JP3871966B2 - Vanishing model casting method - Google Patents

Vanishing model casting method Download PDF

Info

Publication number
JP3871966B2
JP3871966B2 JP2002151130A JP2002151130A JP3871966B2 JP 3871966 B2 JP3871966 B2 JP 3871966B2 JP 2002151130 A JP2002151130 A JP 2002151130A JP 2002151130 A JP2002151130 A JP 2002151130A JP 3871966 B2 JP3871966 B2 JP 3871966B2
Authority
JP
Japan
Prior art keywords
casting
model
molten metal
time
casting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002151130A
Other languages
Japanese (ja)
Other versions
JP2003340547A (en
Inventor
毅 成島
茂夫 仲井
等 船田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002151130A priority Critical patent/JP3871966B2/en
Publication of JP2003340547A publication Critical patent/JP2003340547A/en
Application granted granted Critical
Publication of JP3871966B2 publication Critical patent/JP3871966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、消失模型鋳造法に関する。
【0002】
【従来の技術】
消失模型鋳造法はフルモールド法とも言われ、合成樹脂発泡体にて製作した模型を鋳物砂に埋設したまま鋳型として利用するプロセスであり、容易に鋳造できる等、多くの利点を有しているが、その反面、模型の熱分解による鋳造欠陥が生じやすい。特に、充填が遅いとき、溶湯の温度低下により模型が完全に分解、気化せずに、残渣欠陥を生じ、逆に充填が速すぎて鋳型内の溶湯が乱れると、模型熱分解物が溶湯中に巻き込まれ残渣欠陥を引き起こす。
【0003】
鋳込速度の目安を模型分解の観点から与えるものとして、眞殿 統:JACTNEWS 15693ページ(1997)が開示されており、およそ1cm/sの速さで鋳型内の湯面が上昇することがよいとされている。残渣欠陥を制御する方法としては、適宜の膜厚に設定されたガスシール膜によりガス抜けを調整し、溶湯を制御する方法(特開平2−268943号公報)や、模型内部に中空部を設けて発生ガスを減少させ、かつ加圧して塗膜の崩れを防止する方法(特開平2000−140994号公報)が開示されている。
【0004】
【発明が解決しようとする課題】
上記のように消失模型鋳造法では、鋳型内の溶湯の乱れを抑えつつ、速やかな充填を実現することが重要であるが、絶対的な鋳込速度の設定や従来提案されている残渣欠陥の改良法だけでは十分とは言えず、鋳物の大きさや形状、その他鋳込み条件等の各種方案に応じて鋳物品質を向上させる条件が明らかになっていない。
【0005】
従って、残渣欠陥を低減し優れた品質の鋳物が得られる条件を簡易に決定できれば、当業界での利用価値は極めて高いものと考える。
【0006】
【課題を解決するための手段】
本発明は、鋳物砂内に合成樹脂発泡体製模型を埋設してなる鋳型に溶湯を注湯し、該溶湯によって前記模型を消失させながら製品を鋳造する消失模型鋳造法であって、鋳型の内圧のかからない空隙鋳造における鋳込時間t(秒)に基づいて前記溶湯の鋳込時間t(秒)を決定する消失模型鋳造法に関する。
【0007】
また、本発明は、暫定的に決定された鋳造方案から鋳型の内圧のかからない空隙鋳造における鋳込時間t(秒)を求め、この鋳込時間tに基づいて目標とすべき鋳込時間tを定め、該鋳込時間tを与えるように最終的な鋳造方案を決定する、消失模型鋳造法における鋳造方案の決定方法に関する。
【0008】
また、本発明は、鋳物砂内に合成樹脂発泡体製模型を埋設してなる鋳型に溶湯を注湯し、該溶湯によって前記模型を消失させながら製品を鋳造する消失模型鋳造法であって、前記溶湯の鋳込時間t(秒)と鋳型の内圧のかからない空隙鋳造における鋳込時間t(秒)とが、1.1<t/t<7を満たす消失模型鋳造法に関する。
【0009】
鋳造方案とは、例えば「機械工学便覧B2編」(丸善)p.12(1987)に記載されているように、溶湯を鋳型に流し込む湯口、ひけ巣を防止する押湯・冷し金などの設計ならびに注湯温度の設定などの総称である。更に、本発明では、模型の熱分解により発生するガスをはじめとする鋳型内のガスを排出する手段の設計も鋳造方案と称する。ガスを排出する手段としては、例えば、塗膜や外気に連通するガス排出通路、該排出通路に設けられた排出気体抑制手段等が挙げられる。消失模型鋳造法ではこの鋳造方案により鋳込時間が影響される。従来は、この鋳造方案を経験的に定めて鋳造が行われていたが、本発明では、上記tに基づいて目標の鋳込時間tを定め、これを実現するように鋳造方案を調整する。このような手法により、本発明では、残渣欠陥を低減し優れた品質の鋳物が得られる条件が簡易に決定できるが、これは従来とは異なる本発明による新たな知見である。
【0010】
【発明の実施の形態】
本発明では、鋳型内での溶湯の乱れを抑えつつ速やかな充填を実現するために、模型の大きさや形状が考慮された、鋳型の内圧のかからない空隙鋳造における鋳込時間tに基づき鋳込時間tを決定する。
【0011】
なお、本発明において鋳込時間tとは、溶湯がせきを通過し模型に流入を開始したときから製品天面部まで溶湯が充填されるまでの時間である。また、模型に溶湯が流入する時刻の特定が困難な場合には、注湯を開始した時刻で代用してもよい。同様に、製品天面部が充填される時刻の特定が困難な場合は、押湯や揚りに溶湯が到達した時刻で代用できる。
【0012】
一般にt/tが小さくなると鋳型内の溶湯が乱れるため残渣欠陥が発生しやすくなる傾向にあり、t/tが大きくなると溶湯の充填が阻害され残渣欠陥が顕著になりやすくなる傾向にある。なお、t/tの理論上の最適値は、減圧による脱気促進などを行わない場合、1である。本発明の特徴は、対応する鋳造方案による空隙鋳造時の鋳込時間tを参照して、実際の消失模型鋳造法の鋳込時間tを定めるところにあり、tのtに対する比t/tにより判断されることが好ましく、更にa<t/t<b(a、b:常数)として各方案に応じて判断され、具体的には最適な範囲は1.1<t/t<7、望ましくは1.5<t/t<6、更に望ましくは1.5<t/t<3である。
【0013】
本発明では、このt/tの範囲を満たした上で、鋳型内で溶湯面が上昇する速度vを1<v<4、更には1.4<v<3、特には1.8<v<2.9[cm/s]とすることが更に望ましい。
【0014】
は鋳型の内圧(すなわち背圧)のかからない空隙鋳造における鋳込時間を意味し、実施する消失模型鋳造法と同じ鋳造方案で実際に空隙鋳造を行い求めてもよいが、計算するのが簡便で好ましい。tを計算により算出する一例として、下記式(1)による方法が挙げられる。
【0015】
【数3】

Figure 0003871966
【0016】
式(1)の変数のうち、模型の平均の断面積Sと模型の高さHは、鋳物形状から固定される値となるので、溶湯の通路の断面積Sc、湯口の長さZが変更可能な変数となる。鋳込時間tの調整は、これら2つの変数を含む他の条件を調整することで行われる。発生気体による背圧は溶湯の乱れを抑える効果があり、この発生気体の生成、排出は鋳込時間に及ぼす影響が大きいため、消失模型鋳造法における鋳込時間tのtに対する比t/tが適切な範囲、すなわちa<t/t<b(a、b:常数)にあると湯乱れが抑えられるものと考えられる。
【0017】
上記式(1)で表される空隙鋳造における鋳込時間tは、例えば、「講座・現在の金属学材料編10 鋳造凝固」(日本金属学会、1992、P32)に記載されている通り、空隙鋳造の鋳込時間の計算式としてよく知られている。
【0018】
式(1)において、cは流量係数(単位なし)であり、「鋳造工学」(産業図書、1995年、P112)によれば、通常0.2〜0.8程度の値となる。cは溶湯の通路の形状に応じて決まるが、本方法においてはc=0.3とする。gは重力加速度(m/s2)である。Sは模型の平均断面積で、形状が複雑な場合、例えば模型の体積を模型の最大高さで割ることで求めることができる。Scは溶湯の通路の断面積(m2)であり、通路の最狭部の断面積を用いるのが好ましい。また、Scとして通路最狭部の断面積に代えて、湯口や湯道、せきのいずれかの総断面積を用いてもよい。Zは湯口の長さ(m)で、溶湯の落差を表すものである。受口の深さを湯口長さとあわせてZとしてもよく、好ましくは受口における実際の湯面の位置からせきまでの落差である。Hは模型の高さ(m)である。
【0019】
なお、式(1)は押上方案を想定しており、せきを模型最下部に設置すると仮定して上記パラメータを定義した。せきの位置が模型最下部でない場合、あるいは最上部の場合、「講座・現在の金属学材料編10 鋳造凝固」(日本金属工学会、1992、P31〜32)を参考に、模型の高さをせきより上の部分と下の部分に分けて、上型と下型の充填時間を別々に求めて、それらを合計することで空隙鋳造の鋳込時間tを求める。すなわち、せきから受口の湯面位置までの高さをZ、模型の底部からせきまでの高さをH1、せきから模型の上面までの高さをH2とする。せきより下の下型部が充填される時間t1
【0020】
【数4】
Figure 0003871966
【0021】
である。ここでV1は下型空洞部(模型部分)の体積(m3)である。せきより上の上型部が充填される時間t2は、式(1)と同様に、
【0022】
【数5】
Figure 0003871966
【0023】
である。tは、t=t1+t2と計算される。すなわち、式(1−1)により計算される。
【0024】
【数6】
Figure 0003871966
【0025】
また、tを、式(1−2)のように
【0026】
【数7】
Figure 0003871966
【0027】
で算出する方法もある。ここで、Vは上型と下型をあわせた空洞部(模型部分)の体積(m3)である。なお、精度の点で式(1−1)がより好ましい。これらの式でもcは0.3とする。
【0028】
消失模型鋳造法における溶湯充填の制御は、良質な鋳物を得る上で重要であるが、実際の作業現場においては作業者の経験に基づき、塗型剤の通気度や厚みなどを調節して発生気体の通気性を制御している。しかし、実際にどのように制御すると残渣欠陥がなく品質の良い鋳物が製造できるか明確になっていない。これに対して、本発明では、空隙鋳造における鋳込時間t(秒)との対比により定めた溶湯の鋳込時間t(秒)に基づいて、例えば1.1<t/t<7を満たすような鋳造方案で鋳造を実施することにより、溶湯充填の制御が適正化され、種々の発泡模型を用いても鋳型内での溶湯の乱れを抑えつつ速やかな充填が実現され、残渣欠陥の少ない品質の良好な鋳物が得られる。すなわち、本発明は、消失模型鋳造法における明確な作業指針を提供できるため、当業界において非常に有用である。
【0029】
本発明の消失模型鋳造法は、鋳型を減圧して塗膜を通じてのガス排出を促進する、いわゆる減圧法や、外気に連通するガス排出通路を通じてガス排出を行う鋳造法など、いずれにも適用できる。しかし、より残渣欠陥の抑制が可能な外気に連通するガス排出通路を設ける鋳造法、更にはガス排出通路に排出気体抑制手段を設け且つ模型内に湯口及びガス排出通路に連通する貫通孔を形成する鋳造法が好ましい。
【0030】
本発明の消失模型鋳造法の一例を図1に基づいて説明する。図1中、鋳型は鋳枠4と鋳枠4の内部の鋳物砂7と鋳物砂7に埋設された模型1等からなり、模型1に連通した受口5が左上方に設けられている。模型1は、発泡ポリスチレンによって製品と同一形状に形成されており、貫通孔2が設けられている。鋳物砂7は5.5号硅砂であり、粘結剤を適量含有させてある。鋳型の形成は、まず、模型1の表面に耐火性に優れた塗型剤3を塗布し、その後充分乾燥させる。そして鋳枠4に湯口6および湯道10を形成した後、模型1を固定し鋳物砂7で埋設し、受口5を設置する。その際、貫通孔2の内部は空間にしておき、貫通孔2を湯道10に連通させると共に、貫通孔2に連通する排出管を設け排出通路8とする。排出通路8となる排出管はセラミック製で、排出気体抑制手段としてバインダーで成型されたアルミナ等の耐火物粒子9が充填され、貫通孔2と大気とを連通させるように鋳物砂7に埋設される。
【0031】
受口5から溶湯を注湯すると、溶湯は湯口6および湯道10を通って模型1に到達し、模型1を溶融させて、鋳型内に溜る。一方、排出通路8からは、溶湯によって溶融、燃焼された模型1の気体の排出が確認されるが、耐火物粒子9が充填されているので、気体の放出が調整される。
【0032】
以下に本発明の好ましい一態様である図1に示される鋳造法におけるtの制御方法について説明する。なお、減圧鋳造法においては、塗膜の通気性や減圧度によりtの制御が一般に可能である。図1のように、排出気体抑制手段を設け、その通気性や設置度合い(設置数、設置位置等)により、溶湯の鋳込時間t(秒)を制御することが好ましい。ここで、排出気体抑制手段とは、該手段を設けることで発生気体を外部に徐々に放出し得る通気性を有する手段であり、耐火物粒子及びその層、背圧弁、中空細管からなることが好ましく、さらには、溶湯の吹き出し防止の点から耐火物粒子及びその層、背圧弁が好ましく、更にはススのろ過の機能も兼ねられる点から耐火物粒子及びその層が好ましい。
【0033】
排出気体抑制手段の通気性は、充填する耐火物粒子の粒径、充填厚み、排出通路の直径などを変更することで調整できる。中空細管を排出気体抑制手段に用いる場合は、その直径と長さを変更することで調整できる。通気性の調整によって、鋳型内の背圧が変わり、それによって溶湯の充填の制御が可能になる。なお、貫通孔や排出気体抑制手段を設けなくても、塗型剤の通気度を変更したり、膜厚を調整したりして、溶湯の充填制御を行う方法もある。
【0034】
本発明において、排出気体抑制手段として用いられる通気性のある耐火物層としては、バインダー等を添加して耐火物粒子を成型させたものや、ウレタンフォームにセラミックススラリーを浸漬しその後焼成した、いわゆるセラミックスフォームフィルター等を使用することもでき、好ましくは前者である。耐火物粒子の平均粒径は0.1〜10mm、更に0.5〜5mmが好ましく、金属又はその酸化物の粒子、例えばアルミナ、珪砂、ジルコン砂、クロマイト砂、合成セラミック砂等が挙げられる。耐火物は、排出通路の断面積、形状にもよるが、厚さが0.5〜20cm、更に1〜10cmとなる量で充填されることが好ましい。中空細管を排出気体抑制手段とする場合は内径0.1〜5cm、長さ30cm〜5m、更には内径0.5cm〜2cm、長さ40cm〜2mで、金属等の耐火性のある材質で構成されるものが好ましい。
【0035】
また、背圧弁とは、気体の流れ方向の圧力を弁の前側(気体流路の上流)に比して後側(気体流路の下流)を低く設定できる弁のことであり、バネ式低圧バルブ、ニードル式等何れを用いてもよく、これらを排気通路に設置することで排出気体抑制手段が形成される。
【0036】
模型は、合成樹脂発泡体からなるものが使用される。合成樹脂発泡体としては、ポリスチレン、ポリメタクリル酸メチル、又はこれらの共重合体等の発泡体が用いられる。
【0037】
模型には塗型剤により塗型層が形成される。塗型の通気性は鋳込時間tに影響する因子の一つである。塗型剤としては、市販のもののほか、粒径10μm以下の耐火性骨材を含有するものも使用可能である。これにより、塗型膜の表面平滑性が向上し、鋳物の表面平滑性も向上する。塗型剤中の耐火性骨材としては、例えば黒鉛、ジルコン、マグネシア、アルミナ、シリカなどがある。また塗型剤の粘結剤として、水系ではポリアクリル酸ナトリウム、澱粉、メチルセルロース、ポリビニルアルコール、アルギン酸ナトリウム、アラビアガム等の水溶性高分子や酢酸ビニル系等の各種の樹脂のエマルションを、またアルコール系ではアルコール可溶もしくは分散する各種樹脂を添加するのが、塗型強度の点から好ましい。添加量は耐火性骨材100重量部に対し、好ましくは0.5〜10重量部である。
【0038】
鋳造に用いる鋳物砂としては、石英質を主成分とする珪砂の他、ジルコン砂、クロマイト砂、合成セラミック砂等の新砂又は再生砂が使用される。鋳物砂は粘結剤を添加せずに用いることもでき、その場合には充填性が良好であるが、強度が必要な場合には、粘結剤を添加し、硬化剤により硬化させるのが好ましい。
【0039】
上記した本発明によれば、鋳物砂内に合成樹脂発泡体製模型を埋設してなる鋳型に溶湯を注湯し、該溶湯によって前記模型を消失させながら製品を鋳造する消失模型鋳造法であって、当該鋳造法のための鋳造方案から鋳型の内圧のかからない空隙鋳造における鋳込時間t(秒)を求め、このtに基づいて前記溶湯の鋳込時間t(秒)を決定する消失模型鋳造法が提供される。
【0040】
また、本発明によれば、鋳物砂内に合成樹脂発泡体製模型を埋設してなる鋳型に溶湯を注湯し、該溶湯によって前記模型を消失させながら製品を鋳造する消失模型鋳造法であって、暫定的に決定された鋳造方案から鋳型の内圧のかからない空隙鋳造における鋳込時間t(秒)を求め、このtから目標とすべき溶湯の鋳込時間t(秒)を定め、tとtの比較結果に基づいて最終的な鋳造方案を決定し、当該最終的な鋳造方案に基づいて鋳造を行う消失模型鋳造法が提供される。
【0041】
【発明の効果】
本発明によれば、品質の優れた鋳物が得られる条件を簡易に決定できる消失模型鋳造法が提供される。
【0042】
【実施例】
実施例1
図2に示す発泡ポリスチレン製の発泡模型を図1のようにセットして消失模型鋳造を行った。その際、湯口系の設置は図4のようにした。模型の空洞部1、3の大きさは、横200mm×縦130mm、深さ275mm、空洞部2の大きさは、横200mm×縦140mm、深さ275mmであった(外枠、仕切部の厚み25mm)。
【0043】
また、この模型における貫通孔の形成の様子を図3に、模型の設置位置を図4に、それぞれ模式的に示した。フィルターを2本設置する場合は図4(a)の貫通孔(a)、(d)に、4本設置する場合は図4(a)の貫通孔(a)〜(d)に、12本設置する場合は図4(b)に示すように設置した。図4(b)でも貫通孔(a)〜(d)が形成され、更に破線で示すように貫通孔が形成されている。湯道とせきは発泡ポリスチレンによって形成されており、湯道とせきの内部には互いに連通する貫通孔が形成されている。この貫通孔は、湯口に連通させると共に模型内部の貫通孔にも連通している。せきは6ヶ所であり、各せきの断面積の合計をScとして採用した。
【0044】
鋳造は表1の鋳造方案で行った。鋳造の際、表2に示すフィルターを、排出気体抑制手段を備えた排出通路として、表1のように用いた。
【0045】
模型の表面には70ボーメの塗型剤を塗布し、乾燥後、造型を行った。なお、塗型剤の組成は、シリカ粉(平均粒径8μm)40重量%、鱗状黒鉛10重量%、酢酸ビニル系バインダー5重量%、水40重量%、非イオン界面活性剤0.5重量%、ベントナイト4.5重量%であった。また、鋳鉄の材質はFC−250、鋳込温度は1400℃であった。本実施例の鋳造材料である鋳鉄は、注湯温度である1400℃において密度は6700kg/m3である。
【0046】
鋳込時間tは、タッチセンサーを用いて計測した。タッチセンサーとは溶湯の導電性を利用して、ある場所における溶湯の到達を知るもので、その一例が、小林武、糟谷良和:鋳物Vol.64, p.794 (1992) に掲載されている。
【0047】
t/tの値と鋳物品質を評価した結果を表1に示す。ここで、残渣欠陥は、鋳物上面をフライス盤により切削し残渣欠陥がなくなる深さである。表1の結果から、t/tが1.1超7未満の範囲にある場合は、残渣欠陥が抑制されたことがわかる。この結果から、t/tがこの範囲にある場合は、溶湯の充填が適度に制御され鋳型内の溶湯の乱れがなく、模型熱分解物を巻き込むことがないものと推察される。従来のように、鋳物メーカー等における作業者が、経験や勘に基づいて実施例1に記載された発泡模型の鋳造を行うと、木型法に比べて高い不良率となることが予想されるのに対し、本発明に準じて鋳造を行えば、木型法並みの不良率まで低減できるものと考えられる。
【0048】
なお、表1の試験No.1におけるtの算出方法を示す。試験No.1において、c=0.3、重力加速度g=9.8[m/s]、湯口高さZ=0.7[m]、せき断面積Sc=3.61×10-3[m2]、模型の高さは0.3[m]である。模型の平均断面積は、実際にNC加工された模型に基づいて決定した。各実験の平均模型重量が0.6[kg]であり、模型密度20[kg/m3]を用いて、平均模型体積は0.6/20=0.03[m3]となる。なお、模型密度20[kg/m3]は発泡倍率50倍にあたる。得られた模型体積を模型高さ0.3[m]で割ることで、平均断面積0.1[m2]を得る。以上より、試験No.1のt
【0049】
【数8】
Figure 0003871966
【0050】
となる。
【0051】
【表1】
Figure 0003871966
【0052】
*1:湯口比は、湯口:湯道:せきの面積比率である。
*2:フィルターは下記表2に示されるものである。
【0053】
【表2】
Figure 0003871966

【図面の簡単な説明】
【図1】本発明の消失模型鋳造法の一例を示す概略図
【図2】実施例1で用いた模型の概略図
【図3】実施例1で用いた模型の貫通孔の形成位置を示す概略図
【図4】実施例1の鋳型における模型、湯口及び湯道の位置関係を示す概略図
【符号の説明】
1 模型
2 貫通孔
8 排気通路
9 耐火物粒子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a disappearance model casting method.
[0002]
[Prior art]
The disappearance model casting method is also called a full mold method, and is a process of using a model made of synthetic resin foam as a mold while being embedded in foundry sand, and has many advantages such as easy casting. On the other hand, casting defects are likely to occur due to thermal decomposition of the model. In particular, when filling is slow, the model does not completely decompose and vaporize due to a drop in the temperature of the molten metal, resulting in residual defects. Conversely, if the filling is too fast and the molten metal in the mold is disturbed, It gets caught in and causes residue defects.
[0003]
To give a guide to the casting speed from the viewpoint of disassembling the model, Toru Tsujidon: JACTNEWS, page 15693 (1997) is disclosed, and the molten metal surface in the mold should rise at a speed of about 1 cm / s. It is said that. As a method for controlling the residual defects, a method for adjusting the outgassing by a gas seal film set to an appropriate film thickness and controlling the molten metal (Japanese Patent Laid-Open No. 2-268934), or providing a hollow portion inside the model A method for reducing the generated gas and applying pressure to prevent the coating from collapsing (Japanese Patent Laid-Open No. 2000-140994) is disclosed.
[0004]
[Problems to be solved by the invention]
As described above, in the disappearance model casting method, it is important to realize rapid filling while suppressing the turbulence of the molten metal in the mold, but the setting of absolute casting speed and the conventionally proposed residual defect The improvement method alone cannot be said to be sufficient, and the conditions for improving the casting quality according to various methods such as the size and shape of the casting and other casting conditions have not been clarified.
[0005]
Accordingly, if the conditions under which residual defects are reduced and excellent quality castings can be easily determined, it is considered that the utility value in this industry is extremely high.
[0006]
[Means for Solving the Problems]
The present invention is a vanishing model casting method in which a molten metal is poured into a mold formed by embedding a synthetic resin foam model in foundry sand, and the product is cast while the model is lost by the molten metal. The present invention relates to a disappearance model casting method in which a casting time t (second) of the molten metal is determined based on a casting time t (second) in void casting in which no internal pressure is applied.
[0007]
Further, according to the present invention, a casting time t (second) in void casting that does not require the internal pressure of the mold is obtained from a tentatively determined casting method, and a casting time to be targeted based on this casting time t ∞. The present invention relates to a casting method determination method in the disappearance model casting method in which t is defined and a final casting method is determined so as to give the casting time t.
[0008]
Further, the present invention is a disappearing model casting method in which a molten metal is poured into a mold formed by embedding a synthetic resin foam model in foundry sand, and the product is cast while the model is lost by the molten metal, The present invention relates to a disappearance model casting method in which a casting time t (second) of the molten metal and a casting time t (second) in void casting that does not apply the internal pressure of the mold satisfy 1.1 <t / t <7.
[0009]
For example, as described in "Mechanical Engineering Handbook B2" (Maruzen) p.12 (1987), the casting method is a pouring gate that pours molten metal into the mold, a hot water / cooling metal that prevents sink marks, etc. It is a general term for design and setting of pouring temperature. Furthermore, in the present invention, the design of the means for discharging the gas in the mold including the gas generated by the thermal decomposition of the model is also called a casting method. Examples of the means for discharging the gas include a gas discharge passage communicating with the coating film and the outside air, and an exhaust gas suppressing means provided in the discharge passage. In the disappearance model casting method, the casting time is affected by this casting method. Conventionally, the casting defines the casting design empirically been performed, the present invention defines a casting time t of the target based on the t ∞, adjusting the casting design to achieve this . By such a method, in the present invention, conditions for reducing residual defects and obtaining a casting of excellent quality can be easily determined. This is a new finding by the present invention different from the conventional one.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, in order to realize rapid filling while suppressing turbulence of the molten metal in the mold, casting is performed on the basis of the casting time t in the void casting that does not require the inner pressure of the mold in consideration of the size and shape of the model. Time t is determined.
[0011]
In the present invention, the casting time t is the time from when the molten metal passes through the cough and starts to flow into the model until the molten metal is filled to the top surface of the product. Further, when it is difficult to specify the time at which the molten metal flows into the model, the time at which the pouring is started may be substituted. Similarly, when it is difficult to specify the time at which the product top surface is filled, the time at which the molten metal reaches the hot water or fried food can be substituted.
[0012]
In general, when t / t is small, the molten metal in the mold is disturbed, and thus a residue defect tends to occur. When t / t is large, filling of the molten metal is inhibited and the residual defect tends to become prominent. . Note that the theoretical optimum value of t / t is 1 when deaeration promotion or the like by decompression is not performed. The characteristic of the present invention is that the casting time t of the actual disappearance model casting method is determined with reference to the casting time t at the time of void casting by the corresponding casting method, and the ratio t / t to t is t /. it is preferred to be judged by t ∞, further a <t / t ∞ <b (a, b: constant) as is determined in accordance with the scheme, the optimal range is specifically 1.1 <t / t <7, preferably 1.5 <t / t <6, more preferably 1.5 <t / t <3.
[0013]
In the present invention, after satisfying the range of t / t , the speed v at which the molten metal surface rises in the mold is set to 1 <v <4, further 1.4 <v <3, particularly 1.8 <. It is further desirable that v <2.9 [cm / s].
[0014]
t means casting time in the air gap casting does not take the pressure of the mold (i.e. back pressure) may actually seek performed void cast in the same casting design and evaporative pattern casting method carrying out, but to calculate Simple and preferable. As an example of calculating by calculating the t ∞, and a method according to the following formula (1).
[0015]
[Equation 3]
Figure 0003871966
[0016]
Of the variables in equation (1), the average cross-sectional area S and the height H of the model are fixed values from the casting shape, so the cross-sectional area Sc of the molten metal passage and the length Z of the gate are changed. It becomes a possible variable. The casting time t is adjusted by adjusting other conditions including these two variables. The back pressure due to the generated gas has the effect of suppressing the turbulence of the molten metal, and the generation and discharge of this generated gas has a large effect on the casting time, so the ratio t / t of the casting time t to t in the disappearance model casting method. When ∞ is in an appropriate range, that is, a <t / t <b (a, b: constant), it is considered that hot water turbulence can be suppressed.
[0017]
The casting time t in the void casting represented by the above formula (1) is, for example, as described in “Course / Current Metallographic Materials 10 Casting Solidification” (Japan Institute of Metals, 1992, P32) It is well known as a formula for calculating the casting time of gap casting.
[0018]
In the formula (1), c is a flow coefficient (no unit), and is usually about 0.2 to 0.8 according to “Casting Engineering” (Industry Books, 1995, P112). Although c is determined according to the shape of the molten metal passage, in this method, c = 0.3. g is a gravitational acceleration (m / s 2 ). S is an average cross-sectional area of the model, and when the shape is complicated, it can be obtained, for example, by dividing the volume of the model by the maximum height of the model. S c is the cross-sectional area (m 2 ) of the molten metal passage, and the cross-sectional area of the narrowest portion of the passage is preferably used. Further, instead of the cross-sectional area of the passage at the narrowest portion as S c, sprue or runner may be using the total cross-sectional area of either of the weir. Z is the length (m) of the gate and represents the drop of the molten metal. The depth of the receiving port may be Z together with the length of the pouring gate, and is preferably a drop from the actual position of the hot water surface to the cough at the receiving port. H is the height (m) of the model.
[0019]
Note that equation (1) assumes a push-up plan, and the above parameters are defined on the assumption that a cough is installed at the bottom of the model. If the position of the cough is not at the bottom of the model, or if it is at the top, refer to “Course / Current Metallurgy Materials 10 Casting and Solidification” (Japan Metal Engineering Society, 1992, P31-32), in portions and the lower part of the Sekiyori, seeking filling time of the upper and lower molds are separately obtains the casting time t void casting by summing them. That is, the height from the cough to the hot water surface position of the receiving port is Z, the height from the bottom of the model to the cough is H 1 , and the height from the cough to the top surface of the model is H 2 . The time t 1 when the lower mold part below the cough is filled is:
[Expression 4]
Figure 0003871966
[0021]
It is. Here, V 1 is the volume (m 3 ) of the lower mold cavity (model part). The time t 2 during which the upper mold part above the cough is filled is the same as in the formula (1).
[0022]
[Equation 5]
Figure 0003871966
[0023]
It is. t is calculated as t = t 1 + t 2 . That is, it is calculated by the equation (1-1).
[0024]
[Formula 6]
Figure 0003871966
[0025]
Further, t is expressed by the following equation (1-2):
[Expression 7]
Figure 0003871966
[0027]
There is also a method of calculating by. Here, V is the volume (m 3 ) of the hollow portion (model portion) of the upper die and the lower die. In addition, Formula (1-1) is more preferable in terms of accuracy. In these formulas, c is 0.3.
[0028]
Control of molten metal filling in the disappearance model casting method is important for obtaining a high quality casting, but in actual work sites, it is generated by adjusting the air permeability and thickness of the coating agent based on the experience of the worker. The gas permeability is controlled. However, it has not been clarified as to how to actually produce a casting with good quality without residual defects. On the other hand, in the present invention, for example, 1.1 <t / t <7 based on the casting time t (second) of the molten metal determined by comparison with the casting time t (second) in the void casting. By performing casting with a casting method that satisfies the requirements, the molten metal filling control is optimized, and even with various foamed models, rapid filling is realized while suppressing turbulence of the molten metal in the mold, and residual defects A good casting with low quality can be obtained. That is, the present invention is very useful in the industry because it can provide a clear working guideline in the disappearance model casting method.
[0029]
The vanishing model casting method of the present invention can be applied to any of a so-called decompression method in which the mold is depressurized to promote gas discharge through the coating film, and a casting method in which gas is discharged through a gas discharge passage communicating with the outside air. . However, a casting method that provides a gas discharge passage that communicates with the outside air that can further suppress residue defects, and further, a gas discharge passage is provided in the gas discharge passage and a through hole that communicates with the gate and gas discharge passage is formed in the model. A casting method is preferred.
[0030]
An example of the vanishing model casting method of the present invention will be described with reference to FIG. In FIG. 1, the mold includes a casting frame 4, a casting sand 7 inside the casting frame 4, a model 1 embedded in the casting sand 7, and the like, and a receiving port 5 communicating with the model 1 is provided in the upper left. The model 1 is formed in the same shape as the product by foamed polystyrene, and is provided with a through hole 2. The foundry sand 7 is No. 5.5 dredged sand and contains an appropriate amount of binder. In forming the mold, first, a coating agent 3 having excellent fire resistance is applied to the surface of the model 1 and then sufficiently dried. And after forming the sprue 6 and the runner 10 in the casting frame 4, the model 1 is fixed, it embed | buries with the foundry sand 7, and the receiving port 5 is installed. At this time, the inside of the through hole 2 is left as a space, and the through hole 2 communicates with the runner 10 and a discharge pipe that communicates with the through hole 2 is provided as the discharge passage 8. The discharge pipe serving as the discharge passage 8 is made of ceramic, filled with refractory particles 9 such as alumina molded with a binder as an exhaust gas suppressing means, and embedded in the foundry sand 7 so as to communicate the through hole 2 with the atmosphere. The
[0031]
When molten metal is poured from the receiving port 5, the molten metal reaches the model 1 through the gate 6 and the runner 10, melts the model 1, and accumulates in the mold. On the other hand, from the discharge passage 8, it is confirmed that the gas of the model 1 melted and burned by the molten metal is discharged, but since the refractory particles 9 are filled, the release of the gas is adjusted.
[0032]
Hereinafter, a control method of t in the casting method shown in FIG. 1 which is a preferred embodiment of the present invention will be described. In the vacuum casting method, t can generally be controlled by the air permeability of the coating film and the degree of vacuum. As shown in FIG. 1, it is preferable to provide exhaust gas suppression means and control the casting time t (seconds) of the molten metal according to the air permeability and the degree of installation (number of installations, installation positions, etc.). Here, the exhaust gas suppressing means is a means having air permeability capable of gradually releasing the generated gas to the outside by providing the means, and may be composed of refractory particles and a layer thereof, a back pressure valve, and a hollow thin tube. Further, refractory particles and their layers and back pressure valves are preferable from the viewpoint of preventing molten metal from blowing out, and refractory particles and their layers are preferable from the viewpoint of also functioning as a soot filtering function.
[0033]
The air permeability of the exhaust gas suppressing means can be adjusted by changing the particle size of the refractory particles to be filled, the filling thickness, the diameter of the discharge passage, and the like. When a hollow thin tube is used as the exhaust gas suppressing means, it can be adjusted by changing its diameter and length. By adjusting the air permeability, the back pressure in the mold is changed, thereby allowing the filling of the molten metal to be controlled. In addition, there is a method in which the filling control of the molten metal is performed by changing the air permeability of the coating agent or adjusting the film thickness without providing the through hole and the exhaust gas suppressing means.
[0034]
In the present invention, as a breathable refractory layer used as an exhaust gas suppression means, a so-called refractory particle formed by adding a binder or the like, or a ceramic slurry immersed in urethane foam and then fired, so-called A ceramic foam filter or the like can also be used, and the former is preferable. The average particle diameter of the refractory particles is preferably 0.1 to 10 mm, more preferably 0.5 to 5 mm, and examples thereof include metal or oxide particles such as alumina, silica sand, zircon sand, chromite sand, and synthetic ceramic sand. Although it depends on the cross-sectional area and shape of the discharge passage, the refractory is preferably filled in an amount of 0.5 to 20 cm, more preferably 1 to 10 cm. When a hollow thin tube is used as the exhaust gas suppression means, the inner diameter is 0.1 to 5 cm, the length is 30 cm to 5 m, the inner diameter is 0.5 cm to 2 cm, and the length is 40 cm to 2 m. Are preferred.
[0035]
The back pressure valve is a valve that can set the pressure in the gas flow direction lower on the rear side (downstream of the gas flow path) than the front side of the valve (upstream of the gas flow path). Any of a valve, a needle type and the like may be used, and the exhaust gas suppressing means is formed by installing these in the exhaust passage.
[0036]
A model made of a synthetic resin foam is used. As the synthetic resin foam, a foam such as polystyrene, polymethyl methacrylate, or a copolymer thereof is used.
[0037]
A coating layer is formed on the model by a coating agent. The air permeability of the coating mold is one of the factors affecting the casting time t. As the coating agent, in addition to commercially available ones, those containing a refractory aggregate having a particle size of 10 μm or less can be used. Thereby, the surface smoothness of a coating type film improves, and the surface smoothness of a casting also improves. Examples of the refractory aggregate in the coating agent include graphite, zircon, magnesia, alumina, and silica. In addition, as a binder for coating agents, water-based emulsions of water-soluble polymers such as sodium polyacrylate, starch, methylcellulose, polyvinyl alcohol, sodium alginate, gum arabic, and various resins such as vinyl acetate are used as alcohol. In the system, it is preferable from the viewpoint of coating strength to add various resins soluble or dispersed in alcohol. The addition amount is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the refractory aggregate.
[0038]
As foundry sand used for casting, new sand or recycled sand such as zircon sand, chromite sand, and synthetic ceramic sand is used in addition to quartz sand mainly composed of quartz. Casting sand can also be used without adding a binder, in which case the filling property is good, but if strength is required, a binder is added and cured with a curing agent. preferable.
[0039]
According to the present invention described above, there is a disappearance model casting method in which a molten metal is poured into a mold formed by embedding a synthetic resin foam model in foundry sand, and the product is cast while the model is disappeared by the molten metal. Then, the casting time t (seconds) in the void casting without applying the internal pressure of the mold is obtained from the casting method for the casting method, and the casting time t (seconds) of the molten metal is determined based on this t ∞. A model casting method is provided.
[0040]
Further, according to the present invention, there is provided a vanishing model casting method in which a molten metal is poured into a mold formed by embedding a model made of a synthetic resin foam in foundry sand, and the product is cast while the model is lost by the molten metal. Then, the casting time t (seconds) in the void casting that does not apply the internal pressure of the mold is determined from the tentatively determined casting method, and the casting time t (seconds) of the melt to be targeted is determined from this t , A vanishing model casting method is provided in which a final casting method is determined based on a comparison result between t∞ and t, and casting is performed based on the final casting method.
[0041]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the vanishing model casting method which can determine easily the conditions from which the casting with excellent quality is obtained is provided.
[0042]
【Example】
Example 1
The foamed model made of expanded polystyrene shown in FIG. 2 was set as shown in FIG. At that time, the gate system was installed as shown in FIG. The size of the cavity portions 1 and 3 of the model was 200 mm wide × 130 mm long and 275 mm deep, and the size of the cavity 2 was 200 mm wide × 140 mm long and 275 mm deep (the thickness of the outer frame and the partition portion) 25 mm).
[0043]
Moreover, the state of formation of the through hole in this model is schematically shown in FIG. 3, and the installation position of the model is schematically shown in FIG. When two filters are installed, 12 holes are provided in the through holes (a) and (d) of FIG. 4A. When four filters are installed, 12 filters are provided in the through holes (a) to (d) of FIG. When installing, it installed as shown in FIG.4 (b). Also in FIG. 4B, through holes (a) to (d) are formed, and further through holes are formed as indicated by broken lines. The runners and coughs are formed of expanded polystyrene, and through holes communicating with each other are formed in the runners and coughs. The through hole communicates with the gate and also communicates with the through hole inside the model. Cough is six locations, employing a total cross-sectional area of each weir as S c.
[0044]
Casting was performed according to the casting method shown in Table 1. At the time of casting, the filter shown in Table 2 was used as shown in Table 1 as a discharge passage provided with exhaust gas suppressing means.
[0045]
A 70 Baume coating agent was applied to the surface of the model, dried and molded. The composition of the coating agent was 40% by weight of silica powder (average particle size 8 μm), 10% by weight of scaly graphite, 5% by weight of vinyl acetate binder, 40% by weight of water, and 0.5% by weight of nonionic surfactant. The bentonite was 4.5% by weight. The cast iron material was FC-250, and the casting temperature was 1400 ° C. The cast iron, which is the casting material of the present example, has a density of 6700 kg / m 3 at a pouring temperature of 1400 ° C.
[0046]
The casting time t was measured using a touch sensor. The touch sensor uses the conductivity of the molten metal to know the arrival of the molten metal at a certain location. Takeshi Kobayashi, Yoshikazu Kajitani: Casting Vol.64, p.794 (1992) .
[0047]
Table 1 shows the results of evaluating the value of t / t and casting quality. Here, the residue defect is a depth at which the upper surface of the casting is cut by a milling machine to eliminate the residue defect. From the results in Table 1, it can be seen that when t / t is in the range of more than 1.1 and less than 7, residual defects are suppressed. From this result, when t / t is within this range, it is presumed that the filling of the molten metal is appropriately controlled, the molten metal in the mold is not disturbed, and the model pyrolyzate is not involved. When a worker in a casting manufacturer or the like casts the foamed model described in Example 1 based on experience and intuition as in the past, it is expected that the defect rate is higher than that in the wooden mold method. On the other hand, if casting is performed according to the present invention, it is considered that the defect rate can be reduced to the same level as the wooden method.
[0048]
In addition, test No. of Table 1 The calculation method of t∞ in 1 is shown. Test No. 1, c = 0.3, gravitational acceleration g = 9.8 [m / s], gate height Z = 0.7 [m], cross-sectional area S c = 3.61 × 10 −3 [m 2 ], The height of the model is 0.3 [m]. The average cross-sectional area of the model was determined based on the model that was actually NC processed. The average model weight of each experiment is 0.6 [kg], and using the model density of 20 [kg / m 3 ], the average model volume is 0.6 / 20 = 0.03 [m 3 ]. A model density of 20 [kg / m 3 ] corresponds to a foaming ratio of 50 times. By dividing the obtained model volume by the model height of 0.3 [m], an average cross-sectional area of 0.1 [m 2 ] is obtained. From the above, the test No. T of 1 is [0049]
[Equation 8]
Figure 0003871966
[0050]
It becomes.
[0051]
[Table 1]
Figure 0003871966
[0052]
* 1: Yuguchi ratio is the area ratio of Yuguchi: Yudo: Cough.
* 2: The filters are those shown in Table 2 below.
[0053]
[Table 2]
Figure 0003871966

[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a vanishing model casting method according to the present invention. FIG. 2 is a schematic view of a model used in Example 1. FIG. 3 is a diagram showing positions where through holes are formed in the model used in Example 1. Schematic diagram [FIG. 4] Schematic diagram showing the positional relationship between the model, the gate and the runner in the mold of Example 1 [Explanation of symbols]
1 Model 2 Through-hole 8 Exhaust passage 9 Refractory particles

Claims (5)

鋳物砂内に合成樹脂発泡体製模型を埋設してなる鋳型に溶湯を注湯し、該溶湯によって前記模型を消失させながら製品を鋳造する消失模型鋳造法であって、鋳型の内圧のかからない空隙鋳造における鋳込時間t(秒)に基づいて前記溶湯の鋳込時間t(秒)を決定する消失模型鋳造法。A vanishing model casting method in which a molten metal is poured into a mold formed by embedding a synthetic resin foam model in foundry sand, and the product is cast while the model disappears with the molten metal, and the void is not subjected to the internal pressure of the mold. A vanishing model casting method in which a casting time t (second) of the molten metal is determined based on a casting time t (second) in casting. 空隙鋳造における鋳込時間t(秒)が、下記式(1−1)又は(1−2)により算出される請求項1記載の消失模型鋳造法。
Figure 0003871966
Figure 0003871966
The disappearance model casting method according to claim 1, wherein a casting time t (seconds) in the void casting is calculated by the following formula (1-1) or (1-2).
Figure 0003871966
Figure 0003871966
鋳型内で溶湯面が上昇する速度vが1<v<4[cm/s]である請求項1又は2記載の消失模型鋳造法。The vanishing model casting method according to claim 1 or 2, wherein a speed v at which the molten metal surface rises in the mold is 1 <v <4 [cm / s]. 暫定的に決定された鋳造方案から鋳型の内圧のかからない空隙鋳造における鋳込時間t(秒)を求め、この鋳込時間tに基づいて目標とすべき鋳込時間tを定め、該鋳込時間tを与えるように最終的な鋳造方案を決定する、消失模型鋳造法における鋳造方案の決定方法。The casting time t (seconds) in the void casting that does not apply the internal pressure of the mold is determined from the tentatively determined casting method, and the target casting time t is determined based on the casting time t ∞. A method for determining a casting method in the disappearance model casting method, in which a final casting method is determined so as to give a setting time t. 鋳物砂内に合成樹脂発泡体製模型を埋設してなる鋳型に溶湯を注湯し、該溶湯によって前記模型を消失させながら製品を鋳造する消失模型鋳造法であって、前記溶湯の鋳込時間t(秒)と鋳型の内圧のかからない空隙鋳造における鋳込時間t(秒)とが、1.1<t/t<7を満たす消失模型鋳造法。A vanishing model casting method in which a molten metal is poured into a mold formed by embedding a synthetic resin foam model in foundry sand, and the product is cast while the model is lost by the molten metal, and the casting time of the molten metal An extinction model casting method in which t (second) and casting time t (second) in void casting that does not apply the internal pressure of the mold satisfy 1.1 <t / t <7.
JP2002151130A 2002-05-24 2002-05-24 Vanishing model casting method Expired - Fee Related JP3871966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002151130A JP3871966B2 (en) 2002-05-24 2002-05-24 Vanishing model casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002151130A JP3871966B2 (en) 2002-05-24 2002-05-24 Vanishing model casting method

Publications (2)

Publication Number Publication Date
JP2003340547A JP2003340547A (en) 2003-12-02
JP3871966B2 true JP3871966B2 (en) 2007-01-24

Family

ID=29768808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002151130A Expired - Fee Related JP3871966B2 (en) 2002-05-24 2002-05-24 Vanishing model casting method

Country Status (1)

Country Link
JP (1) JP3871966B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110572A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Lost foam pattern casting method
CN102686333B (en) * 2009-11-26 2014-11-19 本田技研工业株式会社 Evaporative pattern casing process
JP5491144B2 (en) * 2009-11-26 2014-05-14 本田技研工業株式会社 Vanishing model casting method
CN106001418B (en) * 2016-07-21 2018-05-25 济南圣泉倍进陶瓷过滤器有限公司 A kind of casting exhaust apparatus and the device producing method

Also Published As

Publication number Publication date
JP2003340547A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP3691430B2 (en) Vanishing model casting method
WO2011065410A1 (en) Evaporative pattern casing process
CN105397027A (en) Casting method of casting
JP3871966B2 (en) Vanishing model casting method
US7044190B2 (en) Sublimation pattern casting method
Liao et al. Study on the surface roughness of ceramic shells and castings in the ceramic shell casting process based on expandable pattern
JP3983583B2 (en) Vanishing model casting method
JP3325266B2 (en) Vanishing model casting
JP2003025044A (en) Lost pattern for casting
JP2018183805A (en) Evaporative pattern casting process
JPH0760396A (en) Joining method and casting mold
JP3871952B2 (en) Vanishing model casting method
JP2007245201A (en) Evaporative pattern casting process and die used for the casting process
JP2011110572A (en) Lost foam pattern casting method
Leushin et al. Manufacture of thin-walled steel castings via consumable additive patterns
JP2003334634A (en) Evaporative pattern casting method
JPH0999340A (en) Die member for casting metal, and aggregate used for the die member
JPH037055Y2 (en)
JPH05138290A (en) Production of expendable pattern casting mold and casting method
WO2001026843A1 (en) Metal casting
CA2008850A1 (en) Composite ceramic mold and method of producing the same
Yadav et al. Investigating the Effect of Different Process Parameters on Defects in A713 Aluminium Alloy Castings Produced by Investment Casting Process
Sillen Production of ductile iron castings without feeders
ALIEMEKE et al. Gating System Design For 0.67 hp Gasoline Generator Piston
de Beer et al. A CASE STUDY OF RAPID SAND CASTING DEFECTS

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees