在下に反応させることを特徴とする、一般式(I):
【化8】
Figure 0003875315
(式中、*、R1、R2、R3およびR4は前記と同意義である)
で表わされる、95%以上の光学純度を持つアシルスルホンアミド類の製造法に関する。
【0018】
本明細書中、「低級アルキル」とは、直鎖状または分枝状のC1〜C6アルキル、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、およびtert−ブチルを意味する。
本明細書中、「低級アルケニル」とは、C2〜C6直鎖状または分枝状のアルケニル、例えば、ビニル、アリル、プロペニル、およびブテニルを意味する。
本明細書中、「アリール」とは、単環状または縮合環状芳香族炭化水素、例えば、フェニル、ナフチル、およびインデニルを意味する。
本明細書中、「ヘテロアリール」とは、5〜7員環でN、OまたはS原子を環内に1個以上含み、炭素環もしくは他の複素環と縮合していてもよいヘテロ芳香族、例えば、ピリジル、キノリル、チエニル、フリル、インドリル、もしくはベンゾフリルを意味する。
本明細書中、「アルキルオキシ」とは、アルキル部分が低級アルキルであるアルキルオキシ、例えば、メチルオキシ、エチルオキシ、n−プロピルオキシ、イソプロピルオキシ、n−ブチルオキシ、イソブチルオキシ、sec−ブチルオキシ、およびtert−ブチルオキシを意味する。
本明細書中、「アルキルオキシカルボニル」とは、アルキル部分が低級アルキルであるアルキルオキシカルボニル、例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、およびブトキシカルボニルを意味する。
本明細書中、「アラルキル」とは、低級アルキルにアリールが置換したもので、例えば、ベンジル、フェネチル、フェニルプロピル、およびナフチルメチルを意味する。
【0019】
本明細書中、「置換基を有していてもよいフェニル」とは、低級アルキル基、低級アルケニル基、アルキルオキシ基、ニトロ基、水酸基、アルキルオキシカルボニル基、アラルキル基、カルボキシル基、アミド基またはハロゲンで1ケ所以上置換されていてもよいフェニルを意味する。例えば、1,3−ジベンゾオキソリル、メトキシフェニル、フルオロフェニル、およびカルボキシフェニルが挙げられる。
【0020】
本明細書中、「置換されていてもよい低級アルキル」における置換基としては、アルキルオキシ基、アリール部分がニトロ基もしくはハロゲンで置換されていてもよいアリールオキシ基、アラルキル基、ニトロ基およびハロゲンが挙げられる。
【0021】
本明細書中、「置換されていてもよいアリール」とは、低級アルキル基、低級アルケニル基、アルキルオキシ基、カルボキシル基、アルコキシカルボニル基、アラルキル基、アルキル部分が低級アルキル基もしくは低級アルケニル基であるアシルオキシ基、ニトロ基またはハロゲンにより1ケ所以上置換されていてもよいアリールを意味する。例えば、トリル、クメニル、メシチル、イソプロピルフェニル、tert-ブチルフェニル、ビフェニル、ダンシル、シクロヘキシルフェニル、カルボキシフェニル、インダニル、およびテトラヒドロナフチルが挙げられる。
【0022】
本明細書中、「置換されていてもよいヘテロアリール」とは、低級アルキル基、低級アルケニル基、アルキルオキシ基、カルボキシル基、アルコキシカルボニル基、アラルキル基、ニトロ基またはハロゲンにより1ケ所以上置換されていてもよいヘテロアリールを意味する。例えば、2−メチル−4−プロピル−3―ピリジル、および4−プロピル−3―ピリジルが挙げられる。
【0023】
【発明の実施の形態】
本発明は、二工程からなる。
第一工程では、本発明法の出発原料である光学活性カルボン酸(III)1当量を、塩化メチレン、1,2−ジクロロエタン、クロロホルム、アセトニトリル、テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタン、ベンゼン、またはトルエンなどの溶媒、好ましくは塩化メチレンまたはアセトニトリルに溶解し、1〜2当量、好ましくは1.05〜1.20当量の塩素化剤、好ましくは塩化オキザリルまたは塩化チオニルを、−30℃〜室温条件下、好ましくは氷冷下で滴下し、5分〜5時間、好ましくは15分間攪拌した後、揮発物をすべて減圧下留去し目的とする酸塩化物とする。触媒として少量のジメチルホルムアミドを適宜加えてもよい。
【0024】
第二工程は、上記酸塩化物とスルホンアミドを無機塩基存在下縮合する工程であり、以下に示す試薬を加える順序が異なる2種類の方法およびスルホンアミドの金属塩を使用する方法が挙げられるが、いずれの方法を用いても結果に相違はない。
【0025】
第一の方法では、スルホンアミド(IV)1〜2当量、好ましくは1.05当量と、水酸化ナトリウム、水酸化カリウム、リン酸三ナトリウム、もしくはリン酸三カリウムなどの無機塩基を粉末状、または40〜50%水溶液として2〜8当量、好ましくは2.2〜3.3当量を塩化メチレン、アセトニトリル、テトラヒドロフラン、1,4−ジオキサンなどの溶媒中に、好ましくは塩化メチレンまたはテトラヒドロフラン中に加えておき、−30℃〜室温条件下、好ましくは氷冷下〜室温下にて、上記有機溶媒に溶解した該塩化物1当量を含む溶液を滴下し、引き続き同温で15分〜5時間、好ましくは1時間攪拌する。その後水、1規定塩酸を順次加え、有機溶媒で抽出後、有機層を無水硫酸マグネシウムなどの乾燥剤で乾燥する。溶媒を減圧留去することにより光学活性なアシルスルホンアミドを得ることができる。
【0026】
第二の方法では、該塩化物1当量を塩化メチレン、アセトニトリル、テトラヒドロフラン、または1,4−ジオキサンなどの溶媒、好ましくは塩化メチレンまたはテトラヒドロフランに溶解し、これに−30℃〜室温条件下、好ましくは氷冷下〜室温下にて水酸化ナトリウム、水酸化カリウム、リン酸三ナトリウム、もしくはリン酸三カリウムなどの無機塩基を粉末状、または40〜50%水溶液として2〜8当量、好ましくは2.2〜3.3当量加え、さらに上記の溶媒に溶解したスルホンアミド1〜2当量、好ましくは1.05当量をゆっくり滴下し、15分〜5時間、好ましくは1時間攪拌する。その後、水、1規定塩酸を順次加え、有機溶媒で抽出後、有機層を無水硫酸マグネシウムなどの乾燥剤で乾燥する。溶媒を減圧留去することにより光学活性なアシルスルホンアミドを得ることができる。
【0027】
第三の方法では、スルホンアミド(IV)1〜2当量、好ましくは1.10当量と、2〜5当量、好ましくは2〜3.5当量の水素化ナトリウムをテトラヒドロフラン、1,4−ジオキサンなどの溶媒、好ましくはテトラヒドロフランに懸濁し、−30℃〜室温条件下、好ましくは氷冷下にて、上記有機溶媒に溶解した酸塩化物1当量を含む溶液を滴下し、引き続き同温で15分〜5時間、好ましくは1時間攪拌する。その後水、1規定塩酸を順次加え攪拌後、有機溶媒で抽出する。有機層を無水硫酸マグネシウムなどの乾燥剤で乾燥し、溶媒を減圧留去することにより光学活性なアシルスルホンアミドを得る。
ただし、反応に支障をきたす置換基が存在する場合は、適当な保護基によりその置換基を保護し、適当な段階にて脱保護を行う。
上記のようにして得られた光学活性な粗製アシルスルホンアミド類は、直接再結晶することにより、または適当な塩を形成したのち再結晶精製することにより、光学純度をさらに上げることができる。
【0028】
反応がラセミ化せずに進行したかどうか、あるいは反応の過程でどの程度ラセミ化したのかを正確に定量する方法として、出発原料と反応生成物のそれぞれの鏡像異性体比を別個に定量し、比較する方法がある。本明細書では、その鏡像異性体比を光学純度として表しているが、光学純度は両鏡像体の存在比から以下の式に従って決定することができる。
【式1】
光学純度(%)=100X(A−B)/(A+B) (1)
(式中、AおよびBはそれぞれの鏡像異性体の存在比を示す)
両鏡像異性体の存在比は、光学活性な物質を担体とするカラムを用いた高速液体クロマトグラフィー(HPLC)法で決定することができる。
HPLC法で光学純度を決定するためには、両鏡像異性体の保持時間を正確に決定することができ、かつピークがベースライン上で分離していなくてはならない。そこで、まず出発原料に該化合物のラセミ体を用いて同様の反応を行い、反応生成物をラセミ体として得た後に、化合物個々の至適分析条件を決定しなければならない。
本分析法で得られる保持時間は、分析時における環境変化によって変動する可能性がある。そこで、検体を分析する直前に該ラセミ検体をあらかじめ分析し、保持時間の較正を行うのが望ましい。以下の実施例にあげる保持時間は、あくまでも平均的な保持時間であり、恒常的に保持時間が正確に再現されるとは限らない。
また、実施例に示した3種の分析条件は、すべての化合物に汎用的に適用されるものではない。
【0029】
【実施例】
以下に本発明の実施例を示して本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
まず、本実施例にあげた各化合物の光学純度を決定するための、HPLCの分析条件3種類を以下に示す。
A)カラム:住友化学製SumichiralOA4900(4.6x250mm);移動層:20mM酢酸アンモニウム含有メタノール;流速:1.0ml/分;検出:UV(240nm)
B)カラム:住友化学製SumichiralOA4900(4.6x250mm);移動層:20mM酢酸アンモニウム含有メタノール;流速:1.0ml/分;検出:UV(286nm)
C)カラム:ダイセル化学製CHIRALPAC OD(4.6x250mm);移動層:ヘキサン:エタノール:トリフルオロ酢酸(850:150:1);流速:0.5ml/分;検出:UV(286nm)
以上の分析条件での測定結果について、両鏡像異性体に由来するピークの面積比より存在比を求め、光学純度を式(1)により決定した。
【0030】
参考例1
(−)−α−メトキシフェニル酢酸の調製
市販の(ラセミ)−α−メトキシフェニル酢酸をJ.Chem.Soc.,1962,1519記載の方法により、エフェドリンで光学分割して合成した。
融点:187−189℃
[α]D=−74.6°(c=1.16,メタノール,23℃)
光学純度:100%(A法による)(ただしラセミ体の保持時間は16.8分および18.0分)
【0031】
参考例2
(+)−α−(4−メチルフェノキシ)フェニル酢酸の調製
60%水素化ナトリウム1.17g(29.3mmol)のジメチルホルムアミド懸濁液(10ml)中に、室温下p−クレゾール1.51g(13.95mmol)のジメチルホルムアミド溶液(20ml)を加えた。30分間攪拌した後、同温度でα−ブロモフェニル酢酸3.0g(13.95mmol)のジメチルホルムアミド溶液(30ml)を滴下した。1時間後、p−クレゾール0.15g(1.40mmol)、60%水素化ナトリウム0.12g(2.93mmol)を加えさらに室温で16時間攪拌した。氷水を反応液に加え、1規定塩酸水溶液でpH3にした後エーテルで3回抽出した。エーテル層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、得られる固形残渣を酢酸エチル−n-ヘキサンで再結晶して無色結晶のラセミ酸1.99g(59%)を得た。
融点:111−112℃
上記で得られた(±)−α−(4−メチルフェノキシ)フェニル酢酸1.50g(6.19mmol)、(1S,2S)−(+)−2−アミノ−1−フェニル−1,3−プロパンジオール1.04g(6.19mmol)を95%エタノール9mlに溶かし、室温で3時間放置した後、析出する結晶を濾取した。この操作を2回繰り返し、白色結晶717mgを得た。得られた結晶のうち547mg(1.34mmol)に水を加え、1規定塩酸水溶液でpH3にして酢酸エチルで抽出した。酢酸エチル層は水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残渣を酢酸エチル−n-ヘキサンで再結晶して無色結晶の(+)−体296mgを得た。
融点:109.5−110.5℃
[α]D=+126.2°(c=1.00,メタノール,25℃)
NMR(CDCl3):2.27(3H,s),5.60(1H,s),6.84(2H,d),7.06(2H,d,J=8.6),7.36−7.44(3H,m),7.54−7.59(2H,m)
元素分析:C15H14O3
計算値:C;74.36, H;5.82
実測値:C;74.52, H;5.84
光学純度:100%(A法による)(ただしラセミ体の保持時間は17.7分および19.3分)
【0032】
参考例3
(−)−α−(6−メチル−2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−酢酸の調製
特願平7−262337記載の方法で製造した(±)−α−(6−メチル−2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−酢酸1000g、(1S,2R)−(+)−ノルエフェドリン459gを、アセトニトリル(10L)−イソプロパノール(1L)に溶解した。室温で放置後、析出した結晶を濾取し、アセトニトリル2.5Lで洗浄し粗結晶1036g(71.0%)を得た。この粗結晶をアセトニトリル:イソプロパノール=1:1の混液に溶解した後、アセトニトリル8Lを加えて再結晶し、濾過後、アセトニトリル2Lで2回洗浄し、乾燥して有機塩923g(63.3%)を得た。
融点:180−182℃
[α]D=−50.2°(c=1.00,メタノール,25℃)
得られた有機塩922gを水3.7Lに懸濁し、2規定塩酸水溶液959mlを加えた後、氷冷し、生じた結晶を濾取し、冷水2Lで洗浄した。さらにこの結晶をメタノール2.46Lに溶解し、酢酸エチル2.46Lを加え減圧濃縮して(−)−酸572g(90.6%)を得た。
融点:156−158℃
[α]D=−112.0°(c=1.00,メタノール,23℃)
光学純度:100%(C法による)(ただしラセミ体の保持時間は24.8分および28.4分)
元素分析:C18H19NO5
計算値:C;65.64, H;5.82, N;4.25
実測値:C;65.55, H;5.82, N;4.46
【0033】
参考例4
(+)−α−(6−メチル−2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−酢酸の調製
参考例3で得た再結晶母液を濃縮し、氷冷下1規定塩酸水溶液でpH4とし、クロロホルム:メタノール=9:1で抽出した。有機層を水、飽和食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣を95%エタノールで再結晶して、無色結晶の(+)−酸を得た。
融点:155−157℃
[α]D=+111.2°(c=1.00,メタノール,23℃)
光学純度:100%(C法による)(ただしラセミ体の保持時間は24.8分および28.4分)
【0034】
参考例5
(−)−α−(2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−酢酸の調製
特願平7−262337記載の方法で製造した(±)−α−(2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−酢酸を、参考例3と同様の方法で光学分割した。
融点:107−110℃
[α]D=−109.0°(c=1.00,メタノール,23℃)
光学純度:100%(C法による)(ただしラセミ体の保持時間は20.4分および22.7分)
元素分析:C17H17NO5
計算値:C;64.75, H;5.43, N;4.44
実測値:C;64.70, H;5.44, N;4.72
【0035】
実施例1
(−)−N−(4−イソプロピルベンゼンスルホニル)−α−メトキシフェニルアセトアミドの調製
参考例1で得た(−)−α−メトキシフェニル酢酸50mg(0.331mmol)を塩化メチレン2mlにとかし、ジメチルホルムアミドを一滴加えた後0℃に冷却した。塩化オキザリル0.028ml(0.316mmol)を滴下し、同温度で1時間攪拌後、減圧下溶媒を留去し、無色油状の酸塩化物を得た。この化合物はこれ以上の精製を行わずに次の反応に用いた。4−イソプロピルベンゼンスルホンアミド66mg(0.301mmol)、粉末状の水酸化カリウム44mg(85%、0.662mmol)を塩化メチレン中(1ml)室温で1時間攪拌した。この反応溶液に、上記の方法で得た酸塩化物の塩化メチレン溶液(1ml)を滴下し、室温で1時間攪拌した。氷水、1規定塩酸水溶液0.18mlを加え、酢酸エチルで3回抽出した。合わせた有機層を水、飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し残渣をシリカゲルクロマトグラフィー(クロロホルム:メタノール=9:1)で精製した。
光学純度:100%(A法による)(ただしラセミ体の保持時間は28.9分および31.9分)
分析用サンプルを得るために、アセトン−イソプロピルエーテルで1回再結晶し、無色結晶59mg(56%)を得た。
融点:89−91℃
[α]D=−16.4°(c=1.00,メタノール,25℃)
NMR(CDCl3):1.25(6H,m),2.96(1H,m),3.33(3H,s),4.59(1H,s),7.22−7.35(7H,m),7.94(2H,d,J=7.8),9.12(1H,br)
元素分析:C1821NSO4.0.1H2
計算値:C;61.91,H;6.12,N;4.01,S;9.18
実測値:C;61.92,H;6.08,N;4.26,S;8.94
【0036】
実施例2
(+)−N−(4−イソプロピルベンゼンスルホニル)−α−(4−メチルフェノキシ)フェニルアセトアミドの調製
参考例2で得た(+)−α−(4−メチルフェノキシ)フェニル酢酸100mg(0.413mmol)を塩化メチレン2mlにとかし、ジメチルホルムアミドを1滴加え氷冷した。塩化オキザリル0.038ml(0.433mmol)を滴下し、同温でさらに1時間攪拌した。揮発物を減圧留去し無色油状の酸塩化物をえた。このものはこれ以上の精製を行うことなく以下の反応に用いた。4−イソプロピルベンゼンスルホンアミド91mg(0.454mmol)、粉末状の水酸化カリウム60mg(85%、0.909mmol)を塩化メチレン中(2ml)室温で1時間攪拌した。この反応溶液に、上記の方法で得た酸塩化物の塩化メチレン溶液(2ml)を滴下し、室温で1時間攪拌した。氷水、1規定塩酸水溶液0.5mlを加え、酢酸エチルで3回抽出した。合わせた有機層を水、飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し残渣をシリカゲルクロマトグラフィー(クロロホルム:メタノール=9:1)で精製した。
光学純度:100%(A法による)(ただしラセミ体の保持時間は36.1分および40.0分)
分析用サンプルを得るために、酢酸エチル−n-ヘキサンで1回再結晶し、無色結晶105mg(60%)を得た。
融点:137−138.5℃
[α]D=+14.5°(c=1.00,メタノール,25℃)
NMR(CDCl3):1.25−1.28(6H,m),2.26(3H,s),2.97(1H,m),5.42(1H,s),6.73(2H,d,J=8.6)、7.01(2H,d,J=8.6),7.30−7.36(7H,m),7.88(2H,d,J=8.6)
元素分析:C24H25NO4S
計算値:C;68.06,H;5.95,N;3.31,S;7.57
実測値:C;67.92,H;5.94,N;3.31,S;7.50
【0037】
実施例3
(−)−N−(4−イソプロピルフェニルスルホニル)−α−(6−メチル−2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−アセトアミドの調製
参考例3で得た(−)−α−(6−メチル−2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−酢酸(519mg,1.58mmol)を1,2−ジクロロエタン(8ml)に懸濁し、室温で攪拌しながら塩化オキザリル(0.14ml、1.58mmol)をゆっくり滴下した。15分攪拌後揮発物をすべて減圧留去し、酸塩化物を得た。このものはこれ以上の精製は行わず以下の反応に用いた。1,2−ジクロロエタン(5ml)にイソプロピルベンゼンスルホンアミド(325mg,1.56mmol)と粉末状の水酸化カリウム(純度86%、325mg、1.63mmol)を懸濁し、氷冷下約1時間攪拌した。ここに酸塩化物を1,2−ジクロロエタン(8ml)にとかして約15分で滴下した。その後さらに1時間攪拌を続けた後、水、1規定塩酸水を順次加えしばらく攪拌した。反応混合物を酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後溶媒を減圧留去し、無色油状の粗製物(840mg)を得た。
光学純度:98%(B法による)(ただしラセミ体の保持時間は18.9分および21.9分)
さらに、この粗製物を95%エタノールに溶解し、過剰の4規定塩酸酢酸エチル溶液を加え塩酸塩とした。
融点:185℃(分解)
[α]D=−77.6°(c=1.01,メタノール,22.5℃)
元素分析:C27H31N2O6SCl
計算値:C;59.28,H;5.71,N;5.12,S;5.86,Cl;6.48
実測値:C;59.58,H;5.77,N;5.20,S;5.92,Cl;6.44
光学純度:>99%(B法による)(ただしラセミ体の保持時間は18.9分および21.9分)
【0038】
実施例4
(−)−α−N−(4−イソプロピルフェニルスルホニル)−α−(2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−アセトアミドの調製
参考例5で得た(−)−α−(2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−酢酸(6.60g,0.0209mol)を実施例3と全く同様に対応する酸塩化物とした。引き続き実施例3と同様の方法により粗製の(−)−α−N−(4−イソプロピルフェニルスルホニル)−α−(2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−アセトアミド(9.0g,86%)を得た。
光学純度:96%(B法による)(ただしラセミ体の保持時間は18.0分および20.8分)
分析用サンプルは、エタノールから再結晶した。
融点:170−172℃
元素分析:C26H28N2O6S
計算値:C;62.89,H;5.68,N;5.64,S;6.46
実測値:C;62.94,H;5.70,N;5.73,S;6.46
[α]D=−79.3°(c=1.006,メタノール,22℃)
上記で得た化合物(5.3g)をさらに95%エタノール中、過剰の4規定塩酸酢酸エチル溶液を加えて、塩酸塩(4.7g,71%)とした。
融点:185℃(分解)
元素分析:C26H29N2O6SCl
計算値:C;58.59,H;5.48,N;5.26,S;6.02,Cl;6.65
実測値:C;58.43,H;5.49,N;5.34,S;6.10,Cl;6.58
[α]D=−81.9°(c=1.002,メタノール,22.5℃)
光学純度:>99%(B法による)(ただしラセミ体の保持時間は18.0分および20.8分)
【0039】
実施例5
(+)−α−N−(4−イソプロピルフェニルスルホニル)−α−(6−メチル−2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−アセトアミドの調製
参考例4で得た(+)−α−(6−メチル−2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−酢酸(6.58g,0.0209mol)を実施例3と同様の方法で塩化メチレン中、酸塩化物(8.56g)とした。引き続き実施例3と同様の方法によりイソプロピルベンゼンスルホニルアミド(4.38g,0.022mmol)、粉末水酸化ナトリウム(3.37g,60mmol)とともに塩化メチレン中反応させ、粗製の(+)−α−N−(4−イソプロピルフェニルスルホニル)−α−(6−メチル−2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−アセトアミド(9.23g,90%)を得た。
光学純度:98%(B法による)(ただしラセミ体の保持時間は18.9分および21.9分)
粗生物を95%エタノール中、過剰の4規定塩酸酢酸エチル溶液を加えて、塩酸塩として精製した。
融点:185−192℃(分解)
元素分析:C27H31N2O6SCl
計算値:C;59.28,H;5.71,N;5.12,S;5.86,Cl;6.48
実測値:C;59.23,H;5.96,N;4.91,S;5.67,Cl;6.21
[α]D=+75.6°(c=1.007,メタノール,23℃)
光学純度:>99%(B法による)(ただしラセミ体の保持時間は18.9分および21.9分)
【0040】
実施例6
(−)−α− N−(4−イソプロピルフェニルスルホニル)−α−(6−メチル−2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−アセトアミドの調製
実施例3と同様の方法で合成した酸塩化物をイソプロピルベンゼンスルホンアミド(133mg,0.668mmol)、リン酸三カリウム・x水和物(568mg)をジメトキシエタン(2ml)中室温で攪拌しながら、酸塩化物のジメトキシエタン溶液(3ml)を滴下した。45分後水を加え、攪拌しながら1規定塩酸でpH4とし酢酸エチルで抽出した。有機層は無水硫酸ナトリウムで乾燥後、溶媒を留去し、目的化合物(298mg)を得た。
光学純度:;95%(B法による)(ただしラセミ体の保持時間は18.9分および21.9分)
【0041】
実施例7
(−)−α−N−(4−イソプロピルフェニルスルホニル)−α−(6−メチル−2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−アセトアミドの調製
4−イソプロピルベンゼンスルホンアミド(133mg,0.668mmol)と水素化ナトリウム(80mg,2.00mmol)をテトラヒドロフラン中室温で1時間攪拌した。実施例3と同様の方法で、カルボン酸(200mg,0.607mmol)から酸塩化物を合成し、テトラヒドロフラン(2ml)に溶解して上記懸濁液中に滴下し2時間攪拌した。その後、氷水と1規定塩酸(0.79ml)を順次加え酢酸エチルで抽出した。有機層は水洗し、無水硫酸ナトリウムで乾燥後溶媒を減圧留去し、無色油状物(324mg)を得た。
光学純度:95%(B法による)(ただしラセミ体の保持時間は18.9分および21.9分)
【0042】
以下に従来法におけるアシルスルホンアミド化法による比較例を示す。
比較例1(Tetrahedron Lett.,1988、29、1653−1656記載の方法)
N−(4−イソプロピルフェニルスルホニル)−α−(6−メチル−2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−アセトアミドの調製
カルボン酸(50mg,0.152mmol)およびカルボニルジイミダゾール(25mg,0.152mmol)を無水テトラヒドロフラン(1ml)中、窒素気流下室温で30分攪拌し、引き続き30分環流した。放冷後、イソプロピルベンゼンスルホニルアミド(30mg,0.152mmol)と1,8−ジアザビシクロ[5.4.0]−7−ウンデセン(23mg,0.152mmol)を加え1時間攪拌した。その後氷水を加えておき、クロロホルム抽出した。有機層を水洗後、無水硫酸マグネシウムで乾燥し溶媒を減圧留去し無色油状物質80mgを得た。
光学純度:2%(B法による)(ただしラセミ体の保持時間は18.9分および21.9分)
【0043】
比較例2(向山試薬を用いた方法)
N−(4−イソプロピルフェニルスルホニル)−α−(6−メチル−2−プロピル−3−ピリジルオキシ)−1,3−ベンゾジオキソール−5−アセトアミドの調製
窒素気流下2−クロルピリジン・よう化メチル塩(47mg,0.182mmol)とカルボン酸(50mg,0.152mmol)を塩化メチレン(2ml)に懸濁し攪拌した。そこにイソプロピルベンゼンスルホニルアミド(30mg,0.152mmol)とトリエチルアミン(37mg,0.365mmol)の塩化メチレン(1ml)溶液を滴下した。固形物は徐々に溶解し1時間で均一溶液にかわった。反応混合物に氷水を加え、クロロホルムで抽出した。有機層は水で洗浄後無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、無色油状物12mgを得た。
光学純度:4%(B法による)(ただしラセミ体の保持時間は18.9分および21.9分)
【0044】
【発明の効果】
本発明を用いれば、α位オキシ基置換された不斉炭素を有する光学活性カルボン酸を出発原料とし、不斉を保持したまま、医薬品として繁用されるアシルスルホンアミド類へと変換することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing optically active acylsulfonamides having an α-position oxy group-substituted asymmetric carbon.
[0002]
The acylsulfonamide group is a weakly acidic functional group that is almost the same as the corresponding carboxylic acid, but its physical properties such as molecular size and distribution ratio differ greatly compared to the corresponding carboxylic acid, so the biochemical equivalent of the carboxylic acid It is particularly useful as a body as an effective side chain of pharmaceuticals (Schaaf, J. Med. Chem., 1979, 22, 1340).
[0003]
[Prior art]
There are many compounds with asymmetric carbon atoms in the molecule, such as pharmaceuticals, that have significant biological and pharmacological activity, and there is a close relationship between the arrangement of the asymmetric center and the pharmacological action. Are known. For example, when stereoisomers are in enantiomeric relationship with each other, both may show a significant difference in medicinal efficacy and toxicity. Therefore, the Ministry of Health and Welfare Pharmaceutical Manufacturing Guidelines (1985 version) also states that “when the drug is a racemate, it is desirable to examine the absorption, distribution, metabolism, and excretion dynamics of each isomer”. A method for producing a high-purity optically active substance in which one unnecessary enantiomer is excluded as much as possible is indispensable for the production of pharmaceuticals.
[0004]
Examples of a method for producing such a specific optically active substance include a method in which an optically active substance is obtained at the stage of a starting material or an appropriate intermediate in the manufacturing process, and the final product is derived while maintaining asymmetry, or the final There is a method of optical resolution at the product stage. If the optical purity of the final product is sufficiently high, it is possible to further increase the optical purity by using an appropriate purification means such as a recrystallization method, and finally obtain an optically pure pharmaceutical product. .
[0005]
In the case of a compound having an asymmetric center at the α-position of the carbonyl group, the asymmetric center may be epimerized very easily by an acid, base, heat or the like to give a mixture of stereoisomers. Since the production of acylsulfonamides may involve the same epimerization, when producing an optically active substance as a starting material, the epimerization at the α-position in the production process must be minimized.
[0006]
In general, acylsulfonamides are produced on the basis of a method by Hohenlohe-Ohringen et al. In which a carboxylic acid or derivative thereof and a sulfonamide are condensed.
Carboxylic acids are one of the most easily and frequently used functional groups for optically resolving racemates as optically active sources like amines, whereas acylsulfonamides are comparable to carboxylic acids. In spite of its acidity, there are few examples of optical resolution.
In view of the above, if a racemic carboxylic acid can be optically resolved and then converted to acylsulfonamides with minimal epimerization, it can be derived into optically active acylsulfonamides with minimal steps. It is extremely useful as a general production method.
The methods of Hohenlohe-Oehringen et al. Are classified into three groups below.
[0007]
1) A method in which a carboxylic acid is condensed with sulfonyl isocyanates at a high temperature (K. Hohenlohe-Oehringen, Monatsh, Chem, 1972, 103, 1534-1541).
2) A method in which a carboxylic acid is condensed with a sulfonamide in the presence of a condensing agent and a base. In this case, carbodiimides are generally used as condensing agents, and metal bases of sulfonamides themselves or organic bases such as dimethylaminopyridine are used as bases (K. Hohenlohe-Oehringen, Monatsh, Chem, 1968, 99, 1289-1300).
3) A method in which a carboxylic acid is first converted into an active ester, an acid chloride, an acid anhydride, etc. and activated, and then a sulfonamide is condensed as a nucleophile in the presence of a base (K. Hohenlohee-Oehringen, Monatsh). Chem., 1972, 103, 1534-1541; K. Hohenlohe-Oehringen, Monatsh, Chem, 1968, 99, 1301-1131;
[0008]
These methods are general methods for producing racemic acylsulfonamides. However, if the starting material is an optically active carboxylic acid having an asymmetric carbon at the α-position, it is generally a reaction in a high temperature condition or a reaction condition using a strong base. It is difficult to do.
[0009]
As an improved method of the Hohenlohe-Ohringen method, 1 '), 2'), and 3 ') corresponding to 1), 2), and 3) of the above classification are shown below.
1 ′) A method in which a carboxylic acid is condensed with a sulfonyl isocyanate in the presence of a base catalyst at room temperature in order to make the reaction under milder conditions (G. Graf, Angew. Chem. Int. Ed., 1968). , 7, 172-182, MW Winkley, US-4438031).
2 ′) A method of condensing a carboxylic acid and a sulfonamide in the presence of a base using water-soluble carbodiimide as a condensing agent in order to prevent the formation of a hardly soluble by-product and facilitate purification (F. Thomas). , WO9526360; RT Jacobs, J. Med. Chem, 1994, 37, 1282-1297).
3 ') a method using Mukoyama's quaternary pyridine salt reagent as an activator (DP Astles, EP411706) and potassium hydride or 1,8-diazabicyclo [5.4.0] -7-undecene (DBU). (J. L. Belletier, Tetrahedron Lett., 1986, 27, 131-134, JT Drummond, Tetrahedron Lett., 1988, 29, 1653-1656) .
[0010]
Compared with the Hohenlohe-Oehringen method, these improved methods are milder and easier to purify, but require not only expensive condensing agents, but also increase production costs. The manufacturing process becomes complicated, for example, requiring anhydrous conditions. Further, when the starting material is an optically active carboxylic acid having an asymmetric carbon at the α-position, it is difficult to maintain the steric form of the starting material for the same reason as described above. It cannot be an efficient and general synthesis method.
[0011]
As a specific example in which racemization is clearly caused by the above production method, for example, an example described in WO95 / 26360 shown in 2 ′) can be given. Here, when deriving from carboxylic acid to acylsulfonamides, it is written as (L) -tryptophan in the starting material, but it is clearly shown as (D, L) -tryptophan in the product. It is speculated that racemization occurred.
In addition, the examples described in US Pat. No. 4,438,031 shown in 1 ′) also describe the production of two stereoisomers from a starting material having a single configuration, and the asymmetric center in the condensation process is described. Inversion is suggested.
In addition to the above, in the production examples by the conventional method, there are examples in which there is no description example of the optical rotation that proves that it is an optically active substance, and there is an example that suggests that racemization is clearly occurring even if not explicitly stated. There are many.
[0012]
On the other hand, as a method different from the above, a method using a Wittig reaction using a ketone or an aldehyde derivative as a raw material (HJ Bestman, Chem. Ber, 1980, 113, 912-918), or having a double bond A method using an electrophilic addition reaction with a sulfonyl isocyanate, starting from a compound (JK Rasmussen, Chem. Rev., 1976, 76, 389-408; D. Mostwickz, Carbohydra.res., 1991, 212, 283-288) or the like may be used.
However, these methods are often limited in starting materials, and are not general methods for producing acylsulfonamides.
[0013]
In addition, acylsulfonamides can be synthesized in principle by reacting acid amides with sulfonic acid chlorides.
However, even in this method, since O-sulfonylation is preferentially advanced in many cases, it is not suitable for use as a general method (CR Stephens, J. Amer. Chem. Soc., 1955, 77, 1701-1702).
[0014]
As described above, it is difficult to obtain optically active acylsulfonamides having asymmetry at the α-position by the conventional techniques, and the process for producing the acylsulfonamides that can be applied simply, efficiently, and generally can be used. Development was desired.
[0015]
[Problems to be solved by the invention]
In view of the above, the present inventors have studied to establish a general method for producing optically active acylsulfonamides having asymmetry at the α-position.
[0016]
[Means for Solving the Problems]
As a result of diligent research, the present inventors have used a low-cost reagent alone and, in a simple production process, an optically active carboxylic acid having an α-position oxy group-substituted asymmetric carbon as a corresponding acid chloride as an intermediate. The present inventors have found a production method that can be converted to optically active acylsulfonamides while maintaining the above. The present invention will be described in detail below.
[0017]
That is, the present invention has a general formula (III) having an α-position oxy group substituted asymmetric carbon
[Chemical formula 5]
Figure 0003875315
(In the formula, * indicates the position of the asymmetric carbon atom, R1Represents phenyl optionally having substituent (s), R2Is an optionally substituted lower alkyl, an optionally substituted aryl or an optionally substituted heteroaryl)
1 to 2 equivalents of a chlorinating agent is reacted in an inert solvent at −30 ° C. to room temperature in the absence of a base, and the general formula (II):
[Chemical 6]
Figure 0003875315
(Wherein R1And R2Is as defined above)
After the acid chloride represented by general formula (IV):
[Chemical 7]
Figure 0003875315
(Wherein RThreeRepresents optionally substituted aryl, RFourRepresents a hydrogen atom or lower alkyl)
1 to 2 equivalents of a compound represented by the formula (IV) is reacted at −30 ° C. to room temperature in the presence of 2 to 8 equivalents of an inorganic base in an inert solvent, or a metal salt 1 of a compound represented by the general formula (IV) ~ 2 equivalents are reacted in an inert solvent in the absence of a base, general formula (I):
[Chemical 8]
Figure 0003875315
(In the formula, *, R1, R2, RThreeAnd RFourIs as defined above)
And an acylsulfonamide having an optical purity of 95% or more represented by
[0018]
In the present specification, “lower alkyl” means linear or branched C1~ C6Alkyl, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl.
In the present specification, “lower alkenyl” refers to C2~ C6By linear or branched alkenyl is meant eg vinyl, allyl, propenyl, and butenyl.
In the present specification, “aryl” means a monocyclic or condensed cyclic aromatic hydrocarbon such as phenyl, naphthyl, and indenyl.
In the present specification, “heteroaryl” is a 5- to 7-membered heteroaromatic ring containing one or more N, O, or S atoms in the ring and optionally condensed with a carbocyclic ring or other heterocyclic ring. Means, for example, pyridyl, quinolyl, thienyl, furyl, indolyl, or benzofuryl.
As used herein, “alkyloxy” refers to alkyloxy in which the alkyl moiety is lower alkyl, such as methyloxy, ethyloxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, sec-butyloxy, and tert -Means butyloxy.
As used herein, “alkyloxycarbonyl” means alkyloxycarbonyl in which the alkyl moiety is lower alkyl, such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, and butoxycarbonyl.
In the present specification, “aralkyl” refers to a lower alkyl substituted with aryl, for example, benzyl, phenethyl, phenylpropyl, and naphthylmethyl.
[0019]
In the present specification, “optionally substituted phenyl” means a lower alkyl group, a lower alkenyl group, an alkyloxy group, a nitro group, a hydroxyl group, an alkyloxycarbonyl group, an aralkyl group, a carboxyl group, an amide group. Alternatively, it means phenyl optionally substituted at one or more positions with halogen. Examples include 1,3-dibenzooxolyl, methoxyphenyl, fluorophenyl, and carboxyphenyl.
[0020]
In the present specification, the substituent in the “optionally substituted lower alkyl” includes an alkyloxy group, an aryloxy group in which the aryl moiety may be substituted with a nitro group or a halogen, an aralkyl group, a nitro group and a halogen. Is mentioned.
[0021]
In the present specification, “optionally substituted aryl” refers to a lower alkyl group, a lower alkenyl group, an alkyloxy group, a carboxyl group, an alkoxycarbonyl group, an aralkyl group, and an alkyl moiety that is a lower alkyl group or a lower alkenyl group. It means aryl optionally substituted by one or more acyloxy group, nitro group or halogen. Examples include tolyl, cumenyl, mesityl, isopropylphenyl, tert-butylphenyl, biphenyl, dansyl, cyclohexylphenyl, carboxyphenyl, indanyl, and tetrahydronaphthyl.
[0022]
In the present specification, “optionally substituted heteroaryl” is substituted with one or more positions by a lower alkyl group, a lower alkenyl group, an alkyloxy group, a carboxyl group, an alkoxycarbonyl group, an aralkyl group, a nitro group or a halogen. Means heteroaryl which may optionally be present. Examples include 2-methyl-4-propyl-3-pyridyl and 4-propyl-3-pyridyl.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The present invention comprises two steps.
In the first step, 1 equivalent of the optically active carboxylic acid (III) that is the starting material of the method of the present invention is added to methylene chloride, 1,2-dichloroethane, chloroform, acetonitrile, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, benzene, Or dissolved in a solvent such as toluene, preferably methylene chloride or acetonitrile, and 1-2 equivalents, preferably 1.05-1.20 equivalents of a chlorinating agent, preferably oxalyl chloride or thionyl chloride, at -30 ° C to room temperature. Under conditions, preferably under ice-cooling, and stirred for 5 minutes to 5 hours, preferably 15 minutes, all volatiles are distilled off under reduced pressure to give the desired acid chloride. A small amount of dimethylformamide may be appropriately added as a catalyst.
[0024]
The second step is a step of condensing the acid chloride and sulfonamide in the presence of an inorganic base, and includes two types of methods in which the order of adding the reagents shown below is different and a method using a metal salt of sulfonamide. There is no difference in the results regardless of which method is used.
[0025]
In the first method, sulfonamide (IV) 1 to 2 equivalents, preferably 1.05 equivalents, and an inorganic base such as sodium hydroxide, potassium hydroxide, trisodium phosphate, or tripotassium phosphate in powder form, Alternatively, 2 to 8 equivalents, preferably 2.2 to 3.3 equivalents as a 40 to 50% aqueous solution are added to a solvent such as methylene chloride, acetonitrile, tetrahydrofuran, 1,4-dioxane, preferably methylene chloride or tetrahydrofuran. In addition, a solution containing 1 equivalent of the chloride dissolved in the organic solvent is added dropwise at −30 ° C. to room temperature, preferably under ice cooling to room temperature, and then at the same temperature for 15 minutes to 5 hours. Preferably, stirring is performed for 1 hour. Thereafter, water and 1N hydrochloric acid are sequentially added, and after extraction with an organic solvent, the organic layer is dried with a drying agent such as anhydrous magnesium sulfate. An optically active acylsulfonamide can be obtained by distilling off the solvent under reduced pressure.
[0026]
In the second method, 1 equivalent of the chloride is dissolved in a solvent such as methylene chloride, acetonitrile, tetrahydrofuran, or 1,4-dioxane, preferably methylene chloride or tetrahydrofuran, and this is preferably performed at −30 ° C. to room temperature. 2 to 8 equivalents, preferably 2 to 8 equivalents, in the form of a powder or a 40-50% aqueous solution of an inorganic base such as sodium hydroxide, potassium hydroxide, trisodium phosphate, or tripotassium phosphate under ice cooling to room temperature. Add 2 to 3.3 equivalents, and further slowly drop 1 to 2 equivalents, preferably 1.05 equivalents, of a sulfonamide dissolved in the above solvent, and stir for 15 minutes to 5 hours, preferably 1 hour. Thereafter, water and 1N hydrochloric acid are sequentially added, and after extraction with an organic solvent, the organic layer is dried with a drying agent such as anhydrous magnesium sulfate. An optically active acylsulfonamide can be obtained by distilling off the solvent under reduced pressure.
[0027]
In the third method, sulfonamide (IV) 1-2 equivalents, preferably 1.10 equivalents, 2-5 equivalents, preferably 2-3.5 equivalents of sodium hydride, tetrahydrofuran, 1,4-dioxane, etc. A solution containing 1 equivalent of an acid chloride dissolved in the above organic solvent was added dropwise under a temperature of −30 ° C. to room temperature, preferably under ice cooling, followed by 15 minutes at the same temperature. Stir for ~ 5 hours, preferably 1 hour. Thereafter, water and 1N hydrochloric acid are sequentially added and stirred, and then extracted with an organic solvent. The organic layer is dried with a drying agent such as anhydrous magnesium sulfate, and the solvent is distilled off under reduced pressure to obtain an optically active acylsulfonamide.
However, when there is a substituent that hinders the reaction, the substituent is protected with an appropriate protecting group, and deprotection is performed at an appropriate stage.
The optically active crude acylsulfonamides obtained as described above can be further improved in optical purity by direct recrystallization or by recrystallization and purification after forming an appropriate salt.
[0028]
As a method of accurately quantifying whether the reaction has progressed without racemization or how much it has been racemized in the course of the reaction, the respective enantiomeric ratios of the starting material and the reaction product are separately quantified, There is a way to compare. In this specification, the enantiomeric ratio is expressed as optical purity, but the optical purity can be determined from the abundance ratio of both enantiomers according to the following formula.
[Formula 1]
Optical purity (%) = 100 × (A−B) / (A + B) (1)
(In the formula, A and B indicate the abundance ratio of the respective enantiomers)
The abundance ratio of both enantiomers can be determined by a high performance liquid chromatography (HPLC) method using a column having an optically active substance as a carrier.
In order to determine optical purity with the HPLC method, the retention times of both enantiomers can be accurately determined and the peaks must be separated on the baseline. Therefore, first, the same reaction must be carried out using the racemate of the compound as a starting material to obtain a reaction product as a racemate, and then the optimum analysis conditions for each compound must be determined.
The retention time obtained by this analysis method may vary depending on environmental changes during analysis. Therefore, it is desirable to analyze the racemic specimen in advance immediately before analyzing the specimen and calibrate the holding time. The holding times given in the following examples are merely average holding times, and the holding times are not always accurately reproduced.
Further, the three analysis conditions shown in the examples are not universally applied to all compounds.
[0029]
【Example】
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
First, three types of HPLC analysis conditions for determining the optical purity of each compound listed in this example are shown below.
A) Column: Sumichiral OA4900 (4.6 × 250 mm) manufactured by Sumitomo Chemical; moving bed: methanol containing 20 mM ammonium acetate; flow rate: 1.0 ml / min; detection: UV (240 nm)
B) Column: Sumichiral OA4900 (4.6 x 250 mm) manufactured by Sumitomo Chemical; moving bed: methanol containing 20 mM ammonium acetate; flow rate: 1.0 ml / min; detection: UV (286 nm)
C) Column: CHIRALPAC OD (4.6 x 250 mm) manufactured by Daicel Chemical; moving bed: hexane: ethanol: trifluoroacetic acid (850: 150: 1); flow rate: 0.5 ml / min; detection: UV (286 nm)
About the measurement result on the above analysis conditions, abundance ratio was calculated | required from the area ratio of the peak originating in both enantiomers, and optical purity was determined by Formula (1).
[0030]
Reference example 1
Preparation of (−)-α-methoxyphenylacetic acid
Commercially available (racemic) -α-methoxyphenylacetic acid was prepared according to J. Am. Chem. Soc. , 1962, 1519 and synthesized by optical resolution with ephedrine.
Melting point: 187-189 ° C
[Α]D= −74.6 ° (c = 1.16, methanol, 23 ° C.)
Optical purity: 100% (according to method A) (however, racemate retention times are 16.8 minutes and 18.0 minutes)
[0031]
Reference example 2
Preparation of (+)-α- (4-methylphenoxy) phenylacetic acid
A dimethylformamide solution (20 ml) of 1.51 g (13.95 mmol) of p-cresol was added at room temperature to a suspension (10 ml) of 1.17 g (29.3 mmol) of 60% sodium hydride. After stirring for 30 minutes, a dimethylformamide solution (30 ml) of 3.0 g (13.95 mmol) of α-bromophenylacetic acid was added dropwise at the same temperature. After 1 hour, 0.15 g (1.40 mmol) of p-cresol and 0.12 g (2.93 mmol) of 60% sodium hydride were added, and the mixture was further stirred at room temperature for 16 hours. Ice water was added to the reaction solution, and the mixture was adjusted to pH 3 with 1N hydrochloric acid aqueous solution and extracted three times with ether. The ether layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting solid residue was recrystallized from ethyl acetate-n-hexane to obtain 1.99 g (59%) of racemic acid as colorless crystals.
Melting point: 111-112 ° C
1.50 g (6.19 mmol) of (±) -α- (4-methylphenoxy) phenylacetic acid obtained above, (1S, 2S)-(+)-2-amino-1-phenyl-1,3- Propanediol 1.04 g (6.19 mmol) was dissolved in 95% ethanol 9 ml and allowed to stand at room temperature for 3 hours, and then the precipitated crystals were collected by filtration. This operation was repeated twice to obtain 717 mg of white crystals. Water was added to 547 mg (1.34 mmol) of the obtained crystals, and the mixture was adjusted to pH 3 with 1N aqueous hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was recrystallized from ethyl acetate-n-hexane to obtain 296 mg of (+)-form of colorless crystals.
Melting point: 109.5-110.5 ° C
[Α]D= + 126.2 ° (c = 1.00, methanol, 25 ° C.)
NMR (CDCl3): 2.27 (3H, s), 5.60 (1H, s), 6.84 (2H, d), 7.06 (2H, d, J = 8.6), 7.36 -7.44 (3H, m), 7.54-7.59 (2H, m)
Elemental analysis: C15H14O3
Calculated value: C; 74.36, H; 5.82
Found: C; 74.52, H; 5.84
Optical purity: 100% (according to method A) (however, racemate retention times are 17.7 and 19.3 minutes)
[0032]
Reference example 3
Preparation of (−)-α- (6-methyl-2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetic acid
(±) -α- (6-methyl-2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetic acid 1000 g produced by the method described in Japanese Patent Application No. 7-262337, (1S, 2R)-(+)-norephedrine 459 g was dissolved in acetonitrile (10 L) -isopropanol (1 L). After standing at room temperature, the precipitated crystals were collected by filtration and washed with 2.5 L of acetonitrile to obtain 1036 g (71.0%) of crude crystals. The crude crystals were dissolved in a mixed solution of acetonitrile: isopropanol = 1: 1, recrystallized by adding 8 L of acetonitrile, filtered, washed twice with 2 L of acetonitrile, and dried to give 923 g (63.3%) organic salt. Got.
Melting point: 180-182 ° C
[Α]D= -50.2 ° (c = 1.00, methanol, 25 ° C)
922 g of the obtained organic salt was suspended in 3.7 L of water, 959 ml of 2N aqueous hydrochloric acid solution was added, and the mixture was cooled with ice, and the resulting crystals were collected by filtration and washed with 2 L of cold water. Further, the crystals were dissolved in 2.46 L of methanol, 2.46 L of ethyl acetate was added and concentrated under reduced pressure to obtain 572 g (90.6%) of (−)-acid.
Melting point: 156-158 ° C
[Α]D= -112.0 ° (c = 1.00, methanol, 23 ° C)
Optical purity: 100% (according to method C) (racemic retention times of 24.8 minutes and 28.4 minutes)
Elemental analysis: C18H19NO5
Calculated value: C; 65.64, H; 5.82, N; 4.25
Found: C; 65.55, H; 5.82, N; 4.46
[0033]
Reference example 4
Preparation of (+)-α- (6-methyl-2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetic acid
The recrystallized mother liquor obtained in Reference Example 3 was concentrated, adjusted to pH 4 with 1N aqueous hydrochloric acid under ice cooling, and extracted with chloroform: methanol = 9: 1. The organic layer was washed successively with water and saturated brine, and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was recrystallized from 95% ethanol to obtain colorless crystals of (+)-acid.
Melting point: 155-157 ° C
[Α]D= + 111.2 ° (c = 1.00, methanol, 23 ° C.)
Optical purity: 100% (according to method C) (racemic retention times of 24.8 minutes and 28.4 minutes)
[0034]
Reference Example 5
Preparation of (−)-α- (2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetic acid
(±) -α- (2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetic acid produced by the method described in Japanese Patent Application No. 7-262337 was prepared in the same manner as in Reference Example 3. Was optically split.
Melting point: 107-110 ° C
[Α]D= −109.0 ° (c = 1.00, methanol, 23 ° C.)
Optical purity: 100% (according to method C) (however, racemate retention times are 20.4 minutes and 22.7 minutes)
Elemental analysis: C17H17NO5
Calculated values: C; 64.75, H; 5.43, N; 4.44
Found: C; 64.70, H; 5.44, N; 4.72
[0035]
Example 1
Preparation of (−)-N- (4-isopropylbenzenesulfonyl) -α-methoxyphenylacetamide
50 mg (0.331 mmol) of (−)-α-methoxyphenylacetic acid obtained in Reference Example 1 was dissolved in 2 ml of methylene chloride, one drop of dimethylformamide was added, and the mixture was cooled to 0 ° C. 0.028 ml (0.316 mmol) of oxalyl chloride was added dropwise and stirred at the same temperature for 1 hour, and then the solvent was distilled off under reduced pressure to obtain a colorless oily acid chloride. This compound was used in the next reaction without further purification. 4-Isopropylbenzenesulfonamide 66 mg (0.301 mmol) and powdered potassium hydroxide 44 mg (85%, 0.662 mmol) were stirred in methylene chloride (1 ml) at room temperature for 1 hour. To this reaction solution, a methylene chloride solution (1 ml) of the acid chloride obtained by the above method was added dropwise and stirred at room temperature for 1 hour. Ice water and 0.18 ml aqueous 1N hydrochloric acid solution were added, and the mixture was extracted 3 times with ethyl acetate. The combined organic layers were washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (chloroform: methanol = 9: 1).
Optical purity: 100% (according to method A) (however, racemate retention times are 28.9 minutes and 31.9 minutes)
In order to obtain an analytical sample, it was recrystallized once with acetone-isopropyl ether to obtain 59 mg (56%) of colorless crystals.
Melting point: 89-91 ° C
[Α]D= -16.4 ° (c = 1.00, methanol, 25 ° C)
NMR (CDCl3): 1.25 (6H, m), 2.96 (1H, m), 3.33 (3H, s), 4.59 (1H, s), 7.22-7.35 (7H) M), 7.94 (2H, d, J = 7.8), 9.12 (1H, br)
Elemental analysis: C18Htwenty oneNSOFour. 0.1H2O
Calculated values: C; 61.91, H; 6.12, N; 4.01, S; 9.18
Found: C; 61.92, H; 6.08, N; 4.26, S; 8.94
[0036]
Example 2
Preparation of (+)-N- (4-isopropylbenzenesulfonyl) -α- (4-methylphenoxy) phenylacetamide
100 mg (0.413 mmol) of (+)-α- (4-methylphenoxy) phenylacetic acid obtained in Reference Example 2 was dissolved in 2 ml of methylene chloride, and 1 drop of dimethylformamide was added and ice-cooled. 0.038 ml (0.433 mmol) of oxalyl chloride was added dropwise, and the mixture was further stirred at the same temperature for 1 hour. Volatiles were removed under reduced pressure to give a colorless oily acid chloride. This was used in the following reaction without further purification. 91 mg (0.454 mmol) of 4-isopropylbenzenesulfonamide and 60 mg (85%, 0.909 mmol) of powdered potassium hydroxide were stirred in methylene chloride (2 ml) at room temperature for 1 hour. To this reaction solution, a methylene chloride solution (2 ml) of the acid chloride obtained by the above method was added dropwise and stirred at room temperature for 1 hour. Ice water and 0.5 ml of 1N hydrochloric acid aqueous solution were added, and the mixture was extracted 3 times with ethyl acetate. The combined organic layers were washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (chloroform: methanol = 9: 1).
Optical purity: 100% (according to method A) (however, racemate retention times are 36.1 minutes and 40.0 minutes)
In order to obtain an analytical sample, it was recrystallized once with ethyl acetate-n-hexane to obtain 105 mg (60%) of colorless crystals.
Melting point: 137-138.5 ° C
[Α]D= + 14.5 ° (c = 1.00, methanol, 25 ° C.)
NMR (CDCl3): 1.25-1.28 (6H, m), 2.26 (3H, s), 2.97 (1H, m), 5.42 (1H, s), 6.73 (2H) , D, J = 8.6), 7.01 (2H, d, J = 8.6), 7.30-7.36 (7H, m), 7.88 (2H, d, J = 8. 6)
Elemental analysis: C24H25NO4S
Calculated value: C; 68.06, H; 5.95, N; 3.31, S; 7.57
Found: C; 67.92, H; 5.94, N; 3.31, S; 7.50
[0037]
Example 3
Preparation of (−)-N- (4-isopropylphenylsulfonyl) -α- (6-methyl-2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetamide
The (−)-α- (6-methyl-2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetic acid (519 mg, 1.58 mmol) obtained in Reference Example 3 was replaced with 1,2 -Suspended in dichloroethane (8 ml) and oxalyl chloride (0.14 ml, 1.58 mmol) was slowly added dropwise with stirring at room temperature. After stirring for 15 minutes, all volatiles were distilled off under reduced pressure to obtain acid chloride. This was used in the following reaction without further purification. Isopropylbenzenesulfonamide (325 mg, 1.56 mmol) and powdered potassium hydroxide (purity 86%, 325 mg, 1.63 mmol) were suspended in 1,2-dichloroethane (5 ml) and stirred for about 1 hour under ice cooling. . The acid chloride was dissolved in 1,2-dichloroethane (8 ml) and added dropwise in about 15 minutes. Thereafter, the mixture was further stirred for 1 hour, and water and 1N hydrochloric acid were sequentially added thereto, followed by stirring for a while. The reaction mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a colorless oily crude product (840 mg).
Optical purity: 98% (according to method B) (however, racemate retention times are 18.9 minutes and 21.9 minutes)
Further, this crude product was dissolved in 95% ethanol, and an excess of 4N hydrochloric acid ethyl acetate solution was added to obtain a hydrochloride.
Melting point: 185 ° C (decomposition)
[Α]D= -77.6 ° (c = 1.01, methanol, 22.5 ° C.)
Elemental analysis: C27H31N2O6SCl
Calculated values: C; 59.28, H; 5.71, N; 5.12, S; 5.86, Cl; 6.48
Found: C; 59.58, H; 5.77, N; 5.20, S; 5.92, Cl; 6.44
Optical purity:> 99% (according to method B) (racemic retention times of 18.9 and 21.9 minutes)
[0038]
Example 4
Preparation of (−)-α-N- (4-Isopropylphenylsulfonyl) -α- (2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetamide
The (−)-α- (2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetic acid (6.60 g, 0.0209 mol) obtained in Reference Example 5 was completely the same as Example 3. Similarly, the corresponding acid chloride was obtained. Subsequently, crude (−)-α-N- (4-isopropylphenylsulfonyl) -α- (2-propyl-3-pyridyloxy) -1,3-benzodioxole-5 was prepared in the same manner as in Example 3. -Acetamide (9.0 g, 86%) was obtained.
Optical purity: 96% (according to method B) (however, racemate retention times are 18.0 minutes and 20.8 minutes)
The analytical sample was recrystallized from ethanol.
Melting point: 170-172 ° C
Elemental analysis: C26H28N2O6S
Calculated values: C; 62.89, H; 5.68, N; 5.64, S; 6.46
Found: C; 62.94, H; 5.70, N; 5.73, S; 6.46
[Α]D= -79.3 ° (c = 1.006, methanol, 22 ° C.)
The compound obtained above (5.3 g) was further added with an excess of 4 N hydrochloric acid ethyl acetate solution in 95% ethanol to obtain hydrochloride (4.7 g, 71%).
Melting point: 185 ° C (decomposition)
Elemental analysis: C26H29N2O6SCl
Calculated values: C; 58.59, H; 5.48, N; 5.26, S; 6.02, Cl; 6.65
Found: C; 58.43, H; 5.49, N; 5.34, S; 6.10, Cl; 6.58
[Α]D= −81.9 ° (c = 1.002, methanol, 22.5 ° C.)
Optical purity:> 99% (according to method B) (however, racemate retention times are 18.0 minutes and 20.8 minutes)
[0039]
Example 5
Preparation of (+)-α-N- (4-isopropylphenylsulfonyl) -α- (6-methyl-2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetamide
(+)-Α- (6-Methyl-2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetic acid (6.58 g, 0.0209 mol) obtained in Reference Example 4 was carried out. In the same manner as in Example 3, acid chloride (8.56 g) was obtained in methylene chloride. Subsequently, the reaction was carried out in the same manner as in Example 3 with isopropylbenzenesulfonylamide (4.38 g, 0.022 mmol) and powdered sodium hydroxide (3.37 g, 60 mmol) in methylene chloride to obtain crude (+)-α-N. -(4-Isopropylphenylsulfonyl) -α- (6-methyl-2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetamide (9.23 g, 90%) was obtained.
Optical purity: 98% (according to method B) (however, racemate retention times are 18.9 minutes and 21.9 minutes)
The crude product was purified as a hydrochloride salt by adding an excess of 4N hydrochloric acid ethyl acetate solution in 95% ethanol.
Melting point: 185-192 ° C (decomposition)
Elemental analysis: C27H31N2O6SCl
Calculated values: C; 59.28, H; 5.71, N; 5.12, S; 5.86, Cl; 6.48
Found: C; 59.23, H; 5.96, N; 4.91, S; 5.67, Cl; 6.21
[Α]D= + 75.6 ° (c = 1.007, methanol, 23 ° C.)
Optical purity:> 99% (according to method B) (racemic retention times of 18.9 and 21.9 minutes)
[0040]
Example 6
Preparation of (−)-α-N- (4-isopropylphenylsulfonyl) -α- (6-methyl-2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetamide
The acid chloride synthesized in the same manner as in Example 3 was stirred in isopropylbenzenesulfonamide (133 mg, 0.668 mmol) and tripotassium phosphate x hydrate (568 mg) in dimethoxyethane (2 ml) at room temperature. A solution of acid chloride in dimethoxyethane (3 ml) was added dropwise. After 45 minutes, water was added, and the mixture was adjusted to pH 4 with 1N hydrochloric acid while stirring and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, and then the solvent was distilled off to obtain the target compound (298 mg).
Optical purity: 95% (according to method B) (racemic retention times of 18.9 and 21.9 minutes)
[0041]
Example 7
Preparation of (−)-α-N- (4-Isopropylphenylsulfonyl) -α- (6-methyl-2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetamide
4-Isopropylbenzenesulfonamide (133 mg, 0.668 mmol) and sodium hydride (80 mg, 2.00 mmol) were stirred in tetrahydrofuran at room temperature for 1 hour. In the same manner as in Example 3, an acid chloride was synthesized from carboxylic acid (200 mg, 0.607 mmol), dissolved in tetrahydrofuran (2 ml), dropped into the suspension and stirred for 2 hours. Thereafter, ice water and 1N hydrochloric acid (0.79 ml) were sequentially added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain a colorless oil (324 mg).
Optical purity: 95% (according to method B) (however, racemate retention times are 18.9 minutes and 21.9 minutes)
[0042]
The comparative example by the acyl sulfonamidation method in the conventional method is shown below.
Comparative Example 1 (Method described in Tetrahedron Lett., 1988, 29, 1653-1656)
Preparation of N- (4-isopropylphenylsulfonyl) -α- (6-methyl-2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetamide
Carboxylic acid (50 mg, 0.152 mmol) and carbonyldiimidazole (25 mg, 0.152 mmol) were stirred in anhydrous tetrahydrofuran (1 ml) at room temperature for 30 minutes under a nitrogen stream, and then refluxed for 30 minutes. After allowing to cool, isopropylbenzenesulfonylamide (30 mg, 0.152 mmol) and 1,8-diazabicyclo [5.4.0] -7-undecene (23 mg, 0.152 mmol) were added and stirred for 1 hour. Thereafter, ice water was added, followed by extraction with chloroform. The organic layer was washed with water and dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 80 mg of a colorless oily substance.
Optical purity: 2% (according to Method B) (however, racemate retention times are 18.9 and 21.9 minutes)
[0043]
Comparative Example 2 (method using Mukaiyama reagent)
Preparation of N- (4-isopropylphenylsulfonyl) -α- (6-methyl-2-propyl-3-pyridyloxy) -1,3-benzodioxole-5-acetamide
Under a nitrogen stream, 2-chloropyridine / methyl iodide (47 mg, 0.182 mmol) and carboxylic acid (50 mg, 0.152 mmol) were suspended in methylene chloride (2 ml) and stirred. Thereto was added dropwise a solution of isopropylbenzenesulfonylamide (30 mg, 0.152 mmol) and triethylamine (37 mg, 0.365 mmol) in methylene chloride (1 ml). The solid was gradually dissolved and changed to a homogeneous solution in 1 hour. Ice water was added to the reaction mixture, and the mixture was extracted with chloroform. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 12 mg of a colorless oil.
Optical purity: 4% (according to method B) (however, racemate retention times are 18.9 and 21.9 minutes)
[0044]
【The invention's effect】
According to the present invention, an optically active carboxylic acid having an asymmetric carbon substituted with an α-position oxy group can be used as a starting material and converted to acylsulfonamides frequently used as pharmaceuticals while maintaining asymmetry. it can.

Claims (6)

α位オキシ基置換不斉炭素を有する、一般式(III):
Figure 0003875315
(式中、*は不斉炭素原子の存在位置を示し、R1は置換基を有していてもよいフェニルを示し、R2は置換されていてもよい低級アルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールを示す)
で表わされる光学活性なカルボン酸に、塩素化剤1〜2当量を不活性溶媒中、−30℃〜室温で反応させ、一般式(II):
Figure 0003875315
(式中、R1とR2は前記と同意義である)
で表わされる酸塩化物とした後、さらに一般式(IV):
Figure 0003875315
(式中、R3は置換されていてもよいアリールを示し、R4は水素原子または低級アルキルを示す)
で表わされる化合物1〜2当量を−30℃〜室温で、不活性溶媒中2〜8当量の無機塩基の存在下に反応させるか、または一般式(IV)で表される化合物の金属塩1〜2当量を不活性溶媒中塩基不存在下に反応させることを特徴とする、一般式(I):
Figure 0003875315
(式中、*、R1、R2、R3およびR4は前記と同意義である)
で表わされる、95%以上の光学純度を持つアシルスルホンアミド類の製造法。
Formula (III) having an α-position oxy group-substituted asymmetric carbon:
Figure 0003875315
(In the formula, * represents the position of the asymmetric carbon atom, R 1 represents phenyl optionally having substituent (s), R 2 represents optionally substituted lower alkyl, optionally substituted) Represents aryl or optionally substituted heteroaryl)
1 to 2 equivalents of a chlorinating agent is reacted in an inert solvent at −30 ° C. to room temperature, and the general formula (II):
Figure 0003875315
(Wherein R 1 and R 2 are as defined above)
After the acid chloride represented by general formula (IV):
Figure 0003875315
(Wherein R 3 represents an optionally substituted aryl, and R 4 represents a hydrogen atom or lower alkyl)
1 to 2 equivalents of a compound represented by the formula (IV) is reacted at −30 ° C. to room temperature in the presence of 2 to 8 equivalents of an inorganic base in an inert solvent, or a metal salt 1 of a compound represented by the general formula (IV) ~ 2 equivalents are reacted in an inert solvent in the absence of a base, general formula (I):
Figure 0003875315
(Wherein, *, R 1 , R 2 , R 3 and R 4 are as defined above)
A process for producing acylsulfonamides having an optical purity of 95% or more represented by:
一般式(I)において、R2が置換されていてもよいピリジルである請求項1記載の製造法。The process according to claim 1, wherein R 2 in the general formula (I) is pyridyl which may be substituted. 一般式(I)において、R2が置換されていてもよいフェニルである請求項1記載の製造法。The process according to claim 1, wherein, in general formula (I), R 2 is optionally substituted phenyl. 一般式(IV)において、R4が水素原子である、請求項1〜3記載の製造法。The manufacturing method of Claims 1-3 whose R < 4 > is a hydrogen atom in general formula (IV). 塩素化剤が塩化オキザリルまたは塩化チオニルである、請求項1〜4のいずれかに記載の製造法。The production method according to any one of claims 1 to 4, wherein the chlorinating agent is oxalyl chloride or thionyl chloride. 無機塩基がリン酸三ナトリウム、リン酸三カリウム、水酸化ナトリウムまたは水酸化カリウムである、請求項1〜5のいずれかに記載の製造法。The manufacturing method in any one of Claims 1-5 whose inorganic base is trisodium phosphate, tripotassium phosphate, sodium hydroxide, or potassium hydroxide.
JP20834696A 1996-08-07 1996-08-07 Process for producing optically active acylsulfonamides Expired - Fee Related JP3875315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20834696A JP3875315B2 (en) 1996-08-07 1996-08-07 Process for producing optically active acylsulfonamides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20834696A JP3875315B2 (en) 1996-08-07 1996-08-07 Process for producing optically active acylsulfonamides

Publications (2)

Publication Number Publication Date
JPH1045705A JPH1045705A (en) 1998-02-17
JP3875315B2 true JP3875315B2 (en) 2007-01-31

Family

ID=16554762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20834696A Expired - Fee Related JP3875315B2 (en) 1996-08-07 1996-08-07 Process for producing optically active acylsulfonamides

Country Status (1)

Country Link
JP (1) JP3875315B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491866B2 (en) * 1999-09-30 2010-06-30 三菱化学株式会社 Acylsulfonamide derivatives

Also Published As

Publication number Publication date
JPH1045705A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
AU2006345861B2 (en) Process for the preparation of optically pure or optically enriched enantiomers of sulphoxide compounds
JP2008509897A (en) Enantioselective production method
JP5503546B2 (en) Separation of 4,5-dimethoxy-1- (methylaminomethyl) -benzocyclobutane
EP3653607B1 (en) Process for the preparation of enantiomerically enriched 3-aminopiperidine
JP3875315B2 (en) Process for producing optically active acylsulfonamides
JP5031778B2 (en) Method for producing amine compound using optically active 2- (aroyloxy) propionic acid
JP2000327659A (en) Preparation of optically active pyridylalcohol
JP2004521865A (en) Dynamic resolution of isomers and resolved isomers
WO2004031163A1 (en) PROCESS FOR PRODUCING OPTICALLY ACTIVE α-SUBSTITUTED CYSTEINE OR SALT THEREOF, INTERMEDIATE THEREFOR, AND PROCESS FOR PRODUCING THE SAME
JP4807751B2 (en) Novel chiral catalyst and method for producing chiral carboxylic acid compound using the same
JP3440305B2 (en) 7- (N-substituted amino) -2-phenylheptanoic acid ester derivative and method for producing the derivative
JP4691230B2 (en) Process for producing optically active 1- (benzofuran-2-yl) -2-propylaminopentane
JP4380325B2 (en) Process for producing optically active carboxylic acid
JP2579532B2 (en) Aminoacetonitrile derivative and method for producing the same
CN110922354B (en) Chemical resolution preparation method of 1-R-3-haloperidol-4-carboxylic acid and product thereof
JP3005669B2 (en) Method for producing asymmetric fluorinated primary amines
JPH09143173A (en) Optically active 5,5-diphenyl-2-oxazolidinone derivative
JP4126921B2 (en) Process for producing optically active β-phenylalanine derivative
JP5697998B2 (en) Process for producing optically active succinimide derivative and intermediate thereof
Williams Asymmetric syntheses of unnatural amino acids and hydroxyethylene Peptide isosteres
EP3292102B1 (en) Isoindolinones, processes for the production of chiral derivatives thereof and use thereof
JP3552260B2 (en) Optical resolution of 1-amino-2-indanols
JP3808931B2 (en) Optically active 4,5-diphenyl-1,3-dialkyl-2-halogenoimidazolinium halogenide
JP2004155756A (en) Method for producing optically active alcohol
JP2717257B2 (en) Production method of optically active compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees