JP4807751B2 - Novel chiral catalyst and method for producing chiral carboxylic acid compound using the same - Google Patents

Novel chiral catalyst and method for producing chiral carboxylic acid compound using the same Download PDF

Info

Publication number
JP4807751B2
JP4807751B2 JP2006263564A JP2006263564A JP4807751B2 JP 4807751 B2 JP4807751 B2 JP 4807751B2 JP 2006263564 A JP2006263564 A JP 2006263564A JP 2006263564 A JP2006263564 A JP 2006263564A JP 4807751 B2 JP4807751 B2 JP 4807751B2
Authority
JP
Japan
Prior art keywords
group
formula
carbon atoms
mmol
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006263564A
Other languages
Japanese (ja)
Other versions
JP2007119452A (en
Inventor
善光 長尾
崇 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamari Chemicals Ltd
University of Tokushima
Original Assignee
Hamari Chemicals Ltd
University of Tokushima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamari Chemicals Ltd, University of Tokushima filed Critical Hamari Chemicals Ltd
Priority to JP2006263564A priority Critical patent/JP4807751B2/en
Publication of JP2007119452A publication Critical patent/JP2007119452A/en
Application granted granted Critical
Publication of JP4807751B2 publication Critical patent/JP4807751B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は新規なキラル触媒およびそれを用いるキラルなカルボン酸化合物の製造方法に関し、更に詳しくは、キラルスルホンアミド誘導体およびそれを用いる光学活性カルボン酸化合物の製造方法に関する。   The present invention relates to a novel chiral catalyst and a method for producing a chiral carboxylic acid compound using the same, and more particularly to a chiral sulfonamide derivative and a method for producing an optically active carboxylic acid compound using the same.

光学活性化合物の製造法としては、酵素法、光学分割剤を用いる光学分割法、不斉合成法などが知られている。これらの方法のうち、前二法はラセミ体の半分は利用されないという制約があるのに対し、不斉合成法はそのような制約がない点で優れている。
不斉合成法に通常用いられる触媒は、金属を活性中心とするものが多い。しかしながら、金属の種類によっては、高価・有毒・廃棄困難であったり、触媒が水や酸素に不安定であったりすることが多い。このため、近年、安定・安価・環境にやさしいなどの理由で、金属を使用することなく、有機分子そのものを触媒として用いる反応の研究が盛んに行われている(非特許文献1、2)。
Known methods for producing optically active compounds include enzymatic methods, optical resolution methods using optical resolution agents, and asymmetric synthesis methods. Among these methods, the former two methods have the restriction that half of the racemate is not used, whereas the asymmetric synthesis method is superior in that there is no such restriction.
Many of the catalysts usually used in asymmetric synthesis methods have a metal as the active center. However, depending on the type of metal, it is often expensive, toxic, difficult to dispose, or the catalyst is unstable to water or oxygen. For this reason, in recent years, research on reactions using organic molecules themselves as catalysts without using metals has been actively conducted for reasons such as stability, low cost, and environmental friendliness (Non-Patent Documents 1 and 2).

一方、光学的に不活性なジカルボン酸誘導体は生理活性物質や医薬品の製造原料として有用であるが、従来、対称分子構造で光学的に不活性なプロキラルなジカルボン酸無水物から有機スルホンアミド触媒を用いて光学活性なカルボン酸化合物を製造する方法は知られていない。
Angev.Chem.Int.Ed.,2005、44、p.1369−1371 J.Am.Chem.Soc.,2004,126,p.12212−12213
On the other hand, optically inactive dicarboxylic acid derivatives are useful as raw materials for production of physiologically active substances and pharmaceuticals. Conventionally, organic sulfonamide catalysts are produced from prochiral dicarboxylic acid anhydrides that are optically inactive with symmetrical molecular structures. There is no known method for producing an optically active carboxylic acid compound.
Angev. Chem. Int. Ed. 2005, 44, p. 1369-1371 J. et al. Am. Chem. Soc. 2004, 126, p. 12212-12213

本発明の目的は、不斉合成法に用いられる新規な有機分子触媒を提供することにある。本発明の他の目的は、当該有機分子触媒を用いて対称分子構造で光学的に不活性なプロキラルなジカルボン酸無水物から光学活性なカルボン酸もしくはそのエステルを製造する方法を提供することにある。本発明のさらなる他の目的は、前記有機分子触媒から誘導される新規亜鉛触媒、ならび当該亜鉛触媒を用いて、光学的に不活性なプロキラルな1,3−ジオール化合物から光学活性な1,3−ジオール・モノエステル化合物を製造する方法を提供することにある。   An object of the present invention is to provide a novel organic molecular catalyst used in an asymmetric synthesis method. Another object of the present invention is to provide a method for producing an optically active carboxylic acid or an ester thereof from a prochiral dicarboxylic acid anhydride that is optically inactive with a symmetric molecular structure using the organic molecular catalyst. . Still another object of the present invention is to provide a novel zinc catalyst derived from the organic molecular catalyst, and an optically active 1,3-diol compound from an optically inactive prochiral 1,3-diol compound using the zinc catalyst. -To provide a method for producing a diol monoester compound.

本発明者らは、上記課題を解決するためキラルスルホンアミド化合物に着目して鋭意研究を重ねた結果、塩基性基であるジアルキルアミノ基と酸性基である二級スルホンアミド基とを同一分子内に有する二官能性化合物、すなわちキラルな1,2−ジフェニル−1−(N,N−ジアルキルアミノ)−2−N−アリールスルホンアミドの創製に成功すると共に、このキラルスルホンアミド誘導体を触媒量用いるだけでプロキラルなジカルボン酸無水物を高エナンチオ選択的にチオール分解(チオリシス)またはアルコール分解(アルコリシス)でき、光学活性なカルボン酸化合物が高収率かつ高光学収率で得られること、またこのキラルスルホンアミド誘導体の亜鉛錯体を形成させ、これを触媒としてプロキラルな1,3−ジオール誘導体とアシル化剤を反応させると、キラルなモノエステルを高収率かつ高光学収率で得られることも併せて見出し、さらに研究を重ねて本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have made extensive studies focusing on chiral sulfonamide compounds, and as a result, dialkylamino groups that are basic groups and secondary sulfonamide groups that are acidic groups are formed in the same molecule. Succeeded in creating a bifunctional compound, i.e., chiral 1,2-diphenyl-1- (N, N-dialkylamino) -2-N-arylsulfonamide, and using a catalytic amount of this chiral sulfonamide derivative The prochiral dicarboxylic acid anhydride can be thiolized (thiolyzed) or alcoholically decomposed (alcoholized) with high enantioselectivity, and optically active carboxylic acid compounds can be obtained in high yield and high optical yield. A zinc complex of a sulfonamide derivative is formed and used as a catalyst to form a prochiral 1,3-diol derivative Reaction of Le agent, a high yield of chiral mono esters together found to be obtained at a high optical yield, and have completed the present invention by further investigations.

すなわち、本発明は、
[1] 式(I):

Figure 0004807751
[式中、Phはフェニル基を示し、Arはアリール基を示し、RおよびRはそれぞれアルキル基を示すか、あるいは両者が末端で結合して隣接する窒素原子と一緒になって異項環基を形成していることを示す。]
で示されるキラルスルホンアミド誘導体、
[2] Arが置換基を有するフェニル基であり、RおよびRはそれぞれ炭素数1〜3のアルキル基である前記[1]に記載のキラルスルホンアミド誘導体、
[3] Arが炭素数1〜3のアルキル基もしくは炭素数1〜3のハロゲン化アルキル基で置換されたフェニル基である前記[1]または[2]に記載のキラルスルホンアミド誘導体、
[4] Arがメチルフェニル基または3,5−ビス(トリフルオロメチル)−フェニル基である前記[1]または[2]に記載のキラルスルホンアミド誘導体、 That is, the present invention
[1] Formula (I):
Figure 0004807751
[In the formula, Ph represents a phenyl group, Ar represents an aryl group, and R 1 and R 2 each represent an alkyl group, or both are bonded together at the terminal and combined with an adjacent nitrogen atom to form a different group. It shows that a cyclic group is formed. ]
A chiral sulfonamide derivative represented by:
[2] The chiral sulfonamide derivative according to [1], wherein Ar is a phenyl group having a substituent, and R 1 and R 2 are each an alkyl group having 1 to 3 carbon atoms.
[3] The chiral sulfonamide derivative according to the above [1] or [2], wherein Ar is a phenyl group substituted with an alkyl group having 1 to 3 carbon atoms or a halogenated alkyl group having 1 to 3 carbon atoms,
[4] The chiral sulfonamide derivative according to the above [1] or [2], wherein Ar is a methylphenyl group or a 3,5-bis (trifluoromethyl) -phenyl group,

[5] 式(II):

Figure 0004807751
[式中、Aは対称分子構造となる位置に置換基を1〜2個有するアルキレン基、または対称分子構造となる位置に置換基を1〜2個有していてもよいシクロアルキレン基もしくはシクロアルケニレン基を示す。]
で示されるプロキラルなジカルボン酸無水物と式(III):
Figure 0004807751
[式中、Rはアルキル基、アリール基またはアラルキル基を示し、Xは硫黄原子または酸素原子を示す。]
で示されるチオールもしくはアルコール化合物とを、式(I):
Figure 0004807751
[式中、Phはフェニル基を示し、Arはアリール基を示し、RおよびRはそれぞれアルキル基を示すか、あるいは両者が末端で結合して隣接する窒素原子と一緒になって異項環基を形成していることを示す。]
で示されるキラルスルホンアミド誘導体の存在下に反応させ、ついで必要によりエステル化することを特徴とする、式(IV):
Figure 0004807751
[式中、RおよびXは上記と同意義を、Rは水素またはエステル残基を、AはAと平面構造が同一でかつ分子全体が非対称な絶対構造をとることを示す。]
で示される光学活性カルボン酸またはそのエステルの製造方法、 [5] Formula (II):
Figure 0004807751
[Wherein, A represents an alkylene group having 1 to 2 substituents at a position where a symmetric molecular structure is formed, or a cycloalkylene group or cyclohexane optionally having 1 to 2 substituents at a position where a symmetric molecular structure is formed. An alkenylene group is shown. ]
A prochiral dicarboxylic acid anhydride represented by formula (III):
Figure 0004807751
[Wherein, R represents an alkyl group, an aryl group or an aralkyl group, and X represents a sulfur atom or an oxygen atom. ]
A thiol or alcohol compound represented by formula (I):
Figure 0004807751
[In the formula, Ph represents a phenyl group, Ar represents an aryl group, and R 1 and R 2 each represent an alkyl group, or both are bonded together at the terminal and combined with an adjacent nitrogen atom to form a different group. It shows that a cyclic group is formed. ]
Wherein the reaction is carried out in the presence of a chiral sulfonamide derivative represented by formula (IV), followed by esterification if necessary:
Figure 0004807751
[Wherein, R and X are as defined above, R a represents hydrogen or an ester residue, and A * represents an absolute structure having the same planar structure as A and an asymmetric molecule as a whole. ]
A process for producing an optically active carboxylic acid or ester thereof represented by

[6] Arが置換基を有するフェニル基であり、RおよびRはそれぞれ炭素数1〜3のアルキル基である前記[5]に記載の製造方法、
[7] Arが炭素数1〜3のアルキル基もしくは炭素数1〜3のハロゲン化アルキル基で置換されたフェニル基である前記[5]または[6]に記載の製造方法、
[8] Arがメチルフェニル基または3,5−ビス(トリフルオロメチル)−フェニル基である前記[5]または[6]に記載の製造方法、
[9] Rが水素、アルキル基またはアラルキル基である前記[5]〜[8]のいずれかに記載の製造方法、
[10] Arが置換基を有するフェニル基であり、Rがベンジル基である前記[5]に記載の製造方法、
[11] 式(I−a):

Figure 0004807751
[式中、Phはフェニル基を示し、Arはアリール基を示し、RおよびRはそれぞれアルキル基を示すか、あるいは両者が末端で結合して隣接する窒素原子と一緒になって異項環基を形成していることを示す。]
で示されるキラルスルホンアミド誘導体・Zn錯体、
[12] 式(I):
Figure 0004807751
[式中、Phはフェニル基を示し、Arはアリール基を示し、RおよびRはそれぞれアルキル基を示すか、あるいは両者が末端で結合して隣接する窒素原子と一緒になって異項環基を形成していることを示す。]
で示されるキラルスルホンアミド誘導体とジアルキル亜鉛とを反応させることを特徴とする、式(I−a):
Figure 0004807751
[式中、Ph、Ar、RおよびRは上記と同意義を示す。]
で示されるキラルスルホンアミド誘導体・Zn錯体の製造方法、
[13] 式(VII):
Figure 0004807751
[式中、Rはアミノ基の保護基を示し、Rはアルキル基、アルケニル基、またはアラルキル基を示す。]
で示される1,3−ジオール化合物と、式(VIII):
Figure 0004807751
[式中、Rはアルキル基、またはアリール基を示す。]
で示される酸無水物とを、 式(I−a):
Figure 0004807751
[式中、Phはフェニル基を示し、Arはアリール基を示し、RおよびRはそれぞれアルキル基を示すか、あるいは両者が末端で結合して隣接する窒素原子と一緒になって異項環基を形成していることを示す。]
で示されるキラルスルホンアミド誘導体・Zn錯体の存在下に反応させることを特徴とする、式(IX):
Figure 0004807751
[式中、R、RおよびRは上記と同意義を示す。]
で示されるキラル1,3−ジオール・モノエステル化合物の製造方法、および
[14] 式(VII):
Figure 0004807751
[式中、Rはアミノ基の保護基を示し、Rはアルキル基、アルケニル基、またはアラルキル基を示す。]
で示される1,3−ジオール化合物と、式(VIII):
Figure 0004807751
[式中、Rはアルキル基、またはアリール基を示す。]
で示される酸無水物とを、 式(I):
Figure 0004807751
[式中、Phはフェニル基を示し、Arはアリール基を示し、RおよびRはそれぞれアルキル基を示すか、あるいは両者が末端で結合して隣接する窒素原子と一緒になって異項環基を形成していることを示す。]
で示されるキラルスルホンアミド誘導体とジアルキル亜鉛の存在下に反応させることを特徴とする、式(IX):
Figure 0004807751
[式中、R、RおよびRは上記と同意義を示す。]
で示されるキラル1,3−ジオール・モノエステル化合物の製造方法、
に関する。 [6] The production method according to [5], wherein Ar is a phenyl group having a substituent, and R 1 and R 2 are each an alkyl group having 1 to 3 carbon atoms.
[7] The production method according to [5] or [6], wherein Ar is a phenyl group substituted with an alkyl group having 1 to 3 carbon atoms or a halogenated alkyl group having 1 to 3 carbon atoms,
[8] The production method according to [5] or [6], wherein Ar is a methylphenyl group or a 3,5-bis (trifluoromethyl) -phenyl group.
[9] The production method according to any one of [5] to [8], wherein R a is hydrogen, an alkyl group, or an aralkyl group.
[10] The production method according to the above [5], wherein Ar is a phenyl group having a substituent, and R is a benzyl group.
[11] Formula (Ia):
Figure 0004807751
[In the formula, Ph represents a phenyl group, Ar represents an aryl group, and R 1 and R 2 each represent an alkyl group, or both are bonded together at the terminal and combined with an adjacent nitrogen atom to form a different group. It shows that a cyclic group is formed. ]
A chiral sulfonamide derivative / Zn complex represented by
[12] Formula (I):
Figure 0004807751
[In the formula, Ph represents a phenyl group, Ar represents an aryl group, and R 1 and R 2 each represent an alkyl group, or both are bonded together at the terminal and combined with an adjacent nitrogen atom to form a different group. It shows that a cyclic group is formed. ]
Wherein the chiral sulfonamide derivative represented by formula (Ia) is reacted with a dialkylzinc:
Figure 0004807751
[Wherein, Ph, Ar, R 1 and R 2 are as defined above. ]
A process for producing a chiral sulfonamide derivative / Zn complex represented by the formula:
[13] Formula (VII):
Figure 0004807751
[Wherein, R 3 represents an amino-protecting group, and R 4 represents an alkyl group, an alkenyl group, or an aralkyl group. ]
A 1,3-diol compound represented by formula (VIII):
Figure 0004807751
[Wherein, R 5 represents an alkyl group or an aryl group. ]
An acid anhydride represented by formula (Ia):
Figure 0004807751
[In the formula, Ph represents a phenyl group, Ar represents an aryl group, and R 1 and R 2 each represent an alkyl group, or both are bonded together at the terminal and combined with an adjacent nitrogen atom to form a different group. It shows that a cyclic group is formed. ]
The reaction is carried out in the presence of a chiral sulfonamide derivative / Zn complex represented by formula (IX):
Figure 0004807751
[Wherein R 3 , R 4 and R 5 are as defined above. ]
And a method for producing a chiral 1,3-diol monoester compound represented by the formula (VII):
Figure 0004807751
[Wherein, R 3 represents an amino-protecting group, and R 4 represents an alkyl group, an alkenyl group, or an aralkyl group. ]
A 1,3-diol compound represented by formula (VIII):
Figure 0004807751
[Wherein, R 5 represents an alkyl group or an aryl group. ]
An acid anhydride represented by formula (I):
Figure 0004807751
[In the formula, Ph represents a phenyl group, Ar represents an aryl group, and R 1 and R 2 each represent an alkyl group, or both are bonded together at the terminal and combined with an adjacent nitrogen atom to form a different group. It shows that a cyclic group is formed. ]
Wherein the compound is reacted with a chiral sulfonamide derivative represented by formula (IX):
Figure 0004807751
[Wherein R 3 , R 4 and R 5 are as defined above. ]
A process for producing a chiral 1,3-diol monoester compound represented by:
About.

本発明によれば、触媒能の優れた新規なキラル有機分子触媒が提供される。また、本発明によれば、前記キラル有機分子触媒を用いて、プロキラルなジカルボン酸無水物から光学活性カルボン酸化合物を、またプロキラルな1,3−ジオール化合物から光学活性1,3−ジオール・モノエステル化合物を高収率且つ高光学収率で得ることができる。   According to the present invention, a novel chiral organic molecular catalyst having excellent catalytic ability is provided. According to the present invention, the chiral organic molecular catalyst is used to convert an optically active carboxylic acid compound from a prochiral dicarboxylic acid anhydride, and from a prochiral 1,3-diol compound to an optically active 1,3-diol monoester. The ester compound can be obtained with high yield and high optical yield.

本発明の一つは、式(I):

Figure 0004807751
[式中、Phはフェニル基を示し、Arはアリール基を示し、RおよびRはそれぞれアルキル基を示すか、あるいは両者が末端で結合して隣接する窒素原子と一緒になって異項環基を形成していることを示す。]
で示されるキラルスルホンアミド誘導体である。 One aspect of the invention is a compound of formula (I):
Figure 0004807751
[In the formula, Ph represents a phenyl group, Ar represents an aryl group, and R 1 and R 2 each represent an alkyl group, or both are bonded together at the terminal and combined with an adjacent nitrogen atom to form a different group. It shows that a cyclic group is formed. ]
It is a chiral sulfonamide derivative | guide_body shown by these.

キラルスルホンアミド誘導体(I)において、Arで示されるアリール基としては、置換基を有していてもよい芳香族炭化水素基(たとえば、フェニル基、ナフチル基など)が挙げられる。前記置換基としては、たとえば、アルキル基(たとえば、メチル基、エチル基、プロピル基、イソプロピル基など)、アルコキシ基(たとえば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基など)、ハロゲン(たとえば、フッ素、塩素、臭素、ヨウ素など)、ハロゲン化アルキル基(モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ジフルオロエチル基、トリフルオロエチル基、トリクロロメチル基など)、ハロゲン化アルコキシ基(たとえば、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、トリフルオロエトキシ基など)が挙げられ、これら置換基は芳香族炭化水素基の任意の位置に1〜3個有していてもよい。
上記置換基において、アルキル基、アルコキシ基、ハロゲン化アルキル基およびハロゲン化アルコキシ基は、それぞれ炭素数1〜5、好ましくは炭素数1〜3のものが好適に挙げられる。
In the chiral sulfonamide derivative (I), examples of the aryl group represented by Ar include an aromatic hydrocarbon group (for example, phenyl group, naphthyl group, etc.) which may have a substituent. Examples of the substituent include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, and an isopropyl group), an alkoxy group (for example, a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group), and a halogen (for example, Fluorine, chlorine, bromine, iodine, etc.), halogenated alkyl groups (monofluoromethyl group, difluoromethyl group, trifluoromethyl group, difluoroethyl group, trifluoroethyl group, trichloromethyl group etc.), halogenated alkoxy groups ( For example, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, a trifluoroethoxy group, etc.) may be mentioned, and 1 to 3 of these substituents may be present at any position of the aromatic hydrocarbon group.
In the above substituent, the alkyl group, alkoxy group, halogenated alkyl group, and halogenated alkoxy group preferably have 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.

およびRで示されるアルキル基としては、炭素数1〜5、好ましくは炭素数1〜3のアルキル基が挙げられ、具体的には、たとえばメチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。また、RおよびRが末端で結合して隣接する窒素原子と一緒になって異項環基を形成している場合、かかる異項環基としては、たとえばアジリジノ基、アゼチジノ基、ピロリジノ基、ピペリジノ基、モルホリノ基などの窒素含有複素環基が挙げられる。 Examples of the alkyl group represented by R 1 and R 2 include an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, and an isopropyl group. Etc. In addition, when R 1 and R 2 are bonded together at the end to form a hetero ring group together with an adjacent nitrogen atom, examples of the hetero ring group include an aziridino group, an azetidino group, and a pyrrolidino group. And nitrogen-containing heterocyclic groups such as piperidino group and morpholino group.

本発明のキラルスルホンアミド誘導体(I)は、式(V):

Figure 0004807751
[式中、Phは前記と同意義を示す。RおよびRは、それぞれ前記と同意義を示す。]
で示される化合物を式(VI):
Figure 0004807751
[式中、Arは前記と同意義を示す。]
で示される化合物と反応させることにより製造することができる。 The chiral sulfonamide derivative (I) of the present invention has the formula (V):
Figure 0004807751
[In the formula, Ph is as defined above. R 1 and R 2 are as defined above. ]
A compound represented by formula (VI):
Figure 0004807751
[In the formula, Ar is as defined above. ]
It can manufacture by making it react with the compound shown by these.

本反応はそれ自体公知の方法で実施でき、たとえば、化合物(V)と化合物(VI)とを適当な溶媒中、塩基の存在下に反応させることにより好適に実施することができる。溶媒としては、たとえばジクロロメタン、クロロホルム、酢酸エチル、ジエチルエーテル、テトラヒドロフラン、トルエン、ピリジン、N,N−ジメチルホルムアミドなどが挙げられる。また、塩基としては、たとえばトリエチルアミン、N−メチルピペリジン、N−メチルモルホリン、ピリジンなどが挙げられる。本反応は0℃〜10℃で行うのが好ましいが、必要により、より低温(〜−10℃)あるいはより高温(〜30℃)で行うこともできる。化合物(VI)の使用量は、化合物(V)1モルに対し通常1〜1.5モル、好ましくは1〜1.1モルである。このようにして生成した化合物(I)は、それ自体公知の方法、たとえば抽出、再結晶、クロマトグラフィーなどにより単離、精製することができる。   This reaction can be carried out by a method known per se, for example, preferably by reacting compound (V) and compound (VI) in a suitable solvent in the presence of a base. Examples of the solvent include dichloromethane, chloroform, ethyl acetate, diethyl ether, tetrahydrofuran, toluene, pyridine, N, N-dimethylformamide and the like. Examples of the base include triethylamine, N-methylpiperidine, N-methylmorpholine, pyridine and the like. This reaction is preferably carried out at 0 ° C. to 10 ° C., but can be carried out at a lower temperature (˜−10 ° C.) or higher temperature (˜30 ° C.) if necessary. The amount of compound (VI) to be used is generally 1 to 1.5 mol, preferably 1 to 1.1 mol, per 1 mol of compound (V). The compound (I) thus produced can be isolated and purified by a method known per se, for example, extraction, recrystallization, chromatography and the like.

本発明の他の一つは、上記で得られたキラルスルホンアミド誘導体(I)を触媒として利用する方法である。すなわち、   Another aspect of the present invention is a method using the chiral sulfonamide derivative (I) obtained above as a catalyst. That is,

式(II):

Figure 0004807751
[式中、Aは、対称分子構造となる位置に置換基を1〜2個有するアルキレン基、または対称分子構造となる位置に置換基を1〜2個有していてもよいシクロアルキレン基もしくはシクロアルケニレン基を示す。]
で示されるプロキラルなジカルボン酸無水物と式(III):
Figure 0004807751
[式中、Rはアルキル基、アリール基またはアラルキル基を示し、Xは硫黄原子または酸素原子を示す。]
で示されるチオールもしくはアルコール化合物を、前記キラルスルホンアミド誘導体(I)の存在下に反応させ、ついで必要によりエステル化することにより式(IV):
Figure 0004807751
[式中、RおよびXは上記と同意義を、Rは水素またはエステル残基を、AはAと平面構造が同一でかつ分子全体が非対称な絶対構造をとることを示す。]
で示される光学活性カルボン酸またはそのエステルを製造する方法である。 Formula (II):
Figure 0004807751
[Wherein, A represents an alkylene group having 1 to 2 substituents at a position where a symmetric molecular structure is formed, or a cycloalkylene group which may have 1 to 2 substituents at a position where a symmetric molecular structure is formed, or A cycloalkenylene group is shown. ]
A prochiral dicarboxylic acid anhydride represented by formula (III):
Figure 0004807751
[Wherein, R represents an alkyl group, an aryl group or an aralkyl group, and X represents a sulfur atom or an oxygen atom. ]
Is reacted in the presence of the chiral sulfonamide derivative (I), followed by esterification if necessary, to give a compound of formula (IV):
Figure 0004807751
[Wherein, R and X are as defined above, R a represents hydrogen or an ester residue, and A * represents an absolute structure having the same planar structure as A and an asymmetric molecule as a whole. ]
Is a method for producing an optically active carboxylic acid or an ester thereof.

原料化合物であるプロキラルなジカルボン酸無水物(II)中、Aで示される対称分子構造となる位置に置換基を1〜2個有するアルキレン基、または対称分子構造となる位置に置換基を1〜2個有していてもよいシクロアルキレン基もしくはシクロアルケニレン基としては、たとえば2−置換−1,3−プロピレン基、1,3−cis−ジ置換−1,3−プロピレン基、4,6−cis−ジ置換−1,3−シクロヘキシレン基、2−置換−1,3−シクロヘキシレン基、5−置換−1,3−シクロヘキシレン基、3−シクロヘキセン−1,2−cis−ジイル基などが挙げられる。ここで置換基としては、本反応に不活性なものであればよく、たとえばアルキル基、アリール基、アリールアルキル基(=アラルキル基)、アルキルオキシ基(=アルコキシ基)、アリールアルキルオキシ基(=アリールアルコキシ基)、トリ置換シリルオキシ基などが挙げられる。これら置換基におけるアルキル部分は炭素数1〜8の直鎖状、分枝状もしくは環状のアルキル基が挙げられ、たとえばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、シクロペンチル基、シクロペンチルメチル基、ヘキシル基、シクロヘキシル基、シクロヘキシルメチル基、ヘプチル基、オクチル基などが挙げられる。また前記置換基におけるアリール部分は、化合物(I)において説明したアリール基(Ar)と同様なものが挙げられる。さらに、トリ置換シリルオキシ基としては、たとえばトリメチルシリルオキシ基、トリブチリルシリルオキシ基、ジメチルフェニルシリルオキシ基、tert−ブチルジメチルシリルオキシ基などが挙げられる。   In the prochiral dicarboxylic acid anhydride (II) which is a raw material compound, an alkylene group having 1 to 2 substituents at a position where the symmetric molecular structure is represented by A, or a substituent which is 1 to 2 at a position where the symmetric molecular structure is formed. Examples of the cycloalkylene group or cycloalkenylene group which may have two include 2-substituted-1,3-propylene group, 1,3-cis-disubstituted-1,3-propylene group, 4,6- cis-disubstituted-1,3-cyclohexylene group, 2-substituted-1,3-cyclohexylene group, 5-substituted-1,3-cyclohexylene group, 3-cyclohexene-1,2-cis-diyl group, etc. Is mentioned. Here, the substituent is not particularly limited as long as it is inert to the reaction. For example, an alkyl group, an aryl group, an arylalkyl group (= aralkyl group), an alkyloxy group (= alkoxy group), an arylalkyloxy group (= Arylalkoxy groups), trisubstituted silyloxy groups and the like. Examples of the alkyl moiety in these substituents include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec- Examples thereof include a butyl group, a tert-butyl group, a pentyl group, a cyclopentyl group, a cyclopentylmethyl group, a hexyl group, a cyclohexyl group, a cyclohexylmethyl group, a heptyl group, and an octyl group. Examples of the aryl moiety in the substituent include the same aryl groups (Ar) as described in the compound (I). Further, examples of the tri-substituted silyloxy group include a trimethylsilyloxy group, a tributyrylsilyloxy group, a dimethylphenylsilyloxy group, and a tert-butyldimethylsilyloxy group.

他方の原料化合物であるチオールもしくはアルコール化合物(III)中、Rで示されるアルキル基としては、炭素数1〜16の直鎖状、分枝状もしくは環状のアルキル基が挙げられ、具体的には、たとえばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、シクロペンチル基、シクロペンチルメチル基、ヘキシル基、シクロヘキシル基、シクロヘキシルメチル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基などが挙げられる。Rで示されるアリール基としては、化合物(I)において説明したアリール基(Ar)と同様なものが挙げられる。Rで示されるアラルキル基(=アリールアルキル基)としては、炭素数1〜3のアルキル基に前記アリール基(Ar)が置換したものがあげられ、具体的には、たとえばベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基、あるいはこれらの基におけるフェニル基またはナフチル基の任意の位置に前記と同様の置換基を1〜3個有するものなどが挙げられる。   In the other thiol or alcohol compound (III) as the raw material compound, examples of the alkyl group represented by R include a linear, branched or cyclic alkyl group having 1 to 16 carbon atoms. Specifically, For example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, cyclopentyl group, cyclopentylmethyl group, hexyl group, cyclohexyl group, cyclohexylmethyl group, Examples include heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group and the like. Examples of the aryl group represented by R include the same aryl groups (Ar) as described in the compound (I). Examples of the aralkyl group (= arylalkyl group) represented by R include those in which the aryl group (Ar) is substituted on an alkyl group having 1 to 3 carbon atoms. Specific examples include benzyl group and phenylethyl group. , Phenylpropyl group, naphthylmethyl group, or those having 1 to 3 substituents similar to those described above at any position of the phenyl group or naphthyl group in these groups.

プロキラルなジカルボン酸無水物(II)とチオールもしくはアルコール化合物(III)との反応は、キラルスルホンアミド誘導体(I)の存在下に、適当な溶媒中、0〜40℃、好ましくは室温付近(15〜30℃)で好適に実施される。溶媒としては、反応に不活性なものであればよく、たとえばn−ヘキサン、n−ペンタン、シクロヘキサン、ジエチルエーテル、ジブチルエーテル、トルエン、テトラヒドロフラン、ジクロロメタン、クロロホルム、酢酸エチル、アセトン、メチルエチルケトン、メチルブチルケトン、N,N−ジメチルホルムアミド、ジメチルスルホキシドなどが用いられる。
キラルスルホンアミド誘導体(I)の使用量は、触媒量すなわち(II)1モルに対して通常0.001〜0.1モル、好ましくは0.03〜0.06モルである。また化合物(III)の使用量は、化合物(II)1モルに対し、通常1.0〜5.0モル、好ましくは1.2〜5.0モルである。
The reaction of the prochiral dicarboxylic acid anhydride (II) with the thiol or alcohol compound (III) is carried out in the presence of the chiral sulfonamide derivative (I) in an appropriate solvent at 0 to 40 ° C., preferably around room temperature (15 ˜30 ° C.). Any solvent may be used as long as it is inert to the reaction. For example, n-hexane, n-pentane, cyclohexane, diethyl ether, dibutyl ether, toluene, tetrahydrofuran, dichloromethane, chloroform, ethyl acetate, acetone, methyl ethyl ketone, methyl butyl ketone. N, N-dimethylformamide, dimethyl sulfoxide and the like are used.
The usage-amount of chiral sulfonamide derivative (I) is 0.001-0.1 mol normally with respect to a catalyst amount, ie, 1 mol of (II), Preferably it is 0.03-0.06 mol. Moreover, the usage-amount of compound (III) is 1.0-5.0 mol normally with respect to 1 mol of compound (II), Preferably it is 1.2-5.0 mol.

かくして、化合物(II)が高エナンチオ選択的にチオール分解もしくはアルコール分解されて、光学活性カルボン酸(化合物(IV)においてRが水素である化合物)が得られる。
ここで特筆すべきことは、上記反応において、触媒として化合物(I)の代わりに、たとえば、下記に示すような、該化合物(I)において、窒素原子上の水素原子をアルキル基などで置換した化合物(A)や、二つの窒素原子の両方に同じ置換基で置換した化合物(B)ないし(C)では、チオール(もしくはアルコール)分解反応が起こらないか、収率および不斉収率とも非常に低いという点である。

Figure 0004807751
[式中、Meはメチル基を示し、Phは前記と同意義を示す。] Thus, the compound (II) is thiol-decomposed or alcohol-degraded with high enantioselectivity to obtain an optically active carboxylic acid (compound in which R a is hydrogen in the compound (IV)).
What should be noted here is that in the above reaction, instead of the compound (I) as a catalyst, for example, in the compound (I), a hydrogen atom on a nitrogen atom is substituted with an alkyl group or the like as shown below. In the compound (A) and the compounds (B) to (C) in which both nitrogen atoms are substituted with the same substituent, the thiol (or alcohol) decomposition reaction does not occur, and the yield and the asymmetric yield are extremely high. This is a very low point.
Figure 0004807751
[Wherein, Me represents a methyl group, and Ph has the same meaning as described above. ]

上記で得られた光学活性なカルボン酸は、所望によりエステル化することにより、光学活性なカルボン酸エステル(化合物(IV)においてRがエステル残基である化合物)が得られる。エステル化反応はそれ自体公知のエステル化法、たとえばアルキルエステル化法(アルカノール+酸触媒)やアラルキルエステル化法(アラルキルアルコール+酸触媒)、あるいはジアゾメタンやトリメチルシリルジアゾメタンを用いるメチル化法などによって実施することができる。かくして得られる化合物(IV)において、Rで示されるエステル残基としては、アルキル基やアラルキル基(=アリールアルキル基)などがあげられ、ここにアルキル基は炭素数1〜8の直鎖状、分枝状もしくは環状のアルキル基が挙げられ、アラルキル基は炭素数1〜5のアルキル基に前記アリール基(Ar)が置換したものがあげられる。 The optically active carboxylic acid obtained above is esterified as desired to obtain an optically active carboxylic acid ester (a compound in which Ra is an ester residue in compound (IV)). The esterification reaction is carried out by a known esterification method such as an alkyl esterification method (alkanol + acid catalyst), an aralkyl esterification method (aralkyl alcohol + acid catalyst), or a methylation method using diazomethane or trimethylsilyldiazomethane. be able to. In the compound (IV) thus obtained, examples of the ester residue represented by Ra include an alkyl group and an aralkyl group (= arylalkyl group), and the alkyl group is a straight chain having 1 to 8 carbon atoms. A branched or cyclic alkyl group, and examples of the aralkyl group include those in which the aryl group (Ar) is substituted on an alkyl group having 1 to 5 carbon atoms.

かくして得られる化合物(IV)は、それ自体公知の方法、たとえば抽出、再結晶、クロマトグラフィーなどにより、単離、精製することができ、医薬品など生理活性化合物の合成原料あるいは合成中間体などとして有用である。   The compound (IV) thus obtained can be isolated and purified by methods known per se, such as extraction, recrystallization, chromatography and the like, and is useful as a synthetic raw material or synthetic intermediate for bioactive compounds such as pharmaceuticals. It is.

本発明のさらに他の一つは、式(I−a):

Figure 0004807751
[式中、Ph、Ar、RおよびRは前記と同意義を示す。]
で示されるキラルスルホンアミド誘導体・Zn錯体である。 Yet another aspect of the present invention is a compound of formula (Ia):
Figure 0004807751
[Wherein, Ph, Ar, R 1 and R 2 are as defined above. ]
It is a chiral sulfonamide derivative and Zn complex shown by these.

本発明のキラルスルホンアミド誘導体・Zn錯体(I−a)は、式(I):

Figure 0004807751
[式中、Ph、Ar、RおよびRは前記と同意義を示す。]
で示される化合物をジアルキル亜鉛と反応させることにより製造することができる。 The chiral sulfonamide derivative / Zn complex (Ia) of the present invention has the formula (I):
Figure 0004807751
[Wherein, Ph, Ar, R 1 and R 2 are as defined above. ]
It can manufacture by making the compound shown by react with dialkyl zinc.

本反応は、化合物(I)とジアルキル亜鉛とを適当な溶媒中において反応させることにより好適に実施することができる。溶媒としては、たとえばジクロロメタン、クロロホルム、酢酸エチル、ジエチルエーテル、テトラヒドロフラン、トルエン、ピリジン、N,N−ジメチルホルムアミド、n−ヘキサン、およびこれらの混合溶媒などが挙げられる。本反応は室温で行うのが好ましい。ジアルキル亜鉛の使用量は、化合物(I)1モルに対し通常0.55〜2.0モル、好ましくは0.6〜1.0モルである。このようにして生成した化合物(I−a)は、それ自体公知の方法、たとえば抽出、再結晶などにより単離、精製することができる。   This reaction can be preferably carried out by reacting compound (I) with dialkylzinc in a suitable solvent. Examples of the solvent include dichloromethane, chloroform, ethyl acetate, diethyl ether, tetrahydrofuran, toluene, pyridine, N, N-dimethylformamide, n-hexane, and mixed solvents thereof. This reaction is preferably performed at room temperature. The amount of dialkylzinc used is usually 0.55 to 2.0 mol, preferably 0.6 to 1.0 mol, per 1 mol of compound (I). The compound (Ia) thus produced can be isolated and purified by a method known per se, for example, extraction, recrystallization and the like.

上記反応で用いるジアルキル亜鉛におけるアルキル部分としては、炭素数1〜5、好ましくは炭素数1〜3のアルキル基が挙げられ、具体的には、たとえばメチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。   Examples of the alkyl moiety in the dialkyl zinc used in the above reaction include an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. Specifically, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, etc. Is mentioned.

本発明のさらに他の1つは、上記で得られたキラルスルホンアミド誘導体・Zn錯体(I−a)を触媒として利用する方法である。すなわち、   Yet another aspect of the present invention is a method of using the chiral sulfonamide derivative / Zn complex (Ia) obtained above as a catalyst. That is,

式(VII):

Figure 0004807751
[式中、Rはアミノ基の保護基を示し、Rはアルキル基、アルケニル基、またはアラルキル基を示す。]
で示される1,3−ジオール化合物と、式(VIII):
Figure 0004807751
[式中、Rはアルキル基、またはアリール基を示す。]
で示される酸無水物を、前記キラルスルホンアミド誘導体・Zn錯体(I−a)の存在下に反応させることにより、式(IX):
Figure 0004807751
[式中、R、RおよびRは前記と同意義を示す。]
で示されるキラル1,3−ジオール・モノエステル化合物を製造する方法である。 Formula (VII):
Figure 0004807751
[Wherein, R 3 represents an amino-protecting group, and R 4 represents an alkyl group, an alkenyl group, or an aralkyl group. ]
A 1,3-diol compound represented by formula (VIII):
Figure 0004807751
[Wherein, R 5 represents an alkyl group or an aryl group. ]
Is reacted in the presence of the chiral sulfonamide derivative / Zn complex (Ia) to form the formula (IX):
Figure 0004807751
[Wherein, R 3 , R 4 and R 5 are as defined above. ]
In which a chiral 1,3-diol monoester compound is produced.

原料化合物であるプロキラルな1,3−ジオール化合物(VII)中、Rで示されるアミノ基の保護基としては、たとえばベンジルオキシカルボニル基、tert−ブトキシカルボニル基、3−ニトロ−2−ピリジンスルフェニル基、アリルオキシカルボニル基、2,2,2−トリクロロエトキシカルボニル基、9−フルオレニルメチルオキシカルボニル基、p−メトキシベンジルオキシカルボニル基、p−メトキシフェニル基などが挙げられる。また1,3−ジオール化合物(VII)中、Rで示されるアルキル基としては、炭素数1〜18の直鎖状、分枝状もしくは環状のアルキル基が挙げられ、アルケニル基としては、炭素数2〜16の直鎖状、分枝状もしくは環状のアルキル基が挙げられ、アラルキル基としては、炭素数1〜3のアルキル基にアリール基(たとえばフェニル基)が置換したものが挙げられる。 In the prochiral 1,3-diol compound (VII) which is the starting compound, examples of the protecting group for the amino group represented by R 3 include benzyloxycarbonyl group, tert-butoxycarbonyl group, 3-nitro-2-pyridinesulfuryl group. Examples include a phenyl group, an allyloxycarbonyl group, a 2,2,2-trichloroethoxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, a p-methoxybenzyloxycarbonyl group, and a p-methoxyphenyl group. In the 1,3-diol compound (VII), examples of the alkyl group represented by R 4 include linear, branched, or cyclic alkyl groups having 1 to 18 carbon atoms. A linear, branched or cyclic alkyl group having 2 to 16 carbon atoms is exemplified, and examples of the aralkyl group include those in which an aryl group (for example, a phenyl group) is substituted on an alkyl group having 1 to 3 carbon atoms.

他方の原料化合物である酸無水物(VIII)中、Rで示されるアルキル基としては、炭素数が1〜6の直鎖状、分枝状もしくは環状のアルキル基が挙げられる。また、アリール基としては、たとえば置換基を有してもよいフェニル基が挙げられる。 In the acid anhydride (VIII) that is the other raw material compound, examples of the alkyl group represented by R 5 include a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms. Moreover, as an aryl group, the phenyl group which may have a substituent is mentioned, for example.

プロキラルな1,3−ジオール化合物(VII)と酸無水物(VIII)との反応は、キラルスルホンアミド誘導体・Zn錯体(I−a)の存在下に、適当な溶媒中、冷却下または室温下で好適に実施することができる。溶媒としては、反応に不活性なものであればよく、たとえばt−ブチルメチルエーテル、ジエチルエーテル、t−アミルメチルエーテル、ジブチルエーテル、トルエン、テトラヒドロフラン、ジクロロメタン、クロロホルム、酢酸エチル、アセトン、メチルエチルケトン、メチルブチルケトン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、n−ヘキサン、n−ペンタン、シクロヘキサンあるいはこれらの混合溶媒などが用いられる。
キラルスルホンアミド誘導体・Zn錯体(I−a)の使用量は、触媒量すなわち、化合物(VII)1モルに対して、通常0.01〜0.1モル、好ましくは0.05〜0.1モルである。また、酸無水物(VIII)の使用量は、化合物(VII)1モルに対して、通常1.0〜3.0モル、好ましくは1.5〜3.0モルである。
The reaction of the prochiral 1,3-diol compound (VII) with the acid anhydride (VIII) is carried out in the presence of the chiral sulfonamide derivative / Zn complex (Ia) in an appropriate solvent, under cooling or at room temperature. It can carry out suitably. Any solvent may be used as long as it is inert to the reaction. For example, t-butyl methyl ether, diethyl ether, t-amyl methyl ether, dibutyl ether, toluene, tetrahydrofuran, dichloromethane, chloroform, ethyl acetate, acetone, methyl ethyl ketone, methyl Butyl ketone, N, N-dimethylformamide, dimethyl sulfoxide, n-hexane, n-pentane, cyclohexane or a mixed solvent thereof may be used.
The amount of the chiral sulfonamide derivative / Zn complex (Ia) to be used is usually 0.01 to 0.1 mol, preferably 0.05 to 0.1, per 1 mol of the catalyst amount, that is, compound (VII). Is a mole. Moreover, the usage-amount of acid anhydride (VIII) is 1.0-3.0 mol normally with respect to 1 mol of compounds (VII), Preferably it is 1.5-3.0 mol.

かくして、化合物(VII)が高エナンチオ選択的にモノエステル化されて、光学活性1,3−ジオール・モノエステル化合物(IX)が得られる。   Thus, compound (VII) is mono-esterified with high enantioselectivity to obtain optically active 1,3-diol monoester compound (IX).

本発明のさらなる他の1つは、上記キラルスルホンアミド誘導体・Zn錯体を単離せずに、反応系で生成させてキラル1,3−ジオール・モノエステル化合物を製造する方法である。すなわち、   Still another one of the present invention is a method for producing a chiral 1,3-diol monoester compound by producing it in a reaction system without isolating the chiral sulfonamide derivative / Zn complex. That is,

式(VII):

Figure 0004807751
[式中、R、Rは前記と同意義を示す。]
で示される1,3−ジオール化合物と、式(VIII):
Figure 0004807751
[式中、Rは前記と同意義を示す。]
で示される酸無水物を、前記キラルスルホンアミド誘導体(I):
Figure 0004807751
[式中、Ph、Ar、RおよびRは前記と同意義を示す。]
とジアルキル亜鉛の存在下に反応させることにより、式(IX):
Figure 0004807751
[式中、R、RおよびRは前記と同意義を示す。]
で示されるキラル1,3−ジオール・モノエステル化合物を製造する方法である。 Formula (VII):
Figure 0004807751
[Wherein R 3 and R 4 are as defined above. ]
A 1,3-diol compound represented by formula (VIII):
Figure 0004807751
[Wherein, R 5 has the same meaning as described above. ]
An acid anhydride represented by the above-mentioned chiral sulfonamide derivative (I):
Figure 0004807751
[Wherein, Ph, Ar, R 1 and R 2 are as defined above. ]
By reacting with dialkylzinc in the presence of formula (IX):
Figure 0004807751
[Wherein, R 3 , R 4 and R 5 are as defined above. ]
In which a chiral 1,3-diol monoester compound is produced.

本反応に用いるキラルスルホンアミド誘導体(I)およびジアルキル亜鉛は、前記したものが用いられる。1,3−ジオール化合物(VII)と酸無水物(VIII)との反応は、キラルスルホンアミド誘導体(I)とジアルキル亜鉛との存在下に、適当な溶媒中、0〜40℃、好ましくは室温付近(15〜30℃)で好適に実施される。溶媒としては、反応に不活性なものであればよく、たとえばジエチルエーテル、ジブチルエーテル、トルエン、テトラヒドロフラン、ジクロロメタン、クロロホルム、酢酸エチル、アセトン、メチルエチルケトン、メチルブチルケトン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、n−ヘキサン、n−ペンタン、シクロヘキサンあるいはこれらの混合溶媒などが用いられる。
キラルスルホンアミド誘導体(I)の使用量は、触媒量すなわち化合物(VII)1モルに対して通常0.01〜0.2モル、好ましくは0.05〜0.1モルである。ジアルキル亜鉛の使用量は、キラルスルホンアミド誘導体(I)1モルに対して、通常0.01〜0.2モル、好ましくは0.02〜0.1モルである。また、酸無水物(VIII)の使用量は、化合物(VII)1モルに対して、通常1.0〜3.0モル、好ましくは1.0〜2.0モルである。
As the chiral sulfonamide derivative (I) and dialkylzinc used in this reaction, those described above are used. The reaction of 1,3-diol compound (VII) and acid anhydride (VIII) is carried out in the presence of chiral sulfonamide derivative (I) and dialkylzinc in an appropriate solvent at 0 to 40 ° C., preferably room temperature. It is preferably carried out in the vicinity (15 to 30 ° C.). Any solvent may be used as long as it is inert to the reaction. For example, diethyl ether, dibutyl ether, toluene, tetrahydrofuran, dichloromethane, chloroform, ethyl acetate, acetone, methyl ethyl ketone, methyl butyl ketone, N, N-dimethylformamide, dimethyl sulfoxide. , N-hexane, n-pentane, cyclohexane or a mixed solvent thereof.
The amount of the chiral sulfonamide derivative (I) to be used is generally 0.01 to 0.2 mol, preferably 0.05 to 0.1 mol, per 1 mol of the catalyst amount, that is, compound (VII). The usage-amount of dialkyl zinc is 0.01-0.2 mol normally with respect to 1 mol of chiral sulfonamide derivatives (I), Preferably it is 0.02-0.1 mol. Moreover, the usage-amount of acid anhydride (VIII) is 1.0-3.0 mol normally with respect to 1 mol of compounds (VII), Preferably it is 1.0-2.0 mol.

かくして、化合物(VII)が高エナンチオ選択的にモノエステル化されて、光学活性1,3−ジオール・モノエステル化合物(IX)が得られる。   Thus, compound (VII) is mono-esterified with high enantioselectivity to obtain optically active 1,3-diol monoester compound (IX).

かくして得られる化合物(IX)は、それ自体公知の方法、たとえば抽出、再結晶、クロマトグラフィーなどにより、単離、精製することができ、医薬品など生理活性化合物の合成原料あるいは合成中間体などとして有用である。   The compound (IX) thus obtained can be isolated and purified by methods known per se, such as extraction, recrystallization, chromatography, etc., and is useful as a synthetic raw material or synthetic intermediate for bioactive compounds such as pharmaceuticals. It is.

[実施例1]
(1R,2R)−N,N−ジメチル−N’−p−トルエンスルホニル−1,2−ジフェニル−1,2−エタンジアミンの合成

Figure 0004807751
[式中、Meは前記と同意義を示す。]
(1R,2R)−N,N−ジメチル−1,2−ジフェニル−1,2−エタンジアミン(72mg、0.30mmol)とp−トルエンスルホニルクロリド(57mg、0.30mmol)のジクロロメタン(5mL)溶液に、アルゴン雰囲気下、トリエチルアミン(42μL、0.30mmol)を室温で加え、同温で1時間撹拌した。反応液に水を加え、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、得られた粗生成物をカラムクロマトグラフィー(クロロホルム:メタノール=25:1)に付し、題記化合物(105mg、89%収率)を得た。 [Example 1]
Synthesis of (1R, 2R) -N, N-dimethyl-N′-p-toluenesulfonyl-1,2-diphenyl-1,2-ethanediamine
Figure 0004807751
[Wherein Me represents the same meaning as described above. ]
A solution of (1R, 2R) -N, N-dimethyl-1,2-diphenyl-1,2-ethanediamine (72 mg, 0.30 mmol) and p-toluenesulfonyl chloride (57 mg, 0.30 mmol) in dichloromethane (5 mL). Under an argon atmosphere, triethylamine (42 μL, 0.30 mmol) was added at room temperature, and the mixture was stirred at the same temperature for 1 hour. Water was added to the reaction solution, extracted with chloroform, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was subjected to column chromatography (chloroform: methanol = 25: 1) to obtain the title compound (105 mg, 89% yield).

融点:109−110℃
[α] 19 53.0°(c=0.50、CHCl
HNMR(400MHz、DMSO−d)δ:7.54−7.42(3H,m)、7.25−6.86(12H,m)、4.67−4.57(1H,m)、3.77(1H,d,J=11.0Hz)、2.31(3H,s)、1.89(6H,s)
元素分析値:C2326
計算値:C,70.02;H,6.64;N,7.10
実測値:C,69.74;H,6.66;N,7.02
Melting point: 109-110 ° C
[Α] D 19 53.0 ° (c = 0.50, CHCl 3 )
1 HNMR (400 MHz, DMSO-d 6 ) δ: 7.54-7.42 (3H, m), 7.25-6.86 (12H, m), 4.67-4.57 (1H, m) 3.77 (1H, d, J = 11.0 Hz), 2.31 (3H, s), 1.89 (6H, s)
Elemental analysis: C 23 H 26 N 2 O 2 S
Calculated values: C, 70.02; H, 6.64; N, 7.10
Found: C, 69.74; H, 6.66; N, 7.02

[実施例2]
(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミンの合成(その1):

Figure 0004807751
[式中、Meは前記と同意義を示す。]
(1R,2R)−N,N−ジメチル−1,2−ジフェニル−1,2−エタンジアミン(752mg、3.13mmol)と3,5−ビス(トリフルオロメチル)ベンゼンスルホニルクロリド(978mg、3.13mmol)のジクロロメタン(30mL)溶液に、アルゴン雰囲気下、トリエチルアミン(436μL、3.13mmol)を室温で加え、同温で1時間撹拌した。反応液に水を加え、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、得られた粗製物をカラムクロマトグラフィー(クロロホルム:メタノール=25:1)に付し、題記化合物(1.23g、76%収率)を得た。本品をクロロホルム−ヘキサンで再結晶することにより無色針状晶を得た。 [Example 2]
Synthesis of (1R, 2R) -N, N-dimethyl-N′-3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine (part 1):
Figure 0004807751
[Wherein Me represents the same meaning as described above. ]
(1R, 2R) -N, N-dimethyl-1,2-diphenyl-1,2-ethanediamine (752 mg, 3.13 mmol) and 3,5-bis (trifluoromethyl) benzenesulfonyl chloride (978 mg, 3. To a solution of 13 mmol) in dichloromethane (30 mL), triethylamine (436 μL, 3.13 mmol) was added at room temperature under an argon atmosphere, and the mixture was stirred at the same temperature for 1 hour. Water was added to the reaction solution, extracted with chloroform, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was subjected to column chromatography (chloroform: methanol = 25: 1) to obtain the title compound (1.23 g, 76% yield). The product was recrystallized from chloroform-hexane to obtain colorless needle crystals.

融点:168−169℃
[α] 18 131.5°(c=1.21、CHCl
HNMR(400MHz、DMSO−d)δ:8.61(1H,bs)、8.20(1H,s)、8.05(2H,s)、7.15−6.93(7H,m)、6.84−6.73(3H,m)、4.95(1H,d,J=11.2Hz)、3.86(1H,d,J=11.2Hz)、1.96(6H,s)
元素分析値:C2422
計算値:C,55.81;H,4.29;N,5.42
実測値:C,55.61;H,4.35;N,5.37
Melting point: 168-169 ° C
[Α] D 18 131.5 ° (c = 1.21, CHCl 3 )
1 HNMR (400 MHz, DMSO-d 6 ) δ: 8.61 (1H, bs), 8.20 (1H, s), 8.05 (2H, s), 7.15-6.93 (7H, m ), 6.84-6.73 (3H, m), 4.95 (1H, d, J = 11.2 Hz), 3.86 (1H, d, J = 11.2 Hz), 1.96 (6H , S)
Elemental analysis: C 24 H 22 F 2 N 2 O 2 S
Calculated value: C, 55.81; H, 4.29; N, 5.42
Found: C, 55.61; H, 4.35; N, 5.37

(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミンの合成(その2):

Figure 0004807751
(1R,2R)−1,2−ジフェニル−1,2−エタンジアミン(1.7g、8.0mmol)および3,5−ビス(トリフルオロメチル)ベンゼンスルホニルクロリド(2.5g、8.0mmol)のジクロロメタン(80mL)溶液にトリエチルアミン(1.15mL、8.0mmol)を室温で加え、同温で30分間撹拌した。反応液を1N NaOH水溶液(150mL)で処理した後、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、得られた粗製物をテトラヒドロフラン(80mL)に溶かし、その溶液にNaH(ミネラルオイル中に60%w/w含有、800mg、20mmol)およびMeI(1.245mL、20mmol)を室温で撹拌しながら加えた。その混合液を1時間煮沸し、水を加えた後、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、得られた粗製物をカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:3)に付し、題記化合物(2.8g、68%収率)を得た。本品をクロロホルム−ヘキサンで再結晶することにより無色針状晶を得た。 Synthesis of (1R, 2R) -N, N-dimethyl-N′-3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine (Part 2):
Figure 0004807751
(1R, 2R) -1,2-diphenyl-1,2-ethanediamine (1.7 g, 8.0 mmol) and 3,5-bis (trifluoromethyl) benzenesulfonyl chloride (2.5 g, 8.0 mmol) Triethylamine (1.15 mL, 8.0 mmol) was added to a dichloromethane (80 mL) solution at room temperature, and the mixture was stirred at the same temperature for 30 minutes. The reaction mixture was treated with 1N aqueous NaOH (150 mL), extracted with chloroform, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was dissolved in tetrahydrofuran (80 mL), and NaH (containing 60% w / w in mineral oil, 800 mg, 20 mmol) and MeI (1.245 mL, 20 mmol) were dissolved in the solution. ) Was added at room temperature with stirring. The mixture was boiled for 1 hour, water was added, extracted with chloroform, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was subjected to column chromatography (ethyl acetate: hexane = 1: 3) to obtain the title compound (2.8 g, 68% yield). The product was recrystallized from chloroform-hexane to obtain colorless needle crystals.

[実施例3]
3−フェニルグルタル酸無水物の触媒的エナンチオ選択的チオリシス
3−フェニルグルタル酸無水物(190mg、1.0mmol)と実施例2で得られた
(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミン(25.8mg、0.05mmol)のジエチルエーテル溶液(10mL)に、アルゴン雰囲気下、ベンジルメルカプタン(141μL、1.2mmol)を室温で加え、同温で20時間撹拌した。反応液に10%塩酸を加え、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、得られた粗生成物[(S)−5−(ベンジルチオ)−5−オキソ−3−フェニルペンタン酸]をベンゼン−メタノール(7:2)(9mL)に溶かし、トリメチルシリルジアゾメタン(エーテル中2.0M、1mL、2.0mmol)を室温で加え、同温で15分撹拌した。その後、減圧下溶媒を留去し、得られた粗生成物をカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:4)に付すことにより、(S)−5−(ベンジルチオ)−5−オキソ−3−フェニルペンタン酸メチルエステル(312mg、95%収率、91%ee)を白色結晶として得た。前記%eeは、エナンチオ過剰率を示す。
[Example 3]
Catalytic enantioselective thiolysis of 3-phenylglutaric anhydride 3-phenylglutaric anhydride (190 mg, 1.0 mmol) and (1R, 2R) -N, N-dimethyl-N ′ obtained in Example 2 Benzyl mercaptan was added to a diethyl ether solution (10 mL) of 3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine (25.8 mg, 0.05 mmol) under an argon atmosphere. (141 μL, 1.2 mmol) was added at room temperature and stirred at the same temperature for 20 hours. To the reaction solution was added 10% hydrochloric acid, extracted with chloroform, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product [(S) -5- (benzylthio) -5-oxo-3-phenylpentanoic acid] was dissolved in benzene-methanol (7: 2) (9 mL), Trimethylsilyldiazomethane (2.0 M in ether, 1 mL, 2.0 mmol) was added at room temperature and stirred at the same temperature for 15 minutes. Thereafter, the solvent was distilled off under reduced pressure, and the resulting crude product was subjected to column chromatography (ethyl acetate: hexane = 1: 4) to give (S) -5- (benzylthio) -5-oxo-3. -Phenylpentanoic acid methyl ester (312 mg, 95% yield, 91% ee) was obtained as white crystals. The% ee indicates an enantio excess.

融点:34.5−35℃
[α] 20 43.7°(c=1.10、CHCl
HNMR(400MHz、CDCl)δ:7.34−7.07(10H,m)、4.05(2H,s)、3.77−3.67(1H,m)、3.57(3H,s)、2.96(1H,dd,J=15.1および7.1Hz)、2.91(1H,dd,J=15.1および7.8Hz)、2.73(1H,dd,J=15.6および6.8Hz)、2.65(1H,dd,J=15.6および8.1Hz)
元素分析値:C1920
計算値:C,69.48;H,6.14
実測値:C,69.22;H,6.12
なお、エナンチオ過剰率はダイセルキラルOD−Hカラム(ヘキサン:イソプロパノール=19:1、流速=1mL/分)で決定した。また、生成物の絶対配置は既知のケトエステルに変換して決定した(後記参考例1参照)。
Melting point: 34.5-35 ° C
[Α] D 20 43.7 ° (c = 1.10, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.34-7.07 (10H, m), 4.05 (2H, s), 3.77-3.67 (1H, m), 3.57 (3H , S), 2.96 (1H, dd, J = 15.1 and 7.1 Hz), 2.91 (1H, dd, J = 15.1 and 7.8 Hz), 2.73 (1H, dd, J = 15.6 and 6.8 Hz), 2.65 (1H, dd, J = 15.6 and 8.1 Hz)
Elemental analysis value: C 19 H 20 O 3 S
Calculated value: C, 69.48; H, 6.14
Found: C, 69.22; H, 6.12
The enantiomeric excess was determined by a Daicel chiral OD-H column (hexane: isopropanol = 19: 1, flow rate = 1 mL / min). The absolute configuration of the product was determined by converting it into a known keto ester (see Reference Example 1 described later).

[実施例4]
実施例3において、触媒として、(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミン(25.8mg、0.05mmol)の代わりに、実施例1で得られた(1R,2R)−N,N−ジメチル−N’−p−トルエンスルホニル−1,2−ジフェニル−1,2−エタンジアミン(39.4mg、0.05mmol)を用い、溶媒として、ジエチルエーテルの代わりにトルエンを用いる以外は、実施例3と同様に処理して、3−フェニルグルタル酸無水物(190mg、1.0mmol)とメルカプタン(141μL、1.2mmol)とから(S)−5−(ベンジルチオ)−5−オキソ−3−フェニルペンタン酸を経て、(S)−5−(ベンジルチオ)−5−オキソ−3−フェニルペンタン酸メチルエステル(256mg、78%収率、83%ee)を得た。
[Example 4]
In Example 3, (1R, 2R) -N, N-dimethyl-N′-3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine (25) was used as a catalyst. (1R, 2R) -N, N-dimethyl-N′-p-toluenesulfonyl-1,2-diphenyl-1,2-ethanediamine obtained in Example 1 instead of .8 mg, 0.05 mmol) (39.4 mg, 0.05 mmol) was used and the same treatment as in Example 3 was carried out except that toluene was used in place of diethyl ether as a solvent to give 3-phenylglutaric anhydride (190 mg, 1.0 mmol). And mercaptan (141 μL, 1.2 mmol) from (S) -5- (benzylthio) -5-oxo-3-phenylpentanoic acid to (S) -5- (benzylthiol). E) Methyl 5-oxo-3-phenylpentanoate (256 mg, 78% yield, 83% ee) was obtained.

[実施例5a〜5h]
実施例3において、触媒である(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミンの量、溶媒の種類および反応温度を下記表1の通りとする以外は、実施例3と同様に処理して、3−フェニルグルタル酸無水物(190mg、1.0mmol)とベンジルメルカプタン(141μL、1.2mmol)とから(S)−5−(ベンジルチオ)−5−オキソ−3−フェニルペンタン酸を経て、(S)−5−(ベンジルチオ)−5−オキソ−3−フェニルペンタン酸メチルエステルを下記表1に示す収率およびエナンチオ過剰率で得た。
なお、比較例として、本発明の触媒に代えて下記化合物A〜Cを用いた場合の結果も、下記表1に示した。
[Examples 5a to 5h]
In Example 3, the amount of (1R, 2R) -N, N-dimethyl-N′-3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine as a catalyst In the same manner as in Example 3 except that the type of solvent and the reaction temperature were as shown in Table 1 below, 3-phenylglutaric anhydride (190 mg, 1.0 mmol) and benzyl mercaptan (141 μL, 1.. 2 mmol) to (S) -5- (benzylthio) -5-oxo-3-phenylpentanoic acid to give (S) -5- (benzylthio) -5-oxo-3-phenylpentanoic acid methyl ester in the following table. 1 and the enantio excess was obtained.
As a comparative example, the results when the following compounds A to C were used instead of the catalyst of the present invention are also shown in Table 1 below.

Figure 0004807751
[式中、MeおよびPhはそれぞれ前記と同意義を示す。]
Figure 0004807751
[Wherein, Me and Ph are as defined above. ]

Figure 0004807751
なお、表1中、Bnはベンジル基を、PhおよびMeは、それぞれ前記と同意義を示す。また、TMSCHNは、トリメチルシリルジアゾメタンを意味し、Etはエチル基を意味し、THFはテトラヒドロフランを意味する。
Figure 0004807751
In Table 1, Bn is a benzyl group, and Ph and Me are as defined above. TMSCHN 2 means trimethylsilyldiazomethane, Et means an ethyl group, and THF means tetrahydrofuran.

[実施例6]
実施例3において、3−フェニルグルタル酸無水物の代わりに、3−メチルグルタル酸無水物を用いる以外は、実施例3と同様にして実施することにより、(S)−5−(ベンジルチオ)−3−メチル−5−オキソペンタン酸メチルエステルを無色油状物として得た(87%収率、91%ee)。
[α] 20 5.4°(c=1.24、CHCl
HNMR(400MHz、CDCl)δ:7.34−7.19(5H,m)、4.12(2H,s)、3.66(3H,s)、2.69−2.45(3H,m)、2.39(1H,dd,J=15.4および5.9Hz)、2.23(1H,dd,J=15.4および7.3Hz)、1.01(3H,d,J=6.3Hz)
元素分析値:C1418
計算値:C,63.13;H,6.81
実測値:C,63.05;H,6.85
なお、エナンチオ過剰率はダイセルキラルOD−Hカラム(ヘキサン:イソプロパノール=15:1、流速=0.7mL/分)で決定した。また、生成物の絶対配置は、(R)−3−メチル−5−オキソフェニルペンタン酸メチルエステルエステルに変換し、既知の対応する(S)体の文献値と比較して決定した(後記参考例2参照)。
[Example 6]
In Example 3, except that 3-methylglutaric anhydride was used instead of 3-phenylglutaric anhydride, the same procedure as in Example 3 was performed, whereby (S) -5- (benzylthio)- 3-Methyl-5-oxopentanoic acid methyl ester was obtained as a colorless oil (87% yield, 91% ee).
[Α] D 20 5.4 ° (c = 1.24, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.34-7.19 (5H, m), 4.12 (2H, s), 3.66 (3H, s), 2.69-2.45 (3H) M), 2.39 (1H, dd, J = 15.4 and 5.9 Hz), 2.23 (1H, dd, J = 15.4 and 7.3 Hz), 1.01 (3H, d, J = 6.3Hz)
Elemental analysis value: C 14 H 18 O 3 S
Calculated value: C, 63.13; H, 6.81
Found: C, 63.05; H, 6.85
The enantiomeric excess was determined with a Daicel chiral OD-H column (hexane: isopropanol = 15: 1, flow rate = 0.7 mL / min). In addition, the absolute configuration of the product was converted to (R) -3-methyl-5-oxophenylpentanoic acid methyl ester ester and determined by comparison with literature values of known corresponding (S) isomers (see below) Example 2).

[実施例7]
実施例3において、3−フェニルグルタル酸無水物の代わりに、2,4−ジメチルグルタル酸無水物を用いる以外は、実施例3と同様にして実施することにより、(2S,4R)−5−(ベンジルチオ)−2,4−ジメチル−5−オキソペンタン酸メチルエステルを無色油状物として得た(100%収率、90%ee)。
[α] 20 −17.2°(c=1.05、CHCl
HNMR(400MHz、CDCl)δ:7.33−7.20(5H,m)、4.11(2H,s)、3.66(3H,s)、2.76−2.65(1H,m)、2.56−2.45(1H,m)、2.20−2.11(1H,m)、1.54−1.44(1H,m)、1.20(3H,d,J=7.1Hz)、1.17(3H,J=7.1Hz)
元素分析値:C1520
計算値:C,64.26;H,7.19
実測値:C,64.09;H,7.15
[Example 7]
In Example 3, (2S, 4R) -5-5 was performed in the same manner as in Example 3 except that 2,4-dimethylglutaric anhydride was used instead of 3-phenylglutaric anhydride. (Benzylthio) -2,4-dimethyl-5-oxopentanoic acid methyl ester was obtained as a colorless oil (100% yield, 90% ee).
[Α] D 20 −17.2 ° (c = 1.05, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.33-7.20 (5H, m), 4.11 (2H, s), 3.66 (3H, s), 2.76-2.65 (1H M), 2.56-2.45 (1H, m), 2.20-2.11 (1H, m), 1.54-1.44 (1H, m), 1.20 (3H, d) , J = 7.1 Hz), 1.17 (3H, J = 7.1 Hz)
Elemental analysis value: C 15 H 20 O 3 S
Calculated value: C, 64.26; H, 7.19
Found: C, 64.09; H, 7.15

[実施例8]
実施例3において、3−フェニルグルタル酸無水物の代わりに、3−(tert−ブチルジメチルシロキシ)グルタル酸無水物を用いる以外は、実施例3と同様にして実施することにより、(S)−5−(ベンジルチオ)−3−(tert−ブチルジメチルシロキシ)−5−オキソペンタン酸メチルエステルを無色油状物として得た(88%収率、93%ee)。
[α] 20 16.6°(c=1.38、CHCl
HNMR(400MHz、CDCl)δ:7.32−7.21(5H,m)、4.62−4.53(1H,m)、4.14(1H,d,J=13.7Hz)、4.09(1H,d、J=13.7Hz)、3.66(3H,s)、2.83(1H,dd,J=14.9および6.6Hz)、2.77(1H,dd,J=14.9および5.7Hz)、2.56(1H,dd、J=15.1および5.9Hz)、2.51(1H,dd、J=15.1および6.6Hz)、0.83(9H,s)、0.05(3H,s)、0.04(3H,s)
元素分析値:C1930SSi
計算値:C,59.65;H,7.90
実測値:C,59.39;H,7.85
[Example 8]
In Example 3, instead of 3-phenylglutaric anhydride, 3- (tert-butyldimethylsiloxy) glutaric anhydride was used except that (S)- 5- (Benzylthio) -3- (tert-butyldimethylsiloxy) -5-oxopentanoic acid methyl ester was obtained as a colorless oil (88% yield, 93% ee).
[Α] D 20 16.6 ° (c = 1.38, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.32-7.21 (5H, m), 4.62-4.53 (1H, m), 4.14 (1H, d, J = 13.7 Hz) 4.09 (1H, d, J = 13.7 Hz), 3.66 (3H, s), 2.83 (1H, dd, J = 14.9 and 6.6 Hz), 2.77 (1H, dd, J = 14.9 and 5.7 Hz), 2.56 (1H, dd, J = 15.1 and 5.9 Hz), 2.51 (1H, dd, J = 15.1 and 6.6 Hz) , 0.83 (9H, s), 0.05 (3H, s), 0.04 (3H, s)
Elemental analysis value: C 19 H 30 O 4 SSi
Calculated value: C, 59.65; H, 7.90
Found: C, 59.39; H, 7.85

[実施例9]
実施例3において、3−フェニルグルタル酸無水物の代わりに、シクロヘキサン−1,3−ジカルボン酸無水物を用いる以外は、実施例3と同様にして実施することにより、(1R,3S)−3−(ベンジルチオ)カルボニル−シクロヘキサンカルボン酸メチルエステルを無色油状物として得た(90%収率、98%ee)。
[α] 20 −22.6°(c=1.42、CHCl
HNMR(400MHz、CDCl)δ:7.35−7.20(5H,m)、4.11(2H,s)、3.66(3H,s)、2.58−2.48(1H,m)、2.38−2.28(1H,m)、2.26−2.18(1H,m)、2.03−1.85(3H,s)、1.68−1.56(1H,m)、1.49−1.24(3H,m)
元素分析値:C1620
計算値:C,65.72;H,6.89
実測値:C、65.42;H,6.90
[Example 9]
In Example 3, (1R, 3S) -3 was carried out in the same manner as in Example 3 except that cyclohexane-1,3-dicarboxylic acid anhydride was used instead of 3-phenylglutaric acid anhydride. -(Benzylthio) carbonyl-cyclohexanecarboxylic acid methyl ester was obtained as a colorless oil (90% yield, 98% ee).
[Α] D 20 −22.6 ° (c = 1.42, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.35-7.20 (5H, m), 4.11 (2H, s), 3.66 (3H, s), 2.58-2.48 (1H M), 2.38-2.28 (1H, m), 2.6-2.18 (1H, m), 2.03-1.85 (3H, s), 1.68-1.56. (1H, m), 1.49-1.24 (3H, m)
Elemental analysis value: C 16 H 20 O 3 S
Calculated value: C, 65.72; H, 6.89
Found: C, 65.42; H, 6.90

[実施例10]
実施例3において、3−フェニルグルタル酸無水物の代わりに、3−シクロヘキセン−1,6−ジカルボン酸無水物を用いる以外は、実施例3と同様にして実施することにより、(1R,6S)−6−(ベンジルチオ)カルボニル−シクロヘキサ−3−エンカルボン酸メチルエステルを無色油状物として得た(90%収率、83%ee)。
[α] 20 −15.6°(c=1.17、CHCl
HNMR(400MHz、CDCl)δ:7.32−7.19(5H,m)、5.74−5.64(2H,m)、4.16(1H,d,J=13.7Hz)、4.10(1H,d,J=13.7Hz)、3.65(3H,s)、3.22−3.15(1H,m)、3.10−3.03(1H,m)、2.66−2.31(4H,m)
元素分析値:C1618
計算値:C,66.18;H,6.25
実測値:C,65.94;H,6.29
[Example 10]
In Example 3, except that 3-cyclohexene-1,6-dicarboxylic anhydride was used instead of 3-phenylglutaric anhydride, the same procedure as in Example 3 was carried out to obtain (1R, 6S). -6- (Benzylthio) carbonyl-cyclohex-3-enecarboxylic acid methyl ester was obtained as a colorless oil (90% yield, 83% ee).
[Α] D 20 −15.6 ° (c = 1.17, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.32-7.19 (5H, m), 5.74-5.64 (2H, m), 4.16 (1H, d, J = 13.7 Hz) 4.10 (1H, d, J = 13.7 Hz), 3.65 (3H, s), 3.22-3.15 (1H, m), 3.10-3.03 (1H, m) 2.66-2.31 (4H, m)
Elemental analysis value: C 16 H 18 O 3 S
Calculated value: C, 66.18; H, 6.25
Found: C, 65.94; H, 6.29

表2に実施例6〜10の結果をまとめて示す。

Figure 0004807751
なお、上記表2において、TBSOはtert−ブチルジメチルシリルオキシ基を意味し、Bn、Meはぞれぞれ前記と同意義を意味する。 Table 2 summarizes the results of Examples 6-10.
Figure 0004807751
In Table 2, TBSO means a tert-butyldimethylsilyloxy group, and Bn and Me have the same meanings as described above.

[参考例1]
実施例3で得られた(S)−5−(ベンジルチオ)−5−オキソ−3−フェニルペンタン酸メチルエステル(100mg、0.30mmol)と鉄(III)アセチルアセトネイト(21.5mg、0.061mmol)のテトラヒドロフラン(5mL)溶液に、アルゴン雰囲気下、エチルマグネシウムブロミド(テトラヒドロフラン中0.98M、747mmol)を−78℃で加え、同温で4時間撹拌した。反応液に10%塩酸を加え、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、得られた粗製物をカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:4)に付すことにより、(R)−5−オキソ−3−フェニルペンタン酸メチルエステル(59mg、83%収率、91%ee)を白色結晶として得た。
[Reference Example 1]
(S) -5- (Benzylthio) -5-oxo-3-phenylpentanoic acid methyl ester obtained in Example 3 (100 mg, 0.30 mmol) and iron (III) acetylacetonate (21.5 mg, .0. To a solution of (061 mmol) in tetrahydrofuran (5 mL) was added ethylmagnesium bromide (0.98 M in tetrahydrofuran, 747 mmol) at −78 ° C. under an argon atmosphere, and the mixture was stirred at the same temperature for 4 hours. To the reaction solution was added 10% hydrochloric acid, extracted with chloroform, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was subjected to column chromatography (ethyl acetate: hexane = 1: 4) to give (R) -5-oxo-3-phenylpentanoic acid methyl ester (59 mg). 83% yield, 91% ee) as white crystals.

融点:36−36.5℃
[α] 20 31.5°(c=0.75、C)[(R)の文献値:[α] 20 35.3°(c=2−3、C
HNMR(400MHz、CDCl)δ:7.32−7.16(5H,m)、3.72−3.65(1H,m)、3.58(3H,s)、2.82(1H,dd,J=16.6および7.1Hz)、2.77(1H,dd,J=16.6および7.3Hz)、2.69(1H,dd,J=15.3および7.2Hz)、2.61(1H,dd,J=15.3および7.7Hz)、2.41−2.23(2H,m)、0.96(3H,t,J=7.3Hz)
元素分析値:C1418
計算値:C,71.77;H,7.74
実測値:C,71.49;H,7.72
Melting point: 36-36.5 ° C
[Α] D 20 31.5 ° (c = 0.75, C 6 H 6 ) [(R) literature value: [α] D 20 35.3 ° (c = 2-3, C 6 H 6 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.32-7.16 (5H, m), 3.72-3.65 (1H, m), 3.58 (3H, s), 2.82 (1H , Dd, J = 16.6 and 7.1 Hz), 2.77 (1H, dd, J = 16.6 and 7.3 Hz), 2.69 (1H, dd, J = 15.3 and 7.2 Hz). ) 2.61 (1H, dd, J = 15.3 and 7.7 Hz), 2.41-2.23 (2H, m), 0.96 (3H, t, J = 7.3 Hz)
Elemental analysis value: C 14 H 18 O 3
Calculated value: C, 71.77; H, 7.74
Found: C, 71.49; H, 7.72

[参考例2]
実施例6で得られた(S)−5−(ベンジルチオ)−3−メチル−5−オキソペンタン酸メチルエステルを参考例1と同様に処理して、(R)−3−メチル−5−オキソフェニルペンタン酸メチルエステルを無色油状物として得た。
[α] 18 3.14°(c=1.05、C)[本品に対応するS体の文献値:[α] 18 −5.65°(c=1.24、C)]
HNMR(400MHz、CDCl)δ:8.01−7.91(2H,m)、7.61−7.52(1H,m)、7.51−7.41(2H,m)、3.68(3H,s)、3.11(1H,dd,J=16.4および5.9Hz)、2.85(1H,dd,J=16.4および7.6Hz)、2.73−2.61(1H,m)、2.45(1H,dd,J=15.1および6.6Hz)、2.33(1H,dd,J=15.1および7.1Hz)、1.05(3H,d,J=6.8Hz)
[Reference Example 2]
The (S) -5- (benzylthio) -3-methyl-5-oxopentanoic acid methyl ester obtained in Example 6 was treated in the same manner as in Reference Example 1 to give (R) -3-methyl-5-oxo. Phenylpentanoic acid methyl ester was obtained as a colorless oil.
[Α] D 18 3.14 ° ( c = 1.05, C 6 H 6) [ literature value of S form corresponding to the product: [α] D 18 -5.65 ° (c = 1.24, C 6 H 6 )]
1 HNMR (400 MHz, CDCl 3 ) δ: 8.01-7.91 (2H, m), 7.61-7.52 (1H, m), 7.51-7.41 (2H, m), 3 .68 (3H, s), 3.11 (1H, dd, J = 16.4 and 5.9 Hz), 2.85 (1H, dd, J = 16.4 and 7.6 Hz), 2.73− 2.61 (1H, m), 2.45 (1H, dd, J = 15.1 and 6.6 Hz), 2.33 (1H, dd, J = 15.1 and 7.1 Hz), 1.05 (3H, d, J = 6.8Hz)

[実施例11]
3−フェニルグルタル酸無水物の触媒的エナンチオ選択的アルコリシス
3−フェニルグルタル酸無水物(190mg,1.0mmol)と実施例2で得られた(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミン(25.8mg,0.05mmol)のジエチルエーテル(10mL)溶液に、アルゴン雰囲気下、ベンジルアルコール(125mL,1.2mmol)を室温で加え、同温で20時間撹拌した。反応液に10%塩酸を加え、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた粗生成物[(S)−5−ベンジルオキシ−3−フェニル−5−オキソペンタン酸]をベンゼン−メタノール(7:2)(9mL)に溶かし、トリメチルシリルジアゾメタン(2.0M in EtO,1mL,2.0mmol)を室温で加え、同温で15分撹拌した。その後、減圧下溶媒を留去して得られた粗生成物をカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:4)に付し、(S)−5−ベンジルオキシ−3−フェニル−5−オキソペンタン酸メチルエステル(286mg、92%収率、87%ee)を無色油状物として得た。
[a] 20 2.4°(c=1.05,CHCl
HNMR(400MHz,CDCl)δ:7.34−7.15(10H,m),5.01(2H,s),3.71−3.61(1H,m),3.58(3H,s),2.79(1H,dd,J=15.6および6.8Hz),2.72(1H,dd,J=15.6および7.1Hz),2.70(1H,dd,J=15.6および8.3Hz),2.64(1H,dd,J=15.6および8.1Hz)
元素分析値:C1920
計算値:C,73.06;H,6.45
実測値:C,72.82;H,6.54
なお、生成物のエナンチオ過剰率はダイセルキラルセルAD−Hカラム(ヘキサン:イソプロパノール=15.1、流速=1mL/分、保持時間:14.4分[メジャー、(S)−エナンチオマー]、16.1分[マイナー、(R)−エナンチオマー])で決定した。また生成物の絶対配置は既知のチオールエステル[即ち、(S)−5−ベンジルチオ−3−フェニル−5−オキソペンタン酸メチルエステル]に変換し、HPLCの保持時間によって決定した(後記参考例3参照)。
[Example 11]
Catalytic enantioselective alcoholysis of 3-phenylglutaric anhydride 3-phenylglutaric anhydride (190 mg, 1.0 mmol) and (1R, 2R) -N, N-dimethyl-N ′ obtained in Example 2 -3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine (25.8 mg, 0.05 mmol) in diethyl ether (10 mL) was added to benzyl alcohol under an argon atmosphere. (125 mL, 1.2 mmol) was added at room temperature, and the mixture was stirred at the same temperature for 20 hours. To the reaction solution was added 10% hydrochloric acid, extracted with chloroform, and dried over anhydrous magnesium sulfate. The crude product [(S) -5-benzyloxy-3-phenyl-5-oxopentanoic acid] obtained by distilling off the solvent under reduced pressure was dissolved in benzene-methanol (7: 2) (9 mL), and trimethylsilyl was dissolved. Diazomethane (2.0 M in Et 2 O, 1 mL, 2.0 mmol) was added at room temperature, and the mixture was stirred at the same temperature for 15 minutes. Thereafter, the solvent was distilled off under reduced pressure, and the resulting crude product was subjected to column chromatography (ethyl acetate: hexane = 1: 4) to give (S) -5-benzyloxy-3-phenyl-5-oxo. Pentanoic acid methyl ester (286 mg, 92% yield, 87% ee) was obtained as a colorless oil.
[A] D 20 2.4 ° (c = 1.05, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.34-7.15 (10H, m), 5.01 (2H, s), 3.71-3.61 (1H, m), 3.58 (3H , S), 2.79 (1H, dd, J = 15.6 and 6.8 Hz), 2.72 (1H, dd, J = 15.6 and 7.1 Hz), 2.70 (1H, dd, J = 15.6 and 8.3 Hz), 2.64 (1H, dd, J = 15.6 and 8.1 Hz)
Elemental analysis value: C 19 H 20 O 4
Calculated value: C, 73.06; H, 6.45
Found: C, 72.82; H, 6.54
In addition, the enantio excess of the product is a Daicel Chiralcel AD-H column (hexane: isopropanol = 15.1, flow rate = 1 mL / min, retention time: 14.4 minutes [major, (S) -enantiomer], 16. 1 min [minor, (R) -enantiomer]). The absolute configuration of the product was converted to a known thiol ester [ie, (S) -5-benzylthio-3-phenyl-5-oxopentanoic acid methyl ester] and determined by HPLC retention time (Reference Example 3 described later). reference).

[実施例12]
実施例11において、3−フェニルグルタル酸無水物の代わりに、3−メチルグルタル酸無水物を用いる以外は、実施例11と同様にして実施することにより、(S)−5−ベンジルオキシ−3−メチル−5−オキソペンタン酸メチルエステル(86%収率、83%ee)を無色油状物として得た。
[α] 26 3.1°(c=1.05,CHCl
HNMR(400MHz,CDCl)δ:7.39−7.29(5H,m),5.12(2H,s),3.66(3H,s),2.54−2.35(3H,m),2.29(1H,dd,J=15.1および7.3Hz),2.24(1H,dd,J=15.1および7.6Hz),1.02(3H,d,J=6.6Hz)
元素分析値:C1418
計算値:C,67.18;H,7.25
実測値:C,66.91;H,7.34
なお、生成物のエナンチオ過剰率はダイセルキラルセルOB−Hカラム(ヘキサン : イソプロパノール=4:1、流速=0.5mL/分、保持時間:18.8分[メジャー、(S)−エナンチオマー]、24.7分[マイナー、(R)−エナンチオマー]で決定した。また、生成物の絶対配置は既知のチオールエステル[即ち、(S)−5−ベンジルチオ−3−メチル−5−オキソペンタン酸メチルエステル]に変換し、HPLCの保持時間によって決定した。
[Example 12]
(S) -5-benzyloxy-3 was carried out in the same manner as in Example 11 except that 3-methylglutaric anhydride was used in place of 3-phenylglutaric anhydride. -Methyl-5-oxopentanoic acid methyl ester (86% yield, 83% ee) was obtained as a colorless oil.
[Α] D 26 3.1 ° (c = 1.05, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.39-7.29 (5H, m), 5.12 (2H, s), 3.66 (3H, s), 2.54-2.35 (3H M), 2.29 (1H, dd, J = 15.1 and 7.3 Hz), 2.24 (1H, dd, J = 15.1 and 7.6 Hz), 1.02 (3H, d, J = 6.6Hz)
Elemental analysis value: C 14 H 18 O 4
Calculated value: C, 67.18; H, 7.25
Found: C, 66.91; H, 7.34
In addition, the enantio excess of the product is a Daicel Chiralcel OB-H column (hexane: isopropanol = 4: 1, flow rate = 0.5 mL / min, retention time: 18.8 minutes [major, (S) -enantiomer], 24.7 min [minor, (R) -enantiomer] and the absolute configuration of the product is known thiol ester [ie methyl (S) -5-benzylthio-3-methyl-5-oxopentanoate. Ester] and determined by HPLC retention time.

[実施例13]
実施例11において、3−フェニルグルタル酸無水物の代わりに、3−(tert−ブチルジメチルシロキシ)グルタル酸無水物を用いる以外は、実施例11と同様にして実施することにより、(S)−5−ベンジルオキシ−3−(tert−ブチルジメチルシロキシ)−5−オキソペンタン酸メチルエステル(86%収率、91%ee)を無色油状物として得た。
[a] 25 −1.4°(c=0.98,CHCl
HNMR(400MHz,CDCl)δ:7.42−7.29(5H,m),5.13(1H,d,J=12.5Hz),5.10(1H,d,J=12.5Hz),4.61−4.53(1H,m),3.66(3H,s),2.65−2.53(4H,m),0.83(9H,s),0.05(3H,s),0.04(3H,s)
元素分析値:C1930Si
計算値:C,62.26;H,8.25
実測値:C,62.00;H,8.30
なお、生成物のエナンチオ過剰率は既知のチオールエステル[即ち、(S)−5−ベンジルチオ−3−(tert−ブチルジメチルシロキシ)−5−オキソペンタン酸メチルエステル]に変換しHPLCによって決定した。また、生成物の絶対配置はチオールエステルのHPLCの保持時間によって決定した。
[Example 13]
In Example 11, in place of 3-phenylglutaric anhydride, 3- (tert-butyldimethylsiloxy) glutaric anhydride was used except that (S)- 5-Benzyloxy-3- (tert-butyldimethylsiloxy) -5-oxopentanoic acid methyl ester (86% yield, 91% ee) was obtained as a colorless oil.
[A] D 25 -1.4 ° (c = 0.98, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.42-7.29 (5H, m), 5.13 (1H, d, J = 12.5 Hz), 5.10 (1H, d, J = 12. 5Hz), 4.61-4.53 (1H, m), 3.66 (3H, s), 2.65-2.53 (4H, m), 0.83 (9H, s), 0.05 (3H, s), 0.04 (3H, s)
Elemental analysis value: C 19 H 30 O 5 Si
Calculated value: C, 62.26; H, 8.25
Found: C, 62.00; H, 8.30
The enantiomeric excess of the product was converted to a known thiol ester [ie (S) -5-benzylthio-3- (tert-butyldimethylsiloxy) -5-oxopentanoic acid methyl ester] and determined by HPLC. The absolute configuration of the product was determined by the HPLC retention time of the thiol ester.

[実施例14]
実施例11において、3−フェニルグルタル酸無水物の代わりに、シクロヘキサン−1,3−ジカルボン酸無水物を用いる以外は、実施例11と同様にして実施することにより、(1R,3S)−3−ベンジルオキシカルボニル−シクロヘキサンカルボン酸メチルエステル(90%収率、98%ee)を無色油状物として得た。
[α] 26 −9.0°(c=0.98,CHCl
HNMR(400MHZ,CDCl)σ:7.42−7.28(5H,m),5.11(2H,s),3.67(3H,s),2.55−2.20(3H,m),2.08−1.82(3H,m),1.70−1.51(1H,m),1.47−1.23(3H,m)
元素分析値:C1620
計算値:C,69.54;H,7.30
分析値:C,69.28;H,7.45
生成物のエナンチオ過剰率は既知のチオールエステル[即ち、(1R,3S)−3−(ベンジルチオ)カルボニル−シクロヘキサンカルボン酸メチルエステル]に変換しHPLCによって決定した。また、生成物の絶対配置は既知のチオールエステルのHPLCの保持時間によって決定した。
[Example 14]
In Example 11, (1R, 3S) -3 was carried out in the same manner as in Example 11 except that cyclohexane-1,3-dicarboxylic acid anhydride was used instead of 3-phenylglutaric acid anhydride. -Benzyloxycarbonyl-cyclohexanecarboxylic acid methyl ester (90% yield, 98% ee) was obtained as a colorless oil.
[Α] D 26 -9.0 ° (c = 0.98, CHCl 3 )
1 HNMR (400 MHZ, CDCl 3 ) σ: 7.42-7.28 (5H, m), 5.11 (2H, s), 3.67 (3H, s), 2.55-2.20 (3H , M), 2.08-1.82 (3H, m), 1.70-1.51 (1H, m), 1.47-1.23 (3H, m)
Elemental analysis value: C 16 H 20 O 4
Calculated value: C, 69.54; H, 7.30
Analytical value: C, 69.28; H, 7.45
The enantiomeric excess of the product was converted to the known thiol ester [ie (1R, 3S) -3- (benzylthio) carbonyl-cyclohexanecarboxylic acid methyl ester] and determined by HPLC. The absolute configuration of the product was determined by the HPLC retention time of known thiol esters.

[実施例15]
実施例11において、3−フェニルグルタル酸無水物の代わりに、3−シクロヘキセン−1,6−ジカルボンン酸無水物を用いる以外は、実施例11と同様にして実施することにより、(1R,6S)−6−ベンジルオキシカルボニル−シクロヘキサ−3−エン−カルボン酸メチルエステル(収率95%、98%ee)を無色油状物として得た。
[α] 26 −1.6°(c=1.23,CHCl
HNMR(400MHz,CDCl)δ:7.41−7.28(5H,m),5.68(2H,br.s),5.13(2H,s),3.57(3H,s),3.14−3.03(2H,m),2.67−2.50(2H,m),2.45−2.30(2H,m)
元素分析値:C1618
計算値:C,70.06;H,6.61
実測値:C,70.05;H,6.72
なお、生成物のエナンチオ過剰率はダイセルキラルセルOD−Hカラム(ヘキサン:イソプロパノール=15:1、流速=0.5mL/分、保持時間:15.8分[マイナー、(1S,6R)−エナンチオマー]、17.5分[メジャー、(1R、6S)−エナンチオマー])で決定した。また生成物の絶対配置は既知のアミド[即ち、(1S,2R)−2−メトキシカルボニル−シクロヘキサンカルボン酸N−フェニルアミド]に変換し、HPLCの保持時間によって決定した(後記参考例4参照)。
[Example 15]
In Example 11, except that 3-cyclohexene-1,6-dicarboxylic acid anhydride was used instead of 3-phenylglutaric anhydride, the same procedure as in Example 11 was carried out to give (1R, 6S ) -6-benzyloxycarbonyl-cyclohex-3-ene-carboxylic acid methyl ester (95% yield, 98% ee) was obtained as a colorless oil.
[Α] D 26 −1.6 ° (c = 1.23, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.41-7.28 (5H, m), 5.68 (2H, br. S), 5.13 (2H, s), 3.57 (3H, s ), 3.14-3.03 (2H, m), 2.67-2.50 (2H, m), 2.45-2.30 (2H, m)
Elemental analysis value: C 16 H 18 O 4
Calculated value: C, 70.06; H, 6.61
Found: C, 70.05; H, 6.72
The enantiomeric excess of the product is a Daicel Chiralcel OD-H column (hexane: isopropanol = 15: 1, flow rate = 0.5 mL / min, retention time: 15.8 min [minor, (1S, 6R) -enantiomer. ] 17.5 minutes [major, (1R, 6S) -enantiomer]). The absolute configuration of the product was converted to a known amide [ie (1S, 2R) -2-methoxycarbonyl-cyclohexanecarboxylic acid N-phenylamide] and determined by HPLC retention time (see Reference Example 4 below). .

[実施例16]
実施例11において、3−フェニルグルタル酸無水物の代わりに、シクロヘキサン−1,2−ジカルボン酸無水物を用いる以外は、実施例11と同様にして実施することにより、(1R,2S)−2−ベンジルオキシカルボニル−シクロヘキサン−1−カルボン酸メチルエステル(99%収率、98%ee)を無色油状物として得た。
[α] 26 −0.53°(c=5.08,CHCl
HNMR(400MHz,CDCl)δ:7.39−7.28(5H,m),5.13(1H,d,J=12.5Hz),5.11(1H,d,J=12.5Hz),3.57(3H,s),2.90−2.82(2H,m),2.08−1.96(2H,m),1.84−1.72(2H,m),1.57−1.46(2H,m),1.45−1.34(2H,m)
元素分析値:C1620
計算値:C,69.54;H,7.30
分析値:C,69.26;H,7.35
生成物のエナンチオ過剰率はダイセルキラルセルOJ−Hカラム(ヘキサン: イソプロパノール=15:1、流速=0.75mL/分、保持時間:14.6分[マイナー、(1S,2R)−エナンチオマー]、16.4分[メジャー、(1R,2S)−エナンチオマー]で決定した。また、生成物の絶対配置は既知のアミド[即ち、(1S,2R)−2−メトキシカルボニル−シクロヘキサン−1−カルボン酸N−フェニルアミド]に変換し、HPLCの保持時間によって決定した。
[Example 16]
In Example 11, (1R, 2S) -2 was carried out in the same manner as in Example 11 except that cyclohexane-1,2-dicarboxylic anhydride was used instead of 3-phenylglutaric anhydride. -Benzyloxycarbonyl-cyclohexane-1-carboxylic acid methyl ester (99% yield, 98% ee) was obtained as a colorless oil.
[Α] D 26 −0.53 ° (c = 0.08, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.39-7.28 (5H, m), 5.13 (1H, d, J = 12.5 Hz), 5.11 (1H, d, J = 12. 5Hz), 3.57 (3H, s), 2.90-2.82 (2H, m), 2.08-1.96 (2H, m), 1.84-1.72 (2H, m) , 1.57-1.46 (2H, m), 1.45-1.34 (2H, m)
Elemental analysis value: C 16 H 20 O 4
Calculated value: C, 69.54; H, 7.30
Analytical value: C, 69.26; H, 7.35
The enantiomeric excess of the product is the Daicel Chiralcel OJ-H column (hexane: isopropanol = 15: 1, flow rate = 0.75 mL / min, retention time: 14.6 min [minor, (1S, 2R) -enantiomer], 16.4 min [major, (1R, 2S) -enantiomer] and the absolute configuration of the product is known amide [ie (1S, 2R) -2-methoxycarbonyl-cyclohexane-1-carboxylic acid N-phenylamide] and determined by HPLC retention time.

[実施例17]
実施例11において、3−フェニルグルタル酸無水物の代わりに、ビシクロ[2.2.1]ヘプタ−5−エン−2,3−ジカルボン酸無水物を用いる以外は、実施例11と同様にして実施することにより、(2R,3S)−3−エンド−ベンジルオキシカルボニル−ビシクロ[2.2.1]ヘプタ−5−エン−2−エンド−カルボン酸メチルエステルを無色油状物として得た(91%収率、98%ee)。
[α] 28 3.8°(c=1.05,CHCl
HNMR(400MHz,CDCl)δ:7.38−7.28(5H,m),6.30−6.20(2H,m),5.07(1H,d,J=12.5Hz),5.01(1H,d,J=12.5Hz),3.51(3H,s),3.37−3.25(2H,m),3.21−3.13(2H,m),1.50−1.43(1H,m),1.35−1.29(1H,m)
元素分析値:C1718
計算値:C,71.31;H,6.34
実測値:C,71.03;H,6.34
なお、生成物のエナンチオ過剰率は既知のジエステル[即ち、(2R,3S)−3−エンド−(4−ブロモフェニルオキシカルボニル)−ビシクロ[2.2.1]ヘプタ−5−エン−2−エンド−カルボン酸メチルエステル]に変換し、HPLCによって決定した。また、生成物の絶対配置は既知のジエステルのHPLCの保持時間によって決定した(参考例5参照)。
[Example 17]
In Example 11, it replaces with 3-phenylglutaric anhydride and it uses like cyclohexanic acid except that bicyclo [2.2.1] hepta-5-ene-2,3-dicarboxylic anhydride is used. By carrying out, (2R, 3S) -3-endo-benzyloxycarbonyl-bicyclo [2.2.1] hept-5-en-2-endo-carboxylic acid methyl ester was obtained as a colorless oil (91 % Yield, 98% ee).
[Α] D 28 3.8 ° (c = 1.05, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.38-7.28 (5H, m), 6.30-6.20 (2H, m), 5.07 (1H, d, J = 12.5 Hz) , 5.01 (1H, d, J = 12.5 Hz), 3.51 (3H, s), 3.37-3.25 (2H, m), 3.21-3.13 (2H, m) , 1.50-1.43 (1H, m), 1.35-1.29 (1H, m)
Elemental analysis value: C 17 H 18 O 4
Calculated value: C, 71.31; H, 6.34
Found: C, 71.03; H, 6.34
It should be noted that the enantiomeric excess of the product is a known diester [ie (2R, 3S) -3-endo- (4-bromophenyloxycarbonyl) -bicyclo [2.2.1] hept-5-en-2- Endo-carboxylic acid methyl ester] and determined by HPLC. The absolute configuration of the product was determined by the HPLC retention time of a known diester (see Reference Example 5).

[実施例18]
実施例11において、3−フェニルグルタル酸無水物の代わりに、7−オキサビシクロ[2.2.1]ヘプタ−5−エン−2,3−ジカルボン酸無水物を用いる以外は、実施例11と同様にして実施することにより、(2S,3R)−3−エキソ−ベンジルオキシカルボニル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン−2−エキソ−カルボン酸メチルエステル(89%収率、97%ee)を無色油状物として得た。
[α] 27 −13.7°(c=0.89,CHCl
HNMR(400MHz,CDCl)δ:7.42−7.30(5H,m),6.47−6.43(2H,m),5.29−5.26(2H,m),5.15(1H,d,J=12.5Hz),5.13(1H,d,J=12.5Hz),3.55(3H,s),2.87−2.80(2H,m)
元素分析値:C1616
計算値:C,66.66;H,5.59
実測値:C,66.24;H,5.67
なお、生成物のエナンチオ過剰率はダイセルキラルセルOJ−Hカラム(ヘキサン:イソプロパノール=4:1、流速=1.5ml/分、保持時間:25.8分[マイナー、(2R,3S)−エナンチオマー]、31.8分[メジャー、(2S,3R)−エナンチオマー]で決定した。また生成物の絶対配置は既知のカルボン酸[即ち、(2S,3R)−3−エキソ−カルボキシル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン−2−エキソ−カルボン酸メチルエステル]に変換し、旋光度によって決定した(参考例6参照)。
[Example 18]
In Example 11, Example 7 was used except that 7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic anhydride was used instead of 3-phenylglutaric anhydride. By carrying out in the same manner, (2S, 3R) -3-exo-benzyloxycarbonyl-7-oxabicyclo [2.2.1] hept-5-en-2-exo-carboxylic acid methyl ester (89% Yield, 97% ee) was obtained as a colorless oil.
[Α] D 27 -13.7 ° (c = 0.89, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.42-7.30 (5H, m), 6.47-6.43 (2H, m), 5.29-5.26 (2H, m), 5 .15 (1H, d, J = 12.5 Hz), 5.13 (1H, d, J = 12.5 Hz), 3.55 (3H, s), 2.87-2.80 (2H, m)
Elemental analysis value: C 16 H 16 O 5
Calculated value: C, 66.66; H, 5.59
Found: C, 66.24; H, 5.67
The enantiomeric excess of the product is a Daicel Chiralcel OJ-H column (hexane: isopropanol = 4: 1, flow rate = 1.5 ml / min, retention time: 25.8 min [minor, (2R, 3S) -enantiomer. 31.8 min [major, (2S, 3R) -enantiomer] and the absolute configuration of the product is known carboxylic acid [ie (2S, 3R) -3-exo-carboxyl-7-oxa Bicyclo [2.2.1] hept-5-ene-2-exo-carboxylic acid methyl ester] and determined by optical rotation (see Reference Example 6).

表3に実施例11〜18の結果をまとめて示す。

Figure 0004807751
なお、上記表3において、Ph、TBSO、BnおよびMeはそれぞれ前記と同意義を意味する。 Table 3 summarizes the results of Examples 11-18.
Figure 0004807751
In Table 3, Ph, TBSO, Bn, and Me have the same meaning as described above.

[参考例3]
実施例11で得られた(S)−5−ベンジルオキシ−3−フェニル−5−オキソペンタン酸メチルエステル(165mg,0.528mmol)とPd・C(10%w/w,28mg,0.0264mmol)のエタノール(5mL)溶液に、水素雰囲気下、室温で1.5時間撹拌した。反応混合液を濾過し、減圧下溶媒を留去して得られた粗生成物をジクロロメタン(5mL)に溶かし、アルゴン雰囲気下、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(152mg,0.79mmol)、4−ジメチルアミノピリジン(DMAP)(19mg,0.158mmol)、ベンジルメルカプタン(BnSH)(68mL,0.579mmol)を加えた。室温で2時間撹拌した後、反応溶液に10%塩酸を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去して得られた粗生成物をカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:4)に付し、(S)−5−ベンジルチオ−3−フェニル−5−オキソペンタン酸メチルエステル(141mg,82%)を得た。
融点:34.5−35℃
HNMR(400MHz,CDCl)δ:7.34−7.07(10H,m),4.05(2H,s),3.77−3.67(1H,m),3.57(3H,s),2.96(1H,dd,J=15.1および7.1Hz),2.91(1H,dd,J=15.1および7.8Hz),2.73(1H,dd,J=15.6および6.8Hz),2.65(1H,dd,J=15.6および8.1Hz)
HPLC:ダイセルキラルセルOD−Hカラム(ヘキサン:イソプロパノール=19:1,流速=1.0mL/分,保持時間:14.7分[メジャー,(S)−エナンチオマー],24.8分[マイナー,(R)−エナンチオマー])(文献記載の方法で合成した標品のHPLC保持時間と比較し、絶対配置決定。)
[Reference Example 3]
(S) -5-Benzyloxy-3-phenyl-5-oxopentanoic acid methyl ester (165 mg, 0.528 mmol) and Pd · C (10% w / w, 28 mg, 0.0264 mmol) obtained in Example 11 ) In ethanol (5 mL) under hydrogen atmosphere at room temperature for 1.5 hours. The reaction mixture was filtered, the solvent was distilled off under reduced pressure, and the resulting crude product was dissolved in dichloromethane (5 mL). Under an argon atmosphere, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride ( EDC.HCl) (152 mg, 0.79 mmol), 4-dimethylaminopyridine (DMAP) (19 mg, 0.158 mmol), and benzyl mercaptan (BnSH) (68 mL, 0.579 mmol) were added. After stirring at room temperature for 2 hours, 10% hydrochloric acid was added to the reaction solution, and the mixture was extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure, and the resulting crude product was subjected to column chromatography (ethyl acetate: hexane = 1: 4) to give (S) -5-benzylthio- 3-Phenyl-5-oxopentanoic acid methyl ester (141 mg, 82%) was obtained.
Melting point: 34.5-35 ° C
1 HNMR (400 MHz, CDCl 3 ) δ: 7.34-7.07 (10H, m), 4.05 (2H, s), 3.77-3.67 (1H, m), 3.57 (3H , S), 2.96 (1H, dd, J = 15.1 and 7.1 Hz), 2.91 (1H, dd, J = 15.1 and 7.8 Hz), 2.73 (1H, dd, J = 15.6 and 6.8 Hz), 2.65 (1H, dd, J = 15.6 and 8.1 Hz)
HPLC: Daicel Chiralcel OD-H column (hexane: isopropanol = 19: 1, flow rate = 1.0 mL / min, retention time: 14.7 min [major, (S) -enantiomer], 24.8 min [minor, (R) -enantiomer]) (absolute configuration determined by comparison with HPLC retention time of a sample synthesized by the method described in the literature.)

[参考例4]
(1R,6S)−6−ベンジルオキシカルボニル−シクロヘキサ−3−エンカルボン酸メチルエステル(35.6mg,0.130mmol)とPd・C(10%w/w,6.9mg,0.006mmol)のエタノール(5mL)溶媒に、水素雰囲気下、室温で1.5時間撹拌した。反応混合液を濾過し、減圧下溶媒を留去して得られた粗生成物をジクロロメタン(5mL)に溶かし、アルゴン雰囲気下、EDC・HCl(37.4mg,0.195mmol)、DMAP(4.8mg,0.039mmol)、アニリン(13mL,0.143mmol)を加えた。室温で2時間撹拌した後、反応溶液に10%塩酸を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去して得られた粗生成物をカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:2)に付し、(1S,2R)−2−メトキシカルボニル−シクロヘキサン−1−カルボン酸N−フェニルアミド(24.7mg,73%)を得た。
HNMR(400MHz,CDCl)δ:7.59(1H,br s),7.54−7.44(2H,m),7.38−7.27(2H,m),7.13−7.05(1H,m),3.67(3H,s),3.01−2.92(1H,m),2.84−2.75(1H,m),2.24−2.04(2H,m),1.95−1.16(8H,m)
HPLC:ダイセルキラルセルOJ−Hカラム(ヘキサン:イソプロパノール=4:1,流速=0.5mL/分,保持時間:16.2分[マイナー,(1R,2S)−エナンチオマー],18.0分[メジャー,(1S,2R)−エナンチオマー])(文献記載の方法で合成した標品のHPLC保持時間と比較し、絶対配置決定。)
[Reference Example 4]
(1R, 6S) -6-Benzyloxycarbonyl-cyclohex-3-enecarboxylic acid methyl ester (35.6 mg, 0.130 mmol) and Pd.C (10% w / w, 6.9 mg, 0.006 mmol) Stir in ethanol (5 mL) solvent at room temperature under hydrogen atmosphere for 1.5 hours. The reaction mixture was filtered, the solvent was distilled off under reduced pressure, and the resulting crude product was dissolved in dichloromethane (5 mL). Under an argon atmosphere, EDC.HCl (37.4 mg, 0.195 mmol), DMAP (4. 8 mg, 0.039 mmol) and aniline (13 mL, 0.143 mmol) were added. After stirring at room temperature for 2 hours, 10% hydrochloric acid was added to the reaction solution, and the mixture was extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure, and the resulting crude product was subjected to column chromatography (ethyl acetate: hexane = 1: 2) to give (1S, 2R) -2- Methoxycarbonyl-cyclohexane-1-carboxylic acid N-phenylamide (24.7 mg, 73%) was obtained.
1 HNMR (400 MHz, CDCl 3 ) δ: 7.59 (1H, brs), 7.54-7.44 (2H, m), 7.38-7.27 (2H, m), 7.13- 7.05 (1H, m), 3.67 (3H, s), 3.01-2.92 (1H, m), 2.84-2.75 (1H, m), 2.24-2. 04 (2H, m), 1.95-1.16 (8H, m)
HPLC: Daicel Chiralcel OJ-H column (hexane: isopropanol = 4: 1, flow rate = 0.5 mL / min, retention time: 16.2 minutes [minor, (1R, 2S) -enantiomer], 18.0 minutes [ Major, (1S, 2R) -enantiomer]) (absolute configuration determined by comparison with HPLC retention time of a standard synthesized by the method described in the literature)

[参考例5]
(2R,3S)−3−エンド−ベンジルオキシカルボニル−ビシクロ[2.2.1]ヘプタ−5−エン−2−エンド−カルボン酸メチルエステル(41.7mg,0.146mmol)とPd・C(10%w/w,7.8mg,0.007mmol)のエタノール(5mL)溶媒に、水素雰囲気下、室温で1.5時間撹拌した。反応混合液を濾過し、減圧下溶媒を留去して得られた粗生成物をジクロロメタン(5mL)に溶かし、アルゴン雰囲気下、EDC・HCl(41.9mg,0.219mmol)、DMAP(5.3mg,0.044mmol)、4−ブロモフェノール(30.3mg,0.175mmol)を加えた。室温で2時間撹拌した後、反応溶液に10%塩酸を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去して得られた粗生成物をカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:4)に付し、(2R,3S)−3−エンド−(4−ブロモフェニルオキシカルボニル)−ビシクロ[2.2.1]ヘプタ−5−エン−2−エンド−カルボン酸メチルエステル(47.2mg,92%)を得た。
HNMR(400MHz,CDCl)δ:7.50−7.44(2H,m),7.05−6.99(2H,m),3.66(3H,s),3.21−3.08(2H,m),2.70−2.60(2H,m),2.04−1.95(1H,m),1.69−1.59(1H,m),1.58−1.41(4H,m)
HPLC:ダイセルキラルセルOD−Hカラム(n−ヘプタン:イソプロパノール=98:2,流速=0.5mL/分,保持時間:15.4分[メジャー,(2S,3R)−エナンチオマー],18.8分[マイナー,(2R,3S)−エナンチオマー])
[Reference Example 5]
(2R, 3S) -3-endo-benzyloxycarbonyl-bicyclo [2.2.1] hept-5-en-2-endo-carboxylic acid methyl ester (41.7 mg, 0.146 mmol) and Pd · C ( 10% w / w, 7.8 mg, 0.007 mmol) in ethanol (5 mL) solvent was stirred for 1.5 hours at room temperature under hydrogen atmosphere. The reaction mixture was filtered, the solvent was distilled off under reduced pressure, and the resulting crude product was dissolved in dichloromethane (5 mL). Under an argon atmosphere, EDC · HCl (41.9 mg, 0.219 mmol), DMAP (5. 3 mg, 0.044 mmol) and 4-bromophenol (30.3 mg, 0.175 mmol) were added. After stirring at room temperature for 2 hours, 10% hydrochloric acid was added to the reaction solution, and the mixture was extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure, and the resulting crude product was subjected to column chromatography (ethyl acetate: hexane = 1: 4) to give (2R, 3S) -3- Endo- (4-bromophenyloxycarbonyl) -bicyclo [2.2.1] hept-5-en-2-endo-carboxylic acid methyl ester (47.2 mg, 92%) was obtained.
1 HNMR (400 MHz, CDCl 3 ) δ: 7.50-7.44 (2H, m), 7.05-6.99 (2H, m), 3.66 (3H, s), 3.21-3 .08 (2H, m), 2.70-2.60 (2H, m), 2.04-1.95 (1H, m), 1.69-1.59 (1H, m), 1.58 -1.41 (4H, m)
HPLC: Daicel Chiralcel OD-H column (n-heptane: isopropanol = 98: 2, flow rate = 0.5 mL / min, retention time: 15.4 minutes [major, (2S, 3R) -enantiomer], 18.8 Min [minor, (2R, 3S) -enantiomer])

[参考例6]
(2S,3R)−3−エキソ−ベンジルオキシカルボニル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン−2−エキソ−カルボン酸メチルエステル(148.1mg,0.518mmol)とPd・C(10%w/w,27.5mg,0.025mmol)のエタノール(5mL)溶媒に、水素雰囲気下、室温で1時間撹拌した。反応混合液を濾過し、減圧下溶媒を留去し(2S,3R)−3−エキソ−カルボキシル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン−2−エキソ−カルボン酸メチルエステル(98mg,95%)を得た。
融点:101.5−102.5℃
[α] 28 4.1°(c=2.52,MeOH)(2S,3R−エナンチオマー:93%ee:文献値[α] rt4.7°(c=2.11,MeOH))
HNMR(400MHz,CDCl)δ:4.99−4.85(2H,m),3.67(3H,s),3.07−2.96(2H,m),1.89−1.75(2H,m),1.59−1.47(2H,m)
[Reference Example 6]
(2S, 3R) -3-exo-benzyloxycarbonyl-7-oxabicyclo [2.2.1] hept-5-ene-2-exo-carboxylic acid methyl ester (148.1 mg, 0.518 mmol) and Pd -C (10% w / w, 27.5 mg, 0.025 mmol) in ethanol (5 mL) was stirred for 1 hour at room temperature in a hydrogen atmosphere. The reaction mixture was filtered, and the solvent was distilled off under reduced pressure. (2S, 3R) -3-exo-carboxyl-7-oxabicyclo [2.2.1] hept-5-en-2-exo-carboxylate methyl The ester (98 mg, 95%) was obtained.
Melting point: 101.5-102.5 ° C
[Α] D 28 4.1 ° (c = 2.52, MeOH) (2S, 3R-enantiomer: 93% ee: literature value [α] D rt 4.7 ° (c = 2.11, MeOH))
1 HNMR (400 MHz, CDCl 3 ) δ: 4.99-4.85 (2H, m), 3.67 (3H, s), 3.07-2.96 (2H, m), 1.89-1 .75 (2H, m), 1.59-1.47 (2H, m)

[実施例19]
(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミン−Zn錯体の合成

Figure 0004807751
[式中、Me、Et、Phは前記と同意義を示す。]
(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミン(516mg、1.0mmol)のクロロホルム(5mL)溶液に、ジエチル亜鉛(1.0M n−ヘキサン溶液、550μL、0.55mmol)を加え、室温で1分間撹拌した。減圧下溶媒を留去し、生成した白色粉末にメタノール(5mL)を加え、メタノールに不溶性の白色不純物を濾取することで取り除いた。メタノールを減圧下留去することによって題記化合物(548mg、100%)を得た。 [Example 19]
Synthesis of (1R, 2R) -N, N-dimethyl-N′-3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine-Zn complex
Figure 0004807751
[Wherein, Me, Et and Ph are as defined above. ]
(1R, 2R) -N, N-dimethyl-N′-3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine (516 mg, 1.0 mmol) in chloroform ( 5 mL), diethylzinc (1.0 M n-hexane solution, 550 μL, 0.55 mmol) was added and stirred at room temperature for 1 minute. The solvent was distilled off under reduced pressure, methanol (5 mL) was added to the resulting white powder, and white impurities insoluble in methanol were removed by filtration. Methanol was distilled off under reduced pressure to give the title compound (548 mg, 100%).

融点:201.5−203℃
[α] 25 +35.4°(c=1.05、CHCl
HNMR(400MHz、CDCl)δ:7.91(4H,s)、7.62(2H,s)、7.30−7.20(10H,m)、7.03−6.94(4H,m)、6.81−6.75(6H,m)、5.05(2H,d,J=11.5Hz)、4.67(2H,d,J=11.5Hz)、2.77(6H,s)、2.73(6H,s)
元素分析値:C484212Zn
計算値:C,52.58;H,3.86;N,5.11
実測値:C,52.29;H,3.89;N,5.05
Melting point: 201.5-203 ° C
[Α] D 25 + 35.4 ° (c = 1.05, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.91 (4H, s), 7.62 (2H, s), 7.30-7.20 (10H, m), 7.03-6.94 (4H M), 6.81-6.75 (6H, m), 5.05 (2H, d, J = 11.5 Hz), 4.67 (2H, d, J = 11.5 Hz), 2.77. (6H, s), 2.73 (6H, s)
Elemental analysis: C 48 H 42 F 12 N 4 O 4 S 2 Zn
Calculated values: C, 52.58; H, 3.86; N, 5.11
Found: C, 52.29; H, 3.89; N, 5.05

[実施例20]
(S)−2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−3−アセトキシ−プロパノールの合成
2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−1,3−プロパンジオール(205mg、1.0mmol)と実施例19で得られた(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミン−Zn錯体(54.8mg、0.05mmol)のt−ブチルメチルエーテル(10mL)溶液に0℃にて無水酢酸(142μL、1.5mmol)を加え、同温で20時間撹拌した。反応液に飽和炭素水素ナトリウム水溶液を加え、クロロホルムで抽出し、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、得られた粗生成物をカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=1:1)に付し、(S)−2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−3−アセトキシ−プロパノール(227mg、92%収率、88%ee)を白色粉末として得た。
[Example 20]
Synthesis of (S) -2-[(tert-butoxycarbonyl) amino] -2-methyl-3-acetoxy-propanol 2-[(tert-butoxycarbonyl) amino] -2-methyl-1,3-propanediol ( 205 mg, 1.0 mmol) and (1R, 2R) -N, N-dimethyl-N′-3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1, which was obtained in Example 19. Acetic anhydride (142 μL, 1.5 mmol) was added to a solution of 2-ethanediamine-Zn complex (54.8 mg, 0.05 mmol) in t-butyl methyl ether (10 mL) at 0 ° C., and the mixture was stirred at the same temperature for 20 hours. . To the reaction solution was added a saturated aqueous sodium hydrogen carbonate solution, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was subjected to column chromatography (n-hexane: ethyl acetate = 1: 1) to give (S) -2-[(tert-butoxycarbonyl) amino]- 2-Methyl-3-acetoxy-propanol (227 mg, 92% yield, 88% ee) was obtained as a white powder.

融点:63.5−65℃
[α] 25 +12.8°(c=1.25、CHCl
HNMR(400MHz、CDCl)δ:4.90(1H,br s)、4.25(1H,d,J=11.2Hz)、4.19(1H,d,J=11.2Hz)、3.93(1H,br s)、3.65(1H,d,J=11.7Hz)、3.59(1H,d,J=11.7Hz)、2.11(3H,s)、1.44(9H,s)、1.25(3H,s)
元素分析値:C1121NO
計算値:C,53.43;H,8.56;N,5.66
実測値:C,53.30;H,8.49;N,5.66
なお、エナンチオ過剰率はダイセルキラルパックIAカラム(n−ヘキサン:イソプロパノール=50:1、流速=1.0mL/分、波長220nm、保持時間:18.8分[メジャー、(S)−エナンチオマー]、25.2分[マイナー、(R)−エナンチオマー])で決定した。また、生成物の絶対配置は既知のメチル (R)−N−(tert−ブトキシカルボニル)−2−メチルセリナート[=(2R)−2−メチル−2−[(tert−ブトキシカルボニル)アミノ]−3−ヒドロキシ−プロピオン酸メチルエステル]に変換して決定した(後記参考例7参照)。
Melting point: 63.5-65 ° C
[Α] D 25 + 12.8 ° (c = 1.25, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 4.90 (1H, br s), 4.25 (1H, d, J = 11.2 Hz), 4.19 (1H, d, J = 11.2 Hz), 3.93 (1H, br s), 3.65 (1 H, d, J = 11.7 Hz), 3.59 (1 H, d, J = 11.7 Hz), 2.11 (3H, s), 1 .44 (9H, s), 1.25 (3H, s)
Elemental analysis value: C 11 H 21 NO 5
Calculated values: C, 53.43; H, 8.56; N, 5.66
Found: C, 53.30; H, 8.49; N, 5.66
The enantiomeric excess is a Daicel chiral pack IA column (n-hexane: isopropanol = 50: 1, flow rate = 1.0 mL / min, wavelength 220 nm, retention time: 18.8 min [major, (S) -enantiomer], 25.2 min [minor, (R) -enantiomer]). In addition, the absolute configuration of the product is a known methyl (R) -N- (tert-butoxycarbonyl) -2-methylselinate [= (2R) -2-methyl-2-[(tert-butoxycarbonyl) amino] To -3-hydroxy-propionic acid methyl ester] (see Reference Example 7 below).

[実施例21]
実施例20において、2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−1,3−プロパンジオールの代わりに、2−[(tert−ブトキシカルボニル)アミノ]−2−エチル−1,3−プロパンジオール(219mg、1.0mmol)を用いる以外は、実施例20と同様にして実施することにより、(S)−2−[(tert−ブトキシカルボニル)アミノ]−2−エチル−3−アセトキシ−プロパノール(227mg、87%収率、86%ee)を白色粉末として得た。
[Example 21]
In Example 20, instead of 2-[(tert-butoxycarbonyl) amino] -2-methyl-1,3-propanediol, 2-[(tert-butoxycarbonyl) amino] -2-ethyl-1,3 -(S) -2-[(tert-butoxycarbonyl) amino] -2-ethyl-3-acetoxy was carried out in the same manner as in Example 20 except that propanediol (219 mg, 1.0 mmol) was used. -Propanol (227 mg, 87% yield, 86% ee) was obtained as a white powder.

融点:81−83℃
[α] 25 +26.5°(c=1.00、CHCl
HNMR(400MHz、CDCl)δ:4.77(1H,br s)、4.28(1H,d,J=11.2Hz)、4.14(1H,d,J=11.2Hz)、3.99(1H,br s)、3.70(1H,dd,J=12.0Hzおよび6.6Hz)、3.64(1H,dd,J=12.0Hzおよび7.1Hz)、2.11(3H,s)、1.83−1.72(1H,m)、1.67−1.57(1H,m)、1.44(9H,s)、0.90(3H,t,J=7.6Hz)
元素分析値:C1223NO
計算値:C,55.16;H,8.87;N,5.36
実測値:C,55.04;H,8.79;N,5.38
なお、エナンチオ過剰率はダイセルキラルパックIAカラム(n−ヘキサン:イソプロパノール=50:1、流速=1.0mL/分、波長220nm、保持時間:17.9分[メジャー、(S)−エナンチオマー]、22.5分[マイナー、(R)−エナンチオマー])で決定した。また、生成物の絶対配置は実施例20の生成物の絶対配置から推定した。
Melting point: 81-83 ° C
[Α] D 25 + 26.5 ° (c = 1.00, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 4.77 (1H, br s), 4.28 (1H, d, J = 11.2 Hz), 4.14 (1H, d, J = 11.2 Hz), 3.99 (1H, br s), 3.70 (1 H, dd, J = 12.0 Hz and 6.6 Hz), 3.64 (1 H, dd, J = 12.0 Hz and 7.1 Hz), 2. 11 (3H, s), 1.83-1.72 (1H, m), 1.67-1.57 (1H, m), 1.44 (9H, s), 0.90 (3H, t, J = 7.6Hz)
Elemental analysis value: C 12 H 23 NO 5
Calculated: C, 55.16; H, 8.87; N, 5.36
Found: C, 55.04; H, 8.79; N, 5.38
The enantiomeric excess is a Daicel Chiral Pack IA column (n-hexane: isopropanol = 50: 1, flow rate = 1.0 mL / min, wavelength 220 nm, retention time: 17.9 min [major, (S) -enantiomer], 22.5 min [minor, (R) -enantiomer]). The absolute configuration of the product was estimated from the absolute configuration of the product of Example 20.

[実施例22]
実施例20において、2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−1,3−プロパンジオールの代わりに、2−[(tert−ブトキシカルボニル)アミノ]−2−アリル−1,3−プロパンジオール(231mg、1.0mmol)を用いる以外は、実施例20と同様にして実施することにより、(S)−2−[(tert−ブトキシカルボニル)アミノ]−2−アリル−3−アセトキシ−プロパノール(192mg、70%収率、82%ee)を無色油状物として得た。
[Example 22]
In Example 20, instead of 2-[(tert-butoxycarbonyl) amino] -2-methyl-1,3-propanediol, 2-[(tert-butoxycarbonyl) amino] -2-allyl-1,3 -(S) -2-[(tert-butoxycarbonyl) amino] -2-allyl-3-acetoxy was carried out in the same manner as in Example 20 except that propanediol (231 mg, 1.0 mmol) was used. -Propanol (192 mg, 70% yield, 82% ee) was obtained as a colorless oil.

[α] 25 +22.8°(c=1.00、CHCl
HNMR(400MHz、CDCl)δ:5.84−5.72(1H,m)、5.21−5.11(2H,m)、4.84(1H,br s)、4.29(1H,d,J=11.2Hz)、4.13(1H,d,J=11.2Hz)、4.05(1H,br s)、3.68(2H,d,J=6.6Hz)、2.54(1H,dd,J=13.9および6.8Hz)、2.32(1H,dd,J=13.9および8.3Hz)、2.11(3H,s)、1.44(9H,s)
なお、エナンチオ過剰率は、ダイセルキラルパックIAカラム(n−ヘキサン:イソプロパノール=50:1、流速=1.0mL/分、波長220nm、保持時間:17.2分[メジャー、(S)−エナンチオマー]、20.2分[マイナー、(R)−エナンチオマー])で決定した。また、生成物の絶対配置は既知のエチル (R)−N−(ベンジルオキシカルボニル)−2−アリルセリナートに変換し、旋光度を文献値と比較して決定した。
[Α] D 25 + 22.8 ° (c = 1.00, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 5.84-5.72 (1H, m), 5.21-5.11 (2H, m), 4.84 (1H, brs), 4.29 ( 1H, d, J = 11.2 Hz), 4.13 (1H, d, J = 11.2 Hz), 4.05 (1H, br s), 3.68 (2H, d, J = 6.6 Hz) 2.54 (1H, dd, J = 13.9 and 6.8 Hz), 2.32 (1H, dd, J = 13.9 and 8.3 Hz), 2.11 (3H, s), 1. 44 (9H, s)
The enantiomeric excess is determined by the Daicel Chiral Pack IA column (n-hexane: isopropanol = 50: 1, flow rate = 1.0 mL / min, wavelength 220 nm, retention time: 17.2 min [major, (S) -enantiomer] 20.2 min [minor, (R) -enantiomer]). The absolute configuration of the product was determined by converting to known ethyl (R) -N- (benzyloxycarbonyl) -2-allyl serinate and comparing the optical rotation with literature values.

[実施例23]
実施例20において、2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−1,3−プロパンジオールの代わりに、2−[(tert−ブトキシカルボニル)アミノ]−2−n−ヘキシル−1,3−プロパンジオール(275mg、1.0mmol)を用いる以外は、実施例20と同様にして実施することにより、(S)−2−[(tert−ブトキシカルボニル)アミノ]−2−n−ヘキシル−3−アセトキシ−プロパノール(266mg、84%収率、83%ee)を無色油状物として得た。
[Example 23]
In Example 20, instead of 2-[(tert-butoxycarbonyl) amino] -2-methyl-1,3-propanediol, 2-[(tert-butoxycarbonyl) amino] -2-n-hexyl-1 , 3-propanediol (275 mg, 1.0 mmol) was carried out in the same manner as in Example 20 to obtain (S) -2-[(tert-butoxycarbonyl) amino] -2-n-hexyl. -3-Acetoxy-propanol (266 mg, 84% yield, 83% ee) was obtained as a colorless oil.

[α] 25 +8.5°(c=1.20、CHCl
HNMR(400MHz、CDCl)δ:4.77(1H,br s)、4.27(1H,d,J=11.2Hz)、4.13(1H,d,J=11.2Hz)、4.03(1H,br s)、3.69(1H,dd,J=12.0および6.6Hz)、3.64(1H,dd,J=12.0および7.1Hz)、2.10(3H,s)、1.74−1.49(2H,m)、1.44(9H,s)、1.37−1.18(8H,m)、0.95−0.84(3H,m)
なお、エナンチオ過剰率は、生成物を(+)−メトキシ−α−(トリフルオロメチル)フェニル酢酸エステルに変換して決定した。また、生成物の絶対配置は実施例20の生成物の絶対配置から推定した。
[Α] D 25 + 8.5 ° (c = 1.20, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 4.77 (1H, br s), 4.27 (1H, d, J = 11.2 Hz), 4.13 (1H, d, J = 11.2 Hz), 4.03 (1H, br s), 3.69 (1H, dd, J = 12.0 and 6.6 Hz), 3.64 (1H, dd, J = 12.0 and 7.1 Hz), 2. 10 (3H, s), 1.74-1.49 (2H, m), 1.44 (9H, s), 1.37-1.18 (8H, m), 0.95-0.84 ( 3H, m)
The enantio excess was determined by converting the product to (+)-methoxy-α- (trifluoromethyl) phenylacetate. The absolute configuration of the product was estimated from the absolute configuration of the product of Example 20.

[実施例24]
実施例20において、2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−1,3−プロパンジオールの代わりに、2−[(tert−ブトキシカルボニル)アミノ]−2−ベンジル−1,3−プロパンジオール(281mg、1.0mmol)を用いる以外は、実施例20と同様にして実施することにより、(S)−2−[(tert−ブトキシカルボニル)アミノ]−2−ベンジル−3−アセトキシ−プロパノール(228mg、70%収率、70%ee)を無色油状物として得た。
[Example 24]
In Example 20, instead of 2-[(tert-butoxycarbonyl) amino] -2-methyl-1,3-propanediol, 2-[(tert-butoxycarbonyl) amino] -2-benzyl-1,3 -(S) -2-[(tert-butoxycarbonyl) amino] -2-benzyl-3-acetoxy was carried out in the same manner as in Example 20 except that propanediol (281 mg, 1.0 mmol) was used. -Propanol (228 mg, 70% yield, 70% ee) was obtained as a colorless oil.

[α] 25 −2.8°(c=5.50、CHCl
HNMR(400MHz、CDCl)δ:7.35−7.15(5H,m)、4.67(1H,br s)、4.21(1H,d,J=11.2Hz)、4.07(1H,d,J=11.2Hz)、3.87(1H,br s)、3.69(1H,dd,J=11.7および6.6Hz)、3.60(1H,dd,J=11.7および7.6Hz)、3.13(1H,d,J=13.7Hz)、2.95(1H,d,J=13.7Hz)、2.11(3H,s)、1.47(9H,s)
なお、エナンチオ過剰率は、ダイセルキラルパックAD−Hカラム(n−ヘキサン:エタノール=15:1、流速=0.5mL/分、波長254nm、保持時間:21.5分[メジャー、(S)−エナンチオマー]、26.6分[マイナー、(R)−エナンチオマー])で決定した。また、生成物の絶対配置は既知のエチル (R)−N−(ベンジルオキシカルボニル)−2−ベンジルセリナートに変換し、旋光度を文献値と比較して決定した。
[Α] D 25 −2.8 ° (c = 5.50, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.35-7.15 (5H, m), 4.67 (1H, br s), 4.21 (1H, d, J = 11.2 Hz), 4. 07 (1H, d, J = 11.2 Hz), 3.87 (1H, br s), 3.69 (1 H, dd, J = 11.7 and 6.6 Hz), 3.60 (1 H, dd, J = 11.7 and 7.6 Hz), 3.13 (1H, d, J = 13.7 Hz), 2.95 (1H, d, J = 13.7 Hz), 2.11 (3H, s), 1.47 (9H, s)
In addition, the enantio excess ratio is a Daicel Chiral Pack AD-H column (n-hexane: ethanol = 15: 1, flow rate = 0.5 mL / min, wavelength 254 nm, retention time: 21.5 min [Major, (S) − Enantiomer], 26.6 min [minor, (R) -enantiomer]). The absolute configuration of the product was determined by converting to known ethyl (R) -N- (benzyloxycarbonyl) -2-benzyl serinate and comparing the optical rotation with literature values.

表4に実施例20〜24の結果をまとめて示す。

Figure 0004807751
なお、上記表4において、Bocはベンジルオキシカルボニル基を意味し、Acはアセチル基を意味し、Me、Et、Phはぞれぞれ前記と同意義を意味する。 Table 4 summarizes the results of Examples 20-24.
Figure 0004807751
In Table 4, Boc means a benzyloxycarbonyl group, Ac means an acetyl group, and Me, Et, and Ph each have the same meaning as described above.

[実施例25a〜i]
実施例20において、触媒である(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミン−Zn錯体の量、溶媒の種類および反応温度を下記表5の通りとする以外は、実施例20と同様に処理して2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−1,3−プロパンジオール(205mg、1.0mmol)と無水酢酸(142μL、1.5mmol)から(S)−2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−3−アセトキシ−プロパノールを下記表5に示す収率およびエナンチオ過剰率で得た。
[Examples 25a to 25i]
In Example 20, the catalyst (1R, 2R) -N, N-dimethyl-N′-3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine-Zn Except that the amount of the complex, the type of the solvent and the reaction temperature were as shown in Table 5 below, the same treatment as in Example 20 was carried out to give 2-[(tert-butoxycarbonyl) amino] -2-methyl-1,3- Table 5 below shows (S) -2-[(tert-butoxycarbonyl) amino] -2-methyl-3-acetoxy-propanol from propanediol (205 mg, 1.0 mmol) and acetic anhydride (142 μL, 1.5 mmol). Obtained with the indicated yield and enantiomeric excess.

Figure 0004807751
なお、上記表5において、Et、MeおよびAcは、それぞれ前記と同意義を示す。また、Bocはtert−ブトキシカルボニル基を意味し、CPMEはシクロペンチルメチルエーテルを意味し、iPrはイソプロピル基を意味し、t−Buはtert−ブチル基を意味し、t−Amylはtert−ペンチル基を意味する。
Figure 0004807751
In Table 5, Et, Me and Ac have the same meanings as described above. Boc means tert-butoxycarbonyl group, CPME means cyclopentylmethyl ether, iPr means isopropyl group, t-Bu means tert-butyl group, and t-Amyl means tert-pentyl group. Means.

[実施例26]
実施例20において、2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−1,3−プロパンジオール(205mg、1.0mmol)と実施例19で得られた(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミン−Zn錯体(27.4mg、0.025mmol)のジエチルエーテル(10mL)溶液に室温にて安息香酸無水物(339mg、1.5mmol)を加える以外は、実施例20と同様にして実施することにより、(S)−2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−3−(ベンゾイルオキシ)プロパノール(205mg、66%収率、71%ee)を白色粉末として得た。
[Example 26]
In Example 20, 2-[(tert-butoxycarbonyl) amino] -2-methyl-1,3-propanediol (205 mg, 1.0 mmol) and (1R, 2R) -N, obtained in Example 19 were used. N-dimethyl-N′-3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine-Zn complex (27.4 mg, 0.025 mmol) in diethyl ether (10 mL) (S) -2-[(tert-Butoxycarbonyl) amino] -2 was carried out in the same manner as in Example 20 except that benzoic anhydride (339 mg, 1.5 mmol) was added to the solution at room temperature. -Methyl-3- (benzoyloxy) propanol (205 mg, 66% yield, 71% ee) was obtained as a white powder.

融点:79−82℃
[α] 25 +17.8°(c=1.20、CHCl
HNMR(400MHz、CDCl)δ:8.08−8.01(2H,m)、7.62−7.55(1H,m)、7.50−7.42(2H,m)、4.96(1H,br s)、4.50(1H,d,J=11.2Hz)、4.47(1H,d,J=11.2Hz)、3.96(1H,br s)、3.73(1H,dd,J=11.7および6.6Hz)、3.65(1H,dd,J=11.7および6.3Hz)、1.44(9H,s)、1.35(3H,s)
元素分析値:C1623NO
計算値:C,62.12;H,7.49;N,4.53
実測値:C,61.99;H,7.44;N,4.56
なお、エナンチオ過剰率はダイセルキラルセルOD−Hカラム(n−ヘキサン:イソプロパノール=15:1、流速=0.5mL/分、波長254nm、保持時間:17.8分[マイナー、(R)−エナンチオマー]、20.7分[メジャー、(S)−エナンチオマー])で決定した。また、生成物の絶対配置は実施例20の生成物の絶対配置から推定した。
Melting point: 79-82 ° C
[Α] D 25 + 17.8 ° (c = 1.20, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 8.08-8.01 (2H, m), 7.62-7.55 (1H, m), 7.50-7.42 (2H, m), 4 .96 (1H, br s), 4.50 (1 H, d, J = 11.2 Hz), 4.47 (1H, d, J = 11.2 Hz), 3.96 (1H, br s), 3 .73 (1H, dd, J = 11.7 and 6.6 Hz), 3.65 (1H, dd, J = 11.7 and 6.3 Hz), 1.44 (9H, s), 1.35 ( 3H, s)
Elemental analysis value: C 16 H 23 NO 5
Calculated values: C, 62.12; H, 7.49; N, 4.53
Found: C, 61.99; H, 7.44; N, 4.56
The enantiomeric excess is a Daicel chiral cell OD-H column (n-hexane: isopropanol = 15: 1, flow rate = 0.5 mL / min, wavelength 254 nm, retention time: 17.8 min [minor, (R) -enantiomer. ] 20.7 min [major, (S) -enantiomer]). The absolute configuration of the product was estimated from the absolute configuration of the product of Example 20.

[実施例27]
実施例20において、2−[(ベンジルオキシカルボニル)アミノ]−2−メチル−1,3−プロパンジオール(239mg、1.0mmol)と実施例19で得られた(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミン−Zn錯体(27.4mg、0.025mmol)のジエチルエーテル(10mL)溶液に室温にて無水酢酸(142μL、1.5mmol)を加える以外は、実施例20と同様にして実施することにより、(S)−2−[(ベンジルオキシカルボニル)アミノ]−2−メチル−3−アセトキシ−プロパノール(230mg、82%収率、70%ee)を無色油状物として得た。
[Example 27]
In Example 20, 2-[(benzyloxycarbonyl) amino] -2-methyl-1,3-propanediol (239 mg, 1.0 mmol) and (1R, 2R) -N, N obtained in Example 19 -Diethyl-N'-3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine-Zn complex (27.4 mg, 0.025 mmol) in diethyl ether (10 mL) (S) -2-[(benzyloxycarbonyl) amino] -2-methyl-3 by carrying out in the same manner as in Example 20 except that acetic anhydride (142 μL, 1.5 mmol) was added to the solution at room temperature. -Acetoxy-propanol (230 mg, 82% yield, 70% ee) was obtained as a colorless oil.

[α] 25 +5.7°(c=1.20、CHCl
HNMR(400MHz、CDCl)δ:7.42−7.31(5H,m)、5.17(1H,br s)、5.07(2H,s)、4.26(1H,d,J=11.2Hz)、4.21(1H,d,J=11.2Hz)、3.66(1H,dd,J =
11.7および4.4Hz)、3.60 (1H,dd,J=11.7および3.4Hz)、3.48(1H,br s)、2.09(3H,s)、1.30(3H,s)
元素分析値:C1419NO
計算値:C,59.78;H,6.81;N,4.98
実測値:C,59.55;H,6.70;N,4.94
なお、エナンチオ過剰率はダイセルキラルOD−Hカラム(n−ヘキサン:イソプロパノール=15:1、流速=0.5mL/分、波長254nm、保持時間:14.2分[メジャー、(S)−エナンチオマー]、20.5分[マイナー、(R)−エナンチオマー])で決定した。また、生成物の絶対配置は既知のエチル (R)−N−(ベンジルオキシカルボニル)−2−メチルセリナートに変換し、旋光度を文献値と比較して決定した。
[Α] D 25 + 5.7 ° (c = 1.20, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 7.42-7.31 (5H, m), 5.17 (1H, br s), 5.07 (2H, s), 4.26 (1H, d, J = 11.2 Hz), 4.21 (1H, d, J = 11.2 Hz), 3.66 (1H, dd, J =
11.7 and 4.4 Hz), 3.60 (1 H, dd, J = 11.7 and 3.4 Hz), 3.48 (1 H, br s), 2.09 (3 H, s), 1.30 (3H, s)
Elemental analysis value: C 14 H 19 NO 5
Calculated: C, 59.78; H, 6.81; N, 4.98
Found: C, 59.55; H, 6.70; N, 4.94
The enantiomeric excess is a Daicel chiral OD-H column (n-hexane: isopropanol = 15: 1, flow rate = 0.5 mL / min, wavelength 254 nm, retention time: 14.2 min [major, (S) -enantiomer] 20.5 min [minor, (R) -enantiomer]). The absolute configuration of the product was determined by converting to known ethyl (R) -N- (benzyloxycarbonyl) -2-methylselinate and comparing the optical rotation with literature values.

[実施例28a〜d]
実施例27において、溶媒の種類を下記表6の通りとする以外は、実施例27と同様にして実施することにより、(S)−2−[(ベンジルオキシカルボニル)アミノ]−2−メチル−3−アセトキシ−プロパノールを下記表6に示す収率およびエナンチオ過剰率で得た。
[Examples 28a to 28d]
In Example 27, (S) -2-[(benzyloxycarbonyl) amino] -2-methyl- was carried out in the same manner as in Example 27 except that the type of solvent was as shown in Table 6 below. 3-Acetoxy-propanol was obtained with the yield and enantiomeric excess shown in Table 6 below.

Figure 0004807751
なお、上記表6において、Me、AcおよびTHFは、それぞれ前記と同意義を示す。また、Zはベンジルオキシカルボニル基を意味し、MeCNはアセトニトリルを意味し、CHClはジクロロメタンを意味する。
Figure 0004807751
In Table 6, Me, Ac, and THF have the same meanings as described above. Z represents a benzyloxycarbonyl group, MeCN represents acetonitrile, and CH 2 Cl 2 represents dichloromethane.

[実施例29]
実施例20において、2−[(ベンジルオキシカルボニル)アミノ]−2−メチル−1,3−プロパンジオール(239mg、1.0mmol)と実施例19で得られた(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミン−Zn錯体(27.4mg、0.025mmol)のジエチルエーテル(10mL)溶液に室温にて安息香酸無水物(339mg、1.5mmol)を加える以外は、実施例20と同様にして実施することにより、(S)−2−[(ベンジルオキシカルボニル)アミノ]−2−メチル−3−(ベンゾイルオキシ)プロパノール(206mg、60%収率、60%ee)を白色粉末として得た。
[Example 29]
In Example 20, 2-[(benzyloxycarbonyl) amino] -2-methyl-1,3-propanediol (239 mg, 1.0 mmol) and (1R, 2R) -N, N obtained in Example 19 -Diethyl-N'-3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine-Zn complex (27.4 mg, 0.025 mmol) in diethyl ether (10 mL) To (S) -2-[(benzyloxycarbonyl) amino] -2-methyl by carrying out in the same manner as in Example 20, except that benzoic anhydride (339 mg, 1.5 mmol) was added to -3- (Benzoyloxy) propanol (206 mg, 60% yield, 60% ee) was obtained as a white powder.

融点:57−59℃
[α] 25 +9.31°(c=1.30、CHCl
HNMR(400MHz、CDCl)δ:8.07−7.98(2H,m)、7.64−7.28(8H,m)、5.26(1H,br s)、5.09(2H,s)、4.53(1H,d,J=11.2Hz)、4.49(1H,d,J=11.2Hz)、3.74(1H,d,J=12.0Hz)、3.66(1H,d,J=12.0Hz)、3.54(1H,br s)、1.40(3H,s)
なお、エナンチオ過剰率はダイセルキラルセルOD−Hカラム(n−ヘキサン:エタノール=5:1、流速=0.5mL/分、波長254nm、保持時間:13.3分[メジャー、(S)−エナンチオマー]、14.6分[マイナー、(R)−エナンチオマー])で決定した。また、生成物の絶対配置は実施例27の生成物の絶対配置から推定した。
Melting point: 57-59 ° C
[Α] D 25 + 9.31 ° (c = 1.30, CHCl 3 )
1 HNMR (400 MHz, CDCl 3 ) δ: 8.07-7.98 (2H, m), 7.64-7.28 (8H, m), 5.26 (1H, br s), 5.09 ( 2H, s), 4.53 (1H, d, J = 11.2 Hz), 4.49 (1H, d, J = 11.2 Hz), 3.74 (1H, d, J = 12.0 Hz), 3.66 (1H, d, J = 12.0 Hz), 3.54 (1H, br s), 1.40 (3H, s)
In addition, the enantio excess is a Daicel chiral cell OD-H column (n-hexane: ethanol = 5: 1, flow rate = 0.5 mL / min, wavelength 254 nm, retention time: 13.3 min [major, (S) -enantiomer. ], 14.6 min [minor, (R) -enantiomer]). The absolute configuration of the product was estimated from the absolute configuration of the product of Example 27.

[実施例30]
2−[(ベンジルオキシカルボニル)アミノ]−2−メチル−1,3−プロパンジオール(239mg、1.0mmol)と実施例2で得られた(1R,2R)−N,N−ジメチル−N’−3,5−ビス(トリフルオロメチル)ベンゼンスルホニル−1,2−ジフェニル−1,2−エタンジアミンのジエチルエーテル溶液に、室温にてジエチル亜鉛と無水酢酸(142μL、1.5mmol)を加え、同温で20時間撹拌した。反応終了後、実施例20と同様に後処理することにより、(S)−2−[(ベンジルオキシカルボニル)アミノ]−2−メチル−3−アセトキシ−プロパノール(82%収率、69%ee)を無色油状物として得た。
[Example 30]
2-[(Benzyloxycarbonyl) amino] -2-methyl-1,3-propanediol (239 mg, 1.0 mmol) and (1R, 2R) -N, N-dimethyl-N ′ obtained in Example 2 To a diethyl ether solution of −3,5-bis (trifluoromethyl) benzenesulfonyl-1,2-diphenyl-1,2-ethanediamine was added diethyl zinc and acetic anhydride (142 μL, 1.5 mmol) at room temperature, The mixture was stirred at the same temperature for 20 hours. After completion of the reaction, post-treatment was performed in the same manner as in Example 20 to obtain (S) -2-[(benzyloxycarbonyl) amino] -2-methyl-3-acetoxy-propanol (82% yield, 69% ee). Was obtained as a colorless oil.

[参考例7]
オキサリルクロリド(132μL、1.537mmol)のジクロロメタン(7.5mL)溶液に、アルゴン雰囲気下、ジメチルスルホキシド(218μL、3.07mmol)を−60℃にて加えた。同温で15分間撹拌した後、実施例20で得られた(S)−2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−3−アセトキシ−プロパノール(190mg、0.768mmol)のジクロロメタン(2.5mL)溶液を加え、同温でさらに40分間撹拌した。その後、反応溶液に同温にてトリエチルアミン(536μL、3.84mmol)を加えた後、室温まで昇温し30分間撹拌した。反応溶液を酢酸エチルで希釈し、水洗した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた粗生成物であるアルデヒドをt−ブタノール−水(4:1)(10mL)に溶解させ、NaHPO・2HO(210mg、1.34mmol)、2−メチル−2−ブテン(572μL、5.38mmol)、NaClO(320mg、3.53mmol)を室温にて加えた。同温で1時間撹拌した後、4%塩酸を加え酸性にして酢酸エチルで抽出した後、有機層を水洗し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた粗生成物の2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−3−アセトキシ−プロピオン酸をベンゼン−メタノール(7:2)(9mL)に溶かし、トリメチルシリルジアゾメタン(2.0M ジエチルエーテル溶液、768μL、1.537mmol)を室温で加え、同温で30分撹拌した。その後、減圧下溶媒を留去して2−[(tert−ブトキシカルボニル)アミノ]−2−メチル−3−アセトキシ−プロピオン酸メチルエステルを得た。該エステルをメタノール(10mL)に溶解させ、炭酸カリウム(106mg、0.768mmol)を室温で加え、同温で15分撹拌した。反応溶液を酢酸エチルで希釈し、水洗した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られたカラムクロマトグラフィーカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=1:1)に付し、メチル (R)−N−(tert−ブトキシカルボニル)−2−メチルセリナート[=(2R)−2−メチル−2−[(tert−ブトキシカルボニル)アミノ]−3−ヒドロキシ−プロピオン酸メチルエステル](115mg、64%収率、77%ee)を無色油状物として得た。
[Reference Example 7]
Dimethyl sulfoxide (218 μL, 3.07 mmol) was added to a solution of oxalyl chloride (132 μL, 1.537 mmol) in dichloromethane (7.5 mL) at −60 ° C. under an argon atmosphere. After stirring at the same temperature for 15 minutes, dichloromethane of (S) -2-[(tert-butoxycarbonyl) amino] -2-methyl-3-acetoxy-propanol (190 mg, 0.768 mmol) obtained in Example 20 was used. (2.5 mL) solution was added and stirred for an additional 40 minutes at the same temperature. Thereafter, triethylamine (536 μL, 3.84 mmol) was added to the reaction solution at the same temperature, and then the mixture was warmed to room temperature and stirred for 30 minutes. The reaction solution was diluted with ethyl acetate, washed with water, and dried over anhydrous magnesium sulfate. The aldehyde is a crude product obtained by distilling off the solvent under reduced pressure t- butanol - water (4: 1) was dissolved in (10mL), NaH 2 PO 4 · 2H 2 O (210mg, 1.34mmol) 2-methyl-2-butene (572 μL, 5.38 mmol), NaClO 2 (320 mg, 3.53 mmol) were added at room temperature. The mixture was stirred at the same temperature for 1 hour, acidified with 4% hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water and dried over anhydrous magnesium sulfate. The crude product 2-[(tert-butoxycarbonyl) amino] -2-methyl-3-acetoxy-propionic acid obtained by distilling off the solvent under reduced pressure was added to benzene-methanol (7: 2) (9 mL). After dissolution, trimethylsilyldiazomethane (2.0 M diethyl ether solution, 768 μL, 1.537 mmol) was added at room temperature, and the mixture was stirred at the same temperature for 30 minutes. Thereafter, the solvent was distilled off under reduced pressure to obtain 2-[(tert-butoxycarbonyl) amino] -2-methyl-3-acetoxy-propionic acid methyl ester. The ester was dissolved in methanol (10 mL), potassium carbonate (106 mg, 0.768 mmol) was added at room temperature, and the mixture was stirred at the same temperature for 15 min. The reaction solution was diluted with ethyl acetate, washed with water, and dried over anhydrous magnesium sulfate. Column chromatography obtained by distilling off the solvent under reduced pressure was subjected to column chromatography (n-hexane: ethyl acetate = 1: 1) to give methyl (R) -N- (tert-butoxycarbonyl) -2-methyl. Serinate [= (2R) -2-methyl-2-[(tert-butoxycarbonyl) amino] -3-hydroxy-propionic acid methyl ester] (115 mg, 64% yield, 77% ee) as a colorless oil Obtained.

[α] 25 −2.7°(c=0.90、CHCl)[(R)の文献値:[α] 18 −2.0°(c=0.81、CHCl)]
HNMR(400MHz、CDCl)δ:5.30(1H,br s)、3.98(1H,dd,J=11.2Hzおよび5.6Hz)、3.81−3.73(1H,m)、3.78(3H,s)、3.27(1H,br s)、1.47(3H,s)、1.45(9H,s)
なお、エナンチオ過剰率はダイセルキラルセルOJ−Hカラム(n−ヘキサン:イソプロパノール=30:1、流速=1.0mL/分、波長220nm、保持時間:11.6分[マイナー、(S)−エナンチオマー]、14.4分[メジャー、(R)−エナンチオマー])で決定した。また、生成物の絶対配置は旋光度を文献値と比較することによって決定した。
[Α] D 25 −2.7 ° (c = 0.90, CHCl 3 ) [literature value of (R): [α] D 18 −2.0 ° (c = 0.81, CHCl 3 )]
1 HNMR (400 MHz, CDCl 3 ) δ: 5.30 (1H, br s), 3.98 (1H, dd, J = 11.2 Hz and 5.6 Hz), 3.81-3.73 (1H, m ), 3.78 (3H, s), 3.27 (1H, br s), 1.47 (3H, s), 1.45 (9H, s)
The enantiomeric excess is a Daicel chiral cell OJ-H column (n-hexane: isopropanol = 30: 1, flow rate = 1.0 mL / min, wavelength 220 nm, retention time: 11.6 min [minor, (S) -enantiomer. ], 14.4 min [major, (R) -enantiomer]). The absolute configuration of the product was determined by comparing the optical rotation with literature values.

本発明の不斉有機触媒は高エナンチオ選択的にチオール分解(チオリシス)もしくはアルコール分解(アルコリシス)する触媒として利用できる。また、前記不斉有機触媒から誘導される亜鉛錯体も不斉合成の触媒として利用できる。   The asymmetric organic catalyst of the present invention can be used as a catalyst for thiol decomposition (thiolysis) or alcohol decomposition (alcolysis) with high enantioselectivity. A zinc complex derived from the asymmetric organic catalyst can also be used as a catalyst for asymmetric synthesis.

Claims (9)

式(I):
Figure 0004807751
[式中、Phはフェニル基を示し、Arはフェニル基もしくはナフチル基、または炭素数1〜3のアルキル基1〜3個もしくは炭素数1〜3のハロゲン化アルキル基1〜3個もしくは炭素数1〜3のアルコキシ基1〜3個もしくはハロゲン原子1〜3個でベンゼン環の任意の位置に置換されたフェニル基もしくはナフチル基を示し、RおよびRはそれぞれ炭素数1〜3のアルキル基を示すか、あるいは両者が末端で結合して隣接する窒素原子と一緒になって、アジリジノ基、アゼチジノ基、ピロリジノ基、ピペリジノ基またはモルホリノ基を形成していることを示す。]
で示されるキラルスルホンアミド誘導体。
Formula (I):
Figure 0004807751
[In the formula, Ph represents a phenyl group, Ar represents a phenyl group or a naphthyl group, 1 to 3 alkyl groups having 1 to 3 carbon atoms, or 1 to 3 halogenated alkyl groups having 1 to 3 carbon atoms, or a carbon number. 1 to 3 or a phenyl group or a naphthyl group substituted with 1 to 3 alkoxy groups or 1 to 3 halogen atoms at any position of the benzene ring , wherein R 1 and R 2 are each an alkyl group having 1 to 3 carbon atoms A group, or both bonded together at the end to form an aziridino group, an azetidino group, a pyrrolidino group, a piperidino group or a morpholino group together with the adjacent nitrogen atom. ]
A chiral sulfonamide derivative represented by:
およびRはそれぞれ炭素数1〜3のアルキル基である請求項1に記載のキラルスルホンアミド誘導体。 The chiral sulfonamide derivative according to claim 1, wherein R 1 and R 2 are each an alkyl group having 1 to 3 carbon atoms. Arが4−メチルフェニル基または3,5−ビス(トリフルオロメチル)−フェニル基である請求項1または2に記載のキラルスルホンアミド誘導体。   The chiral sulfonamide derivative according to claim 1 or 2, wherein Ar is a 4-methylphenyl group or a 3,5-bis (trifluoromethyl) -phenyl group. 式(II):
Figure 0004807751
[式中、Aは、式(II)の化合物が対称分子構造となる位置に置換基を1個もしくは同じ置換基を2個有するアルキレン基、または式(II)の化合物が対称分子構造となる位置に置換基を1個もしくは同じ置換基を2個有していてもよいシクロアルキレン基もしくはシクロアルケニレン基を示す。]
で示される対称分子構造を持つジカルボン酸無水物と、式(III):
Figure 0004807751
[式中、Rはアルキル基、アリール基またはアラルキル基を示し、Xは硫黄原子または酸素原子を示す。]
で示されるチオールもしくはアルコール化合物とを、式(I):
Figure 0004807751
[式中、Phはフェニル基を示し、Arはフェニル基もしくはナフチル基、または炭素数1〜3のアルキル基1〜3個もしくは炭素数1〜3のハロゲン化アルキル基1〜3個もしくは炭素数1〜3のアルコキシ基1〜3個もしくはハロゲン原子1〜3個でベンゼン環の任意の位置に置換されたフェニル基もしくはナフチル基を示し、RおよびRはそれぞれ炭素数1〜3のアルキル基を示すか、あるいは両者が末端で結合して隣接する窒素原子と一緒になって、アジリジノ基、アゼチジノ基、ピロリジノ基、ピペリジノ基またはモルホリノ基を形成していることを示す。]
で示されるキラルスルホンアミド誘導体の存在下に反応させること、または反応させた後にさらにエステル化することを特徴とする、式(IV):
Figure 0004807751
[式中、RおよびXは上記と同意義を、Rは水素またはエステル残基を、AはAと平面構造が同一でかつ分子全体が非対称な絶対構造をとることを示す。]
で示される光学活性カルボン酸またはそのエステルの製造方法。
Formula (II):
Figure 0004807751
[Wherein A represents an alkylene group having one or two substituents at the position where the compound of formula (II) has a symmetric molecular structure, or the compound of formula (II) has a symmetric molecular structure. A cycloalkylene group or a cycloalkenylene group which may have one substituent or two identical substituents at the position is shown. ]
A dicarboxylic acid anhydride having a symmetric molecular structure represented by formula (III):
Figure 0004807751
[Wherein, R represents an alkyl group, an aryl group or an aralkyl group, and X represents a sulfur atom or an oxygen atom. ]
A thiol or alcohol compound represented by formula (I):
Figure 0004807751
[In the formula, Ph represents a phenyl group, Ar represents a phenyl group or a naphthyl group, 1 to 3 alkyl groups having 1 to 3 carbon atoms, or 1 to 3 halogenated alkyl groups having 1 to 3 carbon atoms, or a carbon number. 1 to 3 or a phenyl group or a naphthyl group substituted with 1 to 3 alkoxy groups or 1 to 3 halogen atoms at any position of the benzene ring , wherein R 1 and R 2 are each an alkyl group having 1 to 3 carbon atoms A group, or both bonded together at the end to form an aziridino group, an azetidino group, a pyrrolidino group, a piperidino group or a morpholino group together with the adjacent nitrogen atom. ]
Further characterized in that esterification After Rukoto or reaction, in reacted in the presence of a chiral sulfonamide derivative represented the formula (IV):
Figure 0004807751
[Wherein, R and X are as defined above, R a represents hydrogen or an ester residue, and A * represents an absolute structure having the same planar structure as A and an asymmetric molecule as a whole. ]
A process for producing an optically active carboxylic acid or ester thereof represented by
およびRはそれぞれ炭素数1〜3のアルキル基である請求項に記載の製造方法。 The production method according to claim 4 , wherein R 1 and R 2 are each an alkyl group having 1 to 3 carbon atoms. Arが4−メチルフェニル基または3,5−ビス(トリフルオロメチル)−フェニル基である請求項またはに記載の製造方法。 The production method according to claim 4 or 5 , wherein Ar is a 4-methylphenyl group or a 3,5-bis (trifluoromethyl) -phenyl group. が水素、アルキル基またはアラルキル基である請求項のいずれかに記載の製造方法。 The process according to any one of claims 4 ~ 6 R a is hydrogen, alkyl or aralkyl group. がベンジル基である請求項4〜7に記載の製造方法。 R is a benzyl group, The manufacturing method of Claims 4-7 . 式(I−a):
Figure 0004807751
[式中、Phはフェニル基を示し、Arはフェニル基もしくはナフチル基、または炭素数1〜3のアルキル基1〜3個もしくは炭素数1〜3のハロゲン化アルキル基1〜3個もしくは炭素数1〜3のアルコキシ基1〜3個もしくはハロゲン原子1〜3個でベンゼン環の任意の位置に置換されたフェニル基もしくはナフチル基を示し、RおよびRはそれぞれ炭素数1〜3のアルキル基を示すか、あるいは両者が末端で結合して隣接する窒素原子と一緒になって、アジリジノ基、アゼチジノ基、ピロリジノ基、ピペリジノ基またはモルホリノ基を形成していることを示す。]
で示されるキラルスルホンアミド誘導体・Zn錯体。
Formula (Ia):
Figure 0004807751
[In the formula, Ph represents a phenyl group, Ar represents a phenyl group or a naphthyl group, 1 to 3 alkyl groups having 1 to 3 carbon atoms, or 1 to 3 halogenated alkyl groups having 1 to 3 carbon atoms, or a carbon number. 1 to 3 or a phenyl group or a naphthyl group substituted with 1 to 3 alkoxy groups or 1 to 3 halogen atoms at any position of the benzene ring , wherein R 1 and R 2 are each an alkyl group having 1 to 3 carbon atoms A group, or both bonded together at the end to form an aziridino group, an azetidino group, a pyrrolidino group, a piperidino group or a morpholino group together with the adjacent nitrogen atom. ]
A chiral sulfonamide derivative / Zn complex represented by the formula:
JP2006263564A 2005-09-30 2006-09-27 Novel chiral catalyst and method for producing chiral carboxylic acid compound using the same Expired - Fee Related JP4807751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263564A JP4807751B2 (en) 2005-09-30 2006-09-27 Novel chiral catalyst and method for producing chiral carboxylic acid compound using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005288952 2005-09-30
JP2005288952 2005-09-30
JP2006263564A JP4807751B2 (en) 2005-09-30 2006-09-27 Novel chiral catalyst and method for producing chiral carboxylic acid compound using the same

Publications (2)

Publication Number Publication Date
JP2007119452A JP2007119452A (en) 2007-05-17
JP4807751B2 true JP4807751B2 (en) 2011-11-02

Family

ID=38143669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263564A Expired - Fee Related JP4807751B2 (en) 2005-09-30 2006-09-27 Novel chiral catalyst and method for producing chiral carboxylic acid compound using the same

Country Status (1)

Country Link
JP (1) JP4807751B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011078172A1 (en) 2009-12-25 2013-05-09 株式会社カネカ Process for producing optically active 3-substituted glutaric monoamide
CN111620781B (en) * 2020-06-08 2021-05-25 南京工业大学 Alpha-alkyl phenylacetic acid compound with high optical activity and preparation method and application thereof

Also Published As

Publication number Publication date
JP2007119452A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
US5618966A (en) Method forming protease inhibitor synthetic intermediates
EP3386955B1 (en) Intermediates for the preparation of sacubitril and their preparation
PT720655E (en) SEPARATION OF RACEMATING PRIMARY AND SECONDARY ANIMALS THROUGH ENZYMATED CATALYSED ACILACAO
CA2623355C (en) Resolution of .alpha.-(phenoxy) phenylacetic acid derivatives with naphthyl-alkylamines
JP6917949B2 (en) An improved method for the preparation of chiral 3-amino-piperidine, a useful intermediate for the preparation of tofacitinib
Yakura et al. Synthesis of an immunomodulator (+)-conagenin and its analogs
JP4807751B2 (en) Novel chiral catalyst and method for producing chiral carboxylic acid compound using the same
JP5548129B2 (en) Asymmetric organic catalyst
EP0928787B1 (en) Process for the preparation of 3-amino-pyrrolidine derivatives
KR101130818B1 (en) Method for preparing chiral amino acid from azlactones using bifunctional bis-cinchona alkaloid thiourea organo catalysts
JP5622019B2 (en) Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst
EP0320096A1 (en) Process for asymmetrically reducing carbonyl compounds
EP0802901B1 (en) Novel carbamate compounds containing thiocarbamoyl group and process for preparing the same
Marhold et al. Synthesis of optically active 2-fluoroalk-1-en-3-yl esters and chirality transfer in their Claisen-type rearrangements
Košak et al. A Simple and Effective Synthesis of 3-and 4-((Phenylcarbamoyl) oxy) benzoic Acids
US5646287A (en) Reagents for enantioselective acylation and related reactions
EP0730575B1 (en) Novel carbamate compounds and processes for preparing the same
US5801247A (en) Process for the enantioselective synthesis of hydroxypyrrolidines from amino acids and products thereof
EP2192110B1 (en) Method of producing optically active n-(halopropyl)amino acid derivative
KR100386305B1 (en) Novel chiral salen derivatives useful for asymmetric epoxidation of olefins
CA2267247C (en) Heteroaryloxyethylamines as 5-ht1a ligands
EP0081817B1 (en) Optically-active diamide derivatives
JPH0417938B2 (en)
US20120330030A1 (en) Enantioselective Synthesis of y-amino-a, B-unsuturated carboxylic acid derivatives
MXPA02007077A (en) Method for the enantioselective preparation of 3,3 diphenyl 2,3 epoxy propionic acid esters.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees