JP3874927B2 - Resin composite tube and manufacturing method - Google Patents

Resin composite tube and manufacturing method Download PDF

Info

Publication number
JP3874927B2
JP3874927B2 JP12267298A JP12267298A JP3874927B2 JP 3874927 B2 JP3874927 B2 JP 3874927B2 JP 12267298 A JP12267298 A JP 12267298A JP 12267298 A JP12267298 A JP 12267298A JP 3874927 B2 JP3874927 B2 JP 3874927B2
Authority
JP
Japan
Prior art keywords
resin
composite tube
resin composite
roll
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12267298A
Other languages
Japanese (ja)
Other versions
JPH11279921A (en
Inventor
公昭 延谷
Original Assignee
アンビック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アンビック株式会社 filed Critical アンビック株式会社
Priority to JP12267298A priority Critical patent/JP3874927B2/en
Publication of JPH11279921A publication Critical patent/JPH11279921A/en
Application granted granted Critical
Publication of JP3874927B2 publication Critical patent/JP3874927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、円筒形状に、ニードリングにより一体化した不織布よりなる樹脂複合チューブ及びその製造方法に関するものである。この種の樹脂複合チューブは、ロール芯材の外周に装着して、加圧、摩擦、吸着、吸収、塗布など各種機能を発現せしめる一般工業用ロール被覆材であり、用途としては、鉄鋼、非鉄金属、ガラスの製造工程、物流ローラーコンベアーにおいて搬送用ローラーの被覆材として搬送物の傷防止クッション、ローラーの滑り防止、騒音防止に利用される。また、薄板鋼板等の表面処理工程においてメッキ液、洗浄液等の薬液の拭取り及び防錆油等の塗布、洗浄、印刷機において、インクの塗布及び拭取り、現像機において薬液の塗布及び拭取り、複写機においてトナーの拭取りオイルの塗布用のロール被覆材等にも使用される。
【0002】
【従来技術】
従来から、一般にこの種のロールは、被覆材にゴム若しくは不織布が使用される。搬送用としてゴムを外周に装着したゴムロールとしては、芯材の外周にアクリルブタジエンゴムやウレタンゴムやシリコンゴム等を、加硫により一体化したものがあるが、比較的硬質であり、搬送物の移送において搬送物を傷つけてしまったりする欠点があった。一方、拭取り及び塗布用のゴムロールとしては、芯材の外周に、連続気孔を有す発泡アクリルブタジエンゴムやウレタンゴムやシリコンゴム等を、加硫により一体化した多孔質のものがあるが、比較的空隙率が小さく拭取り及び塗布性能が低いという欠点があった。
【0003】
そのため、ゴムに代わって不織布でロール芯材を被覆した不織布ロールが採用されてきた。図2に示すように、ロール芯材の外側に、細巾の不織布あるいは樹脂により繊維を固定した不織布を螺旋状に巻き付け接着したものや、図3に示すように、ロール芯材の外側に、ロール巾の不織布あるいは樹脂により繊維を固定した不織布を海苔巻き状に巻き付け、接着後表面を研磨したものや、図4に示すように、不織布あるいは樹脂により繊維を固定した不織布をドーナツ状に打ち抜いた円板を多数枚ロール芯材に通すことにより積層し、圧縮接着後研磨したものがある。細巾の不織布あるいは樹脂により繊維を固定した不織布を螺旋状に巻き付けたロールおよび、ロール巾の不織布を海苔巻き状に巻き付けたロールにおいては、その巻き付けに手間がかかり、巻き付けた不織布あるいは樹脂により繊維を固定した不織布間に隙間、重なり、接着剤層が生じてしまうことがあり、ロール表面の均一性に欠けるものであった。又、長期使用すると接着剤が劣化しロールから部分的に剥がれ不具合であった。ドーナツ状に打ち抜いた不織布あるいは樹脂により繊維を固定した不織布の円板を多数枚ロール芯材に通すことにより積層したロールにおいては、不織布あるいは樹脂により繊維を固定した不織布のロスが大きくかつ、圧縮成形に手間がかかり価格の高いロールとなってしまっていた。
【0005】
一方、表面の均一な不織布ロールとしては、実開昭61−198290号に、熱収縮性繊維からなる円筒形状不織布の不織布ロールの記載があるが、ニードリングで一体化したのみの構造物なので耐久性が低いという欠点があった。耐久性付与の方法として樹脂により繊維を固定する方法が考えられる。円筒状に、ニードリングにより一体化した不織布にエマルジョンを含浸させて乾燥される公知の方法においては、水分が不織布の表面から蒸発して乾燥するため、乾燥が進むに従って不織布内部のエマルジョンが表面近くに移行し、そこで乾燥して樹脂分を残すこととなる。そのため、ロール被覆材として使用される樹脂複合チューブの表面付近は多量のゴム又は合成樹脂を含有しているが、内部はゴム又は合成樹脂の含有量が少なくなる。不織布の厚さが1mm未満と薄い場合にはそれほど問題はないが、厚くなるに従って不織布の表面付近と内部とに差を生じ、表面付近は硬度が高く内部は硬度が低く工業用ロールとして要求される加圧、摩擦、吸着、吸収、塗布等の性能がロールが摩耗することによって急速に変化し、性能が安定せず長期間に亘って使用することが困難であった。
【0006】
【発明が解決しようとする課題】
本発明は上記のような欠点を解消するためになされたものである。円筒状に、ニードリングにより一体化した不織布に遅効性凝固剤を添加したエマルジョン系樹脂を付着せしめることで厚みが大きく、且つその内部まで均一な硬度、組成、特性を有して長期間の使用に耐える一般工業用ロール被覆用樹脂複合チューブを提供することを目的とする。
本発明の樹脂複合チューブは、フイルターとしても有用である。
【0007】
【課題を解決するための手段】
而して本発明のロール芯材の被覆用樹脂複合チューブは、円筒形状に、ニードリングにより一体化した不織布の構造体に、遅効性凝固剤を添加したエマルジョン系樹脂を含浸させてなることを特徴とするものである。この樹脂複合チューブにおいては、その厚さが1〜30mmであり、樹脂付着量が繊維に対して20〜200重量%であり、且つ表面硬度及び断面硬度が30〜90度であって、当該硬度の厚さ方向のバラツキが10%未満であることが好ましい。
また本発明のロール芯材の被覆用樹脂複合チューブの製造方法は、円筒形状に、ニードリングにより一体化した不織布の構造体に、遅効性凝固剤を添加したエマルジョン系樹脂を含浸させ、当該樹脂を凝固させた後乾燥することを特徴とするものである。この方法においては、前記遅効性凝固剤が、炭酸ナトリウム、硫酸アンモニウム、ケイフッ化ナトリウム、酢酸ナトリウム、酢酸アンモニウム、塩化マグネシウム、又は、塩化カルシウムであり、凝固剤の添加量が樹脂固形分に対して0.1〜5.0重量%であることが好ましい。また前記エマルジョン系樹脂が、合成ゴム系、アクリル系、又は、ポリウレタン系のエマルジョンであることが好ましい。
【0008】
本発明における円筒形状不織布は、その素材としては、羊毛などの天然繊維、レイヨンなどの再生繊維、ポリエステル、ポリアミド、アクリル、ビニロンなどの合成繊維が使用され、これらの短繊維又は長繊維を公知の方法で円筒状不織布としたものが使用される。又、これらの円筒形状不織布を単独で使用することもできるが、羊毛などの天然繊維、レイヨンなどの再生繊維、ポリエステル、ポリアミド、アクリル、ビニロンなどの合成繊維で織られた織布の表面に前記繊維素材を積層して、織布で補強し円筒状にニードルパンチし形成した不織布を使用することもできる。円筒形状不織布の見掛け密度は0.1〜0.5g/cc程度が適当である。密度が0.1g/cc未満では充分な強度が得られず耐久性に劣る。また0.5g/ccを越えると組織が密になり相手材に適切にフィットせず、工業用ロールとして要求される加圧、摩擦、吸着、吸収、塗布等の性能が発揮できずまた相手材に傷を付ける恐れがある。
【0009】
樹脂は合成ゴム系、アクリル系、ポリウレタン系など弾性、摩擦力、吸収などの各々の目的に応じて選択使用され、必要に応じてメチロールメラミン、エポキシなどの架橋剤、水分散顔料などの着色剤、界面活性剤などの浸透浸水剤、炭酸カルシウムなどの充填剤、老化防止剤など、通常の樹脂に使用される各種の添加剤を添加してもよい。そしてこのエマルジョンに、遅効性の凝固剤が添加される。遅効性の凝固剤としては、例えば炭酸水素ナトリウム、硫酸アンモニウム、ケイフッ化ナトリウム、酢酸ナトリウム、酢酸アンモニウム、塩化マグネシウム、又は、塩化カルシウムなどの塩類を単独又は混合使用するのが適当である。凝固剤の添加量は、エマルジョンの種類、気温、液温などによっても異なるが、樹脂固形分に対しておおむね0.1〜5.0重量%とするのが適当である。この凝固剤の作用により、樹脂が数時間程度で凝固するよう調整するのが好ましい。樹脂の固形分濃度は、5〜40重量%とするのが適当である。固形分濃度が5重量%未満であると、凝固速度が遅くなり、しかも円筒形状不織布に対する樹脂の付着量が少なくなり、樹脂複合チューブの耐久性がなくなる。また固形分濃度が40重量%を越えると、エマルジョンが凝固剤に対して敏感になり、不用意に凝固し易くなる。また円筒状不織布に含浸する際にも樹脂の粘度が高くなり、当該樹脂が充分に円筒形状不織布中に浸透せず、均一な樹脂複合チューブが得られ難い。
【0010】
円筒形状不織布に対する樹脂の付着量は、使用形態に応じて適切な量とすべきであるが、繊維に対しておおむね20〜200重量%、好ましくは50〜150重量%である。樹脂の付着量は前記20%未満では、円筒形状不織布の個々の繊維を充分に固着することができず、加圧、摩擦、吸着、吸収、塗布等工業用ロール被覆材として樹脂複合チューブを使用する際、繊維が脱落し易く耐久性に乏しい。また200%を越えると、樹脂複合チューブは組織が密になり硬度が高くなり相手材に適切にフィットせず、工業用ロールとして要求される加圧、摩擦、吸着、吸収、塗布等の性能が発揮できずまた相手材に傷を付ける恐れがある。
【0011】
円筒形状不織布に樹脂を含浸した後、そのまま室温で数時間放置し、円筒形状不織布に含浸させた樹脂を凝固させる。このとき40〜90℃程度に加温して、樹脂の凝固を促進することも好ましいことである。樹脂が充分凝固したならば、遅効性凝固剤を洗浄後、これを100〜150℃に加熱して水分を蒸発させ乾燥させる。そしてこれを所定の寸法に裁断しロール芯材に装着接着し表面研磨して仕上げる。本発明の樹脂複合チューブを被覆した不織布ロールを図1に示した。樹脂複合チューブの硬度はJISK6301のスプリングC型硬度計において30〜90度が適当である。硬度が30度未満では工業用ロールとして要求される加圧、摩擦、吸着、吸収、塗布等の性能が発揮できず耐久性に乏しい。
硬度が90度を越える場合は工業用ロールとして要求される加圧、摩擦、吸着、吸収、塗布等の性能が発揮できずまた相手材に傷を付ける恐れがある。
【0012】
【作用】
本発明においては、樹脂としてエマルジョン系のものを使用するので、粘度が低く円筒状不織布中に充分に浸透する。そして樹脂は円筒状不織布の内部にまで浸透した状態で、そのまま放置することにより遅効性凝固剤の作用で凝固する。凝固に際しては、円筒状不織布の表面から水分を蒸発させることがないので、樹脂分が内部から表面近くに移行して付着量のむらが生じるようなことがない。また外部から何らかの作用を受けることもないので、表面近くと内部とで凝固状態が異なったり樹脂の固まりや空洞が生じたりすることがない。すなわち本発明においては、円筒状不織布に含浸された樹脂が凝固して樹脂複合チューブを形成するに際して、円筒状不織布の表面と内部とで樹脂の移動が生じることがなく、全体として均等に凝固が生じるのである。そしてその状態で水分を蒸発させるため、その際にも樹脂分が移動する事がなく、ゴム又は合成樹脂の付着量にむらが生じることがない。
【0013】以下に、本発明の実施例を記載するが、以下の実施例に限定されるものではない。
【0014】
【実施例】
(実施例1)ポリエステル繊維(繊度3D、カット長50〜76mm)よりなる2000g/mのウエブに円筒形のベッドプレートを有する特殊ニードル機によりニードルパンチを施して密度0.2g/cc、厚さ10mm、内径40mm、外径60mm、長さ500mmの円筒状の不織布を作成した。ポリウレタン系エマルジョン(大日本インキ化学工業株式会社製、品名ボンディック1050)100重量部に、炭酸水素ナトリウム0.5重量部を添加して樹脂を調整した。前記円筒状不織布を、前記樹脂液に浸透させ円筒状不織布に対して樹脂の固形分で100重量%含浸させた。然る後、これを空気中に室温で4時間放置し、樹脂を凝固させた。そして140℃で8時間乾燥して、密度0.5g/ccの樹脂複合チューブを得た。
【0015】
(比較例1)先の実施例1で述べたと同じ円筒状不織布に、実施例1におけると同じポリウレタン系エマルジョン(炭酸ナトリウムを添加しないもの)を含浸させ、140℃で8時間乾燥して、密度0.5g/ccの樹脂複合チューブを得た。
【0016】
(実施例2)ポリアミド繊維(繊度3D、カット長50〜76mm)よりなる800g/mのウエブに円筒形のベッドプレートを有する特殊ニードル機によりニードルパンチを施して密度0.2g/cc、厚さ4mm、内径16mm、外径24mm、長さ500mmの円筒状の不織布を作成した。ニトリル−ブタジエン共重合ゴム系エマルジョン(日本ゼオン株式会社製、品名NipolLX511)100重量部に、加硫剤ディスパージヨン5重量部(組成はコロイド硫黄20部、亜鉛華60部、加硫促進剤EZ10部、加硫促進剤MZ10部、水90部)、炭酸水素ナトリウム0.5重量部を添加して樹脂を調整した。前記円筒状不織布を前記樹脂液に浸透させ円筒状不織布に対して樹脂の固形分で80重量%含浸させた。しかる後これを空気中に室温で4時間放置し、樹脂を凝固させた。そして140℃で4時間乾燥して、密度0.4g/ccの樹脂複合チューブを得た。
【0017】
(比較例2)先の実施例2で述べたと同じ円筒状不織布に、実施例2におけると同じニトリル−ブタジエン共重合ゴムラテックス系エマルジョン(炭酸ナトリウムを添加しないもの)を含浸させ、140℃で4時間乾燥して、密度0.4g/ccの樹脂複合チューブを得た。
【0018】
次に、前記実施例1、2及び比較例1,2の樹脂複合チューブについてその表面付近と内部との硬度バラツキを測定した。図5に示すように、各例の樹脂複合チューブを10cm幅に裁断しその切り口を厚み方向にほぼ四分割し、分割した切り口の各部分についてそれぞれ円周方向に4カ所において硬度を測定した。硬度計はJISK6301のスプリング硬度計を使用した。各部の硬度を表1に示す。なお表1において位置の表面側、A、B、C、内部は、樹脂複合チューブの厚みを四等分した表面側から内側の5つの部分を表す。また硬度のバラツキは、各例について20のデーターの最大値と最小値との差を平均で割って100を掛けた数値である。
【0019】

Figure 0003874927
【0020】
本発明の実施例1,2においては、硬度のバラツキが8.0%、7.6%であって、表面側から内側まで硬度が均一であることがわかる。このバラツキの数値が10%以内であれば、硬度がほぼ均一で、表面が減摩して内部が露出しても工業用ロールとして要求される加圧、摩擦、吸着、吸収、塗布等の性能が低下することなく発揮できる。仮に、部分摩耗した場合は再研磨することで長期間に亘って使用できる。これに対し比較例1,2においては、硬度のバラツキが大きい。特に比較例1のものは厚みが10mmと厚いので、樹脂が表面付近に集中して硬度が高く中央付近Bは樹脂が移行して少なくなっており硬度が低くなっている。従って樹脂複合チューブの表面付近が摩耗したならば、表面状態が大幅に変化し工業用ロールとして要求される加圧、摩擦、吸着、吸収、塗布等の性能が低下し使用に耐えないものとなる。また、比較例2においても厚みが4mmと比較例1より薄く硬度バラツキが若干小さいが、樹脂が表面付近に集中して硬度が高く中央付近Bは樹脂が移行して少なくなっており、硬度が低くなっている。従って、比較例1と同様に使用に耐えないものとなっている。実施例1,2と比較例1,2を比較すると本発明がいかに優れているか理解できる。
【0021】
次に、前記実施例1、2及び比較例1,2の樹脂複合チューブについてその表面付近A,Cと内部Bとの摩擦係数を測定した。図5に示すように、各例の樹脂複合チューブを10cm幅に裁断しその切り口を厚み方向にほぼ四分割し、分割した切り口A,B,Cの各部分についてそれぞれ摩擦係数(対アクリル板)を測定した。樹脂複合チューブをロール被覆材工業用ロールとして使用する場合、表面より減摩して内部を使用することとなる。その際、表面側と内部の摩擦係数の差が大きいと工業用ロールとしてのグリップ力が変化し安定した性能が期待できない。各部の摩擦係数を表2に示す。なお表2において位置のA、B、Cは、樹脂複合チューブの厚みを四等分した表面側から内側の3つの部分を表す。
【0022】
Figure 0003874927
【0023】
本発明の実施例1,2においては、摩擦係数がAからCまでほぼ均一であることがわかる。この摩擦係数が均一であることは、表面が減摩して内部が露出してもグリップ力が変化せず工業用ロールとして要求される加圧、摩擦、吸着、吸収、塗布等の性能が低下することなく発揮できる。仮に、部分摩耗した場合は再研磨することで長期間に亘って使用できる。これに対し比較例1,2においては、表面付近Aと中央付近Bの摩擦係数の差が大きい。樹脂が表面付近Aに集中して摩擦係数が高く、中央付近Bは樹脂が移行して少なくなっており摩擦係数が低くなっている。従って、樹脂複合チューブの表面付近が摩耗したならば、グリップ力が大きく変化し工業用ロールとして要求される加圧、摩擦、吸着、吸収、塗布等の性能が低下し使用に耐えないものとなる。
【0024】
次に、前記実施例1、2及び比較例1,2の樹脂複合チューブについてその表面付近A,Cと内部Bとの吸水時間を測定した。図5に示すように、各例の樹脂複合チューブを10cm幅に裁断しその切り口を厚み方向にほぼ四分割し、分割した切り口の各部分A,B,Cについてそれぞれ水滴を一滴落として吸収時間を10回測定し平均した。樹脂複合チューブをロール被覆材工業用ロールとして使用する場合、表面より減摩して内部を使用することとなる。その際、表面側と内部の吸水時間の差が大きいと工業用ロールとしての吸着、吸収、塗布の性能が変化し安定し使用できない。各部の吸水時間の平均値をを表3に示す。なお表3において位置のA、B、Cは、樹脂複合チューブの厚みを四等分した表面側から内側の3つの部分を表す。
【0025】
Figure 0003874927
【0026】
本発明の実施例1,2においては、吸水時間がAからCまでほぼ均一であることがわかる。この吸水時間が均一であることは、表面が減摩して内部が露出しても工業用ロールとして要求される吸着、吸収、塗布等の性能が低下することなく発揮できる。仮に、部分摩耗した場合は再研磨することで長期間に亘って使用できる。これに対し、比較例1,2においては、表面付近Aと中央付近Bの吸水時間の差が大きい。樹脂が表面付近Aに集中して吸水時間が短く、中央付近Bは樹脂が移行して少なくなっており、吸水時間が長くなっている。従って、樹脂複合チューブの表面付近が減摩したならば、吸水時間が大きく変化し工業用ロールとして要求される吸着、吸収、塗布等の性能が低下し使用に耐えないものとなる。実施例1,2と比較例1,2を比較すれば、本発明がいかに優れているか理解できる。
【0027】
【発明の効果】
本発明によれば、図1に示すように、樹脂複合チューブの表面には継ぎ目がなく均一で、且つ円筒状不織布の表面から内部まで樹脂が均等に分布し、先の従来例、比較例におけるように樹脂が不織布の表面にのみ分布したり、内部に樹脂の塊や空洞を生じたりすることがない。そして樹脂複合チューブの表面側も内部も樹脂の付着量が均等であって、硬度、摩擦係数、吸水時間など均一な特性を有す。仮に、表面が減摩して内部が露出しても工業用ロールとして要求される加圧、摩擦、吸着、吸収、塗布等の性能が低下することなく発揮でき長期間に亘って使用できる。また、従来のものに較べて充分に厚いものにすることも可能であり、部分摩耗した場合は再研磨することによっても長期間に亘って使用できる。
【図面の簡単な説明】
【図1】本発明樹脂複合チューブ装着の不織布ロール正面図及び側面図
【図2】螺旋状に巻き付けた不織布ロール正面図及び側面図
【図3】海苔巻き状に巻き付けた不織布ロールの正面図及び側面図
【図4】ドーナツ状円板を多数積層した不織布ロールの正面図及び側面図
【図5】樹脂複合チューブの四分割した切口の断面図
【符号の説明】
1.ロール芯材
2.樹脂複合チューブ
3.継ぎ目部分
4.ドーナツ状円板
5.表面側
6.A
7.B
8.C
9.内側[0001]
[Industrial application fields]
The present invention relates to a resin composite tube made of a nonwoven fabric integrated into a cylindrical shape by needling, and a method for producing the same. This type of resin composite tube is a general industrial roll coating material that can be attached to the outer periphery of a roll core material to develop various functions such as pressurization, friction, adsorption, absorption, and application. Used as a coating material for transport rollers in metal and glass manufacturing processes and distribution roller conveyors, to prevent scratches on transported items, to prevent rollers from slipping, and to prevent noise. Also, in the surface treatment process for thin steel plates, etc., wiping of chemicals such as plating solution and cleaning solution, application of rust prevention oil, etc., cleaning, application and wiping of ink in printing machines, application of chemicals and wiping in developing machines In a copying machine, it is also used as a roll coating material for applying toner wiping oil.
[0002]
[Prior art]
Conventionally, generally this kind of roll has used rubber | gum or a nonwoven fabric for a coating | covering material. Some rubber rolls with rubber attached to the outer periphery for transportation are those in which acrylic butadiene rubber, urethane rubber, silicon rubber, etc. are integrated on the outer periphery of the core by vulcanization, but they are relatively hard and There was a drawback that the transported object was damaged in the transfer. On the other hand, as a rubber roll for wiping and application, there is a porous roll in which foamed acrylic butadiene rubber, urethane rubber, silicon rubber or the like having continuous pores is integrated by vulcanization on the outer periphery of the core material. There was a drawback that the porosity was relatively small and the wiping and coating performance was low.
[0003]
Therefore, the nonwoven fabric roll which coat | covered the roll core material with the nonwoven fabric instead of rubber | gum has been employ | adopted. As shown in FIG. 2, on the outside of the roll core material, a thin nonwoven fabric or a non-woven fabric in which fibers are fixed by a resin are spirally wound and bonded, as shown in FIG. Roll width non-woven fabric or non-woven fabric with fibers fixed with resin wound in laver shape, surface polished after bonding, and non-woven fabric with non-woven fabric or resin fixed fibers as shown in FIG. Some discs are laminated by passing them through a roll core material and polished after compression bonding. In a roll in which a non-woven fabric or a non-woven fabric fixed with fibers is spirally wound, and in a roll in which a roll-width non-woven fabric is wound in a laver shape, the winding takes time, and the wound non-woven fabric or resin makes the fibers In some cases, gaps and overlaps were formed between the nonwoven fabrics on which the film was fixed, resulting in an adhesive layer being formed, and the roll surface was not uniform. Further, when used for a long period of time, the adhesive deteriorated and peeled off partly from the roll. In rolls laminated by passing a large number of non-woven disks punched into donuts or fixed non-woven fibers through a roll core material, loss of non-woven cloth or non-woven cloth fixed with resin is large and compression molding It took a lot of time and became a high-priced roll.
[0005]
On the other hand, as a non-woven roll having a uniform surface, Japanese Utility Model Publication No. 61-198290 describes a non-woven roll of a cylindrical non-woven fabric made of heat-shrinkable fibers. There was a fault that the property was low. As a method for imparting durability, a method of fixing fibers with a resin is conceivable. In the known method in which the nonwoven fabric integrated by needling is impregnated with the emulsion and dried, the moisture evaporates from the surface of the nonwoven fabric and dries, so the emulsion inside the nonwoven fabric approaches the surface as the drying proceeds And then dried to leave a resin component. For this reason, the vicinity of the surface of the resin composite tube used as the roll coating material contains a large amount of rubber or synthetic resin, but the content of rubber or synthetic resin is reduced inside. When the thickness of the nonwoven fabric is less than 1 mm, there is not much problem, but as the thickness increases, there is a difference between the surface vicinity and the inside of the nonwoven fabric. The performance such as pressurization, friction, adsorption, absorption, coating, and the like changed rapidly as the roll was worn, and the performance was not stable and it was difficult to use for a long period of time.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described drawbacks. By attaching an emulsion resin with a slow-acting coagulant to a non-woven fabric that is integrated into a cylindrical shape by needling, it is thick and has a uniform hardness, composition and characteristics up to its inside, and it can be used for a long time. An object of the present invention is to provide a general industrial roll coating resin composite tube which can withstand the above-mentioned conditions.
The resin composite tube of the present invention is also useful as a filter.
[0007]
[Means for Solving the Problems]
Accordingly, the resin composite tube for covering a roll core material of the present invention is formed by impregnating a non-woven structure integrated by needling into a cylindrical shape and an emulsion resin to which a slow-acting coagulant is added. It is a feature. In this resin composite tube, the thickness is 1 to 30 mm, the resin adhesion amount is 20 to 200% by weight with respect to the fiber, the surface hardness and the cross-sectional hardness are 30 to 90 degrees, and the hardness The variation in the thickness direction is preferably less than 10%.
Also, the method for producing a resin composite tube for coating a roll core material of the present invention comprises impregnating an emulsion resin to which a slow-acting coagulant is added into a non-woven structure integrated by needling into a cylindrical shape, It is characterized by drying after solidifying. In this method, the slow-acting coagulant is sodium carbonate, ammonium sulfate, sodium silicofluoride, sodium acetate, ammonium acetate, magnesium chloride, or calcium chloride, and the addition amount of the coagulant is 0 with respect to the resin solid content. It is preferably 1 to 5.0% by weight. The emulsion resin is preferably a synthetic rubber-based, acrylic-based, or polyurethane-based emulsion.
[0008]
As the material for the cylindrical nonwoven fabric in the present invention, natural fibers such as wool, recycled fibers such as rayon, synthetic fibers such as polyester, polyamide, acrylic, and vinylon are used, and these short fibers or long fibers are publicly known. A cylindrical nonwoven fabric is used by the method. These cylindrical nonwoven fabrics can be used alone, but the surface of the woven fabric woven with natural fibers such as wool, regenerated fibers such as rayon, synthetic fibers such as polyester, polyamide, acrylic, and vinylon It is also possible to use a non-woven fabric formed by laminating fiber materials, reinforced with a woven fabric, and needle punched into a cylindrical shape. The apparent density of the cylindrical nonwoven fabric is suitably about 0.1 to 0.5 g / cc. If the density is less than 0.1 g / cc, sufficient strength cannot be obtained and durability is inferior. Also, if it exceeds 0.5 g / cc, the structure becomes dense and does not fit properly with the counterpart material, and the performance such as pressurization, friction, adsorption, absorption, coating, etc. required for industrial rolls cannot be exhibited. There is a risk of scratching.
[0009]
Resin is selected and used according to the purpose such as elasticity, friction force, absorption such as synthetic rubber type, acrylic type, polyurethane type, etc., and colorants such as cross-linking agents such as methylol melamine and epoxy and water dispersion pigments as required In addition, various additives used in ordinary resins, such as osmotic water immersion agents such as surfactants, fillers such as calcium carbonate, and anti-aging agents may be added. A slow-acting coagulant is added to the emulsion. As the slow-acting coagulant, for example, salts such as sodium hydrogen carbonate, ammonium sulfate, sodium silicofluoride, sodium acetate, ammonium acetate, magnesium chloride, or calcium chloride are used alone or in combination. The addition amount of the coagulant varies depending on the type of emulsion, the temperature, the liquid temperature, etc., but it is appropriate that the amount is generally 0.1 to 5.0% by weight based on the resin solid content. It is preferable to adjust the resin so that it solidifies in about several hours by the action of the coagulant. The solid content concentration of the resin is suitably 5 to 40% by weight. If the solid content concentration is less than 5% by weight, the coagulation rate is slow, and the amount of the resin attached to the cylindrical nonwoven fabric is reduced, so that the durability of the resin composite tube is lost. When the solid content concentration exceeds 40% by weight, the emulsion becomes sensitive to the coagulant and easily coagulates. Also, when the cylindrical nonwoven fabric is impregnated, the viscosity of the resin is high, and the resin does not sufficiently penetrate into the cylindrical nonwoven fabric, and it is difficult to obtain a uniform resin composite tube.
[0010]
The amount of the resin attached to the cylindrical nonwoven fabric should be an appropriate amount depending on the use form, but is generally 20 to 200% by weight, preferably 50 to 150% by weight, based on the fiber. If the amount of the resin attached is less than 20%, the individual fibers of the cylindrical nonwoven fabric cannot be sufficiently fixed, and a resin composite tube is used as an industrial roll coating material such as pressurization, friction, adsorption, absorption, coating, etc. When doing so, the fibers are easy to fall off and the durability is poor. On the other hand, if it exceeds 200%, the resin composite tube will have a dense structure and high hardness and will not fit properly with the mating material, and will have the performance required for industrial rolls such as pressurization, friction, adsorption, absorption and coating. There is a risk that it may not be able to be used and the other material may be damaged.
[0011]
After impregnating the cylindrical nonwoven fabric with resin, the cylindrical nonwoven fabric is allowed to stand for several hours at room temperature to solidify the resin impregnated into the cylindrical nonwoven fabric. At this time, it is also preferable to promote the solidification of the resin by heating to about 40 to 90 ° C. If the resin has sufficiently solidified, the slow-acting coagulant is washed and then heated to 100 to 150 ° C. to evaporate the moisture and dry. And this is cut | judged to a predetermined dimension, it mounts | wears and adheres to a roll core material, and the surface is polished and finished. The nonwoven fabric roll which coat | covered the resin composite tube of this invention was shown in FIG. The hardness of the resin composite tube is suitably 30 to 90 degrees in a spring C type hardness tester of JISK6301. If the hardness is less than 30 degrees, performances such as pressurization, friction, adsorption, absorption, and application required for industrial rolls cannot be exhibited, resulting in poor durability.
When the hardness exceeds 90 degrees, performances such as pressurization, friction, adsorption, absorption, and application required for industrial rolls cannot be exhibited, and there is a risk of damage to the counterpart material.
[0012]
[Action]
In the present invention, since an emulsion resin is used as the resin, the viscosity is low and the resin penetrates sufficiently into the cylindrical nonwoven fabric. Then, the resin is solidified by the action of a slow-acting coagulant when left as it is in a state where it penetrates into the inside of the cylindrical nonwoven fabric. At the time of solidification, moisture is not evaporated from the surface of the cylindrical nonwoven fabric, so that the resin component does not move from the inside to the vicinity of the surface and unevenness in the amount of adhesion does not occur. In addition, since it does not receive any action from the outside, the solidification state is not different between the vicinity of the surface and the inside, and no resin lump or cavity is generated. That is, in the present invention, when the resin impregnated in the cylindrical nonwoven fabric is solidified to form a resin composite tube, the resin does not move between the surface and the inside of the cylindrical nonwoven fabric, and the resin is solidified uniformly as a whole. It happens. Since the moisture is evaporated in this state, the resin component does not move at that time, and the amount of adhesion of rubber or synthetic resin does not vary.
Examples of the present invention will be described below, but the present invention is not limited to the following examples.
[0014]
【Example】
(Example 1) A density of 0.2 g / cc, thickness obtained by subjecting a 2000 g / m 2 web made of polyester fiber (fineness 3D, cut length 50 to 76 mm) to needle punching using a special needle machine having a cylindrical bed plate A cylindrical nonwoven fabric having a thickness of 10 mm, an inner diameter of 40 mm, an outer diameter of 60 mm, and a length of 500 mm was prepared. Resin was prepared by adding 0.5 parts by weight of sodium hydrogen carbonate to 100 parts by weight of polyurethane emulsion (manufactured by Dainippon Ink and Chemicals, product name Bondic 1050). The cylindrical nonwoven fabric was infiltrated into the resin liquid and impregnated with 100% by weight of the solid content of the resin in the cylindrical nonwoven fabric. Thereafter, this was left in the air at room temperature for 4 hours to solidify the resin. And it dried at 140 degreeC for 8 hours, and obtained the resin composite tube of density 0.5g / cc.
[0015]
(Comparative Example 1) The same cylindrical nonwoven fabric as described in Example 1 above was impregnated with the same polyurethane-based emulsion (without addition of sodium carbonate) as in Example 1, and dried at 140 ° C. for 8 hours to obtain a density. A resin composite tube of 0.5 g / cc was obtained.
[0016]
(Example 2) A density of 0.2 g / cc, thickness obtained by subjecting a 800 g / m 2 web made of polyamide fiber (fineness 3D, cut length 50 to 76 mm) to needle punching using a special needle machine having a cylindrical bed plate A cylindrical nonwoven fabric having a thickness of 4 mm, an inner diameter of 16 mm, an outer diameter of 24 mm, and a length of 500 mm was prepared. Nitrile-butadiene copolymer rubber emulsion (manufactured by Nippon Zeon Co., Ltd., product name Nipol LX511), vulcanizing agent dispersion 5 parts by weight (composition is 20 parts colloidal sulfur, 60 parts zinc white, 10 parts vulcanization accelerator EZ). The resin was prepared by adding 10 parts of vulcanization accelerator MZ, 90 parts of water) and 0.5 part by weight of sodium bicarbonate. The cylindrical nonwoven fabric was infiltrated into the resin liquid, and the cylindrical nonwoven fabric was impregnated with 80% by weight of resin solids. Thereafter, this was left in the air at room temperature for 4 hours to solidify the resin. And it dried at 140 degreeC for 4 hours, and obtained the resin composite tube with a density of 0.4 g / cc.
[0017]
(Comparative Example 2) The same cylindrical nonwoven fabric as described in Example 2 above was impregnated with the same nitrile-butadiene copolymer rubber latex emulsion (without addition of sodium carbonate) as in Example 2, and 4 at 140 ° C. By drying for a time, a resin composite tube having a density of 0.4 g / cc was obtained.
[0018]
Next, the hardness variation between the vicinity of the surface and the inside of the resin composite tubes of Examples 1 and 2 and Comparative Examples 1 and 2 was measured. As shown in FIG. 5, the resin composite tube of each example was cut to a width of 10 cm, and the cut end was substantially divided into four in the thickness direction, and the hardness of each portion of the cut end was measured at four points in the circumferential direction. The hardness tester used was a spring hardness tester of JISK6301. Table 1 shows the hardness of each part. In Table 1, “surface side”, “A”, “B”, “C”, and “inside” of the position represent five portions inside from the surface side obtained by dividing the thickness of the resin composite tube into four equal parts. The hardness variation is a numerical value obtained by dividing the difference between the maximum value and the minimum value of the 20 data for each example by the average and multiplying by 100.
[0019]
Figure 0003874927
[0020]
In Examples 1 and 2 of the present invention, the hardness variation is 8.0% and 7.6%, and it can be seen that the hardness is uniform from the surface side to the inside. If the value of this variation is within 10%, even if the hardness is almost uniform, even if the surface wears down and the inside is exposed, the performance such as pressurization, friction, adsorption, absorption, coating, etc. required for industrial rolls Can be exhibited without lowering. If it is partially worn, it can be used over a long period of time by repolishing. On the other hand, in Comparative Examples 1 and 2, the hardness variation is large. In particular, since the thickness of Comparative Example 1 is as thick as 10 mm, the resin is concentrated near the surface and the hardness is high, and the resin near the center B is less transferred and the hardness is low. Therefore, if the vicinity of the surface of the resin composite tube is worn, the surface condition will change drastically and the performance such as pressurization, friction, adsorption, absorption, coating, etc. required for industrial rolls will deteriorate and it will be unusable. . Also in Comparative Example 2, the thickness is 4 mm, which is thinner than Comparative Example 1 and the hardness variation is slightly smaller. However, the resin is concentrated near the surface, the hardness is high, and the resin near the center B is less transferred and the hardness is low. It is low. Therefore, like the comparative example 1, it cannot be used. When Examples 1 and 2 are compared with Comparative Examples 1 and 2, it can be understood how excellent the present invention is.
[0021]
Next, for the resin composite tubes of Examples 1 and 2 and Comparative Examples 1 and 2, the friction coefficients between the surfaces A and C and the interior B were measured. As shown in FIG. 5, the resin composite tube of each example was cut to a width of 10 cm, and the cut end was substantially divided into four in the thickness direction, and each of the divided cut ends A, B, and C was subjected to a friction coefficient (vs. acrylic plate). Was measured. When the resin composite tube is used as a roll for an industrial roll coating material, the inside is used by reducing the friction from the surface. At that time, if the difference between the coefficient of friction between the surface side and the inside is large, the gripping force as an industrial roll is changed and stable performance cannot be expected. Table 2 shows the friction coefficient of each part. In Table 2, positions A, B, and C represent three portions from the surface side to the inner side obtained by dividing the thickness of the resin composite tube into four equal parts.
[0022]
Figure 0003874927
[0023]
In Examples 1 and 2 of this invention, it turns out that a friction coefficient is substantially uniform from A to C. The uniform coefficient of friction means that the gripping force does not change even when the surface is worn and the inside is exposed, and the performance of pressurization, friction, adsorption, absorption, coating, etc. required for industrial rolls is reduced. It can be demonstrated without doing. If it is partially worn, it can be used over a long period of time by repolishing. On the other hand, in Comparative Examples 1 and 2, the difference in friction coefficient between the surface vicinity A and the center vicinity B is large. The resin is concentrated near the surface A and the friction coefficient is high, and the resin near the center B is reduced due to the migration of the resin and the friction coefficient is low. Therefore, if the vicinity of the surface of the resin composite tube is worn, the gripping force changes greatly, and the performance such as pressurization, friction, adsorption, absorption, application, etc. required as an industrial roll is lowered and it cannot be used. .
[0024]
Next, with respect to the resin composite tubes of Examples 1 and 2 and Comparative Examples 1 and 2, the water absorption time between the surface vicinity A and C and the inside B was measured. As shown in FIG. 5, the resin composite tube of each example was cut into a width of 10 cm, and the cut end was divided into four substantially in the thickness direction, and a drop of water was dropped for each of the divided portions A, B, and C. Was measured 10 times and averaged. When the resin composite tube is used as a roll for an industrial roll coating material, the inside is used by reducing the friction from the surface. At that time, if the difference in water absorption time between the surface side and the inside is large, the performance of adsorption, absorption, and coating as an industrial roll changes and cannot be used stably. Table 3 shows the average water absorption time of each part. In Table 3, A, B, and C at positions represent three portions from the surface side to the inner side obtained by dividing the thickness of the resin composite tube into four equal parts.
[0025]
Figure 0003874927
[0026]
In Examples 1 and 2 of this invention, it turns out that the water absorption time is substantially uniform from A to C. This uniform water absorption time can be exhibited without deterioration in the performances such as adsorption, absorption, and coating required for an industrial roll even if the surface wears down and the inside is exposed. If it is partially worn, it can be used over a long period of time by repolishing. On the other hand, in Comparative Examples 1 and 2, the difference in water absorption time between the surface vicinity A and the center vicinity B is large. The resin concentrates in the vicinity of the surface A and the water absorption time is short. In the vicinity of the center B, the resin moves and decreases, and the water absorption time is long. Therefore, if the vicinity of the surface of the resin composite tube is reduced, the water absorption time is greatly changed, and the performances such as adsorption, absorption, and application required as an industrial roll are lowered, and it cannot be used. If Examples 1 and 2 are compared with Comparative Examples 1 and 2, it can be understood how excellent the present invention is.
[0027]
【The invention's effect】
According to the present invention, as shown in FIG. 1, the surface of the resin composite tube is seamless and uniform, and the resin is evenly distributed from the surface to the inside of the cylindrical nonwoven fabric. Thus, the resin is not distributed only on the surface of the non-woven fabric, and no resin lump or cavity is generated inside. The resin composite tube has a uniform amount of resin both on the surface side and inside, and has uniform characteristics such as hardness, friction coefficient, and water absorption time. Even if the surface is anti-friction and the inside is exposed, performance such as pressurization, friction, adsorption, absorption, coating, etc. required for an industrial roll can be exhibited without deterioration and can be used for a long period of time. Further, it can be made sufficiently thicker than the conventional one, and when it is partially worn, it can be used for a long period of time by re-polishing.
[Brief description of the drawings]
1 is a front view and a side view of a nonwoven fabric roll equipped with the resin composite tube of the present invention. FIG. 2 is a front view and a side view of a nonwoven fabric roll wound spirally. FIG. 3 is a front view of a nonwoven fabric roll wound in a laver shape. Side view [Fig. 4] Front view and side view of a nonwoven fabric roll in which a large number of donut-shaped discs are laminated. [Fig. 5] Cross section of a cut section of a resin composite tube. [Explanation of symbols]
1. Roll core material2. 2. Resin composite tube 3. Seam portion 4. Donut disk Front side 6. A
7). B
8). C
9. Inside

Claims (5)

円筒形状に、ニードリングにより一体化した不織布の構造体に、遅効性凝固剤を添加したエマルジョン系樹脂を含浸させてなることを特徴とする、ロール芯材の被覆用樹脂複合チューブ。A resin composite tube for covering a roll core material, wherein a non-woven structure integrated into a cylindrical shape by needling is impregnated with an emulsion resin to which a slow-acting coagulant is added. 前記樹脂複合チューブの厚さが1〜30mmであり、樹脂付着量が繊維に対して20〜200重量%であり、且つ表面硬度及び断面硬度が30〜90度であって、当該硬度の厚さ方向のバラツキが10%未満であることを特徴とする、請求項1に記載のロール芯材の被覆用樹脂複合チューブ。The resin composite tube has a thickness of 1 to 30 mm, a resin adhesion amount of 20 to 200% by weight with respect to the fiber, a surface hardness and a cross-sectional hardness of 30 to 90 degrees, and the thickness of the hardness The resin composite tube for covering a roll core material according to claim 1, wherein the variation in direction is less than 10%. 円筒形状に、ニードリングにより一体化した不織布の構造体に、遅効性凝固剤を添加したエマルジョン系樹脂を含浸させ、当該樹脂を凝固させた後乾燥することを特徴とする、ロール芯材の被覆用樹脂複合チューブの製造方法。A roll core material coating characterized by impregnating a non-woven fabric structure integrated into a cylindrical shape by needling with an emulsion resin to which a slow-acting coagulant is added, coagulating the resin and then drying it. Method for resin composite tube. 前記遅効性凝固剤が、炭酸ナトリウム、硫酸アンモニウム、ケイフッ化ナトリウム、酢酸ナトリウム、酢酸アンモニウム、塩化マグネシウム、又は、塩化カルシウムであり、凝固剤の添加量が樹脂固形分に対して0.1〜5.0重量%であることを特徴とする、請求項3に記載のロール芯材の被覆用樹脂複合チューブの製造方法。 The slow-acting coagulants, sodium carbonate, ammonium sulfate, sodium fluorosilicate, sodium acetate, ammonium acetate, magnesium chloride, or a calcium chloride, 0.1-5 amount of coagulant relative to the resin solids. The method for producing a resin composite tube for covering a roll core material according to claim 3, wherein the content is 0% by weight. 前記エマルジョン系樹脂が、合成ゴム系、アクリル系、又は、ポリウレタン系のエマルジョンであることを特徴とする、請求項3又は4に記載のロール芯材の被覆用樹脂複合チューブの製造方法。 The method for producing a resin composite tube for coating a roll core material according to claim 3 or 4, wherein the emulsion resin is a synthetic rubber-based, acrylic-based, or polyurethane-based emulsion.
JP12267298A 1998-03-27 1998-03-27 Resin composite tube and manufacturing method Expired - Lifetime JP3874927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12267298A JP3874927B2 (en) 1998-03-27 1998-03-27 Resin composite tube and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12267298A JP3874927B2 (en) 1998-03-27 1998-03-27 Resin composite tube and manufacturing method

Publications (2)

Publication Number Publication Date
JPH11279921A JPH11279921A (en) 1999-10-12
JP3874927B2 true JP3874927B2 (en) 2007-01-31

Family

ID=14841788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12267298A Expired - Lifetime JP3874927B2 (en) 1998-03-27 1998-03-27 Resin composite tube and manufacturing method

Country Status (1)

Country Link
JP (1) JP3874927B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257543A (en) * 2010-06-08 2011-12-22 Sharp Corp Oil application roller, fixing device and image forming device

Also Published As

Publication number Publication date
JPH11279921A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP5091417B2 (en) Polishing cloth
JPH02269095A (en) Printing blanket structure
JP4562598B2 (en) Polishing cloth
JP4034320B2 (en) Holding pad
JP4832789B2 (en) Polishing cloth
US4043013A (en) Transfer roller
JP3874927B2 (en) Resin composite tube and manufacturing method
JP5049504B2 (en) Polishing cloth for finishing
JPH0397976A (en) Artificial leather having excellent water vapor permeability and flexibility
JP4566660B2 (en) Polishing cloth for finish polishing and method for manufacturing polishing cloth
JP3366643B2 (en) Fibrillated surface
JP2012056032A (en) Foamed sheet material
JP2980261B2 (en) Method for producing fiber sheet
JP5683194B2 (en) Holding pad
TWI826678B (en) Grained imitation leather sheet
JP2010070862A (en) Resin composite conductive tube
JPH0227118B2 (en)
JP2003089993A (en) Doctor blade for drainage
JPH0363683A (en) Cleaning sheet
KR101111417B1 (en) Roll
JP5639822B2 (en) Holding pad
JP2018083282A (en) Polishing pad and manufacturing method thereof, and manufacturing method of object to be polished
JP5571404B2 (en) Papermaking felt and manufacturing method thereof, papermaking belt and manufacturing method thereof
JP7302848B2 (en) Polishing sheet and polishing method
JPH03118583A (en) Cleaning sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term